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ABSTRACT

Protein family design emerges as a promising alternative by combining the ad-
vantages of de novo protein design and mutation-based directed evolution. In this
paper, we propose ProfileBFN, the Profile Bayesian Flow Networks, for specif-
ically generative modeling of protein families. ProfileBFN extends the discrete
Bayesian Flow Network from an MSA profile perspective, which can be trained
on single protein sequences by regarding it as a degenerate profile, thereby achiev-
ing efficient protein family design by avoiding large-scale MSA data construction
and training. Empirical results show that ProfileBFN has a profound understand-
ing of proteins. When generating diverse and novel family proteins, it can accu-
rately capture the structural characteristics of the family. The enzyme produced
by this method is more likely than the previous approach to have the correspond-
ing function, offering better odds of generating diverse proteins with the desired
functionality.

1 INTRODUCTION

In the realm of science, protein design stands as a crucial problem with far-reaching implications.
In particular, it holds the potential to significantly accelerate progress in numerous areas such as
precision medicine and synthetic biology (Kosorok & Laber, 2019; Johnson et al., 2021; Benner
& Sismour, 2005). Recently, artificial intelligence (AI) has brought new possibilities and break-
throughs to protein design (Jumper et al., 2021; Abramson et al., 2024; Lin et al., 2023; Hayes
et al., 2024). AI-powered techniques are increasingly being employed to accelerate the process and
enhance the accuracy of protein design. The ability to design proteins with specific functions using
AI is not only a scientific pursuit but also a practical necessity for addressing various challenges in
these fields.

Protein design often involves a combination of de novo design and mutation-based directed evolu-
tion. De novo design generates proteins almost from scratch, offering novel protein sequences that
expand the diversity of protein libraries (Watson et al., 2023; Dahiyat & Mayo, 1997). Although
it may have a lower success rate in wet lab experiments, it is valuable for creating starting points
that can be further optimized. Directed evolution Arnold (1998); Packer & Liu (2015) is effective
in developing proteins with enhanced functions in vitro. However, the scope of exploration within
the vast protein sequence space remains limited due to constraints in both the throughput of library
creation and the subsequent screening or selection processes (Wang et al., 2021; Bloom & Arnold,
2009).

In this context, protein family design emerges as an approach that combines the strengths of both
methods. By generating protein candidates based on multiple existing functional proteins, it ex-
plores protein space more broadly than mutation-based methods alone while utilizing established
functional information. This generative process allows for the creation of diverse libraries without
being limited to sequences closely related to a single wild type. Similar methods, such as Prot-
MambaSgarbossa et al. (2024), PoET(Truong Jr & Bepler, 2023) and EvoDiff(Alamdari et al.,
2023), also aim to balance innovation with reliability in protein design. Overall, protein family
design fits within the library creation and optimization pipeline, providing a powerful tool for gen-
erating diverse protein candidates that can be further refined through directed evolution.

Recently, single protein sequence modeling has dominated the area due to the analogy to the task of
the language model. Hence, there is also rising interest in transferring the techniques from language
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modeling to protein modeling (Truong Jr & Bepler, 2023; Madani et al., 2023; 2020; Nijkamp
et al., 2023; Jumper et al., 2021). In contrast, we believe that directly applying the natural language
modeling paradigm could be sub-optimal for the protein sequence distribution with very complex
global spatial correlation and constraint. In this paper, we consider integrating the evolutionary
information from the MSA1 (Multiple Sequence Alignment) motivated by previous literature (Rao
et al., 2021; Alamdari et al., 2023). However, MSA lies in a specific data type, i.e. a set of sequences,
and could vary and hold large length and depth which could bring in practical barriers for efficiently
processing the information with a scaled model.

To address the above concern and bring a fresh perspective to the protein family generative modeling,
we propose the Profile Bayesian Flow Networks (ProfileBFN), which achieves effective yet efficient
Protein Family Design by: (i) proposing to use MSA profile (the distribution of MSA) instead of
MSA for probabilistic generative modeling, which avoids the heavily direct training of MSA data.2
(ii) ProfileBFN extends the conventional discrete Bayesian Flow Network (BFN) from an MSA
profile perspective. We formally re-derive the new Bayesian flow and loss terms, tailoring it from
the perspective of protein family modeling. (iii) ProfileBFN could escape the heavy construction of
large-scale MSA data by training on single protein sequences. Thanks to the mathematical nature of
the ProfileBFN, we could generalize the one-hot representation of single sequences as a degenerative
profile, which enables the ProfileBFN to be flexible for both single sequence and multiple sequence
profiles as inputs.

We evaluate ProfileBFN on a multitude of benchmarks and find that ProfileBFN has the following
impressive advantages: (i) ProfileBFN ensures structural conservation while providing the most
diverse and novel family protein generation results. For characterizing family structural features,
sequences generated by ProfileBFN even surpasses the MSA search relied upon by AlphaFold2. (ii)
In the evaluation of generating functional enzyme proteins, compared to previous advanced methods,
ProfileBFN is more likely than the previous approach to have the corresponding function, offering
better odds of generating diverse proteins with the desired functionality. (iii) In the aspect of protein
representation, ProfileBFN outperforms all PLMs under the same parameter scale, demonstrating its
profound understanding of proteins.

2 PRELIMINARIES

2.1 REPRESENTING PROTEIN FAMILY AS MSA PROFILES

Multiple Sequence Alignments (MSAs) (Edgar & Batzoglou, 2006) are commonly used to capture
the evolutionary relationship between protein sequences within a family, it have been widely used in
various aspects of protein modeling, including protein sequence analysis (Gromiha, 2010), structure
prediction, function prediction, and protein design.

In the context of this paper, a MSA is a set of homologous protein sequences that are aligned to
each other. Formally speaking, given a set of n protein sequences, the MSA is a matrix X ∈
{0, · · · ,K}n×m, where m is the length of the aligned protein sequences, and Xij is the j-th amino
acid in the i-th aligned protein sequence.

The MSA profile {P (i)}mi=1 ⊂ ∆K , where ∆K represents the space of k-dimensional simplex, P
is calculated as follows:

P
(i)
k =

1

n

n∑
j=1

1(Xji=k) (1)

Where K is the alphabet size of amino acids, P (i)
k is the frequency of amino acid k at position i in

the MSA, and 1(·=·) is the Kronecker delta function.

1MSA is commonly used to capture the evolutionary relationship between protein sequences within a family.
2This is analogous to directly calculating the Schrödinger equation and making estimations using density

functional theory.
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2.2 BAYESIAN FLOW NETWORKS

Bayesian Flow Networks (BFNs) (Graves et al., 2023) introduce a new type of generative model
from a transmission perspective. In a simpler language, a sender leaks it’s information through the
noisy process of zi ∼ q(·|x;ω). An observer then receives the leaked information and updates its
belief about the variable x through Bayesian update and obtain a belief about x: p(x|z1:n). In the
context of a bits-back coding transmission scheme, the total number of nats required to transmit
x with z1:n serving as intermediate latents can be expressed as − log p(z1:n) − log p(x|z1:n). The
process also incorporates − log q(z1:n|x) nats returned to the sender, thus yielding the expected
marginal nats necessary to transmit data from p(x), which corresponds to the negative Variational
Lower Bound (VLB), as:

Ep(x)Eq(z1:n|x;ω) [− log p(z1:n)− log p(x|z1:n) + log q(z1:n|x;ω)]
= Ep(x)

[
DKL(q(z1:n|x;ω)||p(z1:n))− Eq(z1:n|x;ω) log p(x|z1:n)

]
= −VLB (2)

As p(z1:n) can be decomposed auto-regressively with a neural network pϕ, where ϕ is the governing
parameter of the neural network, the loss is

−VLB(ϕ) = Ep(x)

[
n∑

i=1

DKL(q(zi|x;ω)||pR(zi|z1:i−1;ϕ))− Eq(z1:n|x;ω) log pϕ(x|z1:n)

]
(3)

The −VLB(ϕ) is the expected marginal nats required to transfer a data sample from p(x). The loss
can be derived into a simpler form:

L(x) = 1

2
β′(t)K||pϕ − ex||2 (4)

The Bayesian flow required to train the network is:

pF (θ|x; t) = E
N (y|Kβ(t)ex,β(t)C)

δ

(
θ − eyθ0∑K

k=1 e
yk(θ0)k

)
(5)

Where θ is the governing parameter of the belief of the variable x. C, is the covariance matrix of the
multivariate Gaussian distribution. δ(· − θ) is a dirac delta function that is zero everywhere except
at θ. For detailed easy to understand derivation refer to Appendix A.1.

3 METHOD

To generate a protein that belongs to a specific protein family, it’s crucial to leverage the information
embedded within that family. As introduced in Section 2.1, a profile serves as an effective summary
of a protein family’s multiple sequence alignment (MSA). Utilizing profiles allows us to harness
the collective information of the entire protein family without incurring additional computational
costs compared to single-sequence models. However, constructing a training set of MSA profiles is
computationally expensive (Liu et al., 2009; Nag & Karforma, 2016).

We introduce our proposed ProfileBFN model, which unifies single-sequence one-hot encoding as
a special case of a profile. This innovative approach enables us to train on single protein sequences
while sampling with protein family profiles. Consequently, we can bypass the need to construct an
MSA profile training set, offering a more efficient and practical solution. Henceforth, we define a
profile as a list of PMFs and for simplicity, refer to a PMF as a profile.

3.1 THE PROPOSED PROFILEBFN

In the original discrete BFN (Graves et al., 2023), the emitted sample x can be viewed as being
drawn from a degenerate profile where each component has all its probability mass concentrated on
a single category. In this work, we extend the discrete BFN to accommodate the input of generalized
profiles. This generalization allows for seamless integration with the processing of protein family
profiles.

3
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To enable new capabilities, it is necessary to derive a new Bayesian flow and a corresponding loss
term. The main intuition behind this is to sample from a generalized profile, pass it through a noisy
channel, and then have the parameterized network make predictions based on the received evidence.
The Bayesian flow for profile modelling is as below, and the derivation and proof can be found in
Appendix A.2.

Theorem 3.1. Given a discrete noisy channel q(zi|ρ;ωi) = 1−ωi

K + ωiρ(z) where ρ,
∑

x ρx =

1,∀ρx ≥ 0 is a certain profile, with ω2
i =

∫ i/n

(i−1)/n
µ(τ)2dτ, β(t) =

∫ t

0
µ2(τ)dτ(1 ≥ t ≥

0), µ(τ) > 0,∀τ , and β(1) bounded, when n → +∞, the continuous time discrete Bayesian flow
is:

pF (θ|ρ; t) = E
N (y|Kβ(t)ρ,β(t)C)

δ

(
θ − eyθ0∑K

k=1 e
yk(θ0)k

)
(6)

Where θ is the accumulated information about the profile ρ. C ∈ RK×K , Cij = K1i=j − 1, is the
covariance matrix of the multivariate Gaussian distribution. δ(· − θ) is Dirac delta function that is
zero everywhere except at θ.

Where ρ ∈ ∆K−1 is a profile which can also be viewed as Probability Mass Function (PMF) with
K possible categories, this is the different part compared to vanilla discrete Bayesian flow (Eq. 5).

