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ABSTRACT

An ultrametric space or infinity-metric space is defined by a dissimilarity function
that satisfies a strong triangle inequality in which every side of a triangle is not
larger than the larger of the other two. We show that search in ultrametric spaces has
worst-case logarithmic complexity. Since datasets of interest are not ultrametric in
general, we employ a projection operator that transforms an arbitrary dissimilarity
function into an ultrametric space while preserving nearest neighbors. We further
learn an approximation of this projection operator to efficiently compute ultrametric
distances between query points and points in the dataset. We proceed to solve
a more general problem in which we consider projections in q-metric spaces –
in which triangle sides raised to the power of q are smaller than the sum of the
q-powers of the other two. Notice that the use of learned approximations of
projected q-metric distances renders the search pipeline approximate. We show
in experiments that increasing values of q result in faster search but lower recall.
Overall, search in q-metric spaces is competitive with existing search methods.

1 INTRODUCTION

Given a dataset of vector embeddings, a dissimilarity function and a query, nearest neighbor search
refers to the problem of finding the point in the dataset that is most similar to the query, or, in its
stead, a vector that is among the most similar (Indyk and Motwani, 1998). It is well known that exact
search requires comparison with all the points in the dataset in the worst case (Hanov, 2011) but it
is also well known that this search complexity can be reduced with proper organization of the data
(Malkov and Yashunin, 2020).

In particular, if we consider search problems in metric spaces, namely, problems in which the
dissimilarity function satisfies the triangle inequality, data can be organized in a metric tree that can
be searched with smaller average complexity (Uhlmann, 1991). In this paper we observe that metric
spaces are a particular case of a more generic family of q-metric spaces. These spaces satisfy more
restrictive triangle inequalities in which the q-th power of each side of a triangle is smaller than the
sum of the qth powers of the other two sides. In the limit of growing q we obtain∞-metric spaces in
which each side of a triangle is smaller than the maximum of the other two. The first contribution of
this paper is to show that:

(C1) The number of comparisons needed to find the nearest neighbor of a query in an∞-metric
space is, at most, the ceiling of the base-2 logarithm of the size of the dataset (Section 2).

This fact is not difficult to establish. It holds because in an∞-metric space each comparison in a
metric tree discards half of the dataset (Proof of Theorem 1). It is nevertheless remarkable because
it is an exact bound (not an order) on worst case search performance (not average). We point out
that∞-metric spaces are often called ultrametrics and the∞-triangle inequality is often called the
strong triangle inequality (Dovgoshey, 2025). Ultrametrics are equivalent to dendrograms used in
hierarchical clustering (Draganov et al., 2025), a fact that may help to understand why search in
ultrametric spaces has logarithmic complexity.

Because of (C1) we would like to solve search problems in∞-metric spaces, thus the title of this
paper. However, the data is what the data is and most problems in vector search involve dissimilarity
functions that are not even metric (Zezula et al., 2006). Because of this, we seek to develop a
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projection operator that we can use to map a given dataset into a general q-metric space, including an
∞-metric space. Our second contribution comes from interpreting a dataset as a graph, allowing us
to leverage results from hierarchical clustering and metric representations of network data (Carlsson
et al., 2014; Smith et al., 2016; Carlsson et al., 2017; Segarra et al., 2020).

In this context, it follows that the q-norm of a path is the q-root of the sum of the distances in each
hop elevated to the power of q, which in the limit of an∞-metric space reduces the maximum of the
dissimilarities in the path. We emphasize for clarity that the q-norm of a path has no relationship with
the q-norm of the vector embeddings. As all norms do, the q-norm of the vector embeddings satisfies
the standard triangle inequality (and not a stronger version of it).

The canonical q-metric projection generates a q-metric space but there may be –indeed, we can
construct – other possible projection operators. To argue in favor of canonical projections we draw
two axioms from the existing literature (Carlsson et al., 2017). The Axiom of Projection states that
the projection of a q-metric space should be the same q-metric space. The Axiom of Transformation
states that the projection of a q-metric space must respect the partial ordering of original spaces. I.e.,
if the dissimilarities of a dataset dominate all the dissimilarities of another, the q-metric distances of
the projected datasets must satisfy the same relationship. Our next contribution is a theoretical result
that follows from this axiomatic requirement:

(C2) The canonical projection (which satisfies the Axioms of Projection and Transformation)
preserves the nearest neighbor of any given query (Section 3.1).

As per Segarra et al. (2015), the canonical projection is the only reasonable method that we can use
to generate a q-metric space. This is to the extent that the Axioms of Projection and Transformation
are reasonable, but it is difficult to argue that they are not. Regardless, (C2) states that the canonical
projection preserves the nearest neighbor information which is the focus of our search problem.

The combination of contributions (C1)-(C2) dictates that we can project datasets into∞-metric spaces
with a canonical projection to search with logarithmic complexity. The hitch is that q-canonical
projections require computation of q-shortest paths. This is not a problem for the dataset, but it is
problem for the query. To compute q-distances between the query and the dataset we need to compare
the query with all points in the dataset, defeating the purpose of using∞-metric distances to reduce
search complexity. We work around this problem with our third contribution:

(C3) We learn a function to map vector embeddings into separate embeddings such that their Eu-
clidean distances estimate the distances of the q-metric projections of the original embedding.
We train this function on the dataset and generalize it to queries (Section 4)

Combining (C1)-(C3) we propose to use canonical q-metric projections of a dataset to generate spaces
where we expect nearest neighbor search to be more efficient. We incur this cost once and reutilize
it for all subsequent searches. We then use the learned embedding in (C3) to estimate q-metric
distances between queries and points in the dataset. The use of approximate computation of q-metric
projections renders the resulting search algorithm approximate. Numerical experiments indicate that
this approach is competitive with state-of-the-art approximate search algorithms in terms of search
complexity and recall (Section 5).

We refer the reader to Appendix A for a discussion of related work.

2 NEAREST NEIGHBOR SEARCH AND METRIC STRUCTURE

We are given a set X containing m vectors x ∈ Rn along with a nonnegative dissimilarity function
d : Rn × Rn → R+ so that smaller values of d(x, y) represent more similarity between points x
and y. The set X along with the set D containing all dissimilarities d(x, y) for all points x, y ∈ X
defines a fully connected weighted graph G = (X,D). We assume here that d(x, y) = d(y, x) for
all x, y ∈ Rn, which, in particular, implies that the graph G is symmetric. Examples of dissimilarity
functions used in vector search are the Euclidean distance, Manhattan (1-norm) distance, cosine
dissimilarity, and dissimilarities based on the Jaccard index (Zezula et al., 2006); see E.4.

We are further given a vector xo which is not necessarily an element of X but for which it is possible
to evaluate the dissimilarity function d(xo, x) for all x ∈ X . The nearest neighbor of xo in the set X
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Fig 1. Triangle Inequalities and Vector Search.Figure 1: Search in metric spaces requires fewer comparisons than search in arbitrary spaces because
for some queries – such as x′

o and x′′
o – the triangle inequality allows us to restrict comparisons to

subsets of the dataset X . Queries, such as xo, for which triangle inequality bounds are inconclusive,
also exist (5). This latter eventuality is impossible when the strong triangle inequality (3) holds,
resulting in worst-case logarithmic complexity for search in ultrametric spaces (Theorem 1).

is defined as the element that is most similar to xo,

x̂o ≡ argmin
x∈X

d(x, xo). (1)

The problem of finding a vector x̂o is termed nearest neighbor search, the vector xo is called a query
and the vector x̂o is the query’s answer (Wang et al., 2014). It may be that there are several nearest
neighbors. In such case we overload x̂o to denote an arbitrary nearest neighbor and also the set of all
nearest neighbors. We make the distinction clear when needed.

We evaluate the performance of a search algorithm by the number c(xo) of comparisons against
elements of X that are needed to find x̂o. Without further assumptions on the dissimilarity function
d, we have c(xo) = m because we need to compare the query xo to all points in X . This number of
comparisons can be reduced if we assume that d has some metric structure (Aksoy and Oikhberg,
2010). For instance, it may be that d is a proper metric or pseudometric that satisfies the triangle
inequality so that for any three points x, y, z ∈ Rn we have that

d(x, y) ≤ d(x, z) + d(y, z). (2)

Alternatively, we may consider ultrametric dissimilarity functions d (Simovici et al., 2004). In this
case, triplets of points x, y, z ∈ Rn satisfy the strong triangle inequality,

d(x, y) ≤ max
[
d(x, z), d(y, z)

]
. (3)

In this paper, we also have an interest in q-metric spaces (Greenhoe, 2016). These spaces arise when
the dissimilarity function is such that any three points x, y, z ∈ Rn satisfy the q-triangle inequality1,

dq(x, y) ≤ dq(x, z) + dq(y, z), (4)

for some given q ≥ 1. For q = 1, (4) reduces to (2) and as q → ∞, (4) approaches (3). Thus, we
can think of q-metric spaces as interpolations between regular metric spaces that sastify the standard
triangle inequality and ultrametric spaces that satisfy the strong triangle inequality. Henceforth, we
may refer to (2) as the 1-triangle inequality and to (3) as the∞-triangle inequality.

