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Summary
Recent advances in multi-agent reinforcement learning (MARL) have created opportunities

to solve complex real-world tasks. Cybersecurity is a notable application area, where defend-
ing networks against sophisticated adversaries remains a challenging task typically performed
by teams of security operators. In this work, we explore novel MARL strategies for build-
ing autonomous cyber network defenses that address challenges such as large policy spaces,
partial observability, and stealthy, deceptive adversarial strategies. To facilitate efficient and
generalized learning, we propose a hierarchical Proximal Policy Optimization (PPO) architec-
ture that decomposes the cyber defense task into specific sub-tasks like network investigation
and host recovery. Our approach involves training sub-policies for each sub-task using PPO
enhanced with domain expertise. These sub-policies are then leveraged by a master defense
policy that coordinates their selection to solve complex network defense tasks. Furthermore,
the sub-policies can be fine-tuned and transferred with minimal cost to defend against shifts
in adversarial behavior or changes in network settings. We conduct extensive experiments
using CybORG Cage 4, the state-of-the-art MARL environment for cyber defense. Compar-
isons with multiple baselines across different adversaries show that our hierarchical learning
approach achieves top performance in terms of convergence speed, episodic return, and several
interpretable metrics relevant to cybersecurity, including the fraction of clean machines on the
network, precision, and false positives.

Contribution(s)
1. A scalable hierarchical multi-agent reinforcement learning method for cyber defense that

decomposes the complex cyber defense task into multiple sub-tasks.
Context: Prior work uses hierarchical MARL in other domains such as multi-robot learn-
ing, while current RL-based methods in the cyber defense domain are single agent.

2. A design guided by cybersecurity domain expertise to enhance the RL agents’ observation
space and facilitate learning of better policies.
Context: Prior work on RL cyber defense uses the observation space provided by a cyber
environment such as CybORG, without expanding it.

3. Defensive strategies that transfer either directly or via fine-tuning against a range of decep-
tive, stealthy adversaries in the CybORG CAGE 4 cyber environment.
Context: We show that the proposed H-MARL methods generalize to three types of stealthy
adversarial agents, besides the default red agent in CybORG CAGE 4, and we also demon-
strate transferability to new red agents after fine-tuning.

4. Definition and analysis of multiple interpretable metrics for providing insights to security
operators on the developed defenses.
Context: Prior work in RL for cyber defense mainly analyzes the cumulative return, but
does not discuss interpretable metrics, which are very relevant to security operators.
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Abstract
Recent advances in multi-agent reinforcement learning (MARL) have created opportu-
nities to solve complex real-world tasks. Cybersecurity is a notable application area,
where defending networks against sophisticated adversaries remains a challenging task
typically performed by teams of security operators. In this work, we explore novel
MARL strategies for building autonomous cyber network defenses that address chal-
lenges such as large policy spaces, partial observability, and stealthy, deceptive adver-
sarial strategies. To facilitate efficient and generalized learning, we propose a hierarchi-
cal Proximal Policy Optimization (PPO) architecture that decomposes the cyber defense
task into specific sub-tasks like network investigation and host recovery. Our approach
involves training sub-policies for each sub-task using PPO enhanced with cybersecurity
domain expertise. These sub-policies are then leveraged by a master defense policy
that coordinates their selection to solve complex network defense tasks. Furthermore,
the sub-policies can be fine-tuned and transferred with minimal cost to defend against
shifts in adversarial behavior or changes in network settings. We conduct extensive
experiments using CybORG Cage 4, the state-of-the-art MARL environment for cyber
defense. Comparisons with multiple baselines across different adversaries show that
our hierarchical learning approach achieves top performance in terms of convergence
speed, episodic return, and several interpretable metrics relevant to cybersecurity, in-
cluding the fraction of clean machines on the network, precision, and false positives.

1 Introduction

Cyber defense is critical in both private and public network infrastructures, which are frequently
targeted by increasingly sophisticated external attackers with malicious intentions. In 2024, the
number of security breaches has surpassed 10,000 and attackers constantly adapt their tools and
strategies to evade existing defenses (Hylender et al., 2024). The implications for national security
are significant, as security breaches often lead to theft of intellectual property, compromise of sensi-
tive information, and disruption of critical infrastructures. Currently, organizations employ teams of
security professionals who constantly oversee the security of their networks and design the overall
security strategy using their domain expertise. While a range of machine learning (ML) tools are
available for detecting specific classes of attacks (Antonakakis et al., 2012; Nelms et al., 2013; An-
tonakakis et al., 2011; Bilge et al., 2012; Yen et al., 2013; Ongun et al., 2021), the advancement of
deep reinforcement learning (DRL) presents an opportunity to automate the cyber defense strategy
and reduce the burden on security operators.

Towards this goal, the technical cooperation program (TTCP), a collaborative working group in-
cluding UK, USA, Canada, Australia and New Zealand, developed a series of CAGE challenges
for advancing cyber defense (CAGE, 2021). These challenges leverage the Cyber Operations Re-
search Gym (CybORG), a simulated environment that can be used for creating realistic interactions
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(or games) between attackers and defenders on realistic network topologies. These environments
task defenders (blue agents) with monitoring and restoring compromised machines on a simulated
enterprise network, to prevent external adversaries (red agents) from accessing critical assets. The
first CAGE challenges model a cyber game between a single blue agent and a single red agent,
leading to the development of DRL techniques for training a blue agent interacting against a red
agent (Vyas et al., 2023; Mcdonald et al., 2024; Hammar et al., 2024). The most recent CAGE
4 challenge (CAGE-4, 2023) models a team of multiple blue agents defending a distributed net-
work, playing against multiple red agents compromising the network. Existing techniques for single
defensive agents are either computationally expensive (by training a different agent for each red
agent (Vyas et al., 2023; Mcdonald et al., 2024)), do not generalize to new attackers, or require ex-
tensive, causal pre-processing which is intractable as the network size scales (Hammar et al., 2024).
Thus, they cannot be immediately applied to the multi-agent CAGE 4 environment, which requires
new methods. Additional challenges for training multi-agent defenders in this environment include
large policy spaces, partial observability of the network, shared rewards among all blue agents, and
playing against stealthy, deceptive adversarial strategies.

