
Under review for RLC 2025, to be published in RLJ
∣∣ Cover Page

Hierarchical Multi-agent Reinforcement Learning for
Cyber Network Defense

Anonymous authors
Paper under double-blind review

Keywords: Multi-agent reinforcement learning, Cybersecurity, Deep reinforcement learning,
Hierarchical reinforcement learning

Summary
Recent advances in multi-agent reinforcement learning (MARL) have created opportunities

to solve complex real-world tasks. Cybersecurity is a notable application area, where defend-
ing networks against sophisticated adversaries remains a challenging task typically performed
by teams of security operators. In this work, we explore novel MARL strategies for build-
ing autonomous cyber network defenses that address challenges such as large policy spaces,
partial observability, and stealthy, deceptive adversarial strategies. To facilitate efficient and
generalized learning, we propose a hierarchical Proximal Policy Optimization (PPO) architec-
ture that decomposes the cyber defense task into specific sub-tasks like network investigation
and host recovery. Our approach involves training sub-policies for each sub-task using PPO
enhanced with domain expertise. These sub-policies are then leveraged by a master defense
policy that coordinates their selection to solve complex network defense tasks. Furthermore,
the sub-policies can be fine-tuned and transferred with minimal cost to defend against shifts
in adversarial behavior or changes in network settings. We conduct extensive experiments
using CybORG Cage 4, the state-of-the-art MARL environment for cyber defense. Compar-
isons with multiple baselines across different adversaries show that our hierarchical learning
approach achieves top performance in terms of convergence speed, episodic return, and several
interpretable metrics relevant to cybersecurity, including the fraction of clean machines on the
network, precision, and false positives.

Contribution(s)
1. A scalable hierarchical multi-agent reinforcement learning method for cyber defense that

decomposes the complex cyber defense task into multiple sub-tasks.
Context: Prior work uses hierarchical MARL in other domains such as multi-robot learn-
ing, while current RL-based methods in the cyber defense domain are single agent.

2. A design guided by cybersecurity domain expertise to enhance the RL agents’ observation
space and facilitate learning of better policies.
Context: Prior work on RL cyber defense uses the observation space provided by a cyber
environment such as CybORG, without expanding it.

3. Defensive strategies that transfer either directly or via fine-tuning against a range of decep-
tive, stealthy adversaries in the CybORG CAGE 4 cyber environment.
Context: We show that the proposed H-MARL methods generalize to three types of stealthy
adversarial agents, besides the default red agent in CybORG CAGE 4, and we also demon-
strate transferability to new red agents after fine-tuning.

4. Definition and analysis of multiple interpretable metrics for providing insights to security
operators on the developed defenses.
Context: Prior work in RL for cyber defense mainly analyzes the cumulative return, but
does not discuss interpretable metrics, which are very relevant to security operators.



Hierarchical Multi-agent Reinforcement Learning for Cyber Network Defense

Hierarchical Multi-agent Reinforcement Learning for
Cyber Network Defense

Anonymous authors
Paper under double-blind review

Abstract

Recent advances in multi-agent reinforcement learning (MARL) have created opportu-1
nities to solve complex real-world tasks. Cybersecurity is a notable application area,2
where defending networks against sophisticated adversaries remains a challenging task3
typically performed by teams of security operators. In this work, we explore novel4
MARL strategies for building autonomous cyber network defenses that address chal-5
lenges such as large policy spaces, partial observability, and stealthy, deceptive adver-6
sarial strategies. To facilitate efficient and generalized learning, we propose a hierarchi-7
cal Proximal Policy Optimization (PPO) architecture that decomposes the cyber defense8
task into specific sub-tasks like network investigation and host recovery. Our approach9
involves training sub-policies for each sub-task using PPO enhanced with cybersecurity10
domain expertise. These sub-policies are then leveraged by a master defense policy11
that coordinates their selection to solve complex network defense tasks. Furthermore,12
the sub-policies can be fine-tuned and transferred with minimal cost to defend against13
shifts in adversarial behavior or changes in network settings. We conduct extensive14
experiments using CybORG Cage 4, the state-of-the-art MARL environment for cyber15
defense. Comparisons with multiple baselines across different adversaries show that16
our hierarchical learning approach achieves top performance in terms of convergence17
speed, episodic return, and several interpretable metrics relevant to cybersecurity, in-18
cluding the fraction of clean machines on the network, precision, and false positives.19

1 Introduction20

Cyber defense is critical in both private and public network infrastructures, which are frequently21
targeted by increasingly sophisticated external attackers with malicious intentions. In 2024, the22
number of security breaches has surpassed 10,000 and attackers constantly adapt their tools and23
strategies to evade existing defenses (Hylender et al., 2024). The implications for national security24
are significant, as security breaches often lead to theft of intellectual property, compromise of sensi-25
tive information, and disruption of critical infrastructures. Currently, organizations employ teams of26
security professionals who constantly oversee the security of their networks and design the overall27
security strategy using their domain expertise. While a range of machine learning (ML) tools are28
available for detecting specific classes of attacks (Antonakakis et al., 2012; Nelms et al., 2013; An-29
tonakakis et al., 2011; Bilge et al., 2012; Yen et al., 2013; Ongun et al., 2021), the advancement of30
deep reinforcement learning (DRL) presents an opportunity to automate the cyber defense strategy31
and reduce the burden on security operators.32

Towards this goal, the technical cooperation program (TTCP), a collaborative working group in-33
cluding UK, USA, Canada, Australia and New Zealand, developed a series of CAGE challenges34
for advancing cyber defense (CAGE, 2021). These challenges leverage the Cyber Operations Re-35
search Gym (CybORG), a simulated environment that can be used for creating realistic interactions36
(or games) between attackers and defenders on realistic network topologies. These environments37

1



Under review for RLC 2025, to be published in RLJ 2025

task defenders (blue agents) with monitoring and restoring compromised machines on a simulated38
enterprise network, to prevent external adversaries (red agents) from accessing critical assets. The39
first CAGE challenges model a cyber game between a single blue agent and a single red agent,40
leading to the development of DRL techniques for training a blue agent interacting against a red41
agent (Vyas et al., 2023; Mcdonald et al., 2024; Hammar et al., 2024). The most recent CAGE42
4 challenge (CAGE-4, 2023) models a team of multiple blue agents defending a distributed net-43
work, playing against multiple red agents compromising the network. Existing techniques for single44
defensive agents are either computationally expensive (by training a different agent for each red45
agent (Vyas et al., 2023; Mcdonald et al., 2024)), do not generalize to new attackers, or require ex-46
tensive, causal pre-processing which is intractable as the network size scales (Hammar et al., 2024).47
Thus, they cannot be immediately applied to the multi-agent CAGE 4 environment, which requires48
new methods. Additional challenges for training multi-agent defenders in this environment include49
large policy spaces, partial observability of the network, shared rewards among all blue agents, and50
playing against stealthy, deceptive adversarial strategies.51

In this paper, we propose the first scalable multi-agent reinforcement learning (MARL) technique for52
automating defense in cyber security environments such as CAGE 4. We formulate the problem as53
a decentralized, partially-observable Markov decision process (Dec-POMDP) (Oliehoek & Amato,54
2016) and propose two hierarchical strategies, H-MARL Expert and H-MARL Meta, each with55
their own advantages. Both methods decompose the complex cyber defense task into smaller sub-56
tasks, and train sub-policies for each sub-task using PPO enhanced with domain expertise. The57
difference between the methods is in the design of the master policy that coordinates the selection58
of the sub-policies at each time step. H-MARL Expert utilizes security domain expertise to define a59
top master rule based on well-established practices for cyber defense, and performs best in most of60
our experiments. However, there are situations when it is difficult to define a deterministic Expert61
rule. To address this issue, we propose H-MARL Meta, that trains the master policy, and, thus, has62
the advantage of generalizing to new, unseen adversarial behavior. Another insight in our design is63
that extended observation spaces including security indicators, such as presence of malicious files64
and malicious processes on a host, are beneficial in increasing the blue agent’s ability to defend65
the network. We evaluate our methods against multiple baselines at different stages of the design66
process to motivate our methodology and design decisions. We further propose multiple relevant and67
interpretable metrics for cyber defense, including ratio of uninfected hosts, false/true positive rates68
on host recovery, and number of adversarial impacts on hosts. Across these metrics our proposed69
hierarchical techniques display significant improvements over traditional MARL approaches.70