Figure 1 illustrates the use of metric structures in search. In this Figure, we have separated the dataset
X into sets X ′ and X ′′ that contain points whose distance to some vantage point v is smaller or
larger than a threshold µ – see Appendix B for details. We further consider queries xo, x′

o, and x′′
o

for which we have evaluated dissimilarities d(xo, u), d(x′
o, u

′), and d(x′′
o , u

′′) to the corresponding
points u, u′, and u′′. If it turns out that the distance d(x′

o, v) between the query x′
o and the vantage

point v is such that d(x′
o, v) + d(x′

o, u
′) ≤ µ, the diagram makes it apparent that the nearest neighbor

1Notice that the q-norm ||x||q for x ∈ Rn satisfies the regular triangle inequality, not the q-triangle inequality.
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x̂′
o of the query x′

o cannot be an element of X ′′. Thus, we can restrict the nearest neighbor search to
points x′ ∈ X ′ and save the computational cost of evaluating distances to points in X ′′. Likewise, if
it turns out that for point x′′

o we have d(x′′
o , v)− d(x′′

o , u
′′) ≥ µ we can restrict the nearest neighbor

search to points x′′ ∈ X ′′ and save the cost of evaluating distances to points in X ′ – we give a formal
proof of these statements in Proposition 2.

While this argument seems to indicate logarithmic complexity of nearest neighbor search in metric
spaces, this is not quite so. The reason is that we may have queries such as xo in Figure 1 for which
neither condition is true. I.e., there may be points xo such that

µ < d(xo, v) + d(xo, u) and d(xo, v) ≤ µ+ d(xo, u). (5)

If d(xo, v) is such that (5) holds, the nearest neighbor x̂o may be in X ′ or X ′′ and we therefore do
not have a reduction in the number of comparisons needed to find x̂o.

The argument we build in Figure 1 can be generalized to q-triangle inequality comparisons in q-metric
spaces. I.e., we consider inequalities analogous to those in (5) in which distances and thresholds are
q-powers of the corresponding quantities,

µq < dq(xo, v) + dq(xo, u). (6A) dq(xo, v) ≤ µq + dq(xo, u). (6B)

If we are searching in a q-metric space, the exact same arguments of metric spaces are true: At least
one of (6A) or (6B) must hold. If (6A) does not hold, the nearest neighbor must be in X ′. If (6B)
does not hold, the nearest neighbor must be in X ′′. If both hold, the nearest neighbor can be in X ′ or
X ′′ and we do not gain the advantages of partitioning the space.

As we grow q we approach a strong triangle inequality comparison in a strong metric space. In the
limit – take q-square roots on both sides of (6A) and (6B) to obtain maxima –, the inequalities in
(6A) and (6B) become

µ < max(d(u, xo), d(xo, v)). (7A) d(xo, v) ≤ max(µ, d(u, xo)). (7A)

If we are searching in an infinity-metric (ultrametric) space we can still argue that: At least one of
(7A) or (7B) must hold. If (7A) does not hold, the nearest neighbor must be in X ′. If (7B) does not
hold, the nearest neighbor must be in X ′′. However, and different from (5) and (6A)-(6B), we show
in Lemma 1 of Appendix Appendix C that it is impossible for (7A) and (7B) to hold simultaneously.
I.e., one and exactly one of (7A) or (7B) holds. From this lemma it follows that comparisons in
ultrametric spaces always partition the dataset and we can therefore derive the following theorem.
Theorem 1. Consider a dataset X with m elements and a dissimilarity function d satisfying the
strong triangle inequality (3). There is a search algorithm such that the number of comparisons c(xo)
required to find the nearest neighbor x̂o ∈ X of any query xo is bounded as

c(xo) ≤
⌈
log2 m

⌉
. (6)

The proof of Theorem 1 is constructive (Appendix C). Search with a vantage point tree attains (6).

It follows from Theorem 1 that, given a choice, we would like to solve nearest neighbor search in
ultrametric spaces. Alas, dissimilarity metrics of interest do not satisfy the strong triangle inequality.
Some are not even metric. Due to this mismatch, we propose here an approach to approximate nearest
neighbor search based on the development of projection and embedding operators to compute and
approximate q-metric distances:

Projection Operator. The projection operator Pq maps dissimilarities d(x, x′) ∈ D that do not
necessarily satisfy the q-triangle inequality into distances dq(x, x′) ∈ Dq that do satisfy the
q-triangle inequality (Section 3).

Embedding Operator. The embedding operator Φq is a learned map from vectors x ∈ Rn into
vectors xq ∈ Rs such that 2-norms ∥xq − x′

q∥2 approximate q-distances dq(x, x′). The map
is trained on the dataset X and applied to queries xo (Section 4).

We use the projection operator Pq to process the dataset G = (X,D) to produce a graph Gq =
(X,Dq) such that any three points x, y, z ∈ X satisfy the q-triangle inequality. This is a one-time
preprocessing cost that we leverage for all queries. We use the learned embedding operator Φq to
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approximate the q-metric distances between a query xo and points x ∈ X as dq(xo, x) ≈ ∥xoq−xq∥2
with xoq = Φq(xo). This is needed because computing the true q-metric distance dq(xo, x) requires
comparing xo to all points in X (Section 3). Approximating q-metric distances with the embedding
operator Eq renders this search methodology approximate. Numerical experiments show that we are
competitive with state-of-the-art approximate search methods (Section 5).

3 PROJECTION OF DISSIMILARITY FUNCTIONS ON q-METRIC SPACES

We seek to design a q-metric projection Pq : (X,D) → (X,Dq) where, for arbitrary input
dissimilarities D, the distances in Dq satisfy the q-triangle inequality given in (4). Observe that
finding a feasible projection is trivial. For example, consider a projection that assigns all distances in
Dq to be 1, regardless of the input D. In this case, the image space (X,Dq) becomes an ultrametric
(hence, a valid q-metric for all q). However, performing nearest neighbor search in (X,Dq) would be
a poor proxy for searching in (X,D), as all distance information was lost in the projection. Motivated
by this example, we build on the work of Segarra et al. (2015), which imposes conditions on Pq to
ensure that meaningful distance information is preserved through the projection. In their work, these
requirements were formalized as the following two axioms:

(A1) Axiom of Projection. The q-metric graph Gq = (X,Dq) is a fixed point of the projection map
Pq , i.e.,

Pq(Gq) = Gq. (A1)

(A2) Axiom of Transformation. Consider any two graphs G = (X,D) and G′ = (X ′, D′) and a
dissimilarity reducing map φ : X → X ′ such that D(x, y) ≥ D′(φ(x), φ(y)) for all x, y ∈ X . Then,
the output q-metric graphs (X,Dq) = Pq(G) and (X ′, D′

q) = Pq(G
′) satisfy, for all x, y ∈ X ,

Dq(x, y) ≥ D′
q(φ(x), φ(y)). (A2)

Axiom (A1) is natural in our setting: if the graph under study already satisfies the q-triangle inequality,
then the projection should introduce no distortion and simply return the same graph. Axiom (A2)
enforces a notion of monotonicity: if the distances in one graph dominate those in another, this
dominance should be preserved under projection. Though seemingly lax, Axioms (A1) and (A2)
impose significant structure on the projection Pq. In fact, we leverage the fact that there exists a
unique projection Pq that satisfies Axioms (A1) and (A2) Segarra et al. (2015). Moreover, we show
that this projection preserves nearest neighbors. To formally state these results, we first introduce the
canonical q-metric projection.

Canonical q-metric projection P ⋆
q . Consider a graph equipped with a dissimilarity G = (X,D)

and let Cxy denote the set of all paths from x to y, where x, y ∈ X . For a given path c = [x =
x0, x1, . . . , xl = y] ∈ Cxy, we define its q-length as ℓq(c) = ∥[d(x, x1), . . . , d(xl−1, y)]∥q. That is,
the q-length of a path is the q-norm of the vector containing the dissimilarities along the path’s edges.
We define the canonical q-metric projection (X,Dq) = P ⋆

q (X,D) as

dq(x, y) = min
c∈Cxy

ℓq(c). (7)

In words, the canonical q-metric projection computes the all-pairs shortest paths using the q-norm as
the path cost function.

A first observation is that P ⋆
q is indeed a valid q-metric projection; i.e., that the output graph is

guaranteed to satisfy the q-triangle inequality (see Appendix D). More importantly, as it was already
proved in Segarra et al.’s work Segarra et al. (2015), P ⋆

q is uniquely characterized by the axioms of
projection and transformation.
Theorem 2 (Existence and uniqueness). The canonical projection P ⋆

q satisfies Axioms (A1) and (A2).
Moreover, if a q-metric projection Pq satisfies Axioms (A1) and (A2), it must be that Pq = P ⋆

q .

As we discuss next, Theorem 2 has direct practical applications for nearest-neighbor search.

3.1 SEARCH IN PROJECTED q-METRIC SPACES

Since the Axiom of Transformation (A2) is satisfied, we expect P ⋆
q to preserve up to some extent the

distance ordering of the original graph, but this was never proved. In particular, we now show that the
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nearest neighbors are preserved by this projection. To formalize this, consider the graph H = (Y,E)
whose node set Y = X ∪ {xo} includes the dataset X and the query xo. The dissimilarity set E
consists of the original dissimilarities D as well as the dissimilarities between the query and each
data point, i.e., E(xo, x) = d(xo, x) for all x ∈ X . We now apply the canonical projection to this
extended graph, obtaining (Y,Eq) = P ⋆

q (H), where Eq includes projected distances of the form
Eq(x, xo) between each data point x ∈ X and the query xo. We next state that this projection
preserves the identity of the nearest neighbor of xo.