In this paper, we propose the first scalable multi-agent reinforcement learning (MARL) technique for
automating defense in cyber security environments such as CAGE 4. We formulate the problem as
a decentralized, partially-observable Markov decision process (Dec-POMDP) (Oliehoek & Amato,
2016) and propose two hierarchical strategies, H-MARL Expert and H-MARL Meta, each with
their own advantages. Both methods decompose the complex cyber defense task into smaller sub-
tasks, and train sub-policies for each sub-task using PPO enhanced with domain expertise. The
difference between the methods is in the design of the master policy that coordinates the selection
of the sub-policies at each time step. H-MARL Expert utilizes security domain expertise to define a
top master policy based on well-established practices for cyber defense, and performs best in most
of our experiments. However, there are situations when it is difficult to define a deterministic Expert
policy. To address this issue, we propose H-MARL Meta, that trains the master policy, and, thus,
has the advantage of generalizing to new, unseen adversarial behavior. Another insight in our design
is that extended observation spaces including security indicators, such as presence of malicious files
and malicious processes on a host, are beneficial in increasing the blue agent’s ability to defend
the network. We evaluate our methods against multiple baselines at different stages of the design
process to motivate our methodology and design decisions. We further propose multiple relevant and
interpretable metrics for cyber defense, including ratio of uninfected hosts, false/true positive rates
on host recovery, and number of adversarial impacts on hosts. Across these metrics our proposed
hierarchical techniques display significant improvements over traditional MARL approaches.

To summarize, our contributions are: (1) scalable hierarchical multi-agent reinforcement learning
methods for cyber defense; (2) a design guided by domain expertise to enhance the agents’ observa-
tion space and decompose the complex cyber defense task into multiple sub-tasks; (3) evaluation in
CybORG CAGE 4, a realistic cyber environment with partial observability and deceptive, stealthy
adversaries; (4) empirical transferability of trained sub-policies after fine-tuning to new adversarial
agents, and (5) multiple interpretable metrics for providing insights to security operators. The source
code is available on GitHub 1.

2 Related Work and Background

Traditional cyber defenses, such as anti-virus and network intrusion detection tools, leverage spe-
cific detection rules for thwarting existing attacks, but they are relatively easy to evade. To address
their limitations, organizations employ security operators who perform “threat hunting” to detect
novel attacks on their networks. A variety of machine learning (ML) tools are available for threat
detection (Antonakakis et al., 2011; 2012; Bilge et al., 2012; Nelms et al., 2013; Yen et al., 2013;
Ongun et al., 2021), but the overall defensive strategy in most organizations is still manually de-

1https://github.com/adityavs14/Hierarchical-MARL
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signed. The advancement of DRL and MARL provides an opportunity to automate cyber defense
strategies and improve the security of cyber infrastructures.

The CAGE-4 challenge (CAGE-4, 2023) is a recent security environment aimed at encouraging
research in autonomous cyber defense. It provides a cyber simulation of attacker and defender
actions in realistic network topologies. CAGE-4 is a partially observable environment with mul-
tiple, decentralized blue agents defending the network by playing against a team of red agents
performing various attacks over time. It can be modeled as a decentralized, partially observable
Markov decision process (Dec-POMDP). Dec-POMDPs (Oliehoek & Amato, 2016) are a special
class of MDP where multiple, independent and decentralized agents with incomplete observations
interact to optimize a shared reward signal. Formally, a Dec-POMDPs is defined as the tuple
M = (I,S,A, T ,Ω,O,R, bo), where I = {1 · · ·n} is the set of n agents, S is a finite set of
states, A = ×i∈IAi is the set of joint actions composed of individual actions Ai for each agent i, T
is the state transition function, Ω = ×i∈IΩi is the set of joint observations, O : S × A → Ω is the
joint observation function, and b0 is a distribution over initial states.

Several methods have been developed for solving general Dec-POMDPs, including multi-agent PPO
(MAPPO) (Yu et al., 2022; Schulman et al., 2017), Q-MIX (Rashid et al., 2020), independent PPO
(IPPO) (De Witt et al., 2020), or decision trees. However, these methods are often uninterpretable
and struggle to converge in settings with large joint action spaces. These approaches have usually
been applied to simpler 2-player environments (Vyas et al., 2023; Mcdonald et al., 2024; Hammar
et al., 2024; Wilson et al., 2024). Prior works in the more complex CAGE-4 environment explore
defenses based on heuristics (Kiely & Others, 2025) or on traditional PPO algorithms (Wang &
Dechene, 2024). In contrast, we implement an observation-enhanced hierarchical learning method
that is more adaptive than previous heuristic approaches, and more scalable than single-policy PPO
architectures.

Hierarchical and meta-learning methods in reinforcement learning have led to adaptations of hi-
erarchical MARL for different domains, such as multi-robot teamwork tasks (Xiao et al., 2020;
Fosong et al., 2024; Chang et al., 2023) and complex navigation (Frans et al., 2017). To the best
of our knowledge, our work is the first to study the design and capabilities of hierarchical MARL
approaches in the cyber defense domain.

3 Problem Statement

In cyber security, red teams act as attackers who attempt to exploit network vulnerabilities and carry
out malicious activities aimed at compromising the system. Blue teams are tasked with defending
against red team opponents to secure the networks, while maintaining network operations. In this
work, we focus on the CybORG CAGE 4 cybersecurity MARL framework (CAGE-4, 2023), which
is a realistic environment that models cyber defense. We discuss several aspects of the environment
below. For additional details, please see Section 1 in the supplemental materials, and the CAGE 4
description (CAGE-4, 2023).

Network topology. Cyber networks are often segmented into operational enterprise networks that
encompass multiple security zones depending on the proximity to critical resources. This setup leads
to a multi-agent competitive environment, where each defender agent is protecting its own security
zone(s), with the overarching team goal of defending the entire network. The CAGE 4 network
consists of seven security zones (subnets), assigned to five blue agents. To increase robustness
of defenses, the number of hosts in each zone and their services are randomized, with each zone
having between 4-16 servers and user machines (or hosts). An additional network (Contractor) is
completely undefended, so that the red team always maintains a presence in the network.

Threat Model. The two teams are represented by multi-agent systems: defender (the blue team)
and attacker (the red team). Defender and attacker have competing goals, while the agents on each
team collaborate to achieve their goals. The attacker’s goal is to maximize its reward by degrading
services available to users, represented by green agents, and compromising the critical Operational
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Table 1: Challenges of a realistic RL model for cybersecurity, with concrete examples from the
CybORG environment.

Environment
Partially-observable Blue agents receive incomplete information from the environment.

Lacking access to the true state, agents monitor and analyse hosts to
discover compromised hosts. Monitoring is noisy, affected by false pos-
itives and false negatives (depending on detection rate).

Memoryless Once reported, alerts are not maintained.
Duration of actions Actions take between one time step and 5 time steps in the environment.
Large policy space Blue agents defend between 1 and 3 subnets, of up to 16 hosts each. This

maps to an 92-242 action space, and an 82-210 observation space.
Shared reward Blue agents are rewarded collectively, as a team, for defending the net-

work. However, they only receive local observations.
Adversary

Stealth Low chance (0.25) of raising alerts via the Stealthy Service Discovery
action. Ability to withdraw from a security zone after impact.

