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ABSTRACT

Accurate molecular property prediction is central to drug discovery, yet Graph
Neural Networks (GNNs) often underperform in data-scarce regimes and can trail
fixed fingerprints. We introduce XIMP (Cross Graph Inter-Message Passing), which
performs message passing both within and across graph representations, integrating
multiple granularities in a single model. In our chemistry setting, XIMP unifies
the molecular graph with junction trees (scaffold-aware) and extended reduced
graphs (pharmacophoric), enabling per-atom use of complementary views and
exceeding the expressivity of the Weisfeiler-Leman isomorphism test. Unlike prior
work – often limited to few abstractions, indirect exchange via the original graph,
or overlooking oversquashing – XIMP supports arbitrary numbers of abstractions
and both direct as well as indirect inter-abstraction communication. Across ten
diverse molecular property-prediction tasks, XIMP outperforms state-of-the-art
GNNs and fingerprint baselines in most cases, leveraging interpretable abstractions
as an inductive bias to guide learning toward established chemical concepts and
enhance generalization in data-scarce regimes.

1 INTRODUCTION

Early drug discovery benefits from machine learning; classical models (e.g., SVMs, random forests)
have long been used for molecular data (Dara et al., 2022). Recently, deep learning has driven
advances in image recognition (Krizhevsky et al., 2017), natural language processing (OpenAI, 2024),
and the life sciences (Jumper et al., 2021), enabled by large datasets and efficient processing. A
core task is molecular property prediction, where compounds are represented by chemical finger-
prints encoding substructures as bit vectors. Variants that extract and encode molecular subgraphs
exist (Rogers & Hahn, 2010; Daylight, 2008), but their predictive performance varies across tasks.

Graph neural networks (GNNs) are widely applied to molecular property prediction (Chami et al.,
2022; Gilmer et al., 2017), but on key tasks they often fail to surpass classical fingerprint-based
methods (Stepišnik et al., 2021; Jiang et al., 2021), with gains mainly on large datasets (Jiang
et al., 2021; Deng et al., 2023). Many tasks lack such data. A common remedy is injecting do-
main knowledge via chemical structure augmentation (Magar et al., 2022) or invariant/equivariant
architectures (Cremer et al., 2023). These inductive biases align models with chemical principles,
boosting generalization in low-data regimes: equivariant models enforce physical symmetries, while
augmentations expose identity-preserving variations. Reduced graphs provide a complementary bias
by abstracting molecules into functional groups, rings, and pharmacophores, emphasizing features
central to recognition and activity. Embedding such abstractions into neural architectures promotes
interpretability, reduces data demands, and strengthens robustness and predictive performance. How-
ever, the integration of interpretable reduced graphs and their cross-communication within GNNs
remains underexplored. In chemistry, multiple abstractions are often (i) processed sequentially (Kong
et al., 2022), or, when simultaneous, either (ii) message passing is limited to local aggregation (Ji
et al., 2022), (iii) communication occurs only indirectly via the molecular graph (Li et al., 2024), or
(iv) only a single abstraction is used (Fey et al., 2020; Li et al., 2024; Kong et al., 2022). Outside
chemistry, Finder et al. (2025) show that direct cross-graph communication mitigates oversquash-
ing and improves long-range modeling, albeit with generic abstractions. Moreover, Deep graph
matching (Wang et al., 2018; Li et al., 2019), as well as hierarchical pooling (Ying et al., 2018) also
exchange information across graphs, but address tasks other than molecular property prediction.
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To address this gap, we propose XIMP (cross graph inter-message passing), a versatile architecture
that integrates multiple graph views at different coarseness levels via intra- and inter-graph message
passing. We combine the molecular graph with two complementary abstractions: Junction Trees
(JT) (Rarey & Dixon, 1998), capturing hierarchical fragment organization, and extended reduced
graphs (ErG) (Stiefl et al., 2006), encoding pharmacophoric features and topology. We further coarsen
JTs to mitigate oversquashing and better capture long-range interactions. By explicitly linking these
views, XIMP learns chemically informative representations where conventional GNNs fail.

Empirically, we benchmark XIMP against various GNN baselines and its closest competitor, which
either (i) fuses multiple representations only at the final layer or (ii) performs inter-message passing for
a single graph pair (Fey et al., 2020). XIMP typically outperforms these state-of-the-art models across
diverse molecular property prediction tasks, effectively leveraging complementary graph abstractions.
XIMP also surpasses fixed descriptors such as ECFP (Rogers & Hahn, 2010), underscoring the benefit
of learning from chemically meaningful abstractions.