Proposition 1. Given a graph G = (X,D) and a query xo, define H = (Y,E) with Y = X ∪ {xo}
and let (Y,Eq) = P ⋆

q (H) be the projected graph. Then, the set of nearest neighbors satisfies

x̂o ≡ argmin
x∈X

E(x, xo) ⊆ argmin
x∈X

Eq(x, xo). (8)

Moreover, for the case where q <∞, the result holds with an equality.

Proposition 1 shows that the canonical projection P ⋆
q in (7) preserves the nearest neighbor. This is

enticing because we have argued that search in q-metric spaces is easier (Figure 1) and proved that
search in∞-metric spaces requires a logarithmic number of comparisons (Theorem 1). However,
Equation (8) does not immediately help us solve the original nearest neighbor problem in (1). The
proposition is stated for the projected dissimilarity set Eq, which requires access to the full set E,
including all dissimilarities E(xo, x) = d(xo, x) for every x ∈ X . Thus, computing Eq requires
comparing xo with all points in X , which defeats the purpose of reducing the number of comparisons
c(xo). A broader analysis of this projection complexity is available in Appendix D.3. In the following
section, we address the projection cost challenge by learning an embedding operator that enables us
to approximate the values Eq(x, xo) without computing all pairwise distances explicitly.

4 EMBEDDING OPERATOR: LEARNING TO APPROXIMATE q-METRICS

We approximate q-metrics Eq(x, xo) with the 2-norm of a parameterized embedding Φ(x; θ). For-
mally, we want to find a function Φ(x; θ) : Rn → Rs such that for any xo ∈ Rn and x ∈ X:

Eq(x, xo) =
∥∥Φ(x; θ)− Φ(xo; θ)

∥∥ (9)

where
∥∥ · ∥∥ denotes the 2-norm of a vector. We fit the parameter θ to approximate distances Dq(x, y)

given by the canonical projection Dq = P ⋆
q (D), by minimizing a quadratic loss,

ℓD(x, y) =
[
Dq(x, y)−

∥∥Φ(x; θ)− Φ(y; θ)
∥∥ ]2. (10)

We also consider an additional loss that measures the extent to which the q-triangle inequality is
violated by the embedded distances. We choose a saturated linear penalty for this loss, explicitly,

ℓT(x, y, z) =
[ ∥∥Φ(x; θ)− Φ(y; θ)

∥∥q − ∥∥Φ(x; θ)− Φ(z; θ)
∥∥q − ∥∥Φ(y; θ)− Φ(z; θ)

∥∥q]
+
. (11)

where [·]+ denotes the projection to the non-negative orthant. The loss ℓT is positive only when the
q-triangle inequality is violated, in which case it takes on the value of the violation.

We minimize a linear combination of the losses ℓD(x, y) and ℓT(x, y, z) averaged over the dataset X

θ⋆ = argmin
θ

αD

∑
x,y∈X

ℓD(x, y) + αT

∑
x,y,z∈X

ℓT(x, y, z) (12)

Notice that in (12) the loss ℓT is redundant. It encourages the Euclidean norm
∥∥Φ(x; θ)−Φ(y; θ)

∥∥ to
satisfy the q-triangle inequality when this is already implicit in ℓD as the latter encourages proximity
to distances Dq(x, y) that we know satisfy the q-triangle inequality. We have observed in numerical
experiments that adding ℓT improves performance (see Appendix E). Further notice that although
we train θ over the dataset X we expect it to generalize to estimate the q-metric Eq(x, xo). Our
numerical experiments in the next section indicate that this generalization is indeed successful.
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Figure 2: Infinity Search pipeline. Offline (left): Dataset samples are projected into a q-metric
space using the canonical projection, and used to fit an embedding projection (1). Then, the dataset
is transformed with the learned projection to build the VP-tree (2). Online (right): A query xo is
transformed with the learned projection and then search is conducted using the VP-tree index.

5 EXPERIMENTS

We validate the properties of the canonical projection Eq as well as the effects of the learned
approximation Φ(·, θ⋆) in practical vector search settings. Since projecting the data with P ⋆

q is
computationally expensive, we randomly sample a smaller subset of 1,000 points to evaluate the
theoretical properties. To analyze the learned map Φ(·, θ), we use 10,000 samples from the Fashion-
MNIST (Xiao et al., 2017) dataset. In all approximation experiments, we parameterize the embedding
projector Φ using the same fully connected Multi-Layer Perceptron (MLP) architecture. The full
dataset X is projected using the trained MLP, and a VP-tree index is built on the resulting embedding.
The Infinity Search framework is summarized in Figure 2. Details about the neural network archi-
tecture, training hyperparameters, and additional experimental results—including settings such as
searching for k ∈ 5, 10 nearest neighbors or more datasets— are provided in Appendix E.

Figure 3: Number of comparisons and rank order when searching over MNIST-Fashion-784 (k = 1)
with Canonical Projection Eq for n = 1,000 points. Solid lines denote the mean and shading the
standard deviation across queries.

Figure 4: Number of comparisons and rank order when searching over MNIST-Fashion-784 (k = 1)
with learned embedding Φ(·, θ⋆) for n = 10,000. Solid lines denote the mean and shading the
standard deviation across queries.

Searching with the canonical projection. To analyze the effect of the q-metric structure on search
complexity—decoupling it from that of the learned projection—we conduct experiments searching
in the transformed graph Gq. We utilize a subset of the data due to the high computational cost
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Figure 5: Infinity Search results on searching n ∈ {10K, 50K, 100K, 500K, 1M, 5M} points of
Deep1B-96 with Euclidean distance for k ∈ {1, 5, 10}.

associated with the canonical projection P ⋆
q . As shown in Figure 3, increasing q leads to a smooth and

significant decrease in the number of comparisons. The boundary stated in 1 is reached for q =∞,
effectively confirming claim C1. The fact that the projection consistently returns the nearest neighbor,
further supports the satisfaction of the q-triangle inequality (2). In addition, the relative error shown
in the middle column of Figure 3 indicates preservation of the nearest neighbor, described in claim C2
and proved in 8. At q =∞, the projection may introduce spurious optima not present in the original
nearest neighbor set, thereby affecting accuracy. A similar effect occurs for large q, as distances
between points can become artificially close, imitating this behavior.

Learning approximation error. If the learning process attains sufficiently low generalization error,
the theoretical properties are expected to hold in practice. Figure 4 shows a reduction in the number
of comparisons as q increases, mirroring the trend observed in the Canonical Projection experiments.
This reduction is monotonic with q, consistent across dissimilarities, and is accompanied by a
moderate increase in rank error and a drop in recall. Recall values above 0.9 still yield speedups
of up to three orders of magnitude. In all cases, the rank order remains below 1% of the indexed
dataset. The trend observed in absolute rank order reflects partial locality preservation by the learned
embedding. A deeper analysis of the learning component–specifically, the projection’s ability to fit
and generalize–is deferred to Appendix E.

These approximation experiments support the satisfactory fulfillment of claim C3, which concerns the
generalization of the learned projection to unseen data. This is supported by the observed preservation
of speedup and a generalization error that remains low—reflected in high recall—relative to what the
theoretical properties would predict.

Scaling with the number of points. While the current implementation is not yet optimized for large
n, our analysis shows no inherent complexity barrier to scaling. Figure 5 (Deep1B subsets (Babenko
and Lempitsky, 2016)) shows empirically sub-logarithmic growth in the number of comparisons with
n. Search complexity is competitive with strong baselines: HNSW (Malkov and Yashunin, 2020)
behaves as O(log n) for fixed ef, IVF–PQ (Jégou et al., 2011) achieves sublinear O(nα) behavior,
and ScaNN (Guo et al., 2020b) attains sublinear latencies via pruning with vector quantization. Build
costs are likewise competitive: O(n) for Infinity Search, O(n log n) for HNSW, O(n) for IVF–PQ
after codebook training, and near-linear preprocessing for ScaNN. The projection P ∗

q is trained once
on 100K points and then applied inductively with a fixed per-point projection cost across larger
corpora. As expected with a fixed training size, accuracy declines as n grows, but Recall@k remains
within a satisfactory range (see Fig. 5). For a more detailed analysis on scaling, see Appendix E.6.

5.1 INFINITY SEARCH IS COMPETITIVE IN ANN-BENCHMARKS

In this section, our end-to-end approach is compared against modern and classical vector search
algorithms, such as HNSW (Malkov and Yashunin, 2018), IVF-PQ (Jégou et al., 2011) implemented
in FAISS (Douze et al., 2024) or more recent approaches like ScaNN (Guo et al., 2020b). We
use ANN-Benchmarks (Aumüller et al., 2018), a popular evaluation framework for in-memory
Approximate Nearest Neighbor algorithms. While exhaustive benchmarking on substantially larger
corpora is outside our current scope given the computational cost of computing full Pareto fronts, we
complement our evaluation with the scaling curves in Fig. 5, which characterize performance trends
as data size grows.
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Fashion–MNIST–784 GloVe–256 GIST–960 Kosarak-41K

Figure 6: Search accuracy (Recall@k). Columns: datasets; rows: k ∈ {1, 5, 10}. Each panel: recall
vs QPS across methods.

In this setting, search algorithms are evaluated based on their ability to trade off search accuracy and
speed. Speed is measured by queries-per-second throughput. Note that the learning phase in our
method is carried out offline during index building and that computing the embedding projection is a
query pre-processing step. Search accuracy is measured using Rank Order for k ∈ {1, 5, 10} – i.e.
the position of the vector retrieved.