Deception Can detect and avoid decoy services.
Ease of spreading Appears via phishing emails, in addition to moving laterally through the

network.
Strong foothold Can not be removed from the Contractor subnet, which is undefended.

The red team scores about 60 points on average in this subnet.

Technology (OT) service. The defender’s goals are two-fold: maintain the security of the cyber
network by reducing the adversarial presence, and minimize the operational impact on users. We
face a strong adversary, whose capabilities include stealth, phishing, propagating through the net-
work, and the ability to discover blue agents’ deception. Red agents maintain persistent presence
on the Contractor network, which is the starting point of the attack and cannot be defended with
blue actions. Red agents scan machines for vulnerable services to exploit and propagate through the
network. CAGE 4 implements both an aggressive service discovery action, which is faster (1 time
step), but has a high chance (0.75) of raising alerts, and a stealthy service discovery action, which
is slower (3 time steps), but less likely (0.25) to raise alerts. In addition to moving laterally through
the network by exploiting remote services, red agents can also spawn with a given probability when
a green user opens a phishing email or accesses a compromised service. Furthermore, red agents
can use the discover deception action to determine if the blue team has installed decoy services
on a specific host, and avoid to infect that host to maintain stealth. CAGE 4 implements a default
deceptive red agent, called FiniteStateRedAgent, but we also create our own red agents with more
aggressive service discovery and even stealthier presence on the network to measure the generality
of our defense.

Defensive actions. The blue team monitors the network for suspicious events, and detects and
responds to attacks through the following actions: analyze a host looking for malware information;
start a decoy service on a host (blue team is alerted when a red agent attempts to compromise the
decoy service); block traffic to and from a specified security zone (at the expense of disrupting
the work of green agents); allow traffic to and from a specified security zone; remove malicious
processes from a host; restore the host to an earlier secure state (temporarily making its services
unavailable).

Rewards. The reward scheme models a general-sum game where blue agents incur penalties when
green agents are impacted due to degraded services becoming inaccessible. In addition, blue agents
are penalized when red agents impact the critical OT security service, or when they use a costly
action like Restore machine. The specific reward values depend on the mission phase and are spec-
ified on the challenge page CAGE-4 (2023). Three mission phases are carried out throughout each
episode, to reflect the changing criticality of security zones on current operations. Note that the
reward includes the penalties incurred inside the contractor subnet, which cannot be defended. This
additional reward should not affect the training process. For a fair comparison, the contractor reward
is present in all the methods studied in this paper, including the baselines.
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Challenges. A series of features, described in Table 1, make the CybORG environment particularly
realistic and challenging for training multi-agent blue defenders. The environment provides partial
observability of red presence, as blue agents need to run monitor and analyse actions to discover
compromised hosts, and these actions incur false positives and false negatives. The policy space is
large, including a set of actions for each host on the network, and the observation space is memory-
less. In addition, actions have variable duration, and all blue agents share a common reward, even
though each of them protects a different part of the network.

4 H-MARL Methodology

For complex real-world tasks, action spaces can grow intractably large as the problem scales, mak-
ing task learning difficult for many standard reinforcement learning (RL) approaches (Dulac-Arnold
et al., 2015). These issues are compounded by the introduction of high-dimensional, noisy state
spaces. Many hierarchical RL methods aim to solve these problems by breaking large action spaces
down into smaller sub-tasks. However, learning these partitions online remains a challenging prob-
lem (Hutsebaut-Buysse et al., 2022). Therefore, in this section, we introduce our hierarchical frame-
work showing how domain expertise can be leveraged to solve issues of intractability in both the
state and action spaces. An overview of the hierarchical design is shown in Figure 1. The action
space A is split into n smaller subsets, or classes, chosen using domain expertise. For example,
the “recover” class refers to all primitive actions for removing processes and restoring machines on
the network. Thus, each sub-policy handles one class of primitive actions that will be executed in
the network. We define the action space of the master policy as a new set Am comprised of meta-
actions, where each meta-action corresponds to a different sub-policy. The master policy chooses a
meta-action, and the associated sub-policy then samples a primitive action from its subset. In cyber
domains, the agent must choose the machine to investigate or restore potentially from a list of thou-
sands. In our design, these additional details, such as what machine to restore, will be abstracted
away, under a single meta-action, significantly reducing the action space.

observation Master Policy

obs_subvector_1

obs_subvector_2

obs_subvector_k

Subpolicy_1

Subpolicy_2

Subpolicy_k

meta-action

Choose 
subpolicy

actionaction

Figure 1: Hierarchical MARL. Upon receiving an observa-
tion, the master policy first chooses a sub-policy, which se-
lects the final primitive action.

Under this formulation we first es-
tablish a master policy πm whose
objective is to choose some meta-
action Ac ∈ Am given observation
ot at time step t. We then assign
each meta-action Ac to a correspond-
ing sub-policy ψc whose goal is to
choose the primitive action at ∈ Ac
given some input history ht at time
step t. This primitive action at is
the final action executed in the envi-
ronment. Under this design the mas-
ter policy must learn the best policy

πm : H → Am over meta-actions, while each sub-policy ψc : H → Ac must learn the best policy
over all actions in their respective meta-action class. Here H represents the set of possible obser-
vation histories. This reduces the larger, more complex task posed by the base Dec-POMDP into a
much manageable set of sub-tasks.

We enhance each sub-policy’s respective observations with transformation functions fc : O → Oc

for sub-policy observation spaces Oc. In practice, these transformations are applied to observation
histories. The transformation function reduces the observation space of each sub-policy by keeping
only information relevant to their respective class of actions. For example, the sub-policy respon-
sible for restoring machines only needs to know about the hosts that present clear indicators of
compromise, rather than about all the alerts in the system.
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Algorithm 1 Sub-policy training (H-MARL
Expert)
Input Dec-POMDP M, Expert policy πE , Transformations
{fc}kc=1

Initialize Sub-Policies {ψc}kc=1, Replay Memories {Dc}kc=1,
Transformations {fc}kc=1, Episode Length T , IterationsN

1: for i← 1, N do
2: Sample initial observation o0 ∼M
3: for t← 1, T do
4: Update history ht given observation ot−1

5: Sample c← πE(ht) from expert policy
6: Sample ot, rt ∼M given action at ∼ ψc(fc(ht))
7: Store (ht, at, rt) inDc

8: for j ← 1, k do
9: Update ψj givenDj using PPO

Algorithm 2 Master policy training (H-MARL
Meta)
Input Dec-POMDPM, Sub-Policies {ψc}spc=1, Transformations
{fc}kc=1

Initialize Master Policyπm, Replay MemoryDm, Episode Length
T , IterationsN

1: for i← 1, N do
2: Sample initial observation o0 ∼M
3: for t← 1, T do
4: Update history ht given observation ot−1