Additionally, we derive the new loss function as below.

Theorem 3.2. Given a discrete noisy channel q(z|ρ) = 1−ω
K +ωρ(z), p(z) = 1−ω

K +ωpϕ(z), ω > 0,
where ρ,

∑
x ρx = 1,∀ρx ≥ 0 is a certain profile, with nω2 = β bounded,

lim
n→+∞

nDKL(q(z|ρ)||p(z)) =
1

2
βK||pϕ − ρ||2 (7)

For a more general case where ω(t) changes through time, with β(t) =
∫ t

0
ω2(τ)dτ, 1 ≥ t ≥ 0, and

β(1) bounded, the limit of the KL divergence is:

lim
n→+∞

nDKL(q(z|ρ; t)||p(z; t)) =
1

2
β′(t)K||pϕ − ρ||2 (8)

There is only little change by substituting ex to ρ with respect to Eq. 4.

From Eq. 15, pϕ = fϕ(θ
(1), · · · ,θ(m)) represents a neural network, where θ(i) is the ith accumu-

lated information about the profile. The primary purpose of the network is to model the interdepen-
dency between independently accumulated information about the profiles.

3.2 TRAINING WITH PROFILE AS INPUT

As introduced in Section 2.1 {P (i)}mi=1 ⊂ ∆K−1 is the profile, where m is the length of the protein
sequence, and K is the alphabet size of amino acids. P (i) is the probability mass function of the
i-th position in the MSA profile, indicating the frequency of each amino acid at the i-th position in
the MSA.

Unified Profile Representation In the special case where the MSA contains only a single se-
quence, the profile at each position P (i) becomes a one-hot vector. This scenario simplifies to deter-
mining the precise amino acid at each position without ambiguity. However, for typical MSAs with
multiple sequences, P (i) provides a richer representation reflecting the variability and conservation
of amino acids across the alignment.

ProfileBFN for Protein Generative Modeling From Theorem 3.2, it is easy to arrive at the ob-
jective function for the training of protein family profile:

L(P ) =

m∑
i=1

1

2
β′(t)K||(P (i)

ϕ − P (i)||2 (9)
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The P
(i)
ϕ is the network part, where it takes independently accumulated information about the pro-

files θ
(i)
t as input and tries to correlate and guess the true profile. The accumulated information

about the profile θ
(i)
t can be computed through the Bayesian flow: θ(i)

t ∼ pF (θ
(i)|P (i); t) During

training t is sampled uniformly from U(0, 1).

Training Strategy We faced a similar representation––generation quality trade-off as described
in Hayes et al. (2024) and Wang et al. (2024). Intuitively a smaller t would result in learning with
lower quality input, whereas a larger t would make the objective trivial. During training, for 90%
of the time, we sample t independently for each amino acid position, and for the remaining 10%
of the time, the entire profile is trained with the same t. Additionally, as in Wang et al. (2024), our
backbone is first trained with masked language modeling objective.

3.3 FAMILY PROTEIN GENERATION

Given a protein family profile {P (i)}mi=1 ⊂ ∆K−1, we first compute its Bayesian flow up to some
initial time step t0, then for j in [0, · · · , N ] , tj ← (1−t0)j

N + t0 do the following calculation itera-
tively:

θ
(i)
tj ∼ pF (θ|P (i)

ϕ;j ; tj), (10)

Pϕ;(j+1) = fϕ(θ
(1)
tj , · · · ,θ(m)

tj , tj), (11)

Where the initial {P (i)
ϕ;0}mi=1 is set to {P (i)}mi=1. Finally we take the argmax sampling over

{P (i)
ϕ;(N+1)}

m
i=1 to get the generated family protein sequence, the ith amino acid can be decoded

as follows: a(i) = argmaxk(P
(i)
ϕ;(N+1))k.

The initial time t0 plays a critical role in the sampling process, setting a t0 too small would lead
to a severe loss of information from the conditioned sequence or family, while setting t0 too large
may limit the exploration of possible proteins. For individual protein sequences, we set t0 to 0.3.
However, profiles typically exhibit greater variance, necessitating a larger initial time step. In our
experiments, we set the initial time step t0 to 0.6 when sampling from a family profile.

4 EXPERIMENTS

In this section, we validate the advantages of ProfileBFN in family protein generation and protein
representation learning through extensive experiments. In the following paragraphs, we present the
outstanding performance results of ProfileBFN in family protein generation and protein represen-
tation learning tasks, and provide an in-depth analysis of these results. Finally, we analyze the
sampling process of ProfileBFN, revealing its efficiency and the biological meaning inherent in this
process.

A comprehensive overview of the training and evaluation configurations, including the metrics used,
is provided in Appendix D.

4.1 MAIN RESULTS

ProfileBFN Leads in Family Protein Generation We collected 61 primary sequences released by
CAMEO starting from May 4, 2024, and searched for their homologous sequences using the same
procedure as described in AlphaFold2 (Jumper et al., 2021). The models, whether provided with a
primary sequence or a set of homologous sequences, generate 1,000 sequences each for comparison.
Refer to Appendix D.2.1 for more detailed information on the experimental settings and evaluation
metrics.

Table 1 presents a comparison of the performance of different models in generating family proteins.
Based on the results presented in the table, we provide the following analysis:

• From a structural perspective, Sequences belonging to the same family should share co-
evolutionary information similar to that of the reference family. To evaluate this, we con-
ducted non-parameterized contact prediction on the generated protein sets using the Potts
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Table 1: Comparison of sequence and structural metrics (non-parametric cluster-level) on datasets
collected from CAMEO. The results indicate that ProfileBFN outperforms in family protein gener-
ation. *: model fine-tuned with MSA profile.

Model Sequence Structure

Div. ↓ Nov. ↑ LR P@L ↑ LR P@L/2 ↑ LR P@L/5 ↑
Searched MSA - - 0.186 0.270 0.395

ESM-2 (150M) 0.565 0.691 0.086 0.116 0.167
ESM-2 (650M) 0.619 0.556 0.100 0.146 0.223
PoET-Single (201M) 0.853 0.200 0.025 0.028 0.031
PoET-MSA (201M) 0.651 0.243 0.036 0.042 0.051
EvoDiff-MSA (100M) 0.225 0.668 0.061 0.089 0.168
DPLM (150M) 0.369 0.463 0.093 0.147 0.284
DPLM (650M) 0.445 0.411 0.102 0.159 0.303

ProfileBFN-Single (150M) 0.368 0.646 0.126 0.197 0.321
ProfileBFN-Single (650M) 0.421 0.581 0.162 0.262 0.422
ProfileBFN-Profile (150M) 0.283 0.650 0.128 0.210 0.384
ProfileBFN-Profile (650M) 0.293 0.641 0.173 0.280 0.474

ProfileBFN-Profile (650M)* 0.284 0.653 0.176 0.291 0.486

model implemented in CCMPred. the LR P@L, LR P@L/2, LR P@L/5 is the precision
at L, L/2, and L/5, respectively. This approach was chosen because parameterized mod-
els such as ESMFold or AlphaFold are prone to hallucination issues, as demonstrated in
Appendix D.2.2.
ProfileBFN shows a considerable advantage, with its performance metrics even surpassing
those of MSA obtained through search methods (see the first and last rows). This find-
ing suggests that the sequences generated by ProfileBFN effectively capture the structural
characteristics of the family, an example illustrating this is provided in Figure 1. Notably,
performance improves after fine-tuning on curated MSA profiles.

• From the perspective of sequence analysis, we expect the generated sequences to exhibit
adequate diversity and novelty. To measure diversity, we use the mean identity value among
the generated sequences, denoted as Div. Novelty is assessed by calculating the maximum
identity between the generated sequences and natural sequences, with novelty defined as
1−max(identity) and denoted as Nov.
ProfileBFN excels in terms of diversity and novelty. These results indicate that Pro-
fileBFN can generate diverse and novel sequences without suffering from severe mode
collapse and ensures the production of varied outputs.

• Compared to our diffusion competitor, DPLM, ProfileBFN consistently outperforms across
all metrics with significantly better results at different model sizes (rows 7, 8 vs 9, 10). This
demonstrates the superiority of BFN in handling discrete variables over diffusion models.

• Comparing the performance of ProfileBFN models in different sizes, larger models gener-
ally capture family structure characteristics more effectively. However, they show a slight
decline in performance regarding diversity and novelty. This is primarily due to the antago-
nistic relationship between structural conservativeness and sequence diversity and novelty.

• Regarding the input types for ProfileBFN, utilizing a profile derived from multiple sequence
alignment (MSA) as input offers superior structural performance compared to a single se-
quence, while also enhancing diversity and novelty. This is because the profile or MSA
contains richer structural information and more accurately reflects conservation across dif-
ferent sites. As a result, the model can more effectively capture structural features while
ensuring diversity and novelty by modifying the more flexible sites.

Following Truong Jr & Bepler (2023), we also use the structure prediction model ESMFold to evalu-
ate the performance of different models (see Figure 5). Based on the results shown in the figure, the
sequences generated by ProfileBFN exhibit higher pLDDT and Max TM-score values, indicating
that ProfileBFN still holds an advantage in capturing structural conservation at the instance-level
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Figure 1: Example of contact map obtained using ProfileBFN (left) and Searched MSA (right).
The family sequences generated by ProfileBFN even achieve more accurate predictions than the
Searched MSA.

metrics. In terms of novelty, ProfileBFN ranks in the middle, but still offers a sufficient number
of novel options. In contrast, while EvoDiff excels in diversity, it does not effectively capture the
structural conserved features of the family. Overall, ProfileBFN still delivers the best performance in
family protein generation. We provide three cases generated by ProfileBFN in Figure 2. However, it
is important to note that the parameterized instance-level metrics have significant flaws, we provide
further discussion in the Appendix D.2.2.

6ET6 2ANX 2ANV

pLDDT: 88.5pLDDT: 90.5pLDDT: 90.5

Reference Generated

TM-score: 0.967 TM-score: 0.950 TM-score: 0.946
Seq-Identity: 0.068 Seq-Identity: 0.123 Seq-Identity: 0.124

Figure 2: Three structurally conserved but sequence-novel lysozymes are generated by ProfileBFN.

ProfileBFN Generates Functional Proteins We utilize the enzyme function prediction model,
CLEAN (Yu et al., 2023), to classify and evaluate enzymes generated by multiple models. Specif-
ically, we focus on three representative categories of catalytic enzymes, each extensively validated
experimentally. Models in consideration generate new enzymes based on reference sequences from
each category. Subsequently, we use CLEAN to predict the EC numbers of these generated en-
zymes, thereby assessing their catalytic activity. Refer to Appendix E.1 for detailed information on
the experimental settings and evaluation metrics.

From the results in the table 2, we measure Accuracy × Uniqueness, more extensive results are
shown in Table 6, we can observe that the enzymes generated by ProfileBFN are considered more
likely to possess the corresponding functions. From a functional perspective, ProfileBFN provides
the best capability for generating family proteins.

From Table 6, PoET achieves the highest accuracy among all models. However, it suffers from
mode collapse, leading to relatively low performance when evaluated using the combined metric

7
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of Accuracy × Uniqueness. In contrast, both ProfileBFN and EvoDiff generate a variety of results
without observing mode collapse.