Across all datasets, our method either closely matches or outperforms baselines in nearest neighbor
search for all values of k. Each point in the speed-accuracy curve in Figure 6 depicts a different
hyperparameter setting by the benchmark. Notably, our method pareto dominates baselines by a large
margin for settings with lower k. That is, considerable speed gains can be obtained, with minimal
accuracy trade-offs, if higher order metric structure is imposed. In the case of searching for more
neighbors (k ∈ {5, 10}), we still observe that our method performs competitively but with a less
noticeable advantage. In particular, our method stands out on Kosarak, which is high-dimensional
(41K), sparse, and evaluated with Jaccard similarity. This combination is unsupported or inefficient in
many ANN libraries, making several baselines impractical. This highlights the ability of our method
to accommodate arbitrary dissimilarities –like Cosine or Jaccard– and scale to higher dimensional
data. We defer a more detailed analysis on experiments to Appendix E.7.

6 CONCLUSION

Driven by the insight that search in ultrametric spaces is logarithmic, in this paper we leverage a
projection that endows a set of vectors with arbitrary dissimilarities with q-metric structure, while
preserving the nearest neighbor. This projection of a dataset is computed as the shortest path in a
graph using the q-norm as path length. To address the challenge of computing q-metric distances
for queries efficiently, we developed a learning approach that embeds vectors into a space where
Euclidean distances approximate q-metric distances. Our experiments real-world datasets, which
included high-dimensional sparse data with less common dissimilarity functions, demonstrated that
our method is competitive with state-of-the-art approximate search algorithms.
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REPRODUCIBILITY STATEMENT

We have taken several steps to ensure the reproducibility of our results. All theoretical contribu-
tions are accompanied by complete proofs in the appendix (see Appendices B–D for the q-metric
projection properties and theorems). Experimental details, including network architectures, training
hyperparameters, and additional results across multiple datasets and similarity measures, are pro-
vided in Appendix F. To facilitate benchmarking, we relied on the standardized ANN-Benchmarks
framework Aumüller et al. (2018), ensuring fair and comparable evaluation with existing methods.
In addition, we will release a supplementary Docker application containing the full training and
evaluation pipeline, including data preprocessing, model training, and evaluation scripts. This will
allow others to reproduce all reported figures and tables with minimal setup.
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A RELATED WORK

The literature on vector-based nearest–neighbour search is vast and spans many decades. We briefly
review the families that are most germane to our contributions and direct the reader to existing
surveys Echihabi et al. (2021); Ukey et al. (2023); Li et al. (2019) for a broader analysis.

For data sets endowed with a proper metric, pruning rules derived from the standard triangle inequality
have long been exploited through pivot- or vantage-point trees, k-d trees, ball trees, and their
variants Yianilos (1993); Uhlmann (1991); Beygelzimer et al. (2006). Although these methods can
yield exact results, they typically struggle with dimensionality and rely on existing metric structure
of the date have been largely ouperformed by inverted file indexes Babenko and Lempitsky (2014),
hashing Indyk and Motwani (1998); Wang et al. (2014), quantisation Kalantidis et al. (2014); Ge
et al. (2020) and graph based methods Malkov and Yashunin (2018) such as HNSW Malkov and
Yashunin (2018). Approaches—such as DiskANN Dong et al. (2020), SPANN Yu et al. (2015), and
ONNG Arai (2018)— have optimized memory layout, link degree, or storage hierarchy to scale to
billion-point datasets.

While many of these methods can offer strong performance, recent works increasingly seek to embed
learning into the indexing process for data-aware improvements. ScaNN Guo et al. (2020a) jointly
optimizes clustering and quantization, SOAR adds orthogonality-amplified residuals to further boost
ScaNN’s efficiency Sun et al. (2023), and AutoIndex Zhao et al. (2021) automates the selection of
IVF–PQ parameters. Learned policies can also steer the search itself: L2-KNN Cao et al. (2021)
and LARK Cerda et al. (2024) guide edge traversal at search time in graph based methods to reduce
distance computations, AdaptNN predicts early-termination thresholds online Li et al. (2020), and
Tao learns to set them before query execution using only static local-intrinsic-dimension features Yang
et al. (2021). Differentiable hierarchies, such as Hierarchical Quantized Autoencoders Roy et al.
(2023) and LION Raguso et al. (2024), train the entire coarse-to-fine quantization pipeline end-to-end.
LoRANN replaces PQ scoring with a supervised low-rank regressor that outperforms traditional IVF
on billion-scale data Jääsaari et al. (2024).

Industrial adoption of large language models has driven the emergence of “vector DBMSs”, see Pan
et al. (2024) and references therein. Despite many developments in compression, partitioning, graph
navigation, and hybrid attribute-vector query planning, most if not all systems index the original
dissimilarities - or an approximation – and thus inherit their metric limitations. In contrast, we
propose to pre-process data to obtain a q-metric space whose structure is provably more favourable
for search.

B GENERALIZED VANTAGE POINT TREE

In this section, we modify the classical VP-tree Hanov (2011). The standard index prunes subtrees
using the triangle inequality, yielding exact search with fewer distance evaluations. In high dimensions,
however, concentration of measure makes pairwise distances cluster, so these tests rarely trigger and
the VP-tree approaches brute-force search. We address this by generalizing the pruning scheme to
q-metric spaces. Let Dq denote a dissimilarity that satisfies the q-triangle inequality

d(x, z)q ≤ d(x, y)q + d(y, z)q (13)

As q increases, (13) tightens, which strengthens the pruning tests and typically reduces distance
evaluations even in higher dimensions. In the limit q → ∞, (13) converges to the strong triangle
inequality:

d(x, z) ≤ max{d(x, y), d(y, z)} (14)

leading to even stronger pruning conditions. Moreover, as described in Appendix B.2, if q-Metric
structure is present in the data, the modified tree preserves the Nearest Neighbor.
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B.1 q-VP-TREE

The q-VP-Tree is a binary tree constructed by recursively partitioning the set of points X based on
its pairwise distances. As detailed in Algorithm 1, begin by randomly selecting a root vantage point
vroot ∈ X and setting

µvroot := median
{
d(x, vroot) : x ∈ X \ {vroot}

}
. (15)

This induces the disjoint children

X ′ := {x ∈ X \ {vroot} : d(x, vroot) ≤ µvroot }, X ′′ := {x ∈ X \ {vroot} : d(x, vroot) > µvroot },
(16)

with X ′ ∩ X ′′ = ∅ and X ′ ∪ X ′′ = X \ {vroot}. Because the split is taken at the median of the
|X| − 1 distances, the partitions also satisfy

max
[
|X ′|, |X ′′|

]
] =

⌊
|X|
2

⌋
. (17)

The same procedure is applied recursively to X ′ and X ′′ to obtain the left and right subtrees, until no
partition is possible, yielding a total of h = ⌈log2(|X|)⌉ levels in the tree.

After the tree is constructed, given a query point xo it can be traversed as described in Algorithm 2.
Begin at root node vroot and threshold µvroot and set τ = min{τ, d(xo, vroot)} as the minimum
distance found so far. The q-triangle inequality enforces d(xo, vroot)

q ≤ τ q + µq
vroot to hold in the

left child and d(xo, vroot)
q ≥ µq

vroot − τ q in the right child. Consequently, if neither condition holds
both children are visited because neither bound rules out a closer point. In the presence of ultrametric
structure where q =∞, Lemma 1 yields a disjoint partition: if max

[
d(xo, vroot), τ max

]
≤ µvroot

the right child is safely pruned, otherwise the left child is pruned. Since this process has to be repeated
recursively, Algorithm 3 explores at most one branch per node at q =∞.

Algorithm 1 Construction Phase of q-VPTree

1: function BUILDVPTREE(X)
2: Select a random vantage point v ∈ X
3: Let D ← {d(x, v) | x ∈ X \ {v}}
4: Let µ← median of D
5: Partition X \ {v} into:

X ′ ← {x ∈ X \ {v} : d(x, v) ≤ µ}
X ′′ ← {x ∈ X \ {v} : d(x, v) > µ}

6: left← BUILDVPTREE(X ′)
7: right← BUILDVPTREE(X ′′)
8: return [v, left, right, µ]
9: end function

Despite its advantages, the q-VP Tree relies on the assumption of an underlying q-metric space, thus
limiting its applicability. The Projection exposed in Section 3, allows enforcing this structure at any
data, endowing this algorithm with unrestricted use.
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Algorithm 2 Searching Phase of the q-VPTree

1: function SEARCHVPTREE(xo, q, v, τ )
2: τ = min(τ, d(xo, v))
3: if d(xo, v)

q ≤ µq
v − τ q then

4: nn← SEARCHVPTREE(xo, q, v.left, τ )
5: end if
6: if d(xo, v)

q > µq
v + τ q then

7: nn← SEARCHVPTREE(xo, q, v.right, τ )
8: end if
9: if µq

v − τ q < d(xo, v)
q ≤ µq

v + τ q then
10: nn← SEARCHVPTREE(xo, q, v.left, τ )
11: nn← SEARCHVPTREE(xo, q, v.right, τ )
12: end if
13: return nn
14: end function

Algorithm 3 Searching Phase of the∞-VPTree

1: function SEARCHVPTREE(xo, q, v, τ )
2: τ = min(τ, d(xo, v))

3: if max
[
d(xo, v), τ

]
≤ µv then

4: nn← SEARCHVPTREE(v.left, xo, τ, q)
5: end if
6: if max

[
µv, τ

]
< d(xo, v) then

7:8: nn← SEARCHVPTREE(v.right, xo, τ, q)
9: end if

10: return nn
11: end function

B.2 q-VPTREE PRESERVES THE NEAREST NEIGHBOR

We follow the q-VPTree construction in Segarra et al. (2015).