To summarize, our contributions are: (1) scalable hierarchical multi-agent reinforcement learning71
methods for cyber defense; (2) a design guided by domain expertise to enhance the agents’ observa-72
tion space and decompose the complex cyber defense task into multiple sub-tasks; (3) evaluation in73
CybORG CAGE 4, a realistic cyber environment with partial observability and deceptive, stealthy74
adversaries; (4) empirical transferability of trained sub-policies after fine-tuning to new adversarial75
agents, and (5) multiple interpretable metrics for providing insights to security operators.76

2 Related Work and Background77

Traditional cyber defenses, such as anti-virus and network intrusion detection tools, leverage spe-78
cific detection rules for thwarting existing attacks, but they are relatively easy to evade. To address79
their limitations, organizations employ security operators who perform “threat hunting” to detect80
novel attacks on their networks. A variety of machine learning (ML) tools are available for threat81
detection (Antonakakis et al., 2011; 2012; Bilge et al., 2012; Nelms et al., 2013; Yen et al., 2013;82
Ongun et al., 2021), but the overall defensive strategy in most organizations is still manually de-83
signed. The advancement of DRL and MARL provides an opportunity to automate cyber defense84
strategies and improve the security of cyber infrastructures.85

The CAGE-4 challenge (CAGE-4, 2023) is a recent security environment aimed at encouraging86
research in autonomous cyber defense. It provides a cyber simulation of attacker and defender87

2



Hierarchical Multi-agent Reinforcement Learning for Cyber Network Defense

actions in realistic network topologies. CAGE-4 is a partially observable environment with mul-88
tiple, decentralized blue agents defending the network by playing against a team of red agents89
performing various attacks over time. It can be modeled as a decentralized, partially observable90
Markov decision process (Dec-POMDP). Dec-POMDPs (Oliehoek & Amato, 2016) are a special91
class of MDP where multiple, independent and decentralized agents with incomplete observations92
interact to optimize a shared reward signal. Formally, a Dec-POMDPs is defined as the tuple93
M = (I,S,A, T ,Ω,O,R, bo), where I = {1 · · ·n} is the set of n agents, S is a finite set of94
states, A = ×i∈IAi is the set of joint actions composed of individual actions Ai for each agent i, T95
is the state transition function, Ω = ×i∈IΩi is the set of joint observations, O : S × A → Ω is the96
joint observation function, and b0 is a distribution over initial states.97

Several methods have been developed for solving general Dec-POMDPs, including multi-agent98
PPO (Yu et al., 2022; Schulman et al., 2017), Q-MIX (Rashid et al., 2020), and independent99
PPO (De Witt et al., 2020). However, these methods are often uninterpretable and struggle to con-100
verge in settings with large joint action spaces. Consequently, some works have developed hierar-101
chical or meta-action-based approaches, which combine multiple actions or sequences of actions102
into a single, meta-action.103

Hierarchical and meta-learning approaches in single-agent reinforcement learning have been ex-104
plored (Hutsebaut-Buysse et al., 2022; Lake et al., 2017; Hospedales et al., 2022; Mishra et al.,105
2018; Sun et al., 2019; Guan et al., 2024). Several works have developed adaptations of hierarchical106
approaches in MARL for different domains (Xiao et al., 2020; Fosong et al., 2024; Chang et al.,107
2023; Frans et al., 2017), though the general problem remains a challenge. In this work, we aim to108
study the design and capabilities of Hierarchical MARL (H-MARL) approaches specific to the cyber109
network defense domain. Previous works (Vyas et al., 2023; Mcdonald et al., 2024; Hammar et al.,110
2024) have looked at single-agent domains, and to the best of our knowledge there is no existing111
work applying MARL to cyber network defense.112

3 Problem Statement113

In cyber security, red teams act as attackers who attempt to exploit network vulnerabilities and carry114
out malicious activities aimed at compromising the system. Blue teams are tasked with defending115
against red team opponents to secure the networks, while maintaining network operations. In this116
work, we focus on the CybORG CAGE 4 cybersecurity MARL framework (CAGE-4, 2023), which117
is a realistic environment that models cyber defense. We discuss several aspects of the environment118
below. For additional details, please see Section 1 in the supplemental materials, and the CAGE 4119
description (CAGE-4, 2023).120

Network topology. Cyber networks are often segmented into operational enterprise networks that121
encompass multiple security zones depending on the proximity to critical resources. This setup leads122
to a multi-agent competitive environment, where each defender agent is protecting its own security123
zone(s), with the overarching team goal of defending the entire network. The CAGE 4 network124
consists of seven security zones (subnets), assigned to five blue agents. To increase robustness125
of defenses, the number of hosts in each zone and their services are randomized, with each zone126
having between 4-16 servers and user machines (or hosts). An additional network (Contractor) is127
completely undefended, so that the red team always maintains a presence in the network.128

Threat Model. The two teams are represented by multi-agent systems: defender (the blue team)129
and attacker (the red team). Defender and attacker have competing goals, while the agents on each130
team collaborate to achieve their goals. The attacker’s goal is to maximize its reward by degrading131
services available to users, represented by green agents, and compromising the critical Operational132
Technology (OT) service. The defender’s goals are two-fold: maintain the security of the cyber133
network by reducing the adversarial presence, and minimize the operational impact on users. We134
face a strong adversary, whose capabilities include stealth, phishing, propagating through the net-135
work, and the ability to discover blue agents’ deception. Red agents maintain persistent presence136
on the Contractor network, which is the starting point of the attack and cannot be defended with137

3



Under review for RLC 2025, to be published in RLJ 2025

Table 1: Challenges of a realistic RL model for cybersecurity, with concrete examples from the
CybORG environment.

Environment
Partially-observable Blue agents receive incomplete information from the environment.

Lacking access to the true state, agents monitor and analyse hosts to
discover compromised hosts. Monitoring is noisy, affected by false pos-
itives and false negatives (depending on detection rate).

Memoryless Once reported, alerts are not maintained.
Duration of actions Actions take between one time step and 5 time steps in the environment.
Large policy space Blue agents defend between 1 and 3 subnets, of up to 16 hosts each. This

maps to an 92-242 action space, and an 82-210 observation space.
Shared reward Blue agents are rewarded collectively, as a team, for defending the net-

work. However, they only receive local observations.
Adversary

Stealth Low chance (0.25) of raising alerts via the Stealthy Service Discovery
action. Ability to withdraw from a security zone after impact.

Deception Can detect and avoid decoy services.
Ease of spreading Appears via phishing emails, in addition to moving laterally through the

network.
Strong foothold Can not be removed from the Contractor subnet, which is undefended.

The red team scores about 60 points on average in this subnet.

blue actions. Red agents scan machines for vulnerable services to exploit and propagate through the138
network. CAGE 4 implements both an aggressive service discovery action, which is faster (1 time139
step), but has a high chance (0.75) of raising alerts, and a stealthy service discovery action, which140
is slower (3 time steps), but less likely (0.25) to raise alerts. In addition to moving laterally through141
the network by exploiting remote services, red agents can also spawn with a given probability when142
a green user opens a phishing email or accesses a compromised service. Furthermore, red agents143
can use the discover deception action to determine if the blue team has installed decoy services144
on a specific host, and avoid to infect that host to maintain stealth. CAGE 4 implements a default145
deceptive red agent, called FiniteStateRedAgent, but we also create our own red agents with more146
aggressive service discovery and even stealthier presence on the network to measure the generality147
of our defense.148

Defensive actions and rewards. The blue team monitors the network for suspicious events, and149
detects and responds to attacks through the following actions: analyze a host looking for malware150
information; start a decoy service on a host (blue team is alerted when a red agent attempts to com-151
promise the decoy service); block traffic to and from a specified security zone (at the expense of152
disrupting the work of green agents); allow traffic to and from a specified security zone; remove153
malicious processes from a host; restore the host to an earlier secure state (temporarily making its154
services unavailable). The reward scheme models a zero-sum game where blue agents incur penal-155
ties when green agents are impacted due to degraded services becoming inaccessible. In addition,156
blue agents are penalized when red agents impact the critical OT security service. The specific157
reward values depend on the mission phase. Three active phases are carried out throughout each158
episode, to reflect the changing criticality of security zones on current operations.159

Challenges. A series of features, described in Table 1, make the CybORG environment particularly160
realistic and challenging for training multi-agent blue defenders. The environment provides partial161
observability of red presence, as blue agents need to run monitor and analyse actions to discover162
compromised hosts, and these actions incur false positives and false negatives. The policy space is163
large, including a set of actions for each host on the network, and the observation space is memory-164
less. In addition, actions have variable duration, and all blue agents share a common reward, even165
though each of them protects a different part of the network.166

4



Hierarchical Multi-agent Reinforcement Learning for Cyber Network Defense

4 H-MARL Methodology167

For complex real-world tasks, action spaces can grow intractably large as the problem, or168
task, scales, making task learning difficult for many standard reinforcement learning (RL) ap-169
proaches (Dulac-Arnold et al., 2015). These issues are compounded by the introduction of high-170
dimensional, noisy state spaces. Many hierarchical RL methods aim to solve these problems by171
breaking large action spaces down into smaller sub-tasks. However, learning these partitions online172
remains a challenging problem (Hutsebaut-Buysse et al., 2022). Therefore, in this section, we intro-173
duce our hierarchical framework showing how domain expertise can be leveraged to solve issues of174
intractability in both the state and action spaces.175

observation Master Policy

obs_subvector_1

obs_subvector_2

obs_subvector_k

Subpolicy_1

Subpolicy_2

Subpolicy_k

meta-action

Choose 
subpolicy

actionaction

Figure 1: Hierarchical MARL. Upon receiving an observa-
tion, the master policy first chooses a sub-policy, which se-
lects the final primitive action.