Table 2: Performance on enzyme tasks. We report the Accuracy× Uniqueness metric, complemen-
tary results can be found in Table 6. The results show that the enzymes generated by ProfileBFN are
likely to be considered as having corresponding functions.

Model P40925 ↑ Q7X7H9 ↑ Q15165 ↑
PoET-MSA 3.00% 33.3% 0.05%
EvoDiff-MSA 27.93% 88.69% 1.39%

ProfileBFN-Profile (650M) 95.19% 98.98% 42.67%

ProfileBFN Understands Proteins Deeply To evaluate ProfileBFN’s ability to represent proteins,
we assess its performance on several protein prediction tasks (Wang et al., 2024; Su et al., 2023;
Dallago et al., 2021), including protein function prediction (thermostability and metal ion binding),
localization prediction (DeepLoc), annotation prediction (EC and GO), and protein-protein interac-
tion prediction (HumanPPI). Following Wang et al. (2024), we conduct full-parameter supervised
fine-tuning on each dataset.

We use accuracy (ACC%) as the primary evaluation metric for most representation learning tasks.
For thermostability, we compute Spearman’s correlation (Spearman’s ρ) (Zar, 2005), and for EC
and GO annotation tasks, we use the maximum F1-score (Fmax).

Table 3 shows the performance of different models across various prediction tasks. Based on the
results in the table, ProfileBFN outperforms its discrete diffusion competitor, DPLM, across all task
metrics (see the last four rows).3 The improvement in performance is attributed to the smoother
data denoising process of BFN compared to discrete diffusion, as well as the removal of the adverse
impact of unnatural MASK tokens on protein data. Specifically, BFN takes into account changes in
the probability distribution of amino acid types at different positions, enabling the model to learn
more detailed information about amino acid co-variation (e.g., the probability of amino acid types at
two positions increasing or decreasing simultaneously). In contrast, discrete diffusion only considers
changes in amino acid types (i.e., both positions undergo a type switch), resulting in a coarser
granularity of model learning. Moreover, the BFN framework eliminates the need to introduce
artificial MASK tokens, avoiding inconsistencies between upstream training and downstream tasks.
The benefits of removing the MASK token have also been reported in the field of natural language
processing (Yang, 2019).

Moreover, ProfileBFN demonstrates comparable performance to SaPort (Su et al., 2023), which ex-
plicitly utilizes protein structure information. This indicates that ProfileBFN has also developed a
profound understanding of protein structure through learning from a large volume of protein se-
quences. However, it should also be noted that for tasks directly related to structural information,
such as HumanPPI, SaProt still maintains a leading position, suggesting the necessity of integrating
structural information into ProfileBFN in future work.

4.2 SAMPLING PROCESS ANALYSIS

In this section, we analyze the sampling process of ProfileBFN, including sampling efficiency and
the biological meaning implied in the sampling process.

ProfileBFN Achieves Higher Sampling Efficiency Figure 3 shows a comparison of sampling
times for different models when generating a protein of varying lengths. As observed from the
figure, across different model sizes and protein lengths, ProfileBFN consistently demonstrates higher
sampling efficiency compared to our main competitor, DPLM. Moreover, this advantage becomes
more pronounced as the protein length increases. Although both DPLM and ProfileBFN utilize
a similar ESM-2 network backbone, the need for a resampling trick (where each sampling step

3According to the results provided by Wang et al. (2024), the performance of ProfileBFN and DPLM is
comparable, with each having its own strengths and weaknesses. However, based on our replication experi-
ments, ProfileBFN consistently outperforms DPLM. This may be attributed to the unstable training process of
DPLM.
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Table 3: Performance on various protein prediction tasks. ProfileBFN shows a strong understanding
of proteins. *: protein structure is provided. †: results are quoted from Su et al. (2023). ♡: results
are quoted from Wang et al. (2024). ⋄: results are reproduced by us using the official code and data.
Our model is compared with the ⋄ version of the baseline models, if multiple versions exist.

Model Thermostability HumanPPI Metal Ion Binding EC GO DeepLoc

MF BP CC Subcellular Binary

Spearman’s ρ ACC(%) ACC(%) Fmax Fmax Fmax Fmax ACC(%) ACC(%)

SaProt* † 0.724 86.41 75.75 0.884 0.678 0.356 0.414 85.57 93.55
MIF-ST* † 0.694 75.54 75.08 0.803 0.627 0.239 0.248 78.96 91.76
ESM-1 (1B) † 0.708 82.22 73.57 0.859 0.661 0.320 0.392 80.33 92.83
ESM-2 (650M) † 0.680 76.67 71.56 0.877 0.668 0.345 0.411 82.09 91.96
AR-LM (650M) ♡ 0.638 68.48 61.16 0.691 0.566 0.258 0.287 68.53 88.31
DPLM (650M) ♡ 0.695 86.41 75.15 0.875 0.680 0.357 0.409 84.56 93.09

DPLM (650M) ⋄ 0.698 77.77 70.52 0.881 0.659 0.330 0.388 85.98 93.17
ProfileBFN (650M) 0.710 82.22 74.58 0.887 0.673 0.342 0.416 86.80 93.58
DPLM (150M) † 0.687 80.98 72.17 0.822 0.662 0.328 0.379 82.41 92.63
ProfileBFN (150M) 0.701 78.88 77.74 0.874 0.672 0.341 0.394 82.73 93.52

requires the model to infer twice) during DPLM’s sampling process leads to a significant difference
in their sampling efficiency. Compared to ESM-2, ProfileBFN incurs a slight loss in efficiency.
However, this gap narrows as the model size and protein length decrease. Notably, EvoDiff, which
has the fewest model parameters, exhibits the lowest sampling efficiency. This is because the model
requires MSA as an input for family design. When designing proteins of the same length, the actual
input size for the model is larger, leading to higher computational complexity.
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Figure 3: Sampling efficiency comparison. Pro-
fileBFN has a higher sampling efficiency com-
pared to its competitors.

Sampling Process Reflects Protein Conserva-
tion The sampling process of ProfileBFN is
essentially a transition from a high entropy
state to a low entropy state. In this paragraph,
we explore the relationship between this pro-
cess and the conservation of different protein
sites. Specifically, we sum the entropy at each
time step during the sampling process of Pro-
fileBFN and compare it with the results of the
site conservation analysis using MSA. Figure 4
presents an example of the extent of variability
in the ProfileBFN sampling process alongside
conserved protein sites analyzed through MSA
(lysozyme Q37875). The figure shows a high
consistency between the variation intensity at
different sites during the sampling process and
the conserved protein sites identified by MSA
analysis. This indicates that ProfileBFN suc-
cessfully captures the variability and conserva-
tion of different sites on the protein, and during the sampling process, it reflects this by controlling
the extent of amino acid variation at these sites.

5 RELATED WORK

De novo protein design methods constructs entirely new protein sequences that do not based
on homologs. It perform self-supervised learning from large protein databases (Consortium, 2015;
Mirdita et al., 2017; Suzek et al., 2007), aiming to model the evolutionary constraints across various
families (Koonin et al., 2004; Meier et al., 2021; Lin et al., 2022). It demonstrates its advantages in
scenarios of designing proteins for entirely new properties, especially in cases where there is limited
homologous information (Madani et al., 2020; Nijkamp et al., 2023; Meng et al., 2023). However,
it performs poorly in tasks involving the design of new proteins within large protein families.
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ProfileBFN MSA

Conserved Variable

Figure 4: ProfileBFN’s sampling process implies the conservation of proteins.

Mutation-based directed evolution approach mimics the process of protein evolution. By train-
ing on evolutionary-scale protein sequences, it can capture key sites in protein evolution and model
protein evolution process (Alamdari et al., 2023; Wang et al., 2024; Watson et al., 2023). It can
design proteins that can be verified by wet experiments, but limited by the way of evolution from
wild-type, so they cannot generate diverse protein sequences for reaching the optimal proteins.

Protein family design is a protein design process that models homologous protein sequences
as additional signals. These models can be further categorized into autoregressive and non-
autoregressive models. For example, PoET(Truong Jr & Bepler, 2023), MSAGPT(Chen et al.,
2024), and ProtMamba(Sgarbossa et al., 2024) are autoregressive models that take sequentially
concatenated sequences as input and generate new proteins autoregressively. In contrast, EvoDiff-
MSA(Alamdari et al., 2023) uses MSA-Transformer(Rao et al., 2021) as its MSA module, takes an
MSA matrix as input, and generates new proteins in a non-autoregressive manner.

6 CONCLUSION

In this paper, we have made significant contributions to the field of protein sequence generation
with several key advancements. We extended the Discrete BFN to design the ProfileBFN model,
which effectively utilizes protein family profile information for generating family-specific protein
sequences. Through formal derivation, we introduced a new Bayesian flow and loss component,
making the ProfileBFN versatile and applicable to any data with profile characteristics.

Our ProfileBFN model can accommodate both single-sequence and multiple-sequence profiles.
This flexibility allows us to train on single-sequence data while generating sequences using multi-
sequence profiles, thus avoiding the costly process of constructing profile training datasets.

Our model demonstrated exceptional performance in both representation and generation tasks. The
generated sequences showed biologically meaningful variations in the amino acid positions, which
is crucial for practical applications in protein engineering and functional analysis.

Overall, our proposed ProfileBFN have exhibited robustness, efficiency, and biological relevance,
offering a promising tool for protein sequence generation and functional studies.

ETHICS STATEMENT

In conducting our research on the Profile Bayesian Flow Networks (ProfileBFN) for generative
modeling of protein families, we have adhered to the highest ethical standards and address potential
concerns as follows:

1. Data Use and Privacy Our research did not involve human subjects or private data.
All protein sequence data used in our experiments were obtained from publicly available
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databases, which are free for academic and scientific research use. No identifiable personal
data were used or generated.

2. Potentially Harmful Insights and Applications The development of protein design tech-
nologies, including our proposed ProfileBFN, has the potential for beneficial applications
in fields such as medicine, bioengineering, and environmental science.

3. Bias and Fairness We have taken steps to ensure that our model and methodologies do not
inadvertently introduce bias in the generated protein sequences. The ProfileBFNmodel is
designed to be applicable to a wide variety of protein families without favoring any partic-
ular family or type. We emphasize the importance of continued evaluation and validation
to maintain fairness and accuracy in diverse biological applications.

4. Environmental Impact To minimize our environmental footprint, we optimized computa-
tional resources by training on single-sequence data, thereby avoiding the need for large-
scale MSA data construction and reducing computational power consumption. This ap-
proach also contributes to the sustainability of scientific research practices.

5. Research Integrity We uphold the principles of scientific integrity and transparency in
our research. All methods and results have been meticulously documented. We encour-
age reproducibility by providing detailed descriptions of our algorithms and experiments,
facilitating validation by other researchers.

In conclusion, while the potential applications of ProfileBFN offer significant advancements in pro-
tein design, we remain committed to conducting our research ethically and responsibly, with careful
consideration of potential implications and societal impacts.
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Kathryn Tunyasuvunakool, Russ Bates, Augustin Žı́dek, Anna Potapenko, et al. Highly accurate
protein structure prediction with alphafold. nature, 596(7873):583–589, 2021.