5: Sample ct ← πm(ht) from master policy
6: Sample ot, rt ∼ M given action at ∼
ψct (fc(ht))

7: Store (ht, ct, rt) inDm

8: Update πm givenDm using PPO

4.1 Hierarchical MARL Design

We now propose our methods H-MARL Expert and H-MARL Meta, which are designed to over-
come a multitude of challenges induced by multi-agent training, such as environment and training
instability. In particular, there are three key inter-dependencies that make learning in this setting
difficult: (i) interdependence between each agent under a shared reward signal, (ii) between master
and sub-policy performance, and (iii) between sub-policies under shared episodic returns. The first
interdependence results in agents receiving rewards that are not related to actions they have taken.
This is particularly challenging in our cyber defense setting as each agent interacts with disjoint sub-
networks, but receives a shared reward considering the state of the whole network. This leads us to
use IPPO (De Witt et al., 2020) as the foundation of our approach, where each agent has a separate
critic which only receives observations corresponding to their respective sub-network. Each agent
is then trained in parallel along with its respective critic. This setup prevents the critics from be-
ing biased by occurrences outside their respective agent’s sub-network, resulting in greater stability
and less bias in each agent. Secondly, the performance of the master policy depends on the perfor-
mance of each sub-policy – poorly trained sub-policies can make otherwise optimal meta-actions
sub-optimal – resulting in a biased master policy. To overcome this, we utilize a two-phase training
approach seen in Algorithm 1 and Algorithm 2. For both algorithms, the training is guided by the
reward signal received from the environment (see Section 3).

Algorithm 1: Sub-policy training (H-MARL Expert). Our first method, H-MARL Expert, uses
an expert master policy πE defined by domain expertise and only trains sub-policies for each agent,
using Algorithm 1. At the start of each episode, we receive an initial observation from M and use
it to initialize our history ht. At each time step, πE then uses ht to choose the best meta-action
Ac. Next, the sub-policy ψc (corresponding to meta-action Ac) chooses a primitive action at given
its transformed history fc(ht). This action is used to sample the next observation and reward from
M which is stored in the replay memory Dc of ψc. Each policy is then updated with PPO on its
respective replay memory Dc. This design allows the sub-policies to address only their related tasks
and train to near-optimal while avoiding instability caused by a trained master policy. Additionally,
this allows us to solve our third form of interdependence, as the deterministic, static expert policy
πE allows for stability in the training of each sub-policy.

H-MARL Expert in cybersecurity. Figure 2 illustrates the Expert master policy πE for partitioning
the sub-tasks in CybORG CAGE-4. We identify three types of sub-tasks: investigate host, recover
host, and control traffic between zones. The state-level abstraction used to partition the tasks refers
to the presence of indicators of compromise (IOCs) within an agent’s security zone(s). This parti-
tioning is defined via Expert Rules, including: (1) If IOCs (malicious files) are detected on a host,
the agent will choose the Recover subpolicy, which selects either to remove the malware or to restore
the machine to a clean state; (2) If network IOCs are detected, then the Control Traffic subpolicy is
chosen; (3) Otherwise, the agent will Investigate.

Algorithm 2: Master policy training (H-MARL Meta). Algorithm 2 provides the second phase
of training for the master policy. Here sub-policies {ψ}k1 trained with Algorithm 1 are kept frozen
and just used to generate primitive actions. We define a master policy πm called H-MARL Meta
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Master
Policy

Investigate
Subpolicy

Recover
Subpolicy

Control Traffic
Subpolicy

• Remove procs.
• Restore host

• Block traffic 
• Allow traffic

No IOCs 

Host 
IOCs

Network 
IOCs

• host IOCs• Analyse host
• Deploy decoy

• suspicious events
• host IOCs

Observation:
• subnet info
• network IOCs

ObservationActions ObservationActions ObservationActions

Figure 2: H-MARL in cybersecurity. The Expert Master Policy knows this IOC-based partitioning,
while the Meta Master Policy is learning it using frozen subpolicies.

whose action space size is the number of sub-policies k. Similar to before, at each time step we
sample an action ct ∼ πm(ht) given updated history ht. The sub-policy ψct is invoked to sample
action at to take a step in M given transformed history fc(ht). The current history ht, action ct and
reward from M given action at are then stored in the replay memory Dm. Finally, the master policy
πm is updated with PPO given trajectories stored in Dm.

4.2 Observation Space Design

This section presents our enhancements to the observation space of blue agents and evaluate their
ability to facilitate learning of a better defense strategy. In cybersecurity environments, the state
holds a lot of data, such as information on system configuration, processes, active sessions, etc.
The observation is presented to the agent as a data structure with various fields, which may vary
depending on the output of the action. This observation structure needs to be filtered and converted
to a consistent vector representation to enable the use of deep reinforcement learning techniques.

mission
(0, 1, or 2)

subnet info suspicious 
processes

suspicious 
connections

IOCs 
detected

subnet_count x 3
values in {0,1}

host_count
values in {0,1}

host_count
values in {0,1}

host_count
values in {0,1, 2, 3} 
based on attack stage

Figure 3: Observation space components. The basic CybORG observation is enhanced with IOCs.

The basic observation vector of CybORG blue agents consists of the first four components from Fig-
ure 3. The first bit represents the current mission phase. It is followed by a one-hot encoded vector
with subnet-related information: what subnet(s) is the agent protecting, whether the traffic to/from
other subnets is blocked, and which interfaces should be blocked based on the current mission phase
restrictions. Next, the observation vector contains information on alerts detected with the Monitor
action, using a 1/0 binary encoding to denote whether suspicious processes or connection events
occurred on a host.

Enhancing observation with memory. Given that a single defense action can be taken per round,
blue agents need a persistence mechanism to store alerts that have not been addressed yet. In Cy-
bORG, the Monitor action runs automatically at the end of each step but only reports new events that
have been raised on the current step. This requires us to maintain an updated observation history ht
that keeps track of past events. Therefore, we add new events to the agent’s history ht at each time
step given a new observation ot, and only remove these events from ht when they have been handled
by a respective recover action.

Enhancing observation with IOCs. Indicators of compromise (IOCs) (Asiri et al., 2023) are signs
or evidence of a cyber threat being present in the network. IOCs are generally classified in three cat-
egories: atomic (IP addresses, malware names, registry keys, process names, URLs, etc.), computed
(hash of a malicious file), and behavioral (Hutchins et al., 2011). MITRE ATT&CK (Adversarial
Tactics, Techniques, and Common Knowledge) (Strom et al., 2018) is a comprehensive database of
adversarial behaviors observed in real-world attacks.
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One of our main insights for automating cyber defense is to extend the observation vector with IOC-
related information per host, as illustrated in Figure 3. We use two types of atomic IOCs: malicious
file names that are placed on the victim machine and the IP address of the compromised host that
issues service requests to a decoy service. We also capture adversarial behaviors by prioritizing
IOCs based on the attack phase. A value of zero in the observation vector denotes that no IOC
has been detected on the corresponding host. The other values differentiate between attack phases:
priority 1 for IOCs detected during privilege escalation attempts, such as malicious files with root
access; priority 2 for IOCs due to attacker’s exploit actions (namely malicious files with user-level
access); and priority 3 for IOCs due to the attacker’s scanning activity (decoy accesses).