An overview of our design is shown176
in Figure 1. The action space A177
is split into n smaller subsets, or178
classes, chosen using domain exper-179
tise. For example, the “recover” class180
refers to all primitive actions for re-181
moving processes and restoring ma-182
chines on the network. Thus, each183
sub-policy handles one class of prim-184
itive actions that will be executed in185
the network. We define the action186
space of the master policy as a new187
set Am comprised of meta-actions,188

where each meta-action corresponds to a different sub-policy. The master policy chooses a meta-189
action, and the associated sub-policy then samples a primitive action from its subset. In cyber190
domains, the agent must choose the machine to investigate or restore potentially from a list of thou-191
sands. In our design, these additional details, such as what machine to restore, will be abstracted192
away, under a single meta-action, significantly reducing the action space.193

Under this formulation we begin to leverage the hierarchical design. We first establish a master194
policy πm whose objective is to choose some meta-action Ac ∈ Am given observation ot at time195
step t. We then assign each meta-actionAc to a corresponding sub-policy ψc whose goal is to choose196
the primitive action at ∈ Ac given some input history ht at time step t. This primitive action at is197
the final action executed in the environment. Under this design the master policy must learn the best198
policy πm : H → Am over meta-actions, while each sub-policy ψc : H → Ac must learn the best199
policy over all actions in their respective meta-action class. Here H represents the set of possible200
observation histories. This reduces the larger, more complex task posed by the base Dec-POMDP201
into a much manageable set of sub-tasks.202

We then use expert domain knowledge to enhance each sub-policy’s respective observations with203
transformation functions fc : O → Oc for sub-policy observation spaces Oc. In practice, these204
transformations are applied to observation histories. The transformation function reduces the ob-205
servation space of each sub-policy by keeping only information relevant to their respective class of206
actions. For example, the sub-policy responsible for restoring machines only needs to know about207
the hosts that present clear indicators of compromise, rather than about all the alerts in the system.208

4.1 Hierarchical MARL Design209

In the previous section, we primarily talked about our hierarchical approach at a high level from210
a single-agent perspective. In this subsection, we propose our methods H-MARL Expert and H-211
MARL Meta, which are designed to overcome a multitude of difficulties induced by multi-agent212
training, such as environment and training instability caused by policy interdependencies. In par-213
ticular, there are three key interdependencies that make learning in this setting difficult: (i) inter-214

5



Under review for RLC 2025, to be published in RLJ 2025

Algorithm 1 Sub-policy training (H-MARL
Expert)
Input Dec-POMDP M, Expert policy πE , Transformations
{fc}kc=1

Initialize Sub-Policies {ψc}kc=1, Replay Memories {Dc}kc=1,
Transformations {fc}kc=1, Episode Length T , IterationsN

1: for i← 1, N do
2: Sample initial observation o0 ∼M
3: for t← 1, T do
4: Update history ht given observation ot−1

5: Sample c← πE(ht) from expert policy
6: Sample ot, rt ∼M given action at ∼ ψc(fc(ht))
7: Store (ht, at, rt) inDc

8: for j ← 1, k do
9: Update ψj givenDj using PPO

Algorithm 2 Master policy training (H-MARL
Meta)
Input Dec-POMDPM, Sub-Policies {ψc}spc=1, Transformations
{fc}kc=1

Initialize Master Policyπm, Replay MemoryDm, Episode Length
T , IterationsN

1: for i← 1, N do
2: Sample initial observation o0 ∼M
3: for t← 1, T do
4: Update history ht given observation ot−1

5: Sample ct ← πm(ht) from master policy
6: Sample ot, rt ∼ M given action at ∼
ψct (fc(ht))

7: Store (ht, ct, rt) inDm

8: Update πm givenDm using PPO

dependence between each agent under a shared reward signal, (ii) between master and sub-policy215
performance, and (iii) between sub-policies under shared episodic returns.216

This first interdependence results in agents receiving rewards that are not related to actions they217
have taken. This is particularly challenging in our cyber defense setting as each agent interacts with218
disjoint sub-networks, but receives a shared reward considering the state of the whole network. This219
leads us to use IPPO (De Witt et al., 2020) as the foundation of our approach, where each agent has220
a separate critic which only receives observations corresponding to their respective sub-network.221
Each agent is then trained in parallel along with its respective critic. This setup prevents the critics222
from being biased by occurrences outside their respective agent’s sub-network, resulting in greater223
stability and less bias in each agent. Secondly, the performance of the master policy depends on224
the performance of each sub-policy – poorly trained sub-policies can make otherwise optimal meta-225
actions sub-optimal – resulting in a biased master policy. To overcome this, we utilize a two-phase226
training approach seen in Algorithm 1 and Algorithm 2.227

Algorithm 1: Sub-policy training (H-MARL Expert). Algorithm 1 describes how we train the228
sub-policies for each agent i in parallel. We first define an expert policy πE called H-MARL Expert,229
which uses deterministic rules generated from domain knowledge to select meta-actions, along with230
a set of observation transformation functions {fc}kc=1. At the start of each episode, we receive an231
initial observation from M and use it to initialize our history ht. At each time step πE then uses ht to232
choose the best meta-action Ac. The sub-policy ψc subsequently chooses a primitive action at given233
its transformed history fc(ht). This action is used to sample the next observation and reward from234
M which is stored in the replay memory Dc of ψc. Each policy is then updated with PPO (Schulman235
et al., 2017) on its respective replay memory Dc. This design allows the sub-policies to address only236
their related tasks and train to near-optimal while avoiding instability caused by a trained master237
policy. Additionally, this allows us to solve our third form of interdependence, as the deterministic,238
static expert policy πE allows for stability in the training of each sub-policy.239

Algorithm 2: Master policy training (H-MARL Meta). Algorithm 2 provides the second phase240
of training for the master policy. Here sub-policies {ψ}k1 trained with Algorithm 1 are kept frozen241
and just used to generate primitive actions. We define a master policy πm called H-MARL Meta242
whose action space size is the number of sub-policies k. Similar to before, at each time step we243
sample an action ct ∼ πm(ht) given updated history ht. The sub-policy ψct is invoked to sample244
action at to take a step in M given transformed history fc(ht). The current history ht, action ct and245
reward from M given action at are then stored in the replay memory Dm. Finally, the master policy246
πm is updated with PPO given trajectories stored in Dm.247

Instantiating H-MARL in cybersecurity. Figure 2 illustrates the sub-task partition in a cyber248
environment such as CybORG CAGE 4. We identify three types of sub-tasks: investigate host,249
recover host, and control traffic between zones. The state-level abstraction used to partition the250
tasks refers to the presence of indicators of compromise (IOCs) within an agent’s security zone(s).251
Thus, if IOCs such as malicious files are identified on a host, the agent will choose to recover, either252
by removing the malware or by restoring the machine to a clean state. Furthermore, if network IOCs253
are detected, such as incoming scanning activity captured by decoy services, then the sub-policy254
handling traffic control can choose to block traffic originating from the compromised subnet. Each255
of these sub-policies will receive the relevant subspace of the observation space and the subset of256

6



Hierarchical Multi-agent Reinforcement Learning for Cyber Network Defense

relevant actions. Note that our sub-policies are agnostic to the particular attacker strategy, being257
motivated by well-established cyber defense practices.258

Master
Policy

Investigate
Subpolicy

Recover
Subpolicy

Control Traffic
Subpolicy

• Remove 
procs.