Eugene V Koonin, Natalie D Fedorova, John D Jackson, Aviva R Jacobs, Dmitri M Krylov, Kira S
Makarova, Raja Mazumder, Sergei L Mekhedov, Anastasia N Nikolskaya, B Sridhar Rao, et al. A
comprehensive evolutionary classification of proteins encoded in complete eukaryotic genomes.
Genome biology, 5:1–28, 2004.

Michael R Kosorok and Eric B Laber. Precision medicine. Annual review of statistics and its
application, 6(1):263–286, 2019.

Zeming Lin, Halil Akin, Roshan Rao, Brian Hie, Zhongkai Zhu, Wenting Lu, Nikita Smetanin, Allan
dos Santos Costa, Maryam Fazel-Zarandi, Tom Sercu, Sal Candido, et al. Language models of
protein sequences at the scale of evolution enable accurate structure prediction. bioRxiv, 2022.

Zeming Lin, Halil Akin, Roshan Rao, Brian Hie, Zhongkai Zhu, Wenting Lu, Nikita Smetanin,
Robert Verkuil, Ori Kabeli, Yaniv Shmueli, et al. Evolutionary-scale prediction of atomic-level
protein structure with a language model. Science, 379(6637):1123–1130, 2023.

Yongchao Liu, Bertil Schmidt, and Douglas L Maskell. Msa-cuda: multiple sequence alignment on
graphics processing units with cuda. In 2009 20th IEEE International Conference on Application-
specific Systems, Architectures and Processors, pp. 121–128. IEEE, 2009.

I Loshchilov. Decoupled weight decay regularization. arXiv preprint arXiv:1711.05101, 2017.

Shitong Luo, Yufeng Su, Xingang Peng, Sheng Wang, Jian Peng, and Jianzhu Ma. Antigen-specific
antibody design and optimization with diffusion-based generative models for protein structures.
Advances in Neural Information Processing Systems, 35:9754–9767, 2022.
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A PROFILE BFN DERIVATION

A.1 THE ESSENCE OF BAYESIAN FLOW NETWORKS

For easy understanding, the reader can treat the variables as discrete variables. Without loss of gen-
erality, the formulation can be easily extended to continuous variables by swapping the summation
with integration. This section reviews the essence of Bayesian Flow Networks (BFN)(Graves et al.,
2023) in a more simple language, there is a defined noisy channel q(·|x;ω), through which a variable
x leaks it’s information zi ∼ q(·|x;ω). An observer then receives the leaked information and updates
its belief about the variable x through Bayesian update and obtain a belief about x: p(x|z1:n).

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

In a bits-back coding scheme, the total nats required to transfer x with z1:n as intermediate latent
is − log p(z1:n) − log p(x|z1:n) with − log q(z1:n|x) nats put back, so the expected marginal nats
required to transfer data from p(x) is:

Ep(x)Eq(z1:n|x;ω) [− log p(z1:n)− log p(x|z1:n) + log q(z1:n|x;ω)]

= Ep(x)

[
Eq(z1:n|x;ω) log

q(z1:n|x;ω)
p(z1:n)

− Eq(z1:n|x;ω) log p(x|z1:n)
]
= −VLB

= Ep(x)
[
DKL(q(z1:n|x;ω)||p(z1:n))− Eq(z1:n|x;ω) log p(x|z1:n)

]
(12)

With the conditional distribution of the noisy channel q(z1:n|x) and a series of observed variables
z1:n, following bayesian update rule, the udpated belief of the variable x is:

q(x|z1:n) =
q(z1:n|x)q(x)∑
x q(z1:n|x)q(x)

(13)

There could be sparsity problem or curse of dimensionality problem when the variable x is high-
dimensional. Thus m-dimensional x is treated as m independent variables, and updated indepen-
dently with bayesian update rule. To model the interdependence between variables, an neural net-
work is introduced to rectify the posterior distribution q(·|z1:n;θ(1), · · · ,θ(m)), where θ(i) is the
governing parameter of the posterior distribution of the i-th component and determined by z1:n.

pϕ(·|z1:n) = fϕ(q(·|z1:n;θ(1), · · · ,θ(m))) (14)

= fϕ(θ
(1), · · · ,θ(m)) (15)

Without knowing x, variables {z1, z1, · · · , zn} are correlated variables, p(z1:n) in Eq. 12 is then fac-
torized autoregressively as p(z1:n) = p(z1)

∏n
i=2 p(zi|z1:i−1), and further parameterized combining

the output distribution pϕ from the neural network in Eq. 14:

p(z1:n) = p(z1)
n∏

i=2

p(zi|z1:i−1)

=

(∑
x

q(z1|x)pϕ(x|z∅)

)
n∏

i=2

∑
x

q(zi|x)pϕ(x|z1:i−1)

def
=

n∏
i=1

pR(zi|z1:i−1;ϕ) (16)

Plug Eq. 16 and Eq. 14 into Eq. 12, the −VLB(ϕ) is then:

−VLB(ϕ) = Ep(x)

[
n∑

i=1

DKL(q(zi|x;ω)||pR(zi|z1:i−1;ϕ))− Eq(z1:n|x;ω) log pϕ(x|z1:n)

]
(17)

The −VLB(ϕ) is the expected marginal nats required to transfer a data from p(x), with the transmis-
sion system parameterized by ϕ. The objective is to minimize the transmission cost, and the model
is trained by minimizing the −VLB(ϕ).

A.2 PROFILE BAYESIAN FLOW NETWORKS

In the original BFN paper, the continuous variable y is regarded as the latent variable that is used
for data transmission, it treats each components of the categorical variable as binary variable from
which y is derived with central limit theorem.

As it’s not so straightforward to treat the continuous variable as the latent variable, and kind of
“wrong” to treat the categorical variable as a set binary variables for derivation, we will derive the
discrete Bayesian flow from a different perspective, where the latent variables zi are still the discrete
evidences that are leaked from the data.

We arrive at the Theorem 3.1 that describes the continuous time discrete Bayesian flow with proper
derivation and proof.
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Derivation and Proof of Theorem 3.1. The noisy channel based on a profile is actually a general-
ization of the original BFN’s noisy channel, where the profile is a one-hot vector. Exchanging the
one-hot vector with a profile can be seen as a hierarchical sampling process: first sample a one-hot
vector according to the profile, then do the same as the original BFN. Still, we consider the transmis-
sion of noisy samples {zi}ni=1 as a sequential update of the belief of the variable x in the profile, and
finally push n → +∞. Since sequential Bayesian update is equivalent to batch Bayesian update,
∀x:

p(x|z1:n) =
q(zn|x)p(x|z1:n−1)∑
x q(zn|x)p(x|z1:n−1)

Define πi(x) = p(x|z1:i), we have the following recursive form

πi(x) =
q(zi|x)πi−1(x)∑
x q(zi|x)πi−1(x)

Where q(zi|x;ωi) =
1−ωi

K +ωi1zi=x is the one-hot noisy channel (the second hierarchy), ωi omitted
for brevity. After observing a new evidence zi the posterior distribution is:

πi(x) =

(
1−ωi

K + ωiδzix
)
πi−1(x)∑

x

(
1−ωi

K + ωiδzix
)
πi−1(x)

=

(
1−ωi

K + ωiδzix
)
πi−1(x)

1−ωi

K + ωiπi−1(zi)

where δ·· is the Kronecker delta function.

We then analyze how the observed evidence will affect the distribution in the log space, the accu-
mulated log probability of the distribution is:

ln(πi(x))− ln(πi−1(x)) = ln

(
1− ωi

K
+ ωiσzix

)
+ C

=

{
ln
(
1−ωi

K + ωi

)
+ C zi = x,

ln
(
1−ωi

K

)
+ C zi ̸= x,

where C = − ln
(
1−ωi

K + ωiπi−1(zi)
)

is a constant that is irrelevant to x.

Notice that when observing an evidence zi there will be an extra ”energy” on the index matching the
evidence by

ln

(
1− ωi

K
+ ωi

)
− ln

(
1− ωi

K

)
= ln

(
1 +

Kωi

1− ωi

)

Following Graves et al. (2023)this term is defined as:

ln ξi
def
= ln

(
1 +

Kωi

1− ωi

)

Below we assume all ωi’s are equal and simply denote (ωi, ξi) as (ω, ξ).

Now we analyze the situation of having observed m(m ≤ n) evidences. Assume there are cx
evidences observed for x such that

∑
x cx = m, then the built up log probability for x after observing

m evidences is

ln(πm(x)) = cx ln ξ + ln(π0(x)) + C (18)
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The cx’s are the counts of the evidences observed, which follow a multinomial distribution
M(m, 1−ω

K + ωρ), so the expectation, variance and covariance of the counts are:

E[cx] = m

(
1− ω

K
+ ωρx

)
Var[cx] = m

(
1− ω

K
+ ωρx

)(
1−

(
1− ω

K
+ ωρx

))
Cov[cx, cx′ ] = −m

(
1− ω

K
+ ωρx

)(
1− ω

K
+ ωρx′

)
(x ̸= x′)

Define yx = (cx −m 1−ω
K ) ln ξ, the corresponding terms are:

E[yx] = mωρx ln ξ

Var[yx] = m

(
1− ω

K
+ ωρx

)(
1−

(
1− ω

K
+ ωρx

))
ln2 ξ

Cov[yx, yx′ ] = −m
(
1− ω

K
+ ωρx

)(
1− ω

K
+ ωρx′

)
ln2 ξ(x ̸= x′)

Note that n→ +∞⇒ ω → 0, the first order Taylor expansion of ln ξ is:

ln ξ =
Kω

1− ω
+O(ω2)

According to the definition and assumption that all ωi’s are equal, mω2 = β(mn ), so the expectation
and covariance matrix of y are E[y] = Kβ(mn )ρ and β(mn )Σ, with Σij = K1i=j−1. As n→ +∞,
m
n is replaced by β(t) with a continuous time t.

We need to control the expected energy built up for each category to be bounded, thus β(1) need to
be bounded.

As the latent variable for data transmission is different from the original BFN paper, the KL term in
17 should be rederived to fit the new setting. We propose Theorem 3.2 that describes the KL term in
the continuous time discrete Bayesian flow with proper derivation and proof.