Related Work. In principle, most GNNs, e.g., (Kipf & Welling, 2017; Li & Leskovec, 2022;
Hamilton et al., 2017), can operate on molecular graphs, but conventional message passing is generally
limited by the Weisfeiler-Leman (1-WL) test and not universal for graph functions (Xu et al., 2019;
Weisfeiler & Leman, 1968). They can even fail on tasks such as small-cycle detection (Chen et al.,
2020), crucial for properties tied to local structures (e.g., aromatic rings). Remedies include invariant
graph networks (Maron et al., 2019a;b), relational pooling (Murphy et al., 2019; Chen et al., 2020),
and higher-order WL extensions (Morris et al., 2019). In contrast, hierarchical inter-message passing
(HIMP) is a simple approach with state-of-the-art performance across multiple datasets (Fey et al.,
2020). Applied to JTs, it distinguishes molecules such as decalin and bicyclopentyl – indistinguishable
by 1-WL on the molecular graph – by exploiting their 1-WL-distinguishable reduced forms, thereby
capturing subtle, biologically relevant variations.

However, integrating chemically interpretable reduced graphs and modeling their communication
within message passing remains underexplored. JTs have primarily supported molecule genera-
tion (Jin et al., 2019; 2018). For property prediction, RG-MPNN (Kong et al., 2022) applies an
ErG-like reduction but processes graphs sequentially, unlike HIMP’s simultaneous scheme. Recent
works employ multiple reductions (JT, ErG, functional-group graphs (Ji et al., 2022)) but restrict
message passing to each graph and pool via a super-node (Kengkanna & Ohue, 2023; 2024). Neural
atoms (Li et al., 2024) allow molecular-reduced graph messaging, but the size of the reduced graph
is manually fixed. Generic reductions show that inter-graph passing mitigates oversquashing and
improves long-range performance (Finder et al., 2025). Similarly, Wollschläger et al. (2024) intro-
duce substructure-aware biases, though limited to a single fragment abstraction and neighbor-only
communication. Their bias is mainly topological (rings, paths, junctions), lacking explicit aromaticity,
pharmacophoric rules, or electronic effects. Thus, while multiple chemical abstractions have been
used, prior work does not fully exploit inter-graph communication.

Conversely, prior work on inter-graph information exchange addresses different problems. Deep
graph matching (Wang et al., 2018; Li et al., 2019), compares structural similarity between distinct
graphs via cross-graph message passing, unlike our setting, which exchanges messages among
representations of the same graph. Graph pooling methods (e.g., DIFFPOOL (Ying et al., 2018), topk
pooling (Gao & Ji, 2022)) learn coarser representations, where inter-message passing aggregates
information so that representative nodes capture key signals for downstream layers.

Contributions. We introduce two variants of inter-message passing that enable information ex-
change between a graph and an arbitrary number of its abstractions. Unlike existing techniques, (i)
communication can occur simultaneously between the graph and any number of abstractions and
among the abstractions themselves, and (ii) both direct and indirect communication pathways are
considered. While domain-agnostic and not technically limited to hierarchical representations or
chemistry, we demonstrate XIMP’s benefits on molecular tasks, where it learns from chemically
and structurally interpretable abstractions, for which we also characterize its enhanced expressivity
beyond the 1-WL test. Moreover, we show XIMP’s potential to mitigate oversquashing and improve
long-range interactions by using multiple coarseness levels in the structural abstractions. Together,
these components yield XIMP, a generalization of prior inter-message passing methods that performs
strongly compared to state-of-the-art baselines accross various datasets and tasks.
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2 PRELIMINARIES

In this section, we discuss graph abstractions for molecules, neural architectures using single and
multiple graphs, and introduce our notation along the way.