• Restore 
host

Actions:
• Block / 

Allow 
traffic

No IOCs Host 
IOCs

Network 
IOCs

• host IOCs• Analyse 
host

• Deploy 
decoy

• suspicious 
events

• host IOCs

Observation:
• subnet info
• network 

IOCs

ObservationActions ObservationActions ObservationActions

Figure 2: Instantiating H-MARL in cybersecurity.

In the CAGE 4 setup, blocking the traffic between neighboring subnets is not particularly useful259
for two reasons: (i) it prevents green agents from accessing remote services, which penalizes the260
blue team, and (ii) red agents are active mostly within their own assigned subnet, and rarely reach261
remotely into other subnets, a setup that ensures scaling with large networks. In the rest of the paper,262
with the exception of Section 5.4, we discuss defenses that do not use block or allow traffic actions,263
focusing on the Investigate and Recover sub-policies.264

4.2 Observation Space Design265

This section presents our enhancements to the observation space of blue agents and evaluate their266
ability to facilitate learning of a better defense strategy. In cybersecurity environments, the state267
holds a lot of data, such as information on system configuration, processes, active sessions, etc.268
The observation is presented to the agent as a data structure with various fields, which may vary269
depending on the output of the action. This observation structure needs to be filtered and converted270
to a consistent vector representation to enable the use of deep reinforcement learning techniques.

mission
(0, 1, or 2)

subnet info suspicious 
processes

suspicious 
connections

IOCs 
detected

subnet_count x 3
values in {0,1}

host_count
values in {0,1}

host_count
values in {0,1}

host_count
values in {0,1, 2, 3} 
depending on 
attack stage

Figure 3: Observation space components. The basic CybORG observation is enhanced with indica-
tors of compromise.271

The basic observation vector of CybORG blue agents consists of the first four components from Fig-272
ure 3. The first bit represents the current mission phase. It is followed by a one-hot encoded vector273
with subnet-related information: what subnet(s) is the agent protecting, whether the traffic to/from274
other subnets is blocked, and which interfaces should be blocked based on the current mission phase275
restrictions. Next, the observation vector contains information on alerts detected with the Monitor276
action, using a 1/0 binary encoding to denote whether suspicious processes or connection events277
occurred on a host.278

Enhancing observation with memory. Given that a single defense action can be taken per round,279
blue agents need a persistence mechanism to store alerts that have not been addressed yet. In Cy-280
bORG, the Monitor action runs automatically at the end of each step but only reports new events that281
have been raised on the current step. This requires us to maintain an updated observation history ht282
that keeps track of past events. Therefore, we add new events to the agent’s history ht at each time283
step given a new observation ot, and only remove these events from ht when they have been handled284
by a respective recover action.285

7



Under review for RLC 2025, to be published in RLJ 2025

Figure 4: Blue team reward for different observation space designs. We incrementally add each
of our enhancements to the observation space, to show their individual contribution. Incorporating
history and IOCs provides a high performance boost. (MARL Decentralized training)

Enhancing observation with IOCs. Indicators of compromise (IOCs) (Asiri et al., 2023) are signs286
or evidence of a cyber threat being present in the network. IOCs are generally classified in three cat-287
egories: atomic (IP addresses, malware names, registry keys, process names, URLs, etc.), computed288
(hash of a malicious file), and behavioral (Hutchins et al., 2011). MITRE ATT&CK (Adversarial289
Tactics, Techniques, and Common Knowledge) (Strom et al., 2018) is a comprehensive database of290
adversarial behaviors observed in real-world attacks.291

One of our main insights for automating cyber defense is to extend the observation vector with IOC-292
related information per host, as illustrated in Figure 3. We use two types of atomic IOCs: malicious293
file names that are placed on the victim machine and the IP address of the compromised host that294
issues service requests to a decoy service. We also capture adversarial behaviors by prioritizing295
IOCs based on the attack phase. A value of zero in the observation vector denotes that no IOC296
has been detected on the corresponding host. The other values differentiate between attack phases:297
priority 1 for IOCs detected during privilege escalation attempts, such as malicious files with root298
access; priority 2 for IOCs due to attacker’s exploit actions (namely malicious files with user-level299
access); and priority 3 for IOCs due to the attacker’s scanning activity (decoy accesses).300

Observation space evaluation. Figure 4 shows the contribution of each of our enhancements to the301
observation space design for a blue agent trained with a decentralized actor-critic PPO architecture,302
using the same hyper-parameters from Section 5. Compared to the basic CybORG observation,303
keeping track of history on suspicious events offers a small performance boost (12% increase in304
reward). The biggest gain, however, comes from incorporating indicators of compromise related to305
malicious files (an additional increase in reward of 42%). These files are detected when blue agents306
perform Analyse actions on hosts in their assigned subnet. Access to decoys, another clear indicator307
of adversarial behavior, further improves the defense strategy of the blue team by 11%.308

5 Experimental Evaluation309

We now evaluate our proposed hierarchical MARL architecture in the CybORG CAGE 4 environ-310
ment against different baselines, aiming to answer the following research questions: (i) How effec-311
tive is our H-MARL approach in protecting the network compared to other methods, against differ-312
ent adversaries (Sections 5.1 and 5.2)? (ii) Is it feasible to transfer previously trained sub-policies313
to learn new defense strategies (Section 5.3)? (iii) Can we provide some interpretable insights to314
security operators related to the performance of our defenses (Section 5.5)?315

Training configuration. Our experiments use the state-of-the-art actor-critic PPO algorithm (Schul-316
man et al., 2017). The actor and critic are represented by two feedforward neural networks with two317
hidden layers and 256 neurons per layer. The training hyperparameters have been tuned to the fol-318
lowing values: a learning rate of 5 × 10−5, a discount factor of 0.99, and a train buffer size of 1319
million samples. The SGD algorithm uses the Generalized Advantage Estimation (GAE) function, a320

8



Hierarchical Multi-agent Reinforcement Learning for Cyber Network Defense

Figure 5: Average training return for all algorithms. H-MARL Expert is guided by a rule-based
master policy and performs best. H-MARL Meta converges 3−5× faster than MARL Decentralized.

minibatch size of 32,768 within each epoch, with 30 SGD iterations in each outer loop. Evaluation321
results are averaged across 100 randomized episodes, where each episode is 500 time steps long,322
and are accompanied by standard deviation information. The network topology in the CybORG323
environment is randomized and the models are trained on topologies with varying configurations,324
which ensures that they generalize to different network environments. The size of the network at325
initialization is randomly chosen between 32 and 128 hosts across 8 subnets, and up to 10 services326
are selected randomly to be placed on each host. All our models have been trained on 30 versions327
of the network, with separate workers collecting the experiences in their own network.328

Duration of actions. For increased realism, actions take more than one step to execute. Some329
of the longer actions are Exploit Remote Services (4 steps) and Restore host (5 steps). In our330
implementation, while an action is in progress in the environment, we associate the “in-progress”331
state with a special observation and mask out other actions except sleep to guide PPO training.332

5.1 H-MARL Performance333

MARL Baselines. We compare the hierarchical architecture with two single-policy MARL334
paradigms (Lyu et al., 2021): Decentralized Training Decentralized Execution (DTDE), and Central-335
ized Training Decentralized Execution (CTDE). The DTDE baseline uses an actor-critic architecture336
that learns a decentralized policy and critic for each of the agents locally (MARL Decentralized).337
The CTDE baseline uses the centralized critic approach presented in MADDPG (Lowe et al., 2017).338
Since each learning blue agent is required to guide its strategy based on the joint team reward, we339
augment the critic with state and actions of all blue agents on the team, while the actor only has340
access to local observations. Note that our MARL Centralized Critic baseline uses the global state341
instead of incomplete agent observations to compute the joint value function. This is a reasonable342
assumption during training, in an effort to provide an unbiased and up-to-date critic for a strong343
baseline (Lyu et al., 2021).344

H-MARL Methods. We evaluate two hierarchical methods, H-MARL Expert and H-MARL Meta.345
H-MARL Expert implements Algorithm 1, where the master policy is replaced with a rule informed346
by domain knowledge: If IOCs are detected, Recover; otherwise, Investigate. The goal is to recover347
right away to minimize the attacker’s damage. H-MARL Meta implements Algorithms 1 and 2, fol-348
lowing a curriculum style approach (Bengio et al., 2009): the Recover and Investigate sub-policies349
pre-trained until convergence, are maintained fixed while training the master policy. H-MARL Col-350
lective is an additional baseline that attempts to learn both the master and sub-policies from scratch,351
simultaneously. All the hierarchical variants use IPPO, in the decentralized actor-critic framework.352

The training results for the blue agents protecting against the default red agent in CAGE 4 are353
presented in Figure 5. The H-MARL Collective method performs the worst, in line with previous354
work (Frans et al., 2017) that also observed the sub-optimal performance of updating both sub-355
policies and the master policy at the same time. Both single-policy methods MARL Decentralized356

9



Under review for RLC 2025, to be published in RLJ 2025

Table 2: Mean reward against different adversaries, under different learning frameworks. Evaluation
is carried out after training has converged. Results are averaged over 100 evaluation episodes, with
each episode consisting of 500 time steps.