Derivation and Proof of Theorem 3.2.

lim
n→+∞

nDKL(q(z|ρ)||p(z))

= lim
n→+∞

(
n
∑

z

q(z|ρ) log q(z|ρ)− n
∑

z

q(z|ρ) log p(z)

)
(19)

Rearrange the inner right term in Eq. 19:

n
∑

z

q(z|ρ) log p(z)

=n
∑

z

q(z|ρ) log
(
1− ω

K
+ pϕ(z)ω

)
=
∑

z

−nq(z|ρ) logK +
∑

z

nq(z|ρ) log(1 + (Kpϕ(z)− 1)ω) (20)

Apply second order Taylor expansion on the right term in Eq. 20:∑
z

nq(z|ρ) log(1 + (Kpϕ(z)− 1)ω)

=
∑

z

nq(z|ρ)
(
(Kpϕ(z)− 1)ω − 1

2
(Kpϕ(z)− 1)2ω2 + o(ω3)

)
=
∑

z

nq(z|ρ)(Kpϕ(z)− 1)ω − 1

2

∑
z

nq(z|ρ)(Kpϕ(z)− 1)2ω2 + o(1) (21)
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The first term in Eq. 21 can be expanded as:∑
z

nq(z|ρ)(Kpϕ(z)− 1)ω

=
∑

z

n

(
1− ω

K
+ ωρ(z)

)
(Kpϕ(z)− 1)ω

=
∑

z

n
1− ω

K
(Kpϕ(z)− 1)ω + nω2

∑
z

ρ(z)(Kpϕ(z)− 1)

=0 + β
∑

z

ρ(z)(Kpϕ(z)− 1) = β
∑

z

ρ(z)(Kpϕ(z)− 1) (22)

The second term in Eq. 21 can be expanded as:∑
z

nq(z|ρ)(Kpϕ(z)− 1)2ω2

=
∑

z

β

(
1− ω

K
+ ωρ(z)

)
(Kpϕ(z)− 1)2

=
∑

z

β
1− ω

K
(Kpϕ(z)− 1)2 + βω

∑
z

ρ(z)(Kpϕ(z)− 1)2

=
∑

z

β
1− ω

K
(K2p2ϕ(z) + 1− 2Kpϕ(z)) + βω

∑
z

ρ(z)(Kpϕ(z)− 1)2

=− β + βK||pϕ||2 + o(1) (23)

Plug Eq. 22 and Eq. 23 into Eq. 21, and Eq. 21 into Eq. 20, and Eq. 20 becomes:

n
∑

z

q(z|x) log pϕ(z)

=− n logK + β
∑

z

ρ(z)(Kpϕ(z)− 1)− 1

2

(
−β + βK||pϕ||2

)
+ o(1)

=− n logK + βK
∑

z

ρ(z)pϕ(z)−
1

2
β − 1

2
βK||pϕ||2 (24)

Similarly, plug the pϕ with ρ, into Eq. 24, then the first term in Eq. 19 can be transformed to:

n
∑

z

q(z|x) log q(z|ρ)

=− n logK +
1

2
βK||ρ||2 − 1

2
β + o(1) (25)

Since β = nω2 is bounded as n → +∞, the o(1) term is negligible. Plug Eq. 24 and Eq. 25 into
Eq. 19, we have:

lim
n→+∞

nDKL(q(z|ρ)||p(z)) =
1

2
βK||pϕ − ρ||2 (26)

For ω(t) that satisfies β(t) =
∫ t

0
ω2(τ)dτ, 1 ≥ t ≥ 0, β(1) = const, the limit of the KL divergence

can be easily derived by the same method with the following substitution:

ω →
√

β′(t)∆t, (27)

n→ 1

∆t
, (28)

nω2 → β′(t), (29)
lim

n→+∞
→ lim

∆t→0
(30)
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and the resulted KL divergence is:

lim
n→+∞

nDKL(q(z|ρ; t)||p(z; t)) (31)

= lim
∆t→0

1

∆t
DKL(q(z|ρ; t)||p(z; t)) =

1

2
β′(t)K||pϕ − ρ||2 (32)

It seems although starting from a different perspective from the original BFN paper, the derived KL
term arrived at the same form as the original BFN paper.

As the reconstruction term in the right of Eq. 17 will trivially approach 0 when β(1) is sufficiently
large, the training loss for some ρ at some step t is then:

L(x) = 1

2
β′(t)K||pϕ − ρ||2 (33)

B ALGORITHMS

Algorithm 1 Training Loss Procedure

Require: β1 ∈ R, vocabulary size K ∈ Z+, a neural network fϕ(θ
(1), · · · ,θ(m), t), where ϕ is

the parameter of the neural network.
Input: profiles {P (i)}mi=1 ⊂ ∆K−1, where m is the sequence length
t ∼ U(0, 1)
βt ← tβ1

y
(i)
t ∼ N (KβtP

(i), βtC)
θ
(i)
t = softmax(y

(i)
t )

{P (i)
ϕ }mi=1 = fϕ(θ

(1)
t , · · · ,θ(m)

t , t)

L(P ) =
∑m

i=1
1
2β1K||(P (i)

ϕ − P (i)||2
Return L(P )

Algorithm 2 Family Protein Generation Procedure

Require: β1 ∈ R, vocabulary size K ∈ Z+, initial time t0, sampling steps N ,
a neural network fϕ(θ

(1), · · · ,θ(m), t), where ϕ is the parameter of the neural network.
Input: profiles {P (i)}mi=1 ⊂ ∆K−1 of certain protein family, where m is the sequence length.
for j = 0 to N do

t← (1−t0)j
N + t0

βt ← tβ1

y(i) ∼ N (KβtP
(i), βtC)

θ(i) = softmax(y(i))
{P (i)}mi=1 = fϕ(θ

(1), · · · ,θ(m), t)
end for
a(i) ← argmaxk(P

(i))k
Return {a(i)}mi=1

C DATASETS

C.1 EVALUATION DATASETS

Three datasets were used to evaluate the performance of our model of protein family generation:
dataset from CAMEO, enzyme families, and phage lysozyme families. The dataset collected from
CAMEO, which contains 61 proteins with Homo-oligomer Assessment as detailed in Table 4, was
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Table 4: Detailed information of each protein for CAMEO dataset.
ID PDB Chain Length Title

1 8BL5 A 148 Crystal Structure of Sam0.26
2 8F9Q A 505 Guinea pig sialic acid esterase
3 8F9R A 501 Rabbit sialic acid esterase
4 8FSL C 116 Human Mesothelin bound to a neutralizing VH domain antibody
5 8HJP A 459 Crystal structure of glycosyltransferase SgUGT94-289-3 in complex with UDP state 1
6 8ISO A 269 Crystal structure of extended-spectrum class A beta-lactamase, CESS-1
7 8IXT A 427 Rat Transcobalamin in Complex with Glutathionylcobalamin
8 8JDH A 166 Crystal structure of anti-CRISPR AcrIF25
9 8JGO A 535 Crystal structure of Deinococcus radiodurans exopolyphosphatase
10 8JI1 A 198 Crystal structure of Ham1 from Plasmodium falciparum
11 8JIJ A 421 Alanine decarboxylase
12 8JJA A 216 SP1746 in complex with acetate ions
13 8JRB A 597 Structure of DNA polymerase 1 from Aquifex pyrophilus
14 8JYX A 635 Crystal structure of the gasdermin-like protein RCD-1-1 from Neurospora crassa
15 8K05 A 340 Pseudouridine 5-monophosphate glycosylase from Arabidopsis thaliana – sulfate bound holoenzyme
16 8K40 A 456 mercuric reductase,GbsMerA, - FAD bound
17 8OV9 A 350 Crystal structure of Ene-reductase 1 from black poplar mushroom
18 8OXR A 145 Structure of the N-terminal didomain d1-d2 of the Thrombospondin type-1 domain-containing 7A
19 8OYD A 45 TrkB transmembrane domain NMR structure in DMPC/DHPC bicelles
20 8OZZ A 114 PH domain of AKT-like kinase in Trypanosoma cruzi
21 8PIH C 118 Structure of Api m1 in complex with two nanobodies
22 8QL0 A 693 Structure of human PAD6 Phosphomimic mutant V10E/S446E, apo
23 8QLC A 627 Crystal structure of the pneumococcal Substrate-binding protein AliD in open conformation
24 8QLH A 633 Crystal structure of the pneumococcal Substrate-binding protein AliC as a domain-swapped dimer
25 8QPM A 100 Structure of methylene-tetrahydromethanopterin reductase from Methanocaldococcus jannaschii
26 8QQ5 A 222 Structure of WT SpNox DH domain: a bacterial NADPH oxidase.
27 8QVC B 100 Deinococcus aerius TR0125 C-glucosyl deglycosidase (CGD), wild type crystal cryoprotected with glycerol
28 8QZ1 C 136 Crystal structure of human two pore domain potassium ion channel TREK-2 (K2P10.1) in complex with a nanobody (Nb58)
29 8QZ2 C 134 Crystal structure of human two pore domain potassium ion channel TREK-2 (K2P10.1) in complex with an inhibitory nanobody (Nb61)
30 8QZ3 C 137 Crystal structure of human two pore domain potassium ion channel TREK-2 (K2P10.1) in complex with an activatory nanobody (Nb67)
31 8R3R A 673 Transketolase from Streptococcus pneumoniae in complex with thiamin pyrophosphate
32 8R3S A 677 Transketolase from Staphylococcus aureus in complex with thiamin pyrophosphate
33 8R8O A 275 Hallucinated de novo TIM barrel with three helical extensions - HalluTIM3-1
34 8S4S A 145 PrgE from plasmid pCF10
35 8SUC A 100 NHL-2 NHL domain
36 8SUF A 1007 The complex of TOL-1 ectodomain bound to LAT-1 Lectin domain
37 8SUF A 114 The complex of TOL-1 ectodomain bound to LAT-1 Lectin domain
38 8SW5 C 47 Protein Phosphatase 1 in complex with PP1-specific Phosphatase targeting peptide (PhosTAP) version 1
39 8TB2 A 100 Structure of SasG (type II) (residues 165-421) from Staphylococcus aureus MW2
40 8TI6 A 155 Crystal structure of Tyr p 36.0101
41 8UAI B 494 Crystal structure of hetero hexameric hazelnut allergen Cor a 9
41 8UAI D 493 Crystal structure of hetero hexameric hazelnut allergen Cor a 9
43 8V8L A 237 Switchgrass Chalcone Isomerase
44 8V8P A 231 Sorghum Chalcone Isomerase
45 8W1D A 177 CRYSTAL STRUCTURE OF DPS-LIKE PROTEIN PA4880 FROM PSEUDOMONAS AERUGINOSA (DIMERIC FORM)
46 8W6V A 536 Structural basis of chorismate isomerization by Arabidopsis isochorismate synthase ICS1
47 8W26 A 429 X-ray crystal structure of the GAF-PHY domains of SyB-Cph1
48 8W53 B 488 Crystal structure of LbUGT in complex with UDP
49 8WEX A 468 Crystal structure of N-acetyl sugar amidotransferase from Legionella pneumophila
50 8WG0 D 100 Crystal structure of GH97 glucodextranase from Flavobacterium johnsoniae in complex with glucose
51 8WOP A 100 Crystal structure of Arabidopsis thaliana UDP-glucose 4-epimerase 2 (AtUGE2) complexed with UDP, wild-type
52 8WTB B 187 Crystal structure of McsA/McsB complex truncated by chymotrypsin
53 8WU7 A 306 Structure of a cis-Geranylfarnesyl Diphosphate Synthase from Streptomyces clavuligerus
54 8X3S B 34 Crystal structure of human WDR5 in complex with PTEN
55 8XJE B 153 Crystal structure of the YqeY protein from Campylobacter jejuni
56 8XJG A 153 Crystal structure of the YqeY protein from Vibrio parahaemolyticus
57 8Y9P A 256 Crystal structure of bacterial activating sulfotransferase SgdX2
58 8YXK A 201 X-ray structure of Clostridioides difficile endolysin Ecd09610 glucosaminidase domain.
59 9B1R A 562 Functional implication of the homotrimeric multidomain vacuolar sorting receptor 1 from Arabidopsis thaliana
60 9BCZ A 644 Chicken 1-phosphatidylinositol 4,5-bisphosphate phosphodiesterase zeta-1 (PLCZ1) in complex with calcium and phosphorylated threonine
61 9F63 A 572 Crystal structure of Saccharomyces cerevisiae pH nine-sensitive protein 1 (PNS1)