Molecular Graphs and Reduced Graphs. A molecular graph encodes a molecule’s structure:
nodes represent the atoms and edges the bonds (Figure 1a (b)). As XIMP can operate on multiple
graph views concurrently, this includes reduced graphs (Birchall & Gillet, 2011) extracted from the
molecular graph. A reduced graph modifies the structure while retaining and/or adding information
about key features and topology, enabling more generalized analyses of the represented molecule. We
briefly describe two complementary reduced graphs that provide interpretable abstractions matching
our chemistry setting. (i) The junction tree (JT) (Jin et al., 2018), also used in HIMP, is a hierarchical
tree of molecular fragments whose nodes represent bonds, rings, bridges, or singletons (Figure 1a
(d)). (ii) The extended reduced graph (ErG) (Stiefl et al., 2006) encodes pharmacophoric features and
atom-level topological relationships relevant to biological activity (Figure 1b). JTs and ErGs provide
abstract molecular representations at different granularities. JTs condense the molecular graph into
a minimal set of fragment nodes, enabling long-range interaction modeling. ErGs, on the other
hand, are more fine-grained: they treat rings with explicit bridgehead handling and add node features
encoding higher-level pharmacophoric information absent in JTs and standard molecular graphs.
Together with the molecular graph, these views offer complementary, non-redundant perspectives on
molecular topology. A detailed description is available in Appendix B.

Message Passing Graph Neural Networks. GNNs learn node representations through message
passing (MP), which propagates information across nodes and edges (Gilmer et al., 2017). They
show strong performance across domains, including social networks (Wu et al., 2020), drug dis-
covery (Chami et al., 2022), and others (Dai et al., 2017). In molecular property prediction, GNNs
operate on a molecular graph G = (V,E), where V is a set of atoms and E is a set of bonds of a
molecule. First, each node v ∈ V (G), and edge (u, v) ∈ E(G) is endowed with an initial feature
vector x(0)

u ∈ Rdv and e
(0)
(u,v) ∈ Rde representing, for example, the atom and bond type, respectively.

The node embeddings are then updated through message-passing layers by aggregating information
from their neighbors N(v). The l-th layer recursively updates the embedding x

(l)
v of node v via

m(l)
v = AGG

θ
(l)
1

({{(
x(l−1)
w , e

(l−1)
(w,v)

) ∣∣∣ w ∈ N(v)
}})

, x(l)
v = COMB

θ
(l)
2

(
x(l−1)
v ,m(l)

v

)
,

where e
(l)
(w,v) represents the embedding of edge (w, v) ∈ E(G), {{·}} denotes a multiset and N(v) =

{u ∈ V (G) | (u, v) ∈ E(G)} are the neighbors of the node v. The functions AGG and COMB are
parameterized by θ

(l)
1 and θ

(l)
2 , respectively, which are optimized during training. Ultimately, after

passing through L layers, the output of the READ function provides the graph embedding optimized
for predicting the desired molecular property:

hG = READ
({{

x(L)
v | v ∈ V (G)

}})
.

With multiple graph abstractions, intra-message passing restricts communication to a single graph;
message passing runs in parallel on the molecular graph and on each abstraction. In contrast, inter-
message passing enables cross-graph exchange: information flows between the molecular graph and
its abstractions and, in XIMP, also between different abstractions.

Hierarchical Inter-Message Passing. HIMP (Fey et al., 2020) is a GNN architecture that leverages
two GNN models. One model operates on the molecular graph (GIN-E), while the other operates on
its corresponding JT (GIN), leveraging the hierarchical representation. Both models use message
passing as described in Section 2. Additionally, after each layer, an inter-message passing (IMP)
model facilitates the exchange of information between these two graph representations (Figure 2).
For a complete outline of HIMP, see Appendix G. HIMP and XIMP instantiate message passing with
GIN-E (Graph Isomorphism Network with edge features) on molecular graphs with edge features (Hu
et al., 2020), and with GIN on abstractions without edge features (e.g., JTs, higher-order structures (Li
& Leskovec, 2022)); details in Appendix F.
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(d) Junction Tree (JT)

(a) Molecular Structure (b) Molecular Graph

(c) Cluster Graph

(a) The junction tree decomposition converts a molecular
structure (a) into a molecular graph (b), where nodes are
atoms and edges are bonds. A cluster graph (c) is built by
grouping atoms into cycles and assigning clusters to non-
cycle edges, with edges between clusters if they share
atoms. Cycles in the cluster graph are removed by adding
the shared atom as a separate cluster, yielding the junction
tree (d).