Opponent Default Red Stealthy Red Aggresive Red Impact Red
MARL Decentralized −179.8± 92.98 −165.8± 53.45 −227.93± 87.98 −247.15± 71.53
MARL Centralized Critic −245.66± 132.98 −217.52± 115.06 −255.98± 138.70 −332.96± 108.13
H-MARL Collective −237.61± 102.6 −204.18± 83.24 −282.5± 120.50 −350.21± 115.25
H-MARL Expert −129.53± 44.60 −99.54± 38.28 −118.16± 37.74 −173.17± 64.04
H-MARL Meta −181.62± 65.85 −184.76± 91.40 −207.66± 86.48 & −278.78± 97.76
H-MARL Meta with fine-tuning −186.24± 81.28 −162.51± 57.97 n/a −264.96± 81.53

and MARL Centralized Critic converge to a high reward, with a clear advantage for the shared critic357
method that estimates the return based on joint information.358

As expected, the H-MARL Expert performs best (−129.53 reward), given that recovery actions are359
carried out promptly, before the attack amplifies. H-MARL Meta reaches a similar reward to MARL360
Decentralized (−181.62). However, training a master policy is significantly faster than training a361
single policy from scratch (about 3-5 times faster), as we are only tasked with choosing the correct362
sub-policy, rather than also learning the primitive sub-tasks, i.e., how to recover or investigate hosts.363
H-MARL Meta invokes the fixed sub-policies that have been pre-trained with H-MARL Expert to364
take a step though the environment. The ability to learn how to combine sub-tasks to solve higher-365
level tasks effectively with H-MARL Meta is particularly important in situations where defining an366
expert rule is difficult. We discuss such a scenario in Section 5.4.367

5.2 Evaluation against different adversaries368

We evaluated so far the performance of blue agents against the default red agent in CAGE 4, but we369
are interested in how the policy generalizes against other red attacks. We simulate red agent attackers370
that vary in their ability to circumvent the defense by employing more aggressive scanning, stealthier371
behavior, or a stronger focus on impacting critical services. In the CybORG environment, red agents372
use finite state machine transitions to determine what actions to take for each known host. For a373
detailed description of the default finite state red agent and the transition matrix please see CybORG.374
We consider four different finite state adversaries: (1) Default Red – equal choice between the two375
available service discovery actions (stealthy and aggressive), and equal split between the two attack376
objectives (Impact and Degrade Service); (2) Aggressive Red – always performs aggressive service377
discovery, a short duration action (1 time step) that has a high chance of being detected by blue378
agents (0.75); (3) Stealthy Red – stealthy service discovery, characterized by low detection rate379
(0.25) and long duration (3 time steps); (4) Impact Red – fully committed to impacting the critical380
OT service, without attempting to degrade other services.381

The evaluation results against these four different adversaries are presented in Table 2. Impact382
Red is the strongest attacker collecting the highest reward against the blue team, in this zero-sum383
cyber game. Successful impact actions receive the highest reward of -10 during the second and384
third mission phases, more than any other network compromise. For comparison, users’ failed385
access to degraded services only costs the blue team between -1 and -3. Aggressive Red is the386
second strongest opponent: the higher chance of being detected by blue agents is offset by the short387
duration of service discovery actions (1 time step), which enable this attacker to carry out more388
frequent attempts. Conversely, and somewhat non-intuitively, Stealthy Red poses less of a threat to389
blue agents due to the longer duration spent in covert scanning, before attempting to exploit.390

H-MARL Expert is the best strategy against all four red agents and H-MARL Meta attains similar391
reward to the single policy baseline method (MARL Decentralized), but training converges signif-392
icantly faster, as shown in the previous section. We confirm that H-MARL Meta performs better393
than H-MARL Collective across all adversaries. Interestingly, it is also more effective than the394
MARL Centralized Critic method. Even though the centralized critic was trained jointly, using the395
global state, it is unable to utilize the shared information effectively on the individual actors dur-396

10



Hierarchical Multi-agent Reinforcement Learning for Cyber Network Defense

ing evaluation. This limitation of centralized critic policies has been previously investigated in the397
literature Lyu et al. (2021).398

5.3 H-MARL Transferability399

In this section, we explore the possibility of knowledge transfer (Weinshall et al., 2018; WEI et al.,400
2018; Zhuang et al., 2020; Nekoei et al., 2021) – given a defense strategy that has already been401
trained, can we use it to accelerate the learning of a new defense that protects against a differ-402
ent adversary? We adapt the pre-trained sub-policy models to new attacks via fine-tuning, a well-403
established powerful transfer method for deep models (Zhuang et al., 2020; Sun et al., 2019) that is404
significantly less costly than training from scratch. In our current design, we only fine-tune the sub-405
policies for a few iterations. Next, we fully train a new master policy, using the tuned sub-policies.406

Figure 6: (Left) Investigate sub-policy pre-trained against Aggressive Red is fine-tuned separately
against other red agents, performing similarly to the sub-policies trained from scratch against the
same red agent.
(Right) H-MARL with 3 sub-policies: Investigate, Recover, and Control Traffic. Due to the prob-
abilistic expert rule, H-MARL Expert method is unstable, while H-MARL Meta performs well,
converging fast to a stable performance.

Figure 6 (left) presents the fine-tuning results of the Investigate sub-policie, pre-trained against Ag-407
gressive Red, the average-performing attacker. A short fine-tuning is enough to adapt to a new408
adversary, resulting in learning curves similar to those obtained when training from scratch. The409
fine-tuning results for the Recover sub-policy are included in Section 2 of the Supplemental Mate-410
rial. We note that Investigate learns different strategies for each adversary (due to different patterns411
of suspicious events), while Recover is relatively agnostic to the attack (due to working on clear412
indicators of compromise) and can be directly reused against other red agents.413

Last row in Table 2 shows the evaluation results of the master policy that was trained with the fine-414
tuned sub-policy models. In this case, the master policy performs comparably to (and sometimes415
even better than) H-MARL Meta that uses sub-policies trained from scratch. For instance, against416
the Stealthy Red agent, the fine-tuned H-MARL Meta policy attains an average reward of −162.51,417
compared to an average −184.76 reward when training from scratch. Our empirical results are418
supported by previous research, which has shown that pre-trained deep learning models have been419
proven to generalize better than randomly initialized ones (Erhan et al., 2010; Sun et al., 2019).420

5.4 What method to use: Expert or Meta?421

In our previous experiments, we have seen that H-MARL Expert performs best, as it is guided422
by a deterministic master policy generated from domain knowledge, specifically: If host IOCs are423
present, invoke the Recover sub-policy; otherwise Investigate. To show that such expert rules do not424
generalize in all situations, we consider a scenario with a third sub-policy, Control Traffic, in which425
a defender may choose to block traffic between subnets. However, block actions incur penalties for426
preventing the remote activity of green users, rendering a deterministic blocking rule unfavorable.427
We instead experimented with a probabilistic master policy: If host IOCs are present, invoke the428
Recover sub-policy; otherwise split 75%-25% between Investigate and Control Traffic. With this429
probabilistic rule, the H-MARL Expert method becomes unstable, while H-MARL Meta performs430

11



Under review for RLC 2025, to be published in RLJ 2025

Table 3: Interpretable metrics for various blue strategies against Default Red, 100-episode averages.