Observation space evaluation. Figure 4 shows the contribution of each of our enhancements to the
observation space design for a blue agent trained with a decentralized actor-critic PPO architecture,
using the same hyper-parameters from Section 5. Compared to the basic CybORG observation,
keeping track of history on suspicious events offers a small performance boost (12% increase in
reward). The biggest gain, however, comes from incorporating indicators of compromise related to
malicious files (an additional increase in reward of 42%). These files are detected when blue agents
perform Analyse actions on hosts in their assigned subnet. Access to decoys, another clear indicator
of adversarial behavior, further improves the defense strategy of the blue team by 11%. Note that the
H-MARL architecture can not be applied on the basic CybORG observation space. This is because
task partitioning in H-MARL is based on indicators of compromise, which are not tracked in the
original CybORG. In the rest of the paper, we consider the enhanced observation space with history,
IOCs, and decoys for training all agents.

Figure 4: Blue team reward for different observation space designs. We incrementally add each
of our enhancements to the observation space, to show their individual contribution. Incorporating
history and IOCs provides a high performance boost. (MARL Decentralized training)

5 Experimental Evaluation

We now evaluate our proposed hierarchical MARL architecture in the CybORG CAGE 4 environ-
ment against different baselines, aiming to answer the following research questions: (i) How effec-
tive is our H-MARL approach in protecting the network compared to other methods, against differ-
ent adversaries (Sections 5.1 and 5.2)? (ii) Is it feasible to transfer previously trained sub-policies
to learn new defense strategies (Section 5.3)? (iii) Can we provide some interpretable insights to
security operators related to the performance of our defenses (Section 5.5)?

Training configuration. Our experiments use the state-of-the-art actor-critic PPO algorithm (Schul-
man et al., 2017). The actor and critic are represented by two feedforward neural networks with two
hidden layers and 256 neurons per layer. The training hyperparameters have been tuned to the fol-
lowing values: a learning rate of 5 × 10−5, a discount factor of 0.99, and a train buffer size of 1
million samples. The SGD algorithm uses the Generalized Advantage Estimation (GAE) function, a
minibatch size of 32,768 within each epoch, with 30 SGD iterations in each outer loop. Evaluation
results are averaged across 100 randomized episodes, where each episode is 500 time steps long,
and are accompanied by standard deviation information. The network topology in the CybORG
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Figure 5: Average training return for all algorithms. H-MARL Expert is guided by a rule-based
master policy and performs best. H-MARL Meta converges 3−5× faster than MARL Decentralized.

environment is randomized and the models are trained on topologies with varying configurations,
which ensures that they generalize to different network environments. The size of the network at
initialization is randomly chosen between 32 and 128 hosts across 8 subnets, and up to 10 services
are selected randomly to be placed on each host. All our models have been trained on 30 versions
of the network, with separate workers collecting the experiences in their own network.

Duration of actions. For increased realism, actions take more than one step to execute. Some
of the longer actions are Exploit Remote Services (4 steps) and Restore host (5 steps). In our
implementation, while an action is in progress in the environment, we associate the “in-progress”
state with a special observation and mask out other actions except sleep to guide PPO training.

5.1 H-MARL Performance

MARL Baselines. We compare the hierarchical architecture with two single-policy MARL
paradigms (Lyu et al., 2021): Decentralized Training Decentralized Execution (DTDE), and Central-
ized Training Decentralized Execution (CTDE). The DTDE baseline uses an actor-critic architecture
that learns a decentralized policy and critic for each of the agents locally (MARL Decentralized). The
CTDE baseline uses the centralized critic approach presented in MAPPO (Yu et al., 2022). Since
each learning blue agent is required to guide its strategy based on the joint team reward, we augment
the critic with state and actions of all blue agents on the team, while the actor only has access to
local observations. Note that our MARL Centralized Critic baseline uses the global state instead of
incomplete agent observations to compute the joint value function. This is a reasonable assumption
during training, in an effort to provide an unbiased and up-to-date critic for a strong baseline (Lyu
et al., 2021).

H-MARL Methods. We evaluate two hierarchical methods, H-MARL Expert and H-MARL Meta.
H-MARL Expert implements Algorithm 1, where the master policy is replaced with a rule informed
by domain knowledge: If IOCs are detected, Recover; otherwise, Investigate. The goal is to recover
right away to minimize the attacker’s damage. H-MARL Meta implements Algorithms 1 and 2, fol-
lowing a curriculum style approach (Bengio et al., 2009): the Recover and Investigate sub-policies
pre-trained until convergence, are maintained fixed while training the master policy. H-MARL Col-
lective is an additional baseline that attempts to learn both the master and sub-policies from scratch,
simultaneously. All the hierarchical variants use IPPO, in the decentralized actor-critic framework.

The training process for the blue agents is presented in Figure 5. The H-MARL Collective method
performs the worst, in line with previous work (Frans et al., 2017) that also observed the sub-optimal
performance of updating both sub-policies and the master policy at the same time. Both single-
policy methods MARL Decentralized and MARL Centralized Critic converge to a high reward, with
a clear advantage for the shared critic method that estimates the return based on joint information.

As expected, the H-MARL Expert performs best (−129.53 reward), given that recovery actions are
carried out promptly, before the attack amplifies. H-MARL Meta reaches a similar reward to MARL
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Table 2: Mean evaluation reward against different adversaries, under different learning frameworks.

Opponent Default Red Stealthy Red Aggresive Red Impact Red
MARL Decentralized −179.8± 92.98 −165.8± 53.45 −227.93± 87.98 −247.15± 71.53
MARL Centralized Critic −245.66± 132.98 −217.52± 115.06 −255.98± 138.70 −332.96± 108.13
H-MARL Collective −237.61± 102.6 −204.18± 83.24 −282.5± 120.50 −350.21± 115.25
H-MARL Expert −129.53± 44.60 −99.54± 38.28 −118.16± 37.74 −173.17± 64.04
H-MARL Meta −181.62± 65.85 −184.76± 91.40 −207.66± 86.48 & −278.78± 97.76
H-MARL Meta with fine-tuning −186.24± 81.28 −162.51± 57.97 n/a −264.96± 81.53

Decentralized (−181.62). However, training a master policy is significantly faster than training a
single policy from scratch (about 3-5 times faster), as we are only tasked with choosing the correct
sub-policy, rather than also learning the primitive sub-tasks, i.e., how to recover or investigate hosts.
H-MARL Meta invokes the fixed sub-policies that have been pre-trained with H-MARL Expert to
take a step though the environment. The ability to learn how to combine sub-tasks to solve higher-
level tasks effectively with H-MARL Meta is particularly important in situations where defining an
expert policy is difficult. We discuss such a scenario in Section 5.4.