Proposition 2. When using a VP-tree for nearest neighbor search in a q-metric space, the following
pruning rules ensure that no potentially optimal node is discarded:

i) Dq
q(xo, v) ≤ µq

v − τ q ⇒ visit only the left child,
ii) µq

v − τ q < Dq
q(xo, v) ≤ µq

v + τ q ⇒ visit both children,
iii) µq

v + τ q < Dq
q(xo, v) ⇒ visit only the right child,

(18)

where xo is the query point, v is the vantage point at the current node of the VP-tree, µv is the median
distance at that node, τ is the current best-so-far distance, and Dq are the pairwise distances between
indexed points living in a q-metric space.

Proof. We show that applying the rules in (18) ensures that no candidate point closer than τ to the
query point xo is discarded.

Case (i): Assume Dq
q(xo, v) ≤ µq

v − τ q . Then, by the q-triangle inequality, for any point t ∈ X ,

Dq
q(v, t) ≤ Dq

q(v, xo) +Dq
q(xo, t) ≤ µq

v − τ q +Dq
q(xo, t). (19)

For every t in the right child, we know by construction that Dq(v, t) > µv, so Dq
q(v, t) > µq

v.
Combining this with (19), we get:

µq
v < µq

v − τ q +Dq
q(xo, t) ⇒ Dq

q(xo, t) > τ q, (20)

implying Dq(xo, t) > τ . Thus, all points in the right child are farther from xo than the current best
distance and can be safely pruned.
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Case (iii): Assume µq
v + τ q < Dq

q(xo, v). Using the q-triangle inequality again, for any t ∈ X ,

Dq
q(xo, v) ≤ Dq

q(xo, t) +Dq
q(t, v). (21)

Since all points t in the left child satisfy Dq(t, v) ≤ µv, we have Dq
q(t, v) ≤ µq

v. Combining with
(21):

µq
v + τ q < Dq

q(xo, v) ≤ Dq
q(xo, t) + µq

v ⇒ Dq
q(xo, t) > τ q, (22)

and hence Dq(xo, t) > τ , so the left child can be pruned.

Case (ii): This is the ambiguous region where neither child can be safely discarded based solely on
the bounds, so both must be visited to guarantee correctness.

This concludes the proof.

C NEAREST NEIGHBOR SEARCH AND METRIC STRUCTURE

The explanations presented in Section C demonstrate that, under the metric structure defined by
equation 4, the complexity of nearest neighbor search can be reduced. In particular, for the limit case
where q =∞, such reduction is guaranteed by the strong triangle inequality:

d(x, y) ≤ max
[
d(x, z), d(y, z)

]
. (23)

This guarantee follows from the metric structure: at each vantage point it induces a mutually exclusive
partition of points that allows safely discarding candidate neighbors. This partition is reflected in
following lemma:
Lemma 1. If a symmetric dissimilarity function d satisfies the strong triangle inequality for any three
points xo,u,v ∈ Rn, then for any µ > 0, one and exactly one of the following conditions holds

max
[
d(u, xo), d(xo, v)

]
≤ µ (24)

max
[
µ, d(u, xo)

]
< d(xo, v) (25)

Proof. The proof will follow by contradiction. Assume (24) and (25) hold, then by the strong triangle
inequality we have d(u, v) ≤ max

[
d(u, xo), d(xo, v)

]
≤ µ. Therefore, it follows

d(xo, v) ≤ max
[
d(v, u), d(xo, v)

]
≤ max

[
µ, d(u, xo)

]
< d(xo, v) (26)

which yields to a contradiction.

This dichotomy generated by the strong triangle inequality, can be further exploited to purge candidate
points. When combined with the modification of the classical VP-Tree presented in Appendix B, this
dichotomy gives place to Theorem 1 of Section 2.
Theorem 3. Consider a dataset X with m elements and a dissimilarity function d satisfying the
strong triangle inequality (3). There is a search algorithm such that the number of comparisons c(xo)
required to find the nearest neighbor x̂o ∈ X of any query xo is bounded as

c(xo) ≤
⌈
log2 m

⌉
. (27)

Proof. Consider a VP-tree as defined in Appendix B, constructed on X using Algorithm 1. For a
query point xo, it suffices to traverse the tree with Algorithm 3. By Lemma 1, the search makes one
comparison per level; hence the total number of explored levels is at most

h =
⌈
log2 |X|

⌉
. (28)
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This Theorem motivates the pursuing of metric structure on data. At q =∞, logarithmic complexity
can be attained. Moreover, as it will be empirically proved in Appendix 10a, this complexity reduction
happens monotonically when q is taken to∞. Since q-metric structure does not always hold, it has to
be imposed by means of the projection presented in Section 3.

D PROJECTION

In this Appendix, we expand on the theoretical properties exposed in Section 3. The proofs rely on
the Axioms A1 and A2, that are imposed on the Canonical Projection. These two requirements are
enough to imbue the projection with beneficial properties on Nearest Neighbor search.

D.1 P ⋆
q EXISTS, IS UNIQUE, AND SATISFIES THE q-TRIANGLE INEQUALITY

The results in Section D.1 were presented in Segarra et al. (2015) and are included here for complete-
ness.

For a given q, the Canonical Projection P ⋆
q as defined in 7, is guaranteed to satisfy the q-triangle

inequality. Moreover, it meets axioms of Projection A1 and Transformation A2.

Lemma 2 (Satisfaction of q-triangle inequality). The canonical Projection as defined in 7, satisfies
the q-triangle inequality.

Proof. To verify the q-triangle inequality, let cxx′ and cx′x′′ be paths that achieve the minimum in 7
for dq(x, x′) and dq(x

′, x′′), respectively. Then, from the definition in 7, it follows that:

dq(x, x
′′)q = min

cxx′′
∥c∥qq ≤ ∥cxx′ ⊕ cx′x′′∥qq = ∥cxx′∥qq + ∥cx′x′′∥qq = dq(x, x

′)q + dq(x
′, x′′)q,

(29)

where the inequality holds because the concatenated path cxx′⊕cx′x′′ is a valid (though not necessarily
optimal) path between x and x′′, while dq(x, x

′′) minimizes the q-norm across all such paths.

Theorem 1 (Existence and uniqueness). The canonical projection P ⋆
q satisfies Axioms A1 and A2.

Moreover, if a q-metric projection Pq satisfies Axioms A1 and A2, it must be that Pq = P ⋆
q .

Proof. We first prove that dq is indeed a q-metric on the node space X . That dq(x, x′) = dq(x
′, x)

follows from the fact that the original graph G is symmetric, and that the norms ∥ · ∥q are symmetric
in their arguments for all q. Moreover, dq(x, x′) = 0 if and only if x = x′, due to the positive
definiteness of the q-norms.

To see that the Axiom of Projection A1 is satisfied, let M = (X, d) ∈Mq be an arbitrary q-metric
space, and denote (X, dq) = P ⋆

q (M), the output of applying the canonical q-metric projection. For
any pair x, x′ ∈ X , we have:

dq(x, x
′) = min

c∈Cxx′
∥c∥q ≤ ∥[x, x′]∥q = d(x, x′), (30)

for all q, where the inequality comes from choosing the trivial path [x, x′] consisting of a single edge
from x to x′.

Let c⋆xx′ = [x = x0, x1, . . . , xℓ = x′] be the path that achieves the minimum in the above expression.
Using Lemma 2 we know dq satisfies the q-triangle inequality:

d(x, x′) ≤

(
ℓ−1∑
i=0

d(xi, xi+1)
q

)1/q

= ∥c⋆xx′∥q = dq(x, x
′). (31)

Substituting this into the previous inequality, we find that:

d(x, x′) = dq(x, x
′). (32)

Since x and x′ were arbitrary, we conclude d ≡ dq , hence P ⋆
q (M) = M , as required.
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To show that the Axiom of Transformation A2 holds, consider two graphs G = (X,D) and G′ =
(X ′, D′), and a dissimilarity-reducing map φ : X → X ′. Let (X, dq) = P ⋆

q (G) and (X ′, d′q) =
P ⋆
q (G

′) be the projected spaces.

For a pair x, x′ ∈ X , let c⋆xx′ = [x = x0, x1, . . . , xℓ = x′] be a path achieving the minimum for
dq(x, x

′) = ∥c⋆xx′∥q . Consider the image path in X ′:

P ⋆
φ(x)φ(x′) = [φ(x0), φ(x1), . . . , φ(xℓ)]. (33)

Since φ is dissimilarity-reducing, we have:

D′(φ(xi), φ(xi+1)) ≤ D(xi, xi+1) for all i. (34)

Hence,

∥P ⋆
φ(x)φ(x′)∥q ≤ ∥c

⋆
xx′∥q = dq(x, x

′). (35)

Now, since d′q(φ(x), φ(x
′)) is defined as the minimum over all such paths in X ′, we get:

d′q(φ(x), φ(x
′)) ≤ ∥P ⋆

φ(x)φ(x′)∥q ≤ dq(x, x
′), (36)

which completes the proof of Axiom A2.