Blue Strategy
Clean
Hosts
(ratio)

Non-Escalated
Hosts
(ratio)

Mean
Time to
Recover

Useful
Recoveries
(true positives)

Wasted
Recoveries
(false positives)

Recovery
Precision

Recovery
Error

Red
Impact
Count

Reward

H-MARL Expert 0.81 0.99 44.76 6.07 2.2 0.73 0.27 0.88 -129.53
H-MARL Meta 0.77 0.97 62.63 5.79 3.74 0.61 0.39 1.14 -181.62
H-MARL Collective 0.85 0.97 35.52 3.41 5.79 0.37 0.63 1.93 -255.56
MARL Decentralized 0.77 0.97 56.08 10.45 27.99 0.27 0.73 1.54 -180

better and converges quickly to a stable performance (Figure 6). This demonstrates the importance of431
learning the master policy and is discussed in more detail in Section 4 of the Supplemental Material.432

5.5 Interpretable Metrics433

In cybersecurity applications, the defender has two main objectives: keep the network secure and434
maintain operational workflows. Total discounted rewards is a natural metric for training and mea-435
suring performance in reinforcement learning, however, a single-valued reward provides little inter-436
pretable information to security operators. To address this problem, we propose a set of interpretable437
metrics and analyze their relationship to the existing reward computation. The new metrics provide438
insight on defense performance from three perspectives – network security, effectiveness of recov-439
eries, and impact on operations – as follows:440

• Network Security Posture: Clean Hosts: Fraction of hosts with no red presence (from total441
hosts in the network); Non-Escalated Hosts: Fraction of hosts with no red root sessions442

• Recovery Metrics: Mean Time to Recover: Mean number of consecutive steps spent in a com-443
promised state; Useful Recoveries: Recoveries performed on infected machines (true posi-444
tives, TP); Wasted Recoveries: Recoveries performed on clean machines (false positives, FP);445
Recovery Error: Err = FP / (TP + FP); Recovery Precision: TP / (TP + FP) = 1-Err;446

• Operational Metrics: Red Impact Count: Number of times the OT service is impacted becom-447
ing unavailable.448

We evaluate our blue agent strategies according to these metrics in Table 3. We observe a number449
of insights that are not evident by comparing policies using solely the reward metric. For instance,450
MARL Decentralized performs more recoveries than other policies, but its recovery precision is only451
0.27. While H-MARL Meta and MARL Decentralized have similar rewards, H-MARL Meta has a452
much better recovery precision of 0.61. Moreover, red agents are less successful at impacting the453
critical services with H-MARL Meta, compared to MARL Decentralized. These indicators show454
that H-MARL Meta is a more effective defense strategy than the single-policy approach (MARL455
Decentralized), despite having similar reward. H-MARL Expert has the highest recovery precision456
across all policies, as its expert master policy selects the Recovery sub-policy when IOCs are present457
on hosts, a strong indication of host compromise. Our analysis demonstrates the need of using the458
reward signal in conjunction with other metrics that are relevant in the cyber domain. To better align459
the reward with the defender’s goals, one can also incorporate these new metrics in the reward.460

6 Conclusion461

We propose novel hierarchical multi-agent reinforcement learning (MARL) strategies to train multi-462
ple blue agents tasked with protecting a network against red agents. Our H-MARL strategy decom-463
poses cyber defense into multiple sub-tasks, trains sub-policies for each sub-task guided by domain464
expertise, and finally trains a master policy to coordinate sub-policy selection. We evaluated our pro-465
posed hierarchical methods (Expert and Meta) and compared them against standard decentralized466
and centralized MARL in a realistic cyber security environment, CybORG CAGE 4. We demon-467
strated that our hierarchical method converges faster than a single PPO policy and generalizes across468
various red agent behavior, while H-MARL Expert consistently performs better than the baselines.469

12



Hierarchical Multi-agent Reinforcement Learning for Cyber Network Defense

References470

Manos Antonakakis, Roberto Perdisci, Wenke Lee, Nikolaos Vasiloglou, II, and David Dagon. De-471
tecting malware domains at the upper DNS hierarchy. In Proceedings of the 20th USENIX Conf.472
on Security, pp. 27–27. USENIX Association, 2011.473

Manos Antonakakis, Roberto Perdisci, Yacin Nadji, Nikolaos Vasiloglou, Saeed Abu-Nimeh, Wenke474
Lee, and David Dagon. From throw-away traffic to bots: Detecting the rise of DGA-based mal-475
ware. In Presented as part of the 21st USENIX Security Symp. (USENIX Security 12), pp. 491–476
506. USENIX Association, 2012.477

Mohammed Asiri, Neetesh Saxena, Rigel Gjomemo, and Pete Burnap. Understanding indicators478
of compromise against cyber-attacks in industrial control systems: A security perspective. ACM479
Trans. Cyber-Phys. Syst., 7(2), April 2023.480

Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Jason Weston. Curriculum learning.481
In Proceedings of the 26th Annual International Conference on Machine Learning, ICML482
’09, pp. 41–48, New York, NY, USA, 2009. Association for Computing Machinery. ISBN483
9781605585161. DOI: 10.1145/1553374.1553380. URL https://doi.org/10.1145/484
1553374.1553380.485

Leyla Bilge, Engin Kirda, Christopher Kruegel, and Marco Balduzzi. EXPOSURE: Finding mali-486
cious domains using passive dns analysis. In Proceedings of the Network and Distributed System487
Security Symposium, NDSS, 2012.488

CAGE. Cage challenge 1. IJCAI-21 1st International Workshop on Adaptive Cyber Defense., 2021.489

CAGE-4. TTCP CAGE Working Group. CAGE Challenge 4. https://github.com/490
cage-challenge/cage-challenge-4, 2023.491

Lu Chang, Liang Shan, Weilong Zhang, and Yuewei Dai. Hierarchical multi-robot navigation and492
formation in unknown environments via deep reinforcement learning and distributed optimization.493
Robotics and Computer-Integrated Manufacturing, 83:102570, 2023.494

CybORG. Red overview. URL https://github.com/cage-challenge/495
cage-challenge-4/blob/main/documentation/docs/pages/reference/496
agents/red_overview.md.497

Christian Schroeder De Witt, Tarun Gupta, Denys Makoviichuk, Viktor Makoviychuk, Philip HS498
Torr, Mingfei Sun, and Shimon Whiteson. Is independent learning all you need in the starcraft499
multi-agent challenge? arXiv preprint arXiv:2011.09533, 2020.500

Gabriel Dulac-Arnold, Richard Evans, Hado van Hasselt, Peter Sunehag, Timothy Lillicrap,501
Jonathan Hunt, Timothy Mann, Theophane Weber, Thomas Degris, and Ben Coppin. Deep rein-502
forcement learning in large discrete action spaces. arXiv preprint arXiv:1512.07679, 2015.503

Dumitru Erhan, Yoshua Bengio, Aaron Courville, Pierre-Antoine Manzagol, Pascal Vincent, and504
Samy Bengio. Why does unsupervised pre-training help deep learning? J. Mach. Learn. Res., 11:505
625–660, March 2010. ISSN 1532-4435.506

Elliot Fosong, Arrasy Rahman, Ignacio Carlucho, and Stefano V. Albrecht. Learning complex team-507
work tasks using a given sub-task decomposition. In Proceedings of the 23rd International Con-508
ference on Autonomous Agents and Multiagent Systems, AAMAS ’24, pp. 598–606, Richland,509
SC, 2024. International Foundation for Autonomous Agents and Multiagent Systems.510

Kevin Frans, Jonathan Ho, Xi Chen, Pieter Abbeel, and John Schulman. Meta learning shared511
hierarchies, 2017.512

13

https://doi.org/10.1145/1553374.1553380
https://doi.org/10.1145/1553374.1553380
https://doi.org/10.1145/1553374.1553380
https://github.com/cage-challenge/cage-challenge-4
https://github.com/cage-challenge/cage-challenge-4
https://github.com/cage-challenge/cage-challenge-4
https://github.com/cage-challenge/cage-challenge-4/blob/main/documentation/docs/pages/reference/agents/red_overview.md
https://github.com/cage-challenge/cage-challenge-4/blob/main/documentation/docs/pages/reference/agents/red_overview.md
https://github.com/cage-challenge/cage-challenge-4/blob/main/documentation/docs/pages/reference/agents/red_overview.md
https://github.com/cage-challenge/cage-challenge-4/blob/main/documentation/docs/pages/reference/agents/red_overview.md
https://github.com/cage-challenge/cage-challenge-4/blob/main/documentation/docs/pages/reference/agents/red_overview.md


Under review for RLC 2025, to be published in RLJ 2025

Cong Guan, Ruiqi Xue, Ziqian Zhang, Lihe Li, Yi-Chen Li, Lei Yuan, and Yang Yu. Cost-aware513
offline safe meta reinforcement learning with robust in-distribution online task adaptation. In514
Proceedings of the 23rd International Conference on Autonomous Agents and Multiagent Systems,515
AAMAS ’24, pp. 743–751, Richland, SC, 2024. International Foundation for Autonomous Agents516
and Multiagent Systems. ISBN 9798400704864.517

Kim Hammar, Neil Dhir, and Rolf Stadler. Optimal defender strategies for cage-2 using causal518
modeling and tree search, 07 2024.519