5.2 Evaluation against different adversaries

We evaluated so far the performance of blue agents against the default red agent in CAGE 4, but we
are interested in how the policy generalizes against other red attacks. We simulate red agent attackers
that vary in their ability to circumvent the defense by employing more aggressive scanning, stealthier
behavior, or a stronger focus on impacting critical services. In the CybORG environment, red agents
use finite state machine transitions to determine what actions to take for each known host. For a
detailed description of the default finite state red agent and the transition matrix please see CybORG.
We consider four different finite state adversaries: (1) Default Red – equal choice between the two
available service discovery actions (stealthy and aggressive), and equal split between the two attack
objectives (Impact and Degrade Service); (2) Aggressive Red – always performs aggressive service
discovery, a short duration action (1 time step) that has a high chance of being detected by blue
agents (0.75); (3) Stealthy Red – stealthy service discovery, characterized by low detection rate
(0.25) and long duration (3 time steps); (4) Impact Red – fully committed to impacting the critical
OT service, without attempting to degrade other services.

The evaluation results against these four different adversaries are presented in Table 2. Impact
Red is the strongest attacker collecting the highest reward against the blue team, in this zero-sum
cyber game. Successful impact actions receive the highest reward of -10 during the second and
third mission phases, more than any other network compromise. For comparison, users’ failed
access to degraded services only costs the blue team between -1 and -3. Aggressive Red is the
second strongest opponent: the higher chance of being detected by blue agents is offset by the short
duration of service discovery actions (1 time step), which enable this attacker to carry out more
frequent attempts. Conversely, and somewhat non-intuitively, Stealthy Red poses less of a threat to
blue agents due to the longer duration spent in covert scanning, before attempting to exploit.

H-MARL Expert is the best strategy against all four red agents and H-MARL Meta attains similar
reward to the single policy baseline method (MARL Decentralized), but training converges signif-
icantly faster, as shown in the previous section. We confirm that H-MARL Meta performs better
than H-MARL Collective across all adversaries. Interestingly, it is also more effective than the
MARL Centralized Critic method. Even though the centralized critic was trained jointly, using the
global state, it is unable to utilize the shared information effectively on the individual actors dur-
ing evaluation. This limitation of centralized critic policies has been previously investigated in the
literature Lyu et al. (2021).

5.3 H-MARL Transferability

In this section, we explore the possibility of knowledge transfer (Weinshall et al., 2018; WEI et al.,
2018; Zhuang et al., 2020; Nekoei et al., 2021) – given a defense strategy that has already been
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Figure 6: (Left) The Investigate sub-policy pre-trained against Aggressive Red is fine-tuned sep-
arately against other red agents, performing similarly to training from scratch. (Right) H-MARL
with 3 sub-policies: Investigate, Recover, and Control Traffic. Due to the probabilistic expert rule,
H-MARL Expert is unstable, unlike H-MARL Meta.

trained, can we use it to accelerate the learning of a new defense that protects against a different
adversary? The adversaries in this study are stationary randomized agents, which consistently ap-
ply the same probabilistic rules to make decisions. We leave as future work the study of H-MARL
transferability to evolving adversaries that adapt their policies based on opponent behavior or en-
vironment feedback. We adapt the pre-trained sub-policy models to new attacks via fine-tuning, a
well-established powerful transfer method for deep models (Zhuang et al., 2020; Sun et al., 2019)
that is significantly less costly than training from scratch. In our current design, we only fine-tune
the sub-policies for a few iterations. Next, we fully train a new master policy, using the tuned
sub-policies.

Figure 6 (left) presents the fine-tuning results of the Investigate sub-policy, pre-trained against Ag-
gressive Red, the average-performing attacker. A short fine-tuning is enough to adapt to a new
adversary, resulting in learning curves similar to those obtained when training from scratch. The
fine-tuning results for the Recover sub-policy are included in Section 2 of the Supplemental Mate-
rial. We note that Investigate learns different strategies for each adversary (due to different patterns
of suspicious events), while Recover is relatively agnostic to the attack (due to working on clear
indicators of compromise) and can be directly reused against other red agents.

Last row in Table 2 shows the evaluation results of the master policy that was trained with the fine-
tuned sub-policy models. In this case, the master policy performs comparably to (and sometimes
even better than) H-MARL Meta that uses sub-policies trained from scratch. For instance, against
the Stealthy Red agent, the fine-tuned H-MARL Meta policy attains an average reward of −162.51,
compared to an average −184.76 reward when training from scratch. Our empirical results are
supported by previous research, which has shown that pre-trained deep learning models have been
proven to generalize better than randomly initialized ones (Erhan et al., 2010; Sun et al., 2019).

5.4 What method to use: Expert or Meta?

In our previous experiments, we have seen that H-MARL Expert performs best, as it is guided
by a deterministic master policy generated from domain knowledge, specifically: If host IOCs are
present, invoke the Recover sub-policy; otherwise Investigate. To show that such expert rules do not
generalize in all situations, we consider a scenario with a third sub-policy, Control Traffic, in which
a defender may choose to block traffic between subnets. However, block actions incur penalties for
preventing the remote activity of green users, rendering a deterministic blocking rule unfavorable.
We instead experimented with a probabilistic master policy: If host IOCs are present, invoke the
Recover sub-policy; otherwise split 75%-25% between Investigate and Control Traffic. With this
probabilistic rule, the H-MARL Expert method becomes unstable, while H-MARL Meta performs
better and converges quickly to a stable performance (Figure 6). This demonstrates the importance of
learning the master policy and is discussed in more detail in Section 4 of the Supplemental Material.
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Table 3: Interpretable metrics for various blue strategies against Default Red, 100-episode averages.