D.2 CANONICAL PROJECTION PRESERVES THE NEAREST NEIGHBOR

As a consequence of the Axioms A1 and A2, the Canonical Projection P ⋆
q will preserve the Nearest

Neighbor. This, when combined with Proposition 2
Proposition 1. Given a graph G = (X,D) and a query xo, define H = (Y,E) with Y = X ∪ {xo}
and let (Y,Eq) = P ⋆

q (H) be the projected graph. Then, we have that the set of nearest neighbors
satisfies

x̂o ≡ argmin
x∈X

E(x, xo) ⊆ argmin
x∈X

Eq(x, xo). (37)

Proof. We prove the theorem by showing that any projection method that satisfies the Axiom of
Transformation (A2) cannot result in larger dissimilarities for any pair of points. We further show
that nearest neighbor dissimilarities are preserved by the canonical projection. The combination of
these two facts yields (37).

To prove that dissimilarities are not increased, construct a graph G̃ = (X̃ ′, D̃′, ) made up of two
arbitrarily chosen nodes x and y along with their corresponding dissimilarities. I.e.,

X̃ = {x, y}, D̃ : D̃(x, y) = E(x, y). (38)

Notice that, since (X ′, E′) is a metric space, any admissible projection will leave the space unchanged.
This is a direct consequence of Axiom 1 in (A1).

Let us now map the original graph G to the new one:

φ(y) =

{
x′
1 if x = xo,

x′
2 otherwise.

(39)

Since the only existing edge has the minimum value possible E(x̂o, xo), φ is can be considered
dissimilarity-reducing map. As a consequence of Axiom 2 in (A2), since

E(x, xo) ≥ E(x̂o, xo) = E′(x′
1, x

′
2) (40)

therefore, any admissible projection will satisfy:

E′(x, xo) ≥ E′(x′
1, x

′
2) = E(x̂o, xo) (41)
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This enforces any admissible map deliver distances greater than the one to the original Nearest
Neighbor. Moreover, if we reason analogously but interchanging the roles of xo and its Nearest
Neighbor, we can state that the distance is preserved:

E′(x, xo) = E′(x′
1, x

′
2) (42)

By taking into account that the canonical projection is the only admissible map, since E′ must be
satisfied by Eq = P ⋆

q (H). This, proofs the preservation of the optima:

x̂o ≡ argmin
x∈X

E(x, xo) ⊆ argmin
x∈X

Eq(x, xo).

Having a preservation of the nearest neighbors makes the projection a valid candidate for search.
However, spurious neighbors could be added to the optimal set. This would incur in the cost of
searching among non desired candidates. However, the previous result can be further extended with
the following Lemma:
Lemma 3. Under the setting of Proposition D.2, if q <∞, the nearest neighbor is preserved with
the following equality:

x̂o ≡ argmin
x∈X

E(x, xo) = argmin
x∈X

Eq(x, xo). (43)

Proof. The proof will follow by contradiction.

Assume there exists z ∈ X such that

z /∈ argmin
x∈X

E(x, xo) and z ∈ argmin
x∈X

Eq(x, xo) (44)

We know by Theorem 2 that Eq is generated by applying Pq, the canonical projection. Therefore
there exists a path

c∗ = [xo, . . . , z] such that (45)

dq(xo, z) = ||c∗||q = min
c∈Cxoz

ℓq(c) (46)

However, since z /∈ argminx∈X E(x, xo),
[xo, z] is not a valid minimum path, otherwise, this would imply

d(xo, z) =
q
√

d(xo, z)q = ℓq([xo, z]) = min
x∈X

d(xo, x) (47)

and consequently z ∈ argminx∈X E(x, xo).

Without loss of generality, assume ∃ x1 ̸= z such thatc∗ = [xo, x1, . . . , z] . Since ℓq is strictly
increasing and by symmetry of dissimilarity,

ℓq([xo, x1, . . . , z]) > ℓq([xo, x1]) ≥ min
c∈Cxoz

ℓq(c) (48)

⇒ z /∈ argmin
x∈X

Eq(x, x0) (49)

Which incurs in a contradiction.
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The preceding lemma ensures that no spurious neighbors are added, a property that is not necessarily
satisfied by ultrametric spaces. The following example illustrates a case where the set of original set
of nearest neighbors can be extended if q =∞.

Example 1. Let {x1, x2, x3} = X be three points equipped with the original distances

D(x1, x2) = 3, D(x2, x3) = 2, D(x1, x3) = 5. (50)

Clearly D(x1, x2) < D(x1, x2), so the unique nearest neighbor of x1 in G = ({x1, x2, x3}, D) is
x2. We now enforce the strong triangle inequality by projecting:

D′(x2, x3) = max
[
{D(x1, x2), D(x2, x3)

]
= 3, (51)

while leaving d′(x1, x2) = 3 and D′(x2, x3) = 2. Under the new distance D′, one finds

D′(x1, x2) = 3 and D′(x1, x3) = 3, (52)

so x1 is equidistant from x2 and x3. In particular, the original nearest neighbor x2 is no longer
uniquely closest—any nearest-neighbor search on G′ = ({x1, x2, x3}, D′) may return x3 instead of
x2, demonstrating that ultra-projecting a metric can extend original nearest neighbor set.

x3 x2

x1

3

2

5

D

x3 x2

x1

3

2

3

D′

Figure 7: Ultramet-
ric projection added
nearest neighbors to
the original set.

The proposition guarantees that the Nearest Neighbor is preserved under the
mapping. Therefore, solving the solution found when solving Nearest Neigh-
bor Search in the transformed space is a relaxation of the original problem.
Although this relaxation provides speedup, it can also make the problem more
difficult if many solutions are added to the nearest neighbor set. This problem
is addressed in Section E, by further exploiting metric tree structure.

D.3 EFFICIENT APPROXIMATION OF P ∗
q

Calculating the canonical projection P ⋆
q over the training points can incur

prohibitive computing times. Algorithms 4 and 5 describe the computation of
the canonical projection. These procedures are highly paralellizable and can
be efficiently executed on GPUs, which significantly reduces the projection
time. Nevertheless, computing the canonical projection for n points still
requires O(n3) operations in the worst case, which remains prohibitive for
large datasets.

Therefore, instead of computing the shortest q-norm path in the complete
graph D ∈ Rn×n, we restrict the search to length l paths and only consider
the k-nearest neighbor graph. By doing this, the complexity of computing all
pairwise distances is reduced from O(n3) to a factor O(nk2l).

Algorithm 4 Canonical Projection P ∗
q

1: function P ∗(D, q)
2: M ← Dq

3: for k = 1 to n do
4: ck ←M [:, k] +M [k, :]
5: M ← min(M, ck)
6: end for
7: return M1/q

8: end function

Algorithm 5 Canonical Projection P ∗
∞

1: function P ∗(D,∞)
2: M ← D
3: for k = 1 to n do
4: ck ← max(M [:, k],M [k, :])
5: M ← min(M, ck)
6: end for
7: return M
8: end function

Figure 8: Algorithms for Canonical Projection computation. Complexity: O(n3)

Given a dissimilarity distance matrix D ∈ Rn×n (e.g., cosine or Euclidean), we raise it element-wise
to the power q to obtain edge weights consistent with the q-path metric. Then, for each node xi, we
consider only its k nearest neighbors in the original space and perform a fixed number of smoothing
updates, which approximate the optimal q-path cost to all other nodes.
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At each iteration, for every node xi and each of its neighbors xj , we update the path cost D(xi, x
′)

to a third node x′ using the relaxed bound:

D(xi, x
′)← min {D(xi, x

′), D(xi, xj)
q +D(xj , x

′)q} . (53)

The final result is root-transformed to return to the original distance scale:

d∗q(xi, xj) ≈ (D(xi, xj))
1/q

. (54)

These modifications are incorporated in Algorithms 6 and 7, where the adjacency matrix A restricts
the minimum-path computation to the k-nearest neighborhood. In addition, paths are truncated
to length l, meaning that at most l intermediate components can form a path. This approximated
algorithm remains highly paralellizable in GPU while using sparse matrix multiplications.

Algorithm 6 Sparse Canonical Projection P ∗
q

1: function P ∗(D,A, l, q)

2: Mij ←
{
Dq

ij , if Aij = 1

∞, otherwise
3: for k = 1 to l do
4: ck ←M [:, k] +M [k, :]
5: M ← min(M, ck)
6: end for
7: return M1/q

8: end function

Algorithm 7 Sparse Canonical Projection P ∗
∞

1: function P ∗(D,A, l,∞)

2: Mij ←
{
Dij , if Aij = 1

∞, otherwise
3: for k = 1 to l do
4: ck ← max(M [:, k],M [k, :])
5: M ← min(M, ck)
6: end for
7: return M
8: end function

Figure 9: Sparse Canonical Projection using adjacency A (restricting updates to local neighbors) and
early stopping after l pivots (paths of length ≤ l + 1). Complexity: O(nk2l).

E EXPERIMENTS & RESULTS

E.1 EXPERIMENTAL SETTINGS

Vector Datasets

The experiments were conducted on two commonly used datasets and one with distinct characteristics.
We split the data randomly, using 80% for indexing and the remaining 20% is used as queries. We
provide a summary of the datasets below, additional details can be found in the references provided.