Extended reduced Graph (ErG)Molecular Graph

(b) Molecular graph (left) and extended reduced
graph (right). Construction: (1) adjust atom charges
to reflect physiological conditions; (2) assign H-
bond donor/acceptor properties; (3) identify and
tag endcap groups (lateral hydrophobic features, in-
cluding thioethers); (4) add a ring centroid (aro-
matic/hydrophobic), link it to substituted atom-
s/bridgeheads, remove unsubstituted atoms, and keep
bonds among the rest.

Figure 1: Molecular graph abstractions: (a) junction tree and (b) extended reduced graph. Arrows
indicate node mappings between the graphs; their colors encode singleton or group memberships.

3 CROSS GRAPH INTER-MESSAGE PASSING

We generalize existing inter-message passing approaches to an arbitrary number of abstractions
and direct as well as indirect communication flows. To that purpose, we introduce two variants of
inter-message passing incorporating reduced graphs.

Indirect Inter-Message Passing (I2MP). Information exchange between the original (molecular)
and other graph representations occurs within each layer. While we call these other representations
reduced, they can be arbitrary graph representations.

Formally, let X(l) ∈ R|V (G)|×dx be the embedding matrix of the molecular graph G in layer l, and
T

(l)
1 ,T

(l)
2 , ...,T

(l)
n be the embedding matrices of the corresponding other representations (reduced

graphs) T1, T2, ..., Tn in layer l. Note that, T (l)
i ∈ R|V (Ti)|×dx for all i in {1, 2, . . . , n}. The

inter-message passing step changes the intermediate embedding matrices as follows:

X̃(l) ←X(l) +

n∑
i=1

σ

(
SiT

(l)
i W

(l)
i,1

)
, T̃

(l)
i ← T

(l)
i + σ

(
ST
i X

(l)W
(l)
i,2

)
,

where W
(l)
i,1 ,W

(l)
i,2 ∈ Rdx×dx are trainable parameters within layer l, Si ∈ {0, 1}|V (G)|×|V (Ti)| are

the mapping matrices that store the assignment of nodes of the molecular graph to nodes of the i-th
reduced graph, and σ denotes non-linearity. It is important to note that for our purposes, X must be
the embedding matrix of G since we require a mapping between X and all Ti.

Direct Inter-Message Passing (DIMP). Inter-message passing can also be done directly between
reduced graphs. Beyond exchanging information between the original molecular graph G and
each reduced graph Ti, we also allow pairwise communication among the reduced graphs. Let
T

(l)
i ∈ R|V (Ti)|×dx be the layer-l embeddings of Ti. We assume that every node of G belongs

to at least one node in each reduced graph Ti (i.e., there exists a left-total abstraction assignment
Ri ⊆ V (G) × V (Ti)) , while one node of Ti may summarize many nodes of G. Hence, in the
assignment matrix Si ∈ {0, 1}|V (G)|×|V (Ti)| each row contains one or more 1s (or, more generally,
weighted memberships). This formulation naturally accounts for overlapping abstractions such as
fused rings or functional groups, where a node of G can contribute to multiple reduced nodes. For
every unordered pair (i, k) with i ̸= k, messages from Tk to Ti are computed by

M
(l)
k→i = σ

(
S̃ik T

(l)
k W

(l)
k→i

)
, S̃ik = D−1

T,i S
⊤
i D−1

G,k Sk,
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Junction

Tree

Extended
reduced Graph

Molecular
Graph

DIMP I²MP MP IMP

Figure 2: Visualization of communication flows in XIMP and HIMP. XIMP employs DIMP, I2MP,
and MP, while HIMP uses only IMP and MP. Node colors denote graph semantics; arrows indicate
bidirectional message passing: red/green for one-to-many ring–abstraction relations, blue for one-to-
one cross-graph relations, and yellow for one-to-one within-graph relations.

where W
(l)
k→i ∈ Rdx×dx are trainable, σ is a non-linearity (ReLU), DT,i = diag(S⊤

i 1) stores
the sizes of the Ti clusters (total membership of nodes of G in each reduced node), and DG,k =
diag(Sk1) stores the number of nodes of Tk assigned to each node of G. The left normalizing matrix
D−1

G,k ensures that a node of G with multiple memberships in Tk does not contribute disproportionately
when projecting from Tk to G, while the right normalizing matrix D−1