Blue Strategy
Clean
Hosts
(ratio)

Non-Escalated
Hosts
(ratio)

Mean
Time to
Recover

Useful
Recoveries
(true positives)

Wasted
Recoveries
(false positives)

Recovery
Precision

Recovery
Error

Red
Impact
Count

Reward

H-MARL Expert 0.81 0.99 44.76 6.07 2.2 0.73 0.27 0.88 -129.53
H-MARL Meta 0.77 0.97 62.63 5.79 3.74 0.61 0.39 1.14 -181.62
H-MARL Collective 0.85 0.97 35.52 3.41 5.79 0.37 0.63 1.93 -255.56
MARL Decentralized 0.77 0.97 56.08 10.45 27.99 0.27 0.73 1.54 -180

5.5 Interpretable Metrics

In cybersecurity applications, the defender has two main objectives: keep the network secure and
maintain operational workflows. Total discounted rewards is a natural metric for training and mea-
suring performance in reinforcement learning, however, a single-valued reward provides little inter-
pretable information to security operators. To address this problem, we propose a set of interpretable
metrics and analyze their relationship to the existing reward computation. The new metrics provide
insight on defense performance from three perspectives – network security, effectiveness of recov-
eries, and impact on operations – as follows:

• Network Security Posture: Clean Hosts: Fraction of hosts with no red presence (from total
hosts in the network); Non-Escalated Hosts: Fraction of hosts with no red root sessions

• Recovery Metrics: Mean Time to Recover: Mean number of consecutive steps spent in a com-
promised state; Useful Recoveries: Recoveries performed on infected machines (true posi-
tives, TP); Wasted Recoveries: Recoveries performed on clean machines (false positives, FP);
Recovery Error: Err = FP / (TP + FP); Recovery Precision: TP / (TP + FP) = 1-Err;

• Operational Metrics: Red Impact Count: Number of times the OT service is impacted becom-
ing unavailable.

We evaluate our blue agent strategies according to these metrics in Table 3. We observe a number
of insights that are not evident by comparing policies using solely the reward metric. For instance,
MARL Decentralized performs more recoveries than other policies, but its recovery precision is only
0.27. While H-MARL Meta and MARL Decentralized have similar rewards, H-MARL Meta has a
much better recovery precision of 0.61. Moreover, red agents are less successful at impacting the
critical services with H-MARL Meta, compared to MARL Decentralized. These indicators show
that H-MARL Meta is a more effective defense strategy than the single-policy approach (MARL
Decentralized), despite having similar reward. H-MARL Expert has the highest recovery precision
across all policies, as its expert master policy selects the Recovery sub-policy when IOCs are present
on hosts, a strong indication of host compromise. Our analysis demonstrates the need of using the
reward signal in conjunction with other metrics that are relevant in the cyber domain. To better align
the reward with the defender’s goals, one can also incorporate these new metrics in the reward.

6 Conclusion

We propose novel hierarchical multi-agent reinforcement learning (MARL) strategies to train multi-
ple blue agents tasked with protecting a network against red agents. Our H-MARL strategy decom-
poses cyber defense into multiple sub-tasks, trains sub-policies for each sub-task guided by domain
expertise, and finally trains a master policy to coordinate sub-policy selection. We evaluated our pro-
posed hierarchical methods (Expert and Meta) and compared them against standard decentralized
and centralized MARL in a realistic cyber security environment, CybORG CAGE 4. We demon-
strated that our hierarchical method converges faster than a single PPO policy and generalizes across
various red agent behavior, while H-MARL Expert consistently performs better than the baselines.
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7 The Cyber Game

This section presents additional details on the cyber game simulated in CybORG CAGE 4 2. For
increased realism, users on enterprise machines are represented by green agents, which are present
on every host. Green agents randomly access local and remote services, such as SSHD, MySQL,
FTP, etc. Upon compromise, red agents are able to degrade these services, preventing users from
completing their work or slowing them down. The red team can attack the network through several
actions: scan the network to discover new hosts; scan a host to discover active services; exploit a
vulnerability to compromise a host; escalate privileges on a compromised node to gain root access;
degrade user experience of green agents; impact (stop) the critical Operational technology (OT)
service; discover deception (i.e., probe a host to determine if it is running decoy services).

The action sets for green agents (users), blue agents (defenders) and red agents (attackers) are pre-
sented in Table 4. Both blue and red agent actions have a specified time duration, ranging from one
time step (block/allow traffic) to five time steps for longer actions (restore host). Agents are not
allowed to choose another action before the previous action had completed.

The red agent in CAGE 4 is rather sophisticated and randomized, not deterministic, and is modeled
by:

• State transition diagram: The adversary follows a state transition diagram with eight states
and nine transitions (that is, actions) that defines the allowed subset of actions based on the
state of the host.

• State transition probability matrix: The adversary’s actions are randomized, using a state
transition probability matrix to choose among the subset of possible actions in each state. For
example, in State S (i.e., a Service was discovered on a host), the Red agent can choose to
Discover Remote Systems with 0.25 probability, Discover Deception with 0.25 probability, or
Exploit Remote Service with 0.5 probability.

We vary the probabilities in the state transition probability matrix to create additional red agent vari-
ants and cover a wider range of Red behaviors (fully Aggressive, Stealthy, or Impact). These new at-
tack vectors explore how two important characteristics of any cyber attack, namely the speed/stealth
of discovering vulnerabilities, and the attacker’s objective affect the attack success.

8 Communication and Cooperation

In this section, we explore other possible extensions that can help the defense strategy, focusing
on communication among agents. In the CybORG CAGE 4 environment, blue agents are facing
a challenging adversary, who can move through the network in two ways: (1) phishing emails,
and (2) active scanning of hosts and services. Each red agent conducts scanning activity mostly
within its own assigned subnet(s), and rarely reaches remotely into other subnets. This partitioning
is useful from a scaling perspective, to limit the observation and action spaces. However, it also
leads to limited compromise attempts that cross subnet boundaries. Thus, each defender can focus
its efforts on its own assigned subnet(s), requiring little communication or coordination with other
blue agents. Still, communication can be useful in other game settings, to send information about
network-level indicators of compromise, such as malicious file names, the hash of a malicious file,
or a compromised IP.

As a case study, we implemented a red agent that chooses external scanning in 50% of the time (once
it becomes aware of another subnet), and a blue agent that relies heavily on decoys (90% of blue

2https://github.com/cage-challenge/cage-challenge-4/tree/main
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Table 4: Action sets for green agents (users), blue agents (defenders), and red agents (attackers).

Green actions
Green Access Service Communicate with a server in the local zone or another zone. It has a

small chance of being flagged as malicious by Monitor.
Green Local Work Do work on the local host without communicating. It has a small chance

that this action results in red gaining a foothold on the host (e.g. as a
result of a Phishing email). Also, it has a small chance of being flagged
as malicious by Monitor.

Blue actions
Monitor Collection of information about flagged malicious activity on the net-

work.
Analyse Collection of further information relating to malware files, on a specific

host.
Deploy Decoy Setup of a decoy service (type randomly assigned) on a specified host.

Blue is alerted if Red accesses this service.
Remove Attempts to stop all processes identified as malicious by the monitor

action.
Restore Restoring a system to a known good state.
Block Traffic Block traffic to and from the specified zone.
Allow Traffic Allow traffic to and from the specified zone.