• Xiao et al. (2017)Fashion-MNIST-784 Euclidean: Image samples from the Fashion-
MNIST collection, each flattened into a 784-dimensional vector.

• Pennington et al. (2014)GloVe-200 Cosine: Text embeddings extracted from the GloVe
(Global Vectors for Word Representation) model, each of dimension 200.

• Oliva and Torralba (2001)Gist-960 Euclidean: A set of real-valued GIST descriptors of
natural scene images, each represented as a 960-dimensional vector. A GIST descriptor is a
global, low-dimensional representation of an image’s spatial envelope.

• Newman (2008)NYTimes-256 Cosine: Document embeddings from the UCI NYTimes
Bag-of-Words corpus. We convert term-count vectors to TF–IDF and apply truncated SVD
to 256 dimensions; evaluation uses cosine (angular) distance.

• Bodon (2003)Kosarak-41,000 Jaccard: A real-world sparse binary transaction dataset
derived from click-stream data of a Hungarian news portal. Each transaction is represented
as a 41,000-dimensional vector.

• Babenko and Lempitsky (2016)Deep1B-96 Euclidean: A billion-scale collection of
CNN-based image descriptors which are later PCA-reduced to 96 dimensions.
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Dissimilarities

Apart from searching using the euclidean distance, as customary for Glove and FashionMNIST, to
showcase how our approach can accommodate arbitrary dissimilarity functions, we also evaluate our
method and results searching with other dissimilarities on the same datasets. The dissimilarities used
are specified in Table 1.

Table 1: Distance and Dissimilarity Metrics used.

Metric Formula

Euclidean Distance d(x, y) =
√∑d

i=1(xi − yi)2

Manhattan Distance d(x, y) =
∑d

i=1 |xi − yi|
Cosine Dissimilarity d(x, y) = 1− x·y

∥x∥ ∥y∥

Correlation d(x, y) = 1− (x−x̄)·(y−ȳ)
∥x−x̄∥ ∥y−ȳ∥

Metrics

Approximate search algorithms are evaluated along two key dimensions: retrieval quality and search
efficiency.

Search efficiency is assessed primarily by the number of comparisons needed to retrieve a result for a
given query. Unlike throughput, this metric is agnostic to implementation and hardware, offering a
fair basis for comparing algorithmic efficiency.

• Number of Comparisons: Every time the q-Metric VP-Tree visits a node. Reflects the
computational cost related to search speed.

• Queries Per Second (QPS): Measures the throughput of the algorithm, indicating how
many queries can be processed per second under the current configuration.

Retrieval quality is evaluated using metrics that capture not just whether relevant results are retrieved,
but how well their ordering is preserved. In particular, we rely on Recall@k and Rank Order, which
– unlike recall – penalizes deviations in the relative ranking of retrieved results. This is crucial in
downstream tasks such as recommendation, where the order of results matters. The metrics used in
our evaluation are summarized below:

• RankOrder@k: Measures how well the approximate method preserves the original ordering
of the true nearest neighbors. Let N true

k (y) be the true k-nearest neighbors of a query y,
and N approx

k (y) = {x1, . . . , xk} the corresponding approximate result. Let π(xi,N true
k (y))

denote the position of xi in the true result N true
k (y) (or k + 1 if not found). The metric is

defined as:
Absolute RankOrder@k (55)

(y) =

k∑
i=1

∣∣i− π(xi,N true
k (y))

∣∣ · 1
k

(56)

Lower values indicate better rank preservation, with 0 being optimal.
In addition, a variation of the rank order that takes into account the total number of points in
the dataset is also used:

Relative RankOrder@k (57)

(y) =

k∑
i=1

∣∣i− π(xi,N true
k (y))

∣∣ · 100
nk

(58)

where n is the size of the indexed points, i.e |X|. This measure expresses rank order but
now as a percentage of the points available for retrieval.
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• Recall@k: Measures the proportion of true k-nearest neighbors that are successfully
retrieved by the approximate method. Let N true

k (y) be the true k-nearest neighbors of a
query y, and N approx

k (y) the corresponding approximate result. The recall is defined as:

Recall@k(y) =
|N true

k (y) ∩N approx
k (y)|

k
(59)

This metric ranges from 0 to 1, where 1 indicates that all true neighbors were retrieved. It
reflects the coverage of the ground-truth neighbors in the approximate result.

E.2 CANONICAL PROJECTION P ⋆
q

We validate the theoretical properties of searching in q-metric and ultrametric spaces presented in
Section 2. In particular, we confirm our complexity claims (C1), the preservation of nearest neighbors,
and the stability of rank order under projection (C2).

In order to do so, we use the Canonical Projection P ⋆
q presented in Section 3 to project distances

imposing q-metric structure on FashionMNIST and GloVe. For these two datasets we use four
different dissimilarities. After projecting dissimilarities, we search using the q-metric VP tree as
described in Appendix B.

Figures 10a and 10b (first row), show that the number of nodes visited during search decreases
monotonically with increasing q, reaching the theoretical minimum of log2(n) at q = ∞. This
directly confirms Theorem 1 and supports claim C1. Additionally, a rank order of zero across all
queries–for a wide range of q values (excluding q = ∞) and across all dissimilarities– confirms
claim and C2, as established in Lemma 2 and Proposition 1. At the same time, this nearest neighbor
preservation is also observed at recall, showing perfect matches at k = 1 for moderate q values.

At q =∞, the projection may introduce spurious optima not included in the original nearest neighbor
set. Although the original nearest neighbours are still a solution in the transformed space, in practice
we observe that the spurious optima at q = ∞ indeed affect accuracy. A similar effect occurs for
large q, as distances between points can become artificially close, imitating this behavior.

Although our theoretical guarantees focus on the k = 1 nearest neighbor case, an empirical preserva-
tion of locality observed in Figures 10a and 10b. We evaluate this by searching for k = 5 and k = 10
neighbors using the projected distances, as shown in the second and third rows of Figures 10a and
10b. While the number of comparisons does not decrease as rapidly as in the k = 1 case, the method
consistently yields improvements across all values of q.

E.3 APPROXIMATING THE CANONICAL PROJECTION WITH Φ(x; θ⋆)

We analyze how well the learned distances Êq (x, x
′) = ∥Φ (x; θ⋆)− Φ (x′; θ⋆)∥, described in

Section 4, reproduce the properties of the true q-metric distances Eq (x, x
′).

As described in Section 4, the learning process minimizes two loss terms: the stress ℓD, which
measures the squared error between the learned distances and the true projected distances, and the
triangle inequality violation ℓT , which penalizes failure to satisfy the q-triangle inequality.

Figure 11 shows that ℓD increases monotonically with q, consistent with the trend observed in
Section E.4 where retrieval accuracy declined at high q values. This indicates that approximating the
Canonical Projection becomes more difficult as q increases.

We observe the violation of the q-triangle inequality ℓT decreases with increasing q. However, the
corresponding increase in accuracy metrics like rank order shows an opposite behavior is observed.
That is, we observe ℓD to be more correlated with downstream performance than the satisfaction of
the q-triangle inequality as measured by ℓT .

Predicted and ground truth distances in Figure 12 show similar distributions for training and testing
distances albeit for a generalization gap. Again as q increases, so does the approximation error.
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(a) n = 1,000 points of Fashion-MNIST
Figure 10: Number of comparisons and rank order across different dissimilarities when searching
after applying Canonical Projection when a query point is added (Eq). The search was performed
with a q-VPTree. Solid lines denote the mean and shading the standard deviation computed across
queries. Each row shows results for k-nearest neighbors, with k = 1, 5, 10 from top to bottom.
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(b) n = 1,000 points of GloVe
Figure 10: Number of comparisons and rank order across different dissimilarities when searching
after applying Canonical Projection when a query point is added (Eq). The search was performed
with a q-VPTree. Solid lines denote the mean and shading the standard deviation computed across
queries. The k-nearest neighbors are listed from top to bottom for k = 1, 5, 10

(a) Stress ℓD (b) q-Triangle Inequality Violation ℓT

Figure 11: Values of the Stress ℓD and the q-triangle inequality regularizer after the training process.
Labels of each point represent average Rank Order. This case corresponds to the learning process
performed over the Fashion-MNIST dataset for euclidean distance.
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(a) Train

(b) Test

Figure 12: Distribution of the distance to Nearest Neighbor. In the X-axis Eq depicts distance values
obtained after projecting when a query point is added. The Y-axis shows the learned approximation
of the Canonical projection Êq . The dashed line represents the perfect match between projected and
approximated x = y.
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E.4 SEARCHING WITH ϕq(·, θ⋆)

In this section we demonstrate that the speedup observed in the exact projection experiments of
Section E.2 is also attained when replacing the Canonical projection with the learned map ϕq(·, θ⋆),
at the cost of small errors in search results.

Figures 13a and 13b show a consistent reduction in the number of comparisons as q increases,
mirroring the trend observed in the exact projection experiments. This reduction is accompanied by
a moderate increase in rank error and a decrease in recall, suggesting that the retrieved neighbors
remain close but are not always exact. Nevertheless, cases with recall above 0.9 still yield substantial
speedups. Since recall captures only exact matches and the method guarantees order preservation
only for the 1-nearest neighbor, rank order can provide a complementary view of performance.

Despite the degradation of the approximation quality for high q values, the retrieved neighbors remain
within the top 80 nearest, which corresponds to less than 1% of the indexed dataset. When higher
precision is required, setting q = 10 can yield a two-orders-of-magnitude speedup (Figure 13a) while
returning neighbors ranked around 10th, corresponding to a relative error close to 0.12%. These
results demonstrate that the learned embeddings preserve local structure to a satisfactory extent.