T. Hospedales, A. Antoniou, P. Micaelli, and A. Storkey. Meta-learning in neural networks: A520
survey. IEEE Transactions on Pattern Analysis; Machine Intelligence, 44(09):5149–5169, sep521
2022. ISSN 1939-3539. DOI: 10.1109/TPAMI.2021.3079209.522

Eric M Hutchins, Michael J Cloppert, and Rohan M Amin. Intelligence-driven computer network523
defense informed by analysis of adversary campaigns and intrusion kill chains. Leading Issues in524
Information Warfare & Security Research, 1:80, 2011.525

Matthias Hutsebaut-Buysse, Kevin Mets, and Steven Latré. Hierarchical reinforcement learning: A526
survey and open research challenges. Machine Learning and Knowledge Extraction, 4(1):172–527
221, 2022. ISSN 2504-4990. DOI: 10.3390/make4010009. URL https://www.mdpi.com/528
2504-4990/4/1/9.529

C. David Hylender, Philippe Langlois, Alex Pinto, and Suzanne Widup. Verizon 2024 data breach in-530
vestigations report. https://www.verizon.com/business/resources/reports/531
dbir/, 2024.532

Brenden M. Lake, Tomer D. Ullman, Joshua B. Tenenbaum, and Samuel J. Gershman. Building533
machines that learn and think like people. Behavioral and Brain Sciences, 40, 2017.534

Ryan Lowe, Yi Wu, Aviv Tamar, Jean Harb, Pieter Abbeel, and Igor Mordatch. Multi-agent actor-535
critic for mixed cooperative-competitive environments. In Proceedings of the 31st International536
Conference on Neural Information Processing Systems, NIPS’17, pp. 6382–6393, Red Hook, NY,537
USA, 2017. Curran Associates Inc.538

Xueguang Lyu, Yuchen Xiao, Brett Daley, and Christopher Amato. Contrasting centralized and539
decentralized critics in multi-agent reinforcement learning, 2021.540

Garrett Mcdonald, Li Li, and Ranwa Al Mallah. Finding the optimal security policies for au-541
tonomous cyber operations with competitive reinforcement learning. IEEE Access, 12:120292–542
120305, 2024. DOI: 10.1109/ACCESS.2024.3446310.543

Nikhil Mishra, Mostafa Rohaninejad, Xi Chen, and Pieter Abbeel. A simple neural attentive544
meta-learner. In International Conference on Learning Representations, 2018. URL https:545
//openreview.net/forum?id=B1DmUzWAW.546

Hadi Nekoei, Akilesh Badrinaaraayanan, Aaron C. Courville, and Sarath Chandar. Continuous547
coordination as a realistic scenario for lifelong learning. In Marina Meila and Tong Zhang (eds.),548
ICML, volume 139 of Proceedings of Machine Learning Research, pp. 8016–8024. PMLR, 2021.549

Terry Nelms, Roberto Perdisci, and Mustaque Ahamad. ExecScent: Mining for new c&c domains550
in live networks with adaptive control protocol templates. In Proceedings of the 22nd USENIX551
Conf. on Security, pp. 589–604, USA, 2013. USENIX Association.552

Frans A. Oliehoek and Chris Amato. A concise introduction to decentralized pomdps. In553
SpringerBriefs in Intelligent Systems, 2016. URL https://api.semanticscholar.554
org/CorpusID:3263887.555

14

https://www.mdpi.com/2504-4990/4/1/9
https://www.mdpi.com/2504-4990/4/1/9
https://www.mdpi.com/2504-4990/4/1/9
https://www.verizon.com/business/resources/reports/dbir/
https://www.verizon.com/business/resources/reports/dbir/
https://www.verizon.com/business/resources/reports/dbir/
https://openreview.net/forum?id=B1DmUzWAW
https://openreview.net/forum?id=B1DmUzWAW
https://openreview.net/forum?id=B1DmUzWAW
https://api.semanticscholar.org/CorpusID:3263887
https://api.semanticscholar.org/CorpusID:3263887
https://api.semanticscholar.org/CorpusID:3263887


Hierarchical Multi-agent Reinforcement Learning for Cyber Network Defense

Talha Ongun, Oliver Spohngellert, Benjamin A. Miller, Simona Boboila, Alina Oprea, Tina Eliassi-556
Rad, Jason Hiser, Alastair Nottingham, Jack W. Davidson, and Malathi Veeraraghavan. PORT-557
FILER: port-level network profiling for self-propagating malware detection. In IEEE Con-558
ference on Communications and Network Security, CNS 2021, Tempe, AZ, USA, October 4-559
6, 2021, pp. 182–190. IEEE, 2021. DOI: 10.1109/CNS53000.2021.9705045. URL https:560
//doi.org/10.1109/CNS53000.2021.9705045.561

Tabish Rashid, Mikayel Samvelyan, Christian Schroeder De Witt, Gregory Farquhar, Jakob Foerster,562
and Shimon Whiteson. Monotonic value function factorisation for deep multi-agent reinforcement563
learning. Journal of Machine Learning Research, 21(178):1–51, 2020.564

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy565
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.566

Blake E Strom, Andy Applebaum, Doug P Miller, Kathryn C Nickels, Adam G Pennington, and567
Cody B Thomas. Mitre att&ck: Design and philosophy. In Technical report. The MITRE Corpo-568
ration, 2018.569

Qianru Sun, Yaoyao Liu, Tat-Seng Chua, and Bernt Schiele. Meta-transfer learning for few-shot570
learning. In 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),571
pp. 403–412, 2019.572

Sanyam Vyas, John Hannay, Andrew Bolton, and Professor Pete Burnap. Automated cyber defence:573
A review. arXiv preprint arXiv:2303.04926, 2023.574

Ying WEI, Yu Zhang, Junzhou Huang, and Qiang Yang. Transfer learning via learning to trans-575
fer. In Jennifer Dy and Andreas Krause (eds.), Proceedings of the 35th International Con-576
ference on Machine Learning, volume 80 of Proceedings of Machine Learning Research, pp.577
5085–5094. PMLR, 10–15 Jul 2018. URL https://proceedings.mlr.press/v80/578
wei18a.html.579

Daphna Weinshall, Gad Cohen, and Dan Amir. Curriculum learning by transfer learning: Theory580
and experiments with deep networks. ICML, 2018.581

Yuchen Xiao, Joshua Hoffman, Tian Xia, and Christopher Amato. Learning multi-robot decentral-582
ized macro-action-based policies via a centralized q-net. In 2020 IEEE International Conference583
on Robotics and Automation (ICRA), pp. 10695–10701, 2020. DOI: 10.1109/ICRA40945.2020.584
9196684.585

Ting-Fang Yen, Alina Oprea, Kaan Onarlioglu, Todd Leetham, William Robertson, Ari Juels, and586
Engin Kirda. Beehive: Large-scale log analysis for detecting suspicious activity in enterprise587
networks. In ACSAC, pp. 199–208, 2013.588

Chao Yu, Akash Velu, Eugene Vinitsky, Jiaxuan Gao, Yu Wang, Alexandre Bayen, and Yi Wu. The589
surprising effectiveness of ppo in cooperative multi-agent games. Advances in Neural Information590
Processing Systems, 35:24611–24624, 2022.591

Fuzhen Zhuang, Zhiyuan Qi, Keyu Duan, Dongbo Xi, Yongchun Zhu, Hengshu Zhu, Hui Xiong,592
and Qing He. A comprehensive survey on transfer learning, 2020. URL https://arxiv.593
org/abs/1911.02685.594

15

https://doi.org/10.1109/CNS53000.2021.9705045
https://doi.org/10.1109/CNS53000.2021.9705045
https://doi.org/10.1109/CNS53000.2021.9705045
https://proceedings.mlr.press/v80/wei18a.html
https://proceedings.mlr.press/v80/wei18a.html
https://proceedings.mlr.press/v80/wei18a.html
https://arxiv.org/abs/1911.02685
https://arxiv.org/abs/1911.02685
https://arxiv.org/abs/1911.02685


Under review for RLC 2025, to be published in RLJ 2025

Supplementary Materials595

The following content was not necessarily subject to peer review.596
597

7 The Cyber Game598

This section presents additional details on the cyber game simulated in CybORG CAGE 4 1. For599
increased realism, users on enterprise machines are represented by green agents, which are present600
on every host. Green agents randomly access local and remote services, such as SSHD, MySQL,601
FTP, etc. Upon compromise, red agents are able to degrade these services, preventing users from602
completing their work or slowing them down. The red team can attack the network through several603
actions: scan the network to discover new hosts; scan a host to discover active services; exploit a604
vulnerability to compromise a host; escalate privileges on a compromised node to gain root access;605
degrade user experience of green agents; impact (stop) the critical Operational technology (OT)606
service; discover deception (i.e., probe a host to determine if it is running decoy services).607