Red actions
Discover Remote Systems Discovers new hosts/IP addresses in the network through active scanning

using tools such as ping.
Aggressive Service Discov-
ery

Discovers responsive services on a selected host by initiating a connec-
tion with that host.

Stealth Service Discovery Same as Aggressive Service Discovery but slower and quieter (i.e., lower
chance of raising alerts).

Exploit Network Services Attempts to exploit a specified service on a remote system.
Privilege Escalate This action escalates the agent’s privilege on the host.
Impact This action disrupts the performance of the network and fulfils red’s

objective of denying the operational service.
Degrade Services If red has root privileges on a host, it may degrade the user experience

for a green agent.
Discover Deception Probe a host to determine if it is running decoy services.
Withdraw Remove red presence from target host.

Figure 7: Blue agents use 8-bit messages to warn other team members of potential compromised
hosts. This communication strategy shows some benefit over the case when no communication is
used. (MARL Decentralized training)

actions) to detect the adversary during the scanning phase of the attack. Blue agents broadcast 8-bit
messages encoding which remote host is accessing their decoys to warn other agents of potential
attackers. We uniquely identify the compromised hosts with 3 bits for the subnet number (1-7),
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and 4 bits for the host index (0-15). Each blue agent decodes the message to check if it refers to
hosts from its own subnet. If so, the message provides an indicator of compromise that will be
added to the observation vector. Figure 7 shows that there is some benefit of using this method of
communication. However, the benefit is small, due to other factors, such as phishing, stealth, and
false positives of the Monitor actions.

9 H-MARL Pipeline

Meta actions describe a class of actions (e.g., Restore, Investigate, Control Traffic), which the master
policy selects. This partitioning abstracts away additional details, such as what machine to restore,
making training and generalization easier for the master policy. Sub-policies describe the policies
that choose the primitive action ultimately executed in the environment (e.g., restore host 13). In ef-
fect the master policy chooses a meta action, and then samples a primitive action from the respective
sub-policy.

Expert 
Master

meta-action 𝐴𝑖 Sub-policy
𝜓𝑖

Expert Rules

(defined by 
security experts)

Example: 
If IOCs, then call 

Recover sub-policy.

Environment

action 𝑎

reward

observation (enhanced with IOCs)

select relevant 
subset of obs

Figure 8: H-MARL Expert Pipeline. The Master uses expert rules to choose a sub-policy that steps
through the environment. Sub-policy training is guided by the reward from the environment.

An overview of the H-MARL Expert pipeline is shown in Figure 8. Upon receiving an observation
the expert master uses pre-defined rules to choose a meta-action indexed by i The observation is then
processed into the respective observation space of sub-policy i, which chooses the final primitive
action to step through the environment. This approach aims to learn sub-policies that are specialized
for a single task.

Meta 
Master

meta-action 𝐴𝑖 Sub-policy
𝜓𝑖

Environment

action 𝑎

reward

observation (enhanced with IOCs)

select relevant 
subset of obs

Figure 9: H-MARL Meta Pipeline. The Master learns a probability distribution over meta-actions.
The Master training uses frozen sub-policies and is guided by the reward from the environment.

An overview of the H-MARL Meta pipeline is shown in Figure 9. The meta master policy learns
to reason on a higher-level about the decisions it can make by using state abstractions (e.g. are IOCs
present in the network?). During the training of the meta master, the sub-policies are kept frozen.
The master learns a probability distribution over the meta-actions, guided by the reward from the
environment.
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10 Traffic Control

Our next case study explores the use of Block and Allow Traffic actions to control the access be-
tween security zones. The H-MARL architecture consist of a Master policy and three sub-policies:
Investigate, Recover, and Control Traffic. We extended the observation space with network-level
indicators of compromise – blue agents communicate whether their assigned subnet(s) contain any
IOCs – enabling each agent to have a global view on the network, and facilitating the training of the
Control Traffic sub-policy.

Figure 10: H-MARL with 3 sub-policies: Investigate, Recover, and Control Traffic. Due to the
probabilistic expert rule, H-MARL Expert method is unstable, while H-MARL Meta performs well,
converging fast to a stable performance.

Figure 11: H-MARL with 3 sub-policies: Investigate, Recover, and Control Traffic, after removing
the penalty on failed user access (no degrade). All sub-policies are fine-tuned in this new context,
against a new red that attempts frequent remote exploits into other subnets. The H-MARL Expert
has regained a stable high performance and H-MARL Meta has similar performance.

Defining an expert knowledge to guide the training of a Control Traffic sub-policy to near-optimal is
particularly difficult, due to the conflicting outcomes of using Block actions – stop red agents from
moving through the network, but at the expense of preventing user agents from completing their
work.

For our current experiments, we use the following expert master policy to train the sub-policies (Al-
gorithm 1), and leave further research into other expert rules for future work: If indicators of com-
promise are present on hosts, call the Recover sub-policy; otherwise, randomly choose Investigate
for 75% of the time, and Control Traffic for the remaining 25%. Thus, the Investigate sub-policy is
assigned more weight, as we expect it to be useful more frequently. In fact, for best performance, we
use (keep fixed) the Investigate and Recover sub-policies trained previously (see paper), since they
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have been learned with well-defined expert knowledge, and only train the Control Traffic sub-policy,
using the rule specified above.

Next, we follow Algorithm 2 to train the Master policy using the three pre-trained sub-policies.
Figure 10 shows the reward as training progresses during Algorithm 1 (using the expert rule), and
Algorithm 2 (train the master). We observe the instability of the expert, which has been trained with
a probability-based rule, reinforcing the importance of learning the master policy. The H-MARL
Meta algorithm is more stable, as the master policy learns how to combine the sub-policies to solve
the meta-task, and is not restricted by a fixed, deterministic rule.

Turning off Degrade Service. In our next set of experiments illustrated in Figure 11, we fine-tuned
the sub-policies after turning off the reward penalty of green agents being affected by failed service
access. We also used the modified red agent introduced in Section 8 of the supplemental material,
which performs remote scanning into other subnets more often, and can still collect rewards by
impacting the critical OT service. With block actions being now useful at preventing red agents
from spreading, without incurring penalties, H-MARL Expert regains a stable, high performance, as
expected. H-MARL Meta achieves similar performance with H-MARL Expert in this setting. The
blue agents are using 4× more block actions when the failed user access penalty has been removed.

11 H-MARL Transferability

Figure 12 presents the fine-tuning results of the Recover sub-policy, pre-trained against Aggressive
Red, the average-performing attacker. The Recover sub-policy is trained on an observation space
consisting of indicators of compromise within a subnet. This sub-policy learns a strong strategy
regardless of the attack, and can be directly reused against other red agents.

Figure 12: The Recover sub-task is rather agnostic to the attack type and can be re-used against
other adversaries.