The results also extend to k-nearest neighbor search with k > 1. While the reduction in comparisons
is less pronounced than for k = 1, the method maintains a consistent speedup across values of q.
Rank Order remains low, and in some cases improves as k increases, suggesting that the learned map
preserves small-scale neighborhood structure reasonably well even on these datasets.

Examples of retrieval results were also generated. For each dataset, queries were selected from varied
categories. In the Fashion-MNIST case (Figure 14), each panel shows the original query image, its
true nearest neighbor, and the result returned by Infinity Search. While the exact nearest neighbor
was not retrieved in some cases—such as those involving sandals or sneakers—the returned items
consistently belonged to the same category as the query. For GloVe-200 text embeddings, Figure 14b
includes several exact matches, as well as examples where the retrieved word preserved the semantic
meaning of the query.
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(a) n = 10,000 points of Fashion-MNIST
Figure 13: Number of comparisons and rank order when searching after approximating the Canonical
Projection Êq, with the learned map Φ(x; θ). Solid lines denote the mean and shading the standard
deviation computed across queries. The k-nearest neighbors are listed from top to bottom for
k = 1, 5, 10
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(b) n = 10,000 points of Glove

Figure 13: Number of comparisons and rank order when searching after approximating the Canonical
Projection Êq, with the learned map Φ(x; θ). Solid lines denote the mean and shading the standard
deviation computed across queries. The k-nearest neighbors are listed from top to bottom for
k = 1, 5, 10
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(a) Fashion-MNIST

Category Query True NN Returned NN
Animals dog dogs dogs

lion wolf wolf
Colors blue pink purple

red pink purple
Clothing pants jeans jeans

shirt shirts worn
Tools drill drilling drilling

hammer throw flame

(b) GloVe
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(c) GIST

Figure 14: Retrieval of dataset items with Infinity Search (q = 5).
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E.5 TWO-STAGE INFINITY SEARCH

Although Proposition 8 ensures preservation of the nearest neighbor structure, it also notes that the
projected nearest neighbor may not remain unique. This ambiguity can lead to mismatches during
retrieval. The effect appears in theoretical settings, as seen in Figures 10a and 10b, where rank order
the rank order exhibits a sharp increase at q =∞. A similar trend can be observed in the approximate
setting, shown in Figures 13a and 13b. In Figure 15, the distribution of projected q-metrics shows
a clustering effect as q increases. Distances become more concentrated around mean, while the
frequency of close values also increases. This suggests that distances between points become closer,
making true nearest neighbors more difficult to discern.

(a) Train

(b) Test

Figure 15: Histogram of the distance to Nearest Neighbor. In the X-axis Eq depicts distance values
obtained after projecting when a query point is added. The Y-axis shows number of counts for that
distance bin.

To address this, one can extend the nearest neighbor set using the Canonical Projection and then
prune it to avoid loss in accuracy. This motivates a two-stage modification of the Infinity Search
algorithm:

• Broad Search: The Infinity Search algorithm is used to retrieve an initial candidate set of
K nearest neighbors. This will retrieve close neighbors in the q-metric space.

• Specific Search: Once the list of K candidate neighbors is available, the original distance
D is used to retrieve the k real nearest neighbors.
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This two-stage retrieval strategy is used in some ANN methods, including HNSW Malkov and
Yashunin (2020). As shown in the theoretical and approximate experiments of Sections E.2 and E.4,
the Canonical Projection preserves locality but not the exact order of nearest neighbors. This makes
the two-stage approach suitable for improving accuracy.

Figures 16a and 16b confirm the improvement, showing higher recall and more accurate rank
alignment compared to earlier approximations. The gains are particularly notable in rank order,
with a 3 to 4 times reduction in error. As expected, this comes with a decrease in speedup, since
the method processes a larger candidate set and computes original distances during Specific Search.
Although the logarithmic comparison bound (log2(n)) no longer holds, the resulting speed remains
competitive. The original Infinity Search can be recovered by setting K = k, while choosing K > k
offers additional flexibility to trade off speed and accuracy depending on the requirements of the
searching problem.

(a) n = 10,000 points of Fashion-MNIST
Figure 16: Number of comparisons, Recall@k and Rank Order when searching with a two-stage
retrieval Infinity Search. Solid lines denote the mean and shading the standard deviation computed
across queries. The k-nearest neighbors are listed from top to bottom for k = 1, 5, 10
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(b) n = 10,000 points of Glove200
Figure 16: Number of comparisons, Recall@k and Rank Order when searching with a two-stage
retrieval Infinity Search. Solid lines denote the mean and shading the standard deviation computed
across queries. The k-nearest neighbors are listed from top to bottom for k = 1, 5, 10
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E.6 INFINITY SEARCH SCALES

In this section we examine how the method scales with dataset size and dimensionality. The current
implementation is not engineered for industrial deployment, but we seek to characterize behavior
as problem size increases. We index subsamples n ∈ {10K, 50K, 100K, 500K, 1M, 5M} from
Deep1B Babenko and Lempitsky (2016), holding the rest of the pipeline fixed to isolate scaling
effects.

The projection P ∗
q is trained once on a fixed set of 100K points. After training, each target subset is

projected prior to indexing; no additional tuning is performed. This mimics an inductive setting in
which a single model serves increasingly large corpora with constant per-point projection cost.

As shown in Figure 17, the search stage exhibits competitive scalability, following a sub-logarithmic
trend in n. In terms of accuracy, Rank Order more clearly captures how error grows with index size.
We observe degradation when applying a model trained on 100K points to 1M–5M points, consistent
with inference mismatch from training on a limited subset. Despite this shift, the embeddings remain
meaningful on large validation sets, indicating good inductive transfer without retraining.

Regarding construction cost, Figure 17 shows an essentially linear build time, O(n), which is expected
for tree-based indexing. Overall, these results indicate: (i) favorable search scaling, (ii) predictable
accuracy drift with growing n under fixed training size, and (iii) linear build complexity. Extending
training to larger or stratified subsets, or enabling lightweight incremental updates, is a natural
direction for future work.

Figure 17: Infinity Search results on searching n ∈ {10K, 50K, 100K, 500K, 1M, 5M} points of
Deep1B-96 with Euclidean distance.

The recent increase in the expressiveness of embeddings has made performance on high-dimensional
data a key requirement. Moreover, traditional VP-trees have struggled to prune effectively in high
dimensions. We hypothesize that this is due to concentration of measure, a consequence of the
curse of dimensionality, which causes pairwise distances to concentrate and weakens pruning bounds.
Figure 18 reports Infinity Search results on GloVe Pennington et al. (2014) with increasing dimen-
sionality, {50, 100, 200, 300}. The number of comparisons grows monotonically with dimensionality,
supporting the hypothesis that pruning is easier in lower dimensions than in higher-dimensional
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Figure 18: Number of comparisons and rank order across different dimensions when searching after
applying Canonical Projection when a query point is added (Eq). Solid lines denote the mean and
shading the standard deviation computed across queries. The dataset used was GloVe with n = 1,000
points and the dissimilarity the standard euclidean distance.

setups. As in our scaling experiments, P ∗
q is trained once per dimension and then applied inductively

with a fixed per-point projection cost, isolating the effect of dimensionality.

However, our method attains logarithmic search complexity with respect to n regardless of dimen-
sionality. In addition, Rank Order remains consistent with the theoretical analysis in Section E.
Taken together, these results indicate that both search complexity and accuracy are preserved even as
dimensionality increases.

E.7 INFINITY SEARCH COMPETES IN ANN-BENCHMARKS

Infinity Search offers a configurable trade-off between query throughput and recall. To assess its
competitiveness against state-of-the-art ANN methods, we evaluated it within the ANN-Benchmarks
framework Aumüller et al. (2018). We ran experiments on five datasets provided by the library
and compared against a wide set of algorithms chosen for their balance of speed, accuracy, and
open-source availability.

In both theoretical analysis and empirical benchmarks, Infinity Search consistently accelerates
nearest-neighbor queries across all tested dissimilarities. On moderate-dimensional datasets such as
Fashion-MNIST and GIST (Figure 19), it delivers a clear speedup by, in some cases, sacrificing perfect
accuracy. Remarkably, on the high-dimensional Kosarak dataset—with Jaccard dissimilarity—Infinity
Search outperforms competing methods by an even wider margin. This supports the flexibility of the
method when less popular dissimilarities are required.

Across all datasets, it offers a favorable speed–accuracy trade-off for the k = 1 nearest-neighbor task.
For larger neighborhood sizes (k ∈ {5, 10}), the increased comparison overhead prevents it from
always leading in Recall@k; nevertheless, its performance remains competitive. Note that, since
n = 10,000 in these experiments, modest rank-order errors at extreme speeds still correspond to few
misplaced neighbors.

Overall, Infinity Search is a viable alternative when fast retrieval is required or non-Euclidean or less
structured similarity are used.
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(a) Fashion-MNIST-784 (Euclidean)

(b) GloVe-200 (Cosine)

(c) GIST-960 (Euclidean)

(d) NYTimes-256 (Cosine)

(e) Kosarak-41,000 (Jaccard)

Figure 19: Recall@k vs queries-per-second (QPS) across datasets. Columns within each row are
k = 1, 5, 10
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