The action sets for green agents (users), blue agents (defenders) and red agents (attackers) are pre-608
sented in Table 4. Both blue and red agent actions have a specified time duration, ranging from one609
time step (block/allow traffic) to five time steps for longer actions (restore host). Agents are not610
allowed to choose another action before the previous action had completed.611

The red agent in CAGE 4 is rather sophisticated and randomized, not deterministic, and is modeled612
by:613

• State transition diagram: The adversary follows a state transition diagram with eight states614
and nine transitions (that is, actions) that defines the allowed subset of actions based on the615
state of the host.616

• State transition probability matrix: The adversary’s actions are randomized, using a state617
transition probability matrix to choose among the subset of possible actions in each state. For618
example, in State S (i.e., a Service was discovered on a host), the Red agent can choose to619
Discover Remote Systems with 0.25 probability, Discover Deception with 0.25 probability, or620
Exploit Remote Service with 0.5 probability.621

We vary the probabilities in the state transition probability matrix to create additional red agent vari-622
ants and cover a wider range of Red behaviors (fully Aggressive, Stealthy, or Impact). These new at-623
tack vectors explore how two important characteristics of any cyber attack, namely the speed/stealth624
of discovering vulnerabilities, and the attacker’s objective affect the attack success.625

8 Communication and Cooperation626

In this section, we explore other possible extensions that can help the defense strategy, focusing627
on communication among agents. In the CybORG CAGE 4 environment, blue agents are facing628
a challenging adversary, who can move through the network in two ways: (1) phishing emails,629
and (2) active scanning of hosts and services. Each red agent conducts scanning activity mostly630
within its own assigned subnet(s), and rarely reaches remotely into other subnets. This partitioning631
is useful from a scaling perspective, to limit the observation and action spaces. However, it also632
leads to limited compromise attempts that cross subnet boundaries. Thus, each defender can focus633
its efforts on its own assigned subnet(s), requiring little communication or coordination with other634
blue agents. Still, communication can be useful in other game settings, to send information about635
network-level indicators of compromise, such as malicious file names, the hash of a malicious file,636
or a compromised IP.637

As a case study, we implemented a red agent that chooses external scanning in 50% of the time (once638
it becomes aware of another subnet), and a blue agent that relies heavily on decoys (90% of blue639

1https://github.com/cage-challenge/cage-challenge-4/tree/main

16



Hierarchical Multi-agent Reinforcement Learning for Cyber Network Defense

Table 4: Action sets for green agents (users), blue agents (defenders), and red agents (attackers).

Green actions
Green Access Service Communicate with a server in the local zone or another zone. It has a

small chance of being flagged as malicious by Monitor.
Green Local Work Do work on the local host without communicating. It has a small chance

that this action results in red gaining a foothold on the host (e.g. as a
result of a Phishing email). Also, it has a small chance of being flagged
as malicious by Monitor.

Blue actions
Monitor Collection of information about flagged malicious activity on the net-

work.
Analyse Collection of further information relating to malware files, on a specific

host.
Deploy Decoy Setup of a decoy service (type randomly assigned) on a specified host.

Blue is alerted if Red accesses this service.
Remove Attempts to stop all processes identified as malicious by the monitor

action.
Restore Restoring a system to a known good state.
Block Traffic Block traffic to and from the specified zone.
Allow Traffic Allow traffic to and from the specified zone.

Red actions
Discover Remote Systems Discovers new hosts/IP addresses in the network through active scanning

using tools such as ping.
Aggressive Service Discov-
ery

Discovers responsive services on a selected host by initiating a connec-
tion with that host.

Stealth Service Discovery Same as Aggressive Service Discovery but slower and quieter (i.e., lower
chance of raising alerts).

Exploit Network Services Attempts to exploit a specified service on a remote system.
Privilege Escalate This action escalates the agent’s privilege on the host.
Impact This action disrupts the performance of the network and fulfils red’s

objective of denying the operational service.
Degrade Services If red has root privileges on a host, it may degrade the user experience

for a green agent.
Discover Deception Probe a host to determine if it is running decoy services.
Withdraw Remove red presence from target host.

actions) to detect the adversary during the scanning phase of the attack. Blue agents broadcast 8-bit640
messages encoding which remote host is accessing their decoys to warn other agents of potential641
attackers. We uniquely identify the compromised hosts with 3 bits for the subnet number (1-7),642
and 4 bits for the host index (0-15). Each blue agent decodes the message to check if it refers to643
hosts from its own subnet. If so, the message provides an indicator of compromise that will be644
added to the observation vector. Figure 7 shows that there is some benefit of using this method of645
communication. However, the benefit is small, due to other factors, such as phishing, stealth, and646
false positives of the Monitor actions.647

9 Traffic Control648

Our next case study explores the use of Block and Allow Traffic actions to control the access be-649
tween security zones. The H-MARL architecture consist of a Master policy and three sub-policies:650
Investigate, Recover, and Control Traffic. We extended the observation space with network-level651
indicators of compromise – blue agents communicate whether their assigned subnet(s) contain any652
IOCs – enabling each agent to have a global view on the network, and facilitating the training of the653
Control Traffic sub-policy.654

17



Under review for RLC 2025, to be published in RLJ 2025

Figure 7: Blue agents use 8-bit messages to warn other team members of potential compromised
hosts. This communication strategy shows some benefit over the case when no communication is
used. (MARL Decentralized training)

Figure 8: H-MARL with 3 sub-policies: Investigate, Recover, and Control Traffic. Due to the
probabilistic expert rule, H-MARL Expert method is unstable, while H-MARL Meta performs well,
converging fast to a stable performance.

Figure 9: H-MARL with 3 sub-policies: Investigate, Recover, and Control Traffic, after removing
the penalty on failed user access (no degrade). All sub-policies are fine-tuned in this new context,
against a new red that attempts frequent remote exploits into other subnets. The H-MARL Expert
has regained a stable high performance and H-MARL Meta has similar performance.

Defining an expert knowledge to guide the training of a Control Traffic sub-policy to near-optimal is655
particularly difficult, due to the conflicting outcomes of using Block actions – stop red agents from656

18



Hierarchical Multi-agent Reinforcement Learning for Cyber Network Defense

moving through the network, but at the expense of preventing user agents from completing their657
work.658

For our current experiments, we use the following expert rule to train the sub-policies (Algorithm659
1), and leave further research into other expert rules for future work: If indicators of compromise are660
present on hosts, call the Recover sub-policy; otherwise, randomly choose Investigate for 75% of the661
time, and Control Traffic for the remaining 25%. Thus, the Investigate sub-policy is assigned more662
weight, as we expect it to be useful more frequently. In fact, for best performance, we use (keep663
fixed) the Investigate and Recover sub-policies trained previously (see paper), since they have been664
learned with well-defined expert knowledge, and only train the Control Traffic sub-policy, using the665
rule specified above.666

Next, we follow Algorithm 2 to train the Master policy using the three pre-trained sub-policies.667
Figure 8 shows the reward as training progresses during Algorithm 1 (using the expert rule), and668
Algorithm 2 (train the master). We observe the instability of the expert, which has been trained with669
a probability-based rule, reinforcing the importance of learning the master policy. The H-MARL670
Meta algorithm is more stable, as the master policy learns how to combine the sub-policies to solve671
the meta-task, and is not restricted by a fixed, deterministic rule.672

Turning off Degrade Service. In our next set of experiments illustrated in Figure 9, we fine-tuned673
the sub-policies after turning off the reward penalty of green agents being affected by failed service674
access. We also used the modified red agent introduced in Section 8 of the supplemental material,675
which performs remote scanning into other subnets more often, and can still collect rewards by676
impacting the critical OT service. With block actions being now useful at preventing red agents677
from spreading, without incurring penalties, H-MARL Expert regains a stable, high performance, as678
expected. H-MARL Meta achieves similar performance with H-MARL Expert in this setting. The679
blue agents are using 4× more block actions when the failed user access penalty has been removed.680

10 H-MARL Transferability681

Figure 10 presents the fine-tuning results of the Recover sub-policy, pre-trained against Aggressive682
Red, the average-performing attacker. The Recover sub-policy is trained on an observation space683
consisting of indicators of compromise within a subnet. This sub-policy learns a strong strategy684
regardless of the attack, and can be directly reused against other red agents.685

Figure 10: The Recover sub-task is rather agnostic to the attack type and can be re-used against
other adversaries.

19