Table 5: Detailed information of enzyme data.
ID EC Length family

P40925 1.1.1.37 334 malate dehydrogenase
Q7X7H9 2.7.1.71 287 shikimate kinase
Q15165 3.1.1.2 354 arylesterase

introduced for our model to design protein sequence families separately and based on Multiple Se-
quence Alignments (MSAs), forming results by evaluation of CCMPRED (Seemayer et al., 2014).
All targets were filtered from the CAMEO submitted target list, and those discovered before May
2024 were excluded to avoid potential data leakage. Three enzyme families were used to validate our
model’s ability to generate MSAs with correct functional annotations following (Song et al., 2024),
with detailed information provided in Appendix E.1, forming result by a scoring model CLEAN (Yu
et al., 2023). Additionally, lysozyme families were generated and folded into structures using ESM-
Fold, following the PoET method (Truong Jr & Bepler, 2023) paper, thereby complementing our
structural results. All detailed information about evaluation benchmarks are provided in D.2
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D EXPERIMENTAL DETAILS

D.1 TRAINING CONFIGURATION

Training Dataset In line with ESM-2, we use protein sequence data from the UniRef
database (Suzek et al., 2007) (as of March 2024) to train ProfileBFN. Our training data selection
strategy also aligns with ESM-2, starting with an even selection of cluster groups from UniRef50
results, followed by random sequence selection within these clusters based on UniRef90 clustering.
In total, the training involves 190 million protein sequences. Notably, although ProfileBFN utilizes
MSA profiles as inputs, it does not require the construction of additional profile data, but merely
uses existing sequence data for training, which greatly simplifies the implementation.

Training Hyperparameters We use the same Transformer (Vaswani, 2017) module as ESM-2
to implement ProfileBFN. For the ProfileBFN model with 650 million parameters, it has 33 layers
of 20-head self-attention blocks. The hidden and embedding dimensions are 1280, and the feed-
forward hidden size is 5120. Note that, unlike the ESM-2 model, we do not use any form of dropout
for regularization, as the Bayesian flow itself provides sufficient stochasticity. For the Bayesian flow,
β(1) implies the uncertainty of the last step in the modeling procedure. Based on our empirical expe-
rience and cases in the original BFN paper (Graves et al., 2023), we found it could be approximately
set according to the equation beta(1) ∗K = constant (K is the vocab size). With this principle, we
could directly obtain a good setting of β(1) following the previous empirical parameter in Graves
et al. (2023) where K is different. We consider three different candidate schedule functions for β(t),
linear, square and exponential, then we enumerate all three settings empirically over the small model
(8M) and find linear works best in our task. We use AdamW (Loshchilov, 2017) to train our model,
setting the learning rate at 0.0001, which linearly decays to a minimum of 4e-5. We adaptively set
the batch size to approximately 2 million tokens.

D.2 EVALUATION DETAILS

D.2.1 EVALUATION OF FAMILY PROTEIN GENERATION

Settings The evaluation for family protein generation involves multiple proteins as targets for
generation, including 61 proteins from CAMEO (Robin et al., 2021), phage lysozyme proteins, and
three enzyme proteins. Detailed information on these proteins can be found in the Appendix C.1.
When using a profile as input, the hyperparameter t0 is set to 0.6; when using a single sequence
as input, it is set to 0.3. For the construction of the profile, we first perform an MSA search in the
Uniclust30 database (Mirdita et al., 2017) using HHblits (Remmert et al., 2012) based on the natural
sequence of the protein. Then, we obtain the profile according to the method described in the section
2.1. For each target protein, we require the model to generate 1000 sequences (without removing
duplicates) for evaluation.

Metrics Since the goal of the family protein generation is to generate a cluster of diverse and novel
proteins with similar structures and functions, our evaluation metrics are based on three dimensions:
sequence, structure, and function.

For sequences, we expect the model to deliver diverse, and novel results. Therefore, we consider the
diversity, and novelty of generated sequences as metrics.

• Diversity: A model that experiences mode collapse, where the generated outputs lack
diversity and can only produce a limited number of different proteins, cannot provide users
with a rich set of candidate results. We use the mean value of the identity between generated
sequences as a metric to measure diversity, denoted as Div.

• Novelty: Similarly, a model that simply replicates the natural sequence is inadequate for
supporting real-world design scenarios. A useful model needs to produce results that offer
novelty. We measure novelty by calculating the maximum identity between the generated

sequences and natural sequences, defined as
∑

i(1−max
j

(identityij))

N , where identityij denotes
the identity between ith among N generated sequence and jth reference sequence.
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Proteins belonging to the same family typically exhibit high similarity in their tertiary structures.
Therefore, structural evaluation of family protein generation primarily focuses on assessing whether
the generated sequences contain the structural information corresponding to the proteins. For this
purpose, we use the currently popular yet fragile parameterized instance-level evaluation metrics
and more robust non-parametric cluster-level metrics for evaluation.

• Parameterized instance-level: Due to the promising advancements of protein structure
prediction models such as AlphaFold2 (Jumper et al., 2021) and ESMFold (Lin et al.,
2023), previous work has utilized these models to evaluate the structures of generated
family sequences (Truong Jr & Bepler, 2023). Specifically, following Truong Jr & Be-
pler (2023), we use ESMFold to perform structure prediction for each generated family
sequence and report the predicted local distance difference test value (pLDDT) output by
ESMFold. Additionally, we compare the predicted structure with the natural reference
structure and report the maximum template modeling score, denoted as Max TM-score.

• Non-parametric cluster-level: This metric is used to avoid incorrect model comparisons
caused by bias in parameterized metrics. The instance-level metrics heavily rely on pa-
rameterized structure prediction models. However, Alkhouri et al. (2024) have pointed out
that structure prediction models can also produce structures similar to natural proteins for
adversarial samples based on the BLOSUM matrix (Henikoff & Henikoff, 1992). This un-
doubtedly undermines the reliability of parameterized metrics. Our experimental analysis
shown in Appendix D.2.2 further illustrates that adversarial samples using the BLOSUM
matrix merely replicate information contained in existing sequences, without providing
new insights into our understanding of the family.
Based on the observations above, we design a more robust non-parametric metric based on
a cluster of sequences to avoid this issue. Specifically, we require the model to generate a
cluster of sequences for a given family and explain the amino acid contacts in the reference
structure by analyzing the mutations within the cluster using the non-parametric CCMpred
tool (Seemayer et al., 2014). Following Lin et al. (2023), we report the precision of the top
L (length of the protein), L/2, and L/5 predicted long-range contacts (amino acid sequence
positions differ by 24 or more) as the corresponding metrics, denoted as LR P@L, LR
P@L/2, and LR P@L/5. In addition, Long-range contacts are challenging to predict and
are crucial for understanding protein structure, function, and valuable features (MacGowan
et al., 2024).

The evaluation metrics for protein function are designed to assess whether newly generated pro-
tein members of a given family still retain similar functions. Strictly speaking, evaluating protein
function requires wet lab experiments; however, this process is both expensive and time-consuming.
Instead, we perform dry lab assessments based on a protein function classification model and have
designed corresponding evaluation metrics. Specifically, we task the model with generating en-
zymes, a special type of protein, and classify the generated proteins using the widely adopted en-
zyme function classification model, CLEAN (Yu et al., 2023). We then assess whether the generated
enzymes are correctly classified to determine if the family function is retained in the designs. The
proportion of correctly classified results, after deduplication, is reported as a performance metric.

Baselines We select multiple strong protein design models as baseline models for comparison.
Specifically, PoET (Truong Jr & Bepler, 2023) is an autoregressive model that uses known family
sequences as prompts and generates new sequences for the family by continuously predicting the
next amino acid. The model can generate sequences using either a single sequence or a multiple
sequence alignment (MSA) as the prompt. Similar to us, EvoDiff (Alamdari et al., 2023) adopts a
non-autoregressive generation approach. It leverages MSA to guide a discrete diffusion generation
process, achieving the goal of family design. In a non-autoregressive paradigm, we have extended
the powerful protein language model ESM-2 (Lin et al., 2023) to enable its application from protein
understanding scenarios to family design. Specifically, for a given sequence in the family, we first
mask 15% of the amino acids (consistent with the strategy used during training) and then iteratively
replace the masked tokens with generated amino acids using ESM-2. The model most closely related
to our ProfileBFN is DPLM (Wang et al., 2024). It is also trained on large-scale protein sequence
datasets. However, while DPLM adopts a discrete diffusion framework, we utilize a Bayesian Flow
Network capable of handling discrete data more smoothly. The original DPLM paper does not ad-
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dress scenarios involving family designs. In this paper, we extend it to family designs by equipping
it with a sampling strategy similar to ProfileBFN.

Figure 5: Sequence novelty and predicted structural conservation of phage lysozymes generated by
ProfileBFN, PoET and EvoDiff. ProfileBFN effectively captures the conserved structural features
of families while providing sufficient novelty.

D.2.2 NON-PARAMETRIC: WHY IMPORTANT

We assert that non-parametric methods, like CCMPRED (Seemayer et al., 2014), offer distinct ad-
vantages in evaluating generated protein sequences. To validate our hypothesis, we have conducted
additional BLOSUM62-based hacking experiments, which reveal how structural evaluations, such
as ESMFold’s pLDDT scores, may not perform optimally in certain respects.

To challenge the efficacy of ESMFold, we employed the BLOSUM62 (Henikoff & Henikoff, 1992)
matrix to score the sequences after randomly substituting amino acid residues from the ground truth
sequences. Subsequently, we selected those modified sequences with high scores and analyzed their
predicted structures by ESMFold. With a sequence identity threshold set at 0.4, we observed that
most of these hacked proteins still exhibited favorable pLDDT and pTM scores; however, their
structures, as depicted in Figure 6, were erroneous and devoid of biological significance.

Additionally, we discovered that some protein samples generated by PoET faced a similar issue,
indicating that ESMFold may not provide a comprehensive evaluation. As illustrated in Figure 7,
sequences with repetitions and those following simple patterns still received high pLDDT scores
from ESMFold. To some extent, the pLDDT scores in these cases reflect confidence because struc-
tures, such as those resembling a stick, are easily recognizable.

D.2.3 EVALUATION OF PROTEIN REPRESENTATION LEARNING

Settings For the evaluation of protein representation learning, we assess the representations of
ProfileBFN on various protein prediction tasks (Wang et al., 2024; Su et al., 2023; Dallago et al.,
2021). These tasks include protein function prediction (Thermostability and Metal Ion Binding),
protein localization prediction (DeepLoc), protein annotation prediction (EC and GO), and protein-
protein interaction prediction (HumanPPI). Following Wang et al. (2024), we perform full-parameter
supervised fine-tuning on each dataset.