T,i balances the aggregation of
multiple nodes of G into a node of Ti. This prevents multiplicity-induced overweighting, ensures
stable message magnitudes across overlaps, and reflects the chemical intuition that atoms participating
in several functional roles (e.g., ring junctions or substituents) should distribute their influence fairly
among all abstractions. We formalize this as follows (proof in Appendix J):

Proposition 3.1. Let Tk, Ti be left-total abstractions of G, with Sk ∈ {0, 1}|V (G)|×|V (Tk)|, Si ∈
{0, 1}|V (G)|×|V (Ti)| and S̃i = D−1

T,i S
⊤
i and S̃k = D−1

G,k Sk such that S̃ik = S̃iS̃k. Further, let

M̃
(l)
k→i = S̃ikT

(l)
k be the messages from Tk to Ti before the application of the trainable parameter

matrix or a nonlinearity. Then, the following statements hold:
1. ∥M̃(l)

k→i∥∞≤ ∥Tk∥∞ and ∥M̃(l)
k→i∥1≤ α∥Tk∥1 for some α ∈ R, |V (Ti)|

|V (Tk)| ≤ α ≤ |V (Ti)|
2. For any x ∈ Rdx and Tk = 1x⊤ ∈ R|V (Tk)|×dx , S̃ik Tk = 1x⊤

Next, reduced-graph embeddings are updated additively:

T̃
(l)
i ← T

(l)
i +M

(l)
k→i, T̃

(l)
k ← T

(l)
k +M

(l)
i→k,

for all i, k ∈ [1, n] with i ̸= k. Note that if Tk is a partition of G, then DG,k = I and the expression
reduces to the simpler form S̃ik = D−1

T,iS
⊤
i Sk. Finally, we define our READ function as the

combination of mean READ of individual graph representations, each weighted by a trainable matrix:

hG =
1

|V (G)|

|V (G)|∑
i=1

x
(L)
i W0

n⊕
j=1

1

|V (Tj)|

|V (Tj)|∑
i=1

t
(L)
j,i Wj

with
⊕

denoting a graph level aggregation (i.e., concatenation || or summation
∑

),
W0,W1, ...,Wn ∈ Rdx×dx are trainable matrices, x(L)

i ∈ Rdx holds for the final embedding
of the i-th node of graph G after L layers, similarly t

(L)
j,i ∈ Rdx denotes the final embedding of the

i-th node of the j-th reduced graph.

Mitigating Oversquashing. Oversquashing was first linked to bottleneck edges (Alon & Yahav,
2021) and later to inter-node distances (Di Giovanni et al., 2023). A complementary perspective
views oversquashing as a manifestation of limited effective receptive field in GNNs (Finder et al.,
2025). Many molecular properties (e.g., solubility, lipophilicity) depend on long-range interactions,
not just local groups; oversquashing hinders this propagation. Using XIMP, we mitigate this with an
approach motivated by, yet orthogonal to, Finder et al. (2025): instead of changing the propagation
scheme, we coarsen the JT by repeatedly contracting leaves into parents, shortening paths and easing
bottlenecks. These higher-coarseness JTs are provided to XIMP alongside the other abstractions.
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Formally, we define a simple resolution-lowering operator on a JT T (r−1) = (V (r−1), E(r−1)) with
node features f (r−1), resolution r and raw→reduced mapping S(r−1). Nodes of degree one (leaves)
are contracted into their unique parent, with all assignments in S(r−1) redirected accordingly. Parent
features are updated by a simple overwrite rule, f (r)(p) = min f (r−1)(p), f (r−1)(ℓ) for each leaf
ℓ, and duplicate mappings are removed. Edges incident to leaves are pruned, isolated nodes are
preserved, and indices are compacted via an order-preserving relabeling ϕ : V (r−1) \L(r−1) → V (r).
The result is a reduced graph T (r) = (V (r), E(r)) with updated features f (r) and mapping S(r),
carrying forward the same number of raw nodes. We apply the resolution-lowering operator only to
the JT, not the ErG, because (a) ErGs may contain substructures not reducible by this simple scheme
(Figure 1), and (b) ErGs encode pharmacophoric properties absent in JTs, which focus solely on
molecular structure (Section 2).

We show (under negligible assumptions) that the above scheme reduces inter-node communication
distances in XIMP (proof in Appendix K), thereby potentially mitigating oversquashing and improving
long-range interactions.
Proposition 3.2. In XIMP’s communication graph, contracting rings into single nodes and iteratively
folding leaves into their parents with standard couplings never increases shortest-path distances.
Distances between node pairs whose minimal path includes a subpath of at least three consecutive
vertices inside a contracted region are strictly reduced. Successive rounds yield cumulative reductions.