Metrics We use accuracy (ACC%) as the primary evaluation metric for most tasks in represen-
tation learning since these tasks are primarily classification problems, Accuracy refers to the per-
centage of instances where the model accurately predicts the correct class for specific proteins in

general it is computed as
∑N

1 1(y=ŷ)

N , where y, ŷ are the ground truth label and model predicted
label, N is the total number of samples. In the context of HumanPPI and Metal Ion Binding tasks,
protein pairs are classified into two categories based on whether they interact. For the DeepLoc task,
classifications are made either into 10 classes for subcellular localization or into 2 classes for binary
localization.
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Hacked

GT

ID             8SUF              8UAI

Identity           0.40               0.40

pLDDT           75.86           72.77

pTM               0.743           0.769

TM-score        0.809           0.736

LR P@L/5        0.043           0.012

Figure 6: Hacking ESMFold’s pLDDT by BLOSUM62 Matrix

Spearman’s rank correlation (Spearman’s ρ) (Zar, 2005) coefficient is a statistical measure that eval-
uates the strength and direction of the association between two ranked variables. It quantifies the
degree of monotonicity in the relationship, meaning it assesses how well the relationship between
the two variables can be described by a monotonic function. In essence, it indicates whether an
increase in one variable consistently corresponds to an increase or decrease in the other, regardless
of whether the relationship is linear.

It is used to assess the relationship between the ground truth values of protein thermostability, as
outlined by FLIP (Dallago et al., 2021), and the predicted values. Specifically, it is calculated as
follows,

ρ = 1− 6
∑

d2i
n(n2 − 1)

, di = x̂i − xi (34)

the prediction and ground truth are both ranked in descending order where x̂i and xi indicates the
predicted and ground truth rank.

Maximum F1-score (Fmax) is used for EC and GO annotation tasks. Fmax (Maximum F1-score) is
a metric that balances the precision and recall of a classification model, reflecting the best trade-off
between these two factors. In classification tasks, predictions can be categorized into four types:
True Positive (TP), False Positive (FP), True Negative (TN), and False Negative (FN). A threshold
λ ∈ [0, 1] determines whether a prediction is considered True or False. Given N model predicted
scores {si ∈ [0, 1]}Ni=1, corresponding labels are {li ∈ {0, 1}Ni=1, the True Positive (TP), False
Positive (FP), True Negative (TN), and False Negative (FN) Precision (P), Recall (R), F1 score (F1)
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Figure 7: Trivial cases of PoET generated repeated sequence with high pLDDT after ESMFold.

and finally Fmax are subsequently calculated as follows:

NTP (λ), NFP (λ) =
∑
i

li1si≥λ,
∑
i

li1(si<λ),

NTN (λ), NFN (λ) =
∑
i

(1− li)1(si<λ),
∑
i

(1− li)1(si≥λ),

P (λ) =
NTP (λ)

NTP (λ) +NFP (λ)
,

R(λ) =
NTP (λ)

NTP (λ) +NFN (λ)
,

F1(λ) =
2P (λ)R(λ)

P (λ) +R(λ)
,

Fmax = max
λ

(F1(λ)) (35)

Baselines For evaluating representation learning, we use the following baselines: SaProt (Su et al.,
2023) is a protein language model that is trained using sequence and structure tokens. MIF-ST (Yang
et al., 2023) is a pre-training model that utilizes inverse folding structural guidance to enhance
learning. ESM-1b (Rives et al., 2021) and ESM-2 (Lin et al., 2023) are two protein language models
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trained using masked language modeling. AR-LM (Wang et al., 2024) is a protein language model
trained based on autoregression. In contrast, DPLM (Wang et al., 2024) utilizes non-autoregressive
discrete diffusion modeling and is the model most closely related to ProfileBFN.

E COMPLEMENTARY RESULTS

E.1 ENZYME GENERATION

E.1.1 BACKGROUND

Enzymes are a special class of proteins with catalytic functions. They significantly accelerate chem-
ical reactions within organisms and play a crucial role in sustaining life processes. Based on the
differences in the types of chemical reactions catalyzed by various enzyme families, researchers
have developed the Enzyme Commission Number (EC Number) system to classify enzymes. In
other words, two enzyme proteins sharing the same EC Number are considered to have similar cat-
alytic functions. Strictly speaking, determining an enzyme’s EC Number requires labor-intensive
and costly wet-lab experiments. However, with advancements in machine learning, the accuracy
of using computational methods to predict EC Numbers has improved significantly. Among these
methods, CLEAN (Yu et al., 2023) is one of the most advanced models for predicting enzyme EC
Numbers. It employs a contrastive learning strategy to bring representations of functionally similar
enzymes closer while pushing dissimilar ones apart, achieving classification accuracy validated by
wet-lab experiments.

E.1.2 SETTINGS

Following the work of previous researchers, we selected three representative enzyme families for
model evaluation following (Song et al., 2024). These families possess distinct characteristics that
make them important in biological research. Firstly, P40925, which belongs to the family of malate
dehydrogenases, plays an essential role in the malate-aspartate shuttle and the tricarboxylic acid
(TCA) cycle. It catalyzes the reduction of aromatic alpha-keto acids in the presence of nicotinamide
adenine dinucleotide(NADH). Secondly, Q7X7H9, which belongs to the family of shikimate ki-
nases, catalyzes the specific phosphorylation of the 3-hydroxyl group of shikimate acid. It is a
key enzyme in the shikimate pathway, responsible for the biosynthesis of the aromatic amino acids
phenylalanine, tyrosine, and tryptophan. Finally, Q15165 is capable of hydrolyzing lactones and
a number of aromatic carboxylic acid esters. It possesses antioxidant properties, which are crucial
in reducing intracellular and local oxidative stress and are related to the pathogenesis of various
diseases. For each enzyme family, we require the model to generate 1,000 protein sequences for
evaluation. For ProfileBFN, we convert the known protein sequences within the family into a pro-
file, which serves as the input for generation. For each generated protein sequence, we use CLEAN
to classify its function and verify whether it belongs to the given family.

E.1.3 BASELINES

We have selected several models specialized in generating protein families for comparison.
PoET (Truong Jr & Bepler, 2023) is an autoregressive model that uses known family sequences
as prompts and generates new sequences for the family by continuously predicting the next amino
acid. When generating new enzyme family sequences, known enzyme sequences are converted into
prompts and input into PoET. PoET treats sequences of protein families as sequences-of-sequences,
utilizing both attention modules to capture within-sequence and between-sequence relationships in
a hierarchical manner. EvoDiff (Alamdari et al., 2023) employs a non-autoregressive generation
approach, utilizing multiple sequence alignments (MSA) to guide a discrete diffusion generation
process and achieve family-specific generation. For this method, known enzyme sequences within
the family are organized into an MSA.

E.1.4 METRICS

We used diversed benchmark to evaluate the performance of generated Enzyme sequences:
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• Accuracy: Accuracy is defined as the percentage of sequence candidates classified by the
CLEAN model into the correct class of EC numbering. Specifically, we deduplicate the
sequences beforehand.

• Uniqueness: Considering that generative models may output the same sequences in dif-
ferent iterations, we record the survival rates before and after deduplication as Uniqueness.

• A × U: An aggregate indicator which is defined as Accuracy× Uniqueness to both mea-
sure model’s ability to generate accurate and unique sequence.

• Novelty: We compute novelty by measuring the identity between generated sequences
and the target protein’s searched MSAs. For each sequence candidate, we find its nearest
neighbor in the MSA set which has the maximum identity. The average maximum identity
of the generated sequences is considered a measure of novelty. We then compute 1 −
Novelty to ensure it’s incremental.

• Diversity: We quantify the diversity of the generated sequence family by measuring the
identity between sequences. Specifically, for each sampled sequence, we compute identities
against the rest. The average identity is considered as the measure of diversity.

E.1.5 RESULTS

We present detailed experimental results in Table 5 and then present generated sequences it in 11,
12 and13.

Table 6: Additional results complementing Table 2 are provided to showcase our model’s perfor-
mance. Notably, our model achieves the highest Accuracy×Uniqueness. The MSA Depth indicates
the depth of MSA that are used as input of the generation model

Model P40925 Q7X7H9 Q15165

MSA Depth - 572 443 15

Accuracy × Uniqueness ↑
PoET 3.00% 33.3% 0.05%

EvoDiff-MSA 27.93% 88.69% 1.39%
ProfileBFN-profile 95.19% 98.98% 42.67%

Accuracy ↑
PoET 98.04% 99.93% 100%

EvoDiff-MSA 27.93% 88.69% 1.39%
ProfileBFN-profile 95.19% 98.98% 42.67%

Uniqueness ↑
PoET 3.06% 33.32% 0.05%

EvoDiff-MSA 100% 100% 100%
ProfileBFN-profile 100% 100% 100%

Novelty ↑
PoET 0.036 0.366 0.068

EvoDiff-MSA 0.728 0.596 0.497
ProfileBFN-profile 0.467 0.582 0.288

Diversity ↓
PoET 0.499 0.645 0.990

EvoDiff-MSA 0.138 0.184 0.143
ProfileBFN-profile 0.374 0.289 0.594

E.2 IMPROVE STRUCTURE PREDICTION VIA ENHANCING MSA

E.2.1 BACKGROUND

Orphan protein structure prediction is an important scientific challenge, aiming to improve the accu-
racy of models in predicting the structures of orphan proteins. Specifically, orphan proteins refer to
those that lack sequence and structure homology information (Wu et al., 2022). Due to the absence
of homologous data, it is difficult to construct high-quality Multiple Sequence Alignments (MSAs)
for these proteins (Chen et al., 2024). The low quality of MSAs strongly limits the performance
of current structure prediction models, such as the AlphaFold series (Wu et al., 2022) (Chen et al.,
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2024). Moreover, orphan proteins are not uncommon in the protein space; statistics show that ap-
proximately 20% of metagenomic proteins and around 11% of proteins from eukaryotic and viral
origins are classified as orphan proteins (Chen et al., 2024). Therefore, addressing orphan protein
structure prediction remains a critical challenge in the post-AlphaFold era.

E.2.2 BASELINES

The current advanced approach to addressing this issue is to use generative models to enhance low-
quality MSAs, transforming them into high-quality MSAs. Based on this paradigm, MSAGPT(Chen
et al., 2024) reports the best predictive performance to date. Specifically, MSAGPT employs an
autoregressive model, taking low-quality MSAs as input and sampling additional protein sequences
to improve the quality of the MSAs. MSAGPT outperforms several methods that enhance MSAs
to boost predictive performance, including EvoDiff (Alamdari et al., 2023), MSA-Aug(Zhang et al.,
2023b), and EvoGen(Zhang et al., 2023a). Due to its advanced performance, we use MSAGPT as the
main baseline method. Additionally, we treat the performance of AlphaFold2 using non-enhanced
MSAs on orphan proteins as a lower bound, referred to as AF2-MSA. It is worth noting that while
ProfileBFN, like MSAGPT, also enhances MSAs using generative models, it differs from MSAGPT
in that its training only requires protein sequence data, which is more easily accessible. In contrast,
MSAGPT requires training on MSA datasets and is further optimized based on AlphaFold2 feedback
using Reinforcement Learning.

E.2.3 SETTINGS

We follow MSAGPT and evaluate the model using orphan proteins from the CASP14 and CASP15
datasets. For each orphan protein, we retrieve its MSA using HHblits(Remmert et al., 2012) from
the UniClust30 database(Mirdita et al., 2017). The obtained MSA has a depth of less than 20,
meaning fewer than 20 homologous sequences can be retrieved. Generation models are required to
generate 64 additional protein sequences based on the retrieved low-quality MSA. These sequences
supplement the retrieved MSA, forming a higher-quality MSA. This high-quality MSA is then used
as input for AlphaFold2 to improve its structural prediction performance for orphan proteins. In
utilizing the retrieved MSA, ProfileBFN transforms it into a profile to be used as model input, while
MSAGPT uses it as a prompt to guide the model in generation.

E.2.4 METRICS

We compare the performance of different methods by analyzing the differences between the or-
phan protein structures predicted by AlphaFold2 and those obtained experimentally. Specifically,
we use two golden metrics: TM-score, a widely-used metric for assessing the structural similarity
between predicted structures and the ground truth, and LDDT, the Local Distance Difference Test
score, which measures how well local interactions in a reference structure are conserved in the pro-
tein model being assessed. Additionally, we report a predictive metric, pLDDT (predicted Local
Distance Difference Test), which reflects AlphaFold2’s confidence in the local accuracy of each
residue. All metrics are scaled from 0 to 100.

E.2.5 RESULTS

Table 7 presents the performance metrics of different methods. Based on this table, we observe the
following findings:

• Generating additional protein sequences can indeed enhance the quality of MSA, thereby
improving the model’s performance. This improvement stems from the model’s pretraining
process, which enables it to gain a profound understanding of protein structures. When
applied to orphan proteins, the model effectively transfers this understanding, enriching
initially low-quality MSAs with structural information and ultimately yielding high-quality
MSAs.

• ProfileBFN consistently outperforms MSAGPT across all metrics, demonstrating that the
MSA supplements provided by ProfileBFN contain more comprehensive protein structure
information. This result can be attributed to several factors. First, ProfileBFN leverages
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pretraining to capture deeper protein structural insights compared to MSAGPT, as its non-
autoregressive strategy aligns more closely with the natural characteristics of protein data.
Second, the structural information obtained by ProfileBFN is more transferable to orphan
proteins, unlike MSAGPT, whose pretraining primarily relies on deeper MSAs, while Pro-
fileBFN imposes no specific depth requirement on MSAs.

Table 7: Using ProfileBFN to enhance AF2 performance by adding virtual MSAs, the results show
that ProfileBFN is capable of generating more appropriate MSAs for models such as AF2 compared
to the ground truth searched MSA and MSAGPT. All metrics are scaled from 0 to 100.

Model TMscore ↑ LDDT ↑ pLDDT ↑
AF2-MSA 53.20 54.01 62.91
MSAGPT 55.72 55.59 66.38

ProfileBFN 56.84 55.72 67.04

Figure 8: Visualization of improved structure prediction sample compared with AlphaFold2 and
MSAGPT. Yellow: Ground truth; Blue: Predictions from MSA generated by natural MSA searched
with AF2. Purple: Predictions based on MSA generated by MSAGPT; Red: Predictions based on
MSA generated by ProfileBFN;
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E.3 FINE-TUNNING PROFILEBFN WITH MSA PROFILE

The final fine-tuning set includes 28 million Uniref90 sequences organized into 165,992 profiles.
These profiles were clustered based on their Uniref50 sequences, which themselves are clustered
from the larger Uniref90 dataset. We align these sequences from the same Uniref50 family and
create our multiple sequence alignment (MSA) profiles by counting the frequency of different amino
acids at each position within the sequences. ProfileBFN (650M) was tuned over 30,000 steps using
each profile’s data as direct input.

E.4 ANTIBODY CDR IN-PAINTING

E.4.1 SETTINGS

We further test our Model’s ability in the task of Antibody Complementarity Determining Regions
(CDR) in-painting. Antibodies are specific types of proteins utilized by the immune system to
recognize and neutralize pathogens and are of immense interest for therapeutics. In the structure
of antibodies, the so-called Complementary-Determining Regions are the main regions for binding
with antigens and determining the specificity of the antibodies. Under this circumstance, CDRs
in antibody sequences are masked at once and later predicted conditioned on the framework. We
present two versions of our model for antibody generation: ProfileBFN-single(650M) without any
information trained about antibodies, and ProfileBFN-Anti(650M), which is tuned with the OAS
dataset for 8500 steps.

E.4.2 BASELINES

We include several strong baselines, all of which are trained specifically on antibody data.
RAbD (Adolf-Bryfogle et al., 2018) is a renowned software-based method. DiffAb (Luo et al., 2022)
uses diffusion models to conduct sequence-structure co-design, which mainly models the geometric
aspect. AntiBERTy (Ruffolo et al., 2021) and AbLang (Olsen et al., 2022) are two sequence-based
language models trained on the entire OAS dataset; the former is based on the BERT architecture to
encode antibody sequences, while the latter is trained on randomly masked antibody sequences and
modeled on a Transformer architecture with a special head.

E.4.3 METRICS

We used Amino Acid recovery (AAR) of each CDR region for evaluation, with each antibody sample
providing 5 candidates.

E.4.4 DATASETS

We used the OAS unpaired dataset (total 2,428,016,345 antibody sequences) to fine-tune our model
and the SAbDab Dataset for testing, following the DiffAb paper. To avoid potential data leakage,
we removed sequences similar to our test set with MMSeqs2 (Steinegger & Söding, 2017) tools by
the identity of 0.95. Both heavy chains and light chains are included in the tuning process.

E.4.5 RESULTS

The results showed in Table E.4.5 indicate that ProfileBFN had already reached comparable scores
before fine-tuning on the antibody dataset, indicating that it learned general rules of protein language
that could be successfully transferred to antibodies which are specific and functional proteins. Once
tuned on the antibody dataset for a very small number of steps, it could surpass the performance
of previous models such as AntiBERTy and AbLang, indicating the effectiveness of pre-training
processes.

E.5 ZERO-SHOT MUTATIONAL EFFECT PREDICTION

E.5.1 SETTINGS

Following Su et al. (2023), we evaluate our model’s zero-shot prediction performance on the Pro-
teinGym and ClinVar datasets. ProteinGym is a benchmark that contains a vast number of Deep

30



1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

Model CDR-H1 CDR-H2 CDR-H3 CDR-L1 CDR-L2 CDR-L3

RAbD 0.2285 0.2550 0.2214 0.3427 0.2630 0.2073
DiffAb 0.6575 0.4931 0.2678 0.5667 0.5932 0.4647

AntiBERTy 0.7940 0.5932 0.4133 0.7208 0.3996 0.2758
AbLang 0.7039 0.7981 0.3207 0.5799 0.5513 0.3175

ProfileBFN-single 0.6766 0.6188 0.1946 0.5356 0.5873 0.3064
ProfileBFN-Anti 0.8227 0.7236 0.3343 0.6402 0.6156 0.4716

Table 8: Performance of Antibody CDR in-paint task ProfileBFN compared to baselines. The best
result is indicated in bold, while the second-best result is underlined.

Mutational Scanning (DMS) assays, while ClinVar collects human genetic variants and interpreta-
tions of their significance to disease. Spearman’s rank correlation was computed for the ProteinGym
benchmark evaluation, and the AUC metric was used for the ClinVar benchmark. To enhance credi-
bility, only proteins with labels of ”Gold Stars” or higher were considered.

E.5.2 BASELINES

We introduce baselines for zero-shot prediction as follows: ESM-1b, ESM-2 (Lin et al., 2023) and
Tranception (Notin et al., 2022) based on protein sequence. ESM-IF, MIF-ST (Yang et al., 2023)
and SaProt Su et al. (2023) based on structure. EVE (Frazer et al., 2021) is a model that includes
MSA during training.

E.5.3 RESULTS

In Table 9, ProfileBFN outperforms all baselines based purely on protein sequences, proving that a
better representation is learned. There is still a narrow gap between our performance and SaProt,
which is currently the state-of-the-art on ProteinGym’s scoreboard based on Protein Structure.

E.6 UNCONDITIONAL GENERATION

We further explore our model to conduct unconditional protein generation, which we present sam-
ples in Figure 9

Table 9: ProfileBFN’s Zero-shot Performance on ClinVar and ProteinGym Dataset compared with
Baselines of ESM-1b, ESM-IF, ESM-2, EVE, MIF-ST, Tranception, and SaProt. *: protein structure
is provided. The best result is indicated in bold, while the second-best result is underlined.

Dataset ESM-2 ESM-1b Tranception ESM-IF* MIF-ST* EVE SaProt* ProfileBFN
ClinVar 0.862 0.900 0.945 0.748 0.891 0.878 0.909 0.901

ProteinGym 0.475 0.440 0.413 0.409 0.474 - 0.478 0.476

E.7 ADDITIONAL RESULTS

E.7.1 INVESTIGATION ON THE RELATIONSHIP BETWEEN PERFORMANCE AND MSA DEPTH

We have conducted the experiment on a case, where we sampled 50, 100, 500, 1000, and 2000
sequences from the searched homologous sequences, and each generate 1000 sequences for contact
prediction, we report LR P@L, LR P@L/2, LR P@L/5 respectively. Results shown in Fig. 10 reveal
that the quality of generated sequences tends to increase with the increasing depth of the MSA. The
growth rate drops as the depth increases.
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Figure 9: Samples of Unconditional Generation by ProfileBFN

Figure 10: ProfileBFN-profile Generation Result of Contact Prediction of Protein 8YXK with dif-
ferent MSA depth as input
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Figure 11: Samples of sequences conditioned on enzyme P40925 family by model ProfileBFN,
PoET and EvoDiff;
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Figure 12: Samples of sequences conditioned on enzyme Q7X7H9 family by model ProfileBFN,
PoET and EvoDiff;
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Figure 13: Samples of sequences conditioned on enzyme Q15165 family by model ProfileBFN,
PoET and EvoDiff;

35


	Introduction
	Preliminaries
	Representing Protein Family as MSA Profiles
	Bayesian Flow Networks

	Method
	The Proposed ProfileBFN
	Training with Profile as Input
	Family Protein Generation

	Experiments
	Main Results
	Sampling Process Analysis

	Related Work
	Conclusion
	Profile BFN Derivation
	The Essence of Bayesian Flow Networks
	Profile Bayesian Flow Networks

	Algorithms
	Datasets
	Evaluation Datasets

	Experimental Details
	Training Configuration
	Evaluation Details
	Evaluation of Family Protein Generation
	Non-parametric: Why important
	Evaluation of Protein Representation Learning


	Complementary Results
	Enzyme Generation 
	Background 
	Settings
	Baselines 
	Metrics 
	Results 

	Improve Structure Prediction via Enhancing MSA 
	Background 
	Baselines
	Settings 
	Metrics 
	Results 

	Fine-tunning ProfileBFN with MSA profile 
	 Antibody CDR in-painting 
	Settings 
	Baselines 
	Metrics 
	Datasets 
	Results 

	Zero-shot mutational effect prediction 
	Settings 
	Baselines 
	Results 

	Unconditional Generation 
	Additional Results 
	Investigation on the relationship between Performance and MSA depth  