Expressivity and Complexity. While HIMP couples the molecular graph with a single junction-tree
abstraction, XIMP supports multiple reduced graphs with both indirect and direct inter-message pass-
ing, strictly subsuming HIMP. XIMP admits richer representations via cross-abstraction embeddings,
structured chemical priors, and multi-resolution coarsenings. We formalize this relation between
HIMP and XIMP’s expressivity as follows (proofs in Appendix I).
Theorem 3.3. Let the hypothesis classes realized by HIMP and XIMP with depth L, hidden dimension
dx, and number of abstractions n be denoted byHHIMP(L, dx) andHXIMP(L, dx, n). Then for any
L, dx and n ≥ 1,HHIMP(L, dx) ⊆ HXIMP(L, dx, n).

By construction, XIMP inherits and extends HIMP’s ability to exceed 1-WL expressivity (Section 1).
Moreover, to isolate the impact incorporating structurally different abstractions in conjunction has on
expressivity (i.e., without introducing novel features), we show the following proposition.
Proposition 3.4. There exist two molecules whose molecular graphs G, junction trees T , and
extended reduced graphs R are each indistinguishable by unlabeled 1-WL when considered in
isolation, yet their compound graph G+ = G ∪̇ T ∪̇ R (with the disjoint union ∪̇) augmented
with the inter-graph edges EX = {(v, u) | ST [v, u] = 1} ∪ {(v, w) | SR[v, w] = 1}, is
distinguishable by unlabeled 1-WL. Here ST ∈ {0, 1}|V (G)|×|V (T )| and SR ∈ {0, 1}|V (G)|×|V (R)|

record atom-cluster (for T ) and atom-ErG-node (for R) incidences.

In our chemical setting, this relation corresponds to the I2MP+MP communication graph in XIMP in
the sense of Proposition 3.2. Furthermore, Proposition 3.4 suggests XIMP’s expressivity benefits
potentially transfer beyond molecular datasets, where abstractions or entire graphs may be unlabeled.

Regarding complexity, XIMP’s per-layer runtime scales linearly with molecular graph size but adds a
quadratic cost in hidden dimension and number of abstractions due to inter-message passing. Parame-
ter count rises from HIMP’s single quadratic term to additional linear and quadratic contributions,
though modest in practice with few abstractions. Memory is dominated by node embeddings, with
extra overhead from mapping matrices that also scale linearly and quadratically. Overall, XIMP
maintains linear scaling with graph size and quadratic scaling with abstractions, which we consider a
reasonable trade-off given the observed gains in predictive performance. For details, see Appendix H.

Assumptions and Limitations. In the chosen chemistry setting, XIMP assumes that abstractions
such as junction trees (JT) and extended reduced graphs (ErG) provide useful inductive biases and
that preprocessing (e.g., ring detection, pharmacophore tagging) yields accurate graph-abstraction
mappings. Complexity grows polynomially in the number of abstractions n, so we restrict to
n ≤ 3 in practice. Empirically, evaluation is limited to MoleculeNet and Polaris; results may not
generalize to all biochemical tasks. Hyperparameters were chosen by k-fold validation but tested
with scaffold splits, potentially underestimating generalization. XIMP is strongest on ADMET tasks,
while conventional GNNs remain competitive on properties driven by global structure.
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Model ADMET ↓ Potency ↓ MoleculeNet ↓

HLM KSOL LogD
MDR1-

MDCKII MLM
pIC50
MERS

pIC50
SARS ESOL FreeSolv Lipo

ECFP 0.56
±
0.02 0.42

±
0.01 0.86

±
0.02 0.38

±
0.01 0.55 ±

0.02 0.79
±
0.01 0.57

±
0.01 1.21

±
0.06 2.94

±
0.06 0.73

±
0.02

GNN 0.56
±
0.03 0.48

±
0.07 0.68 ±

0.07 0.37
±
0.02 0.64

±
0.05 0.71

±
0.02 0.45

±
0.05 0.71 ±

0.04 1.58 ±
0.17 0.52 ±

0.02

HIMP 0.54 ±
0.05 0.35 ±

0.04 0.80
±
0.05 0.35 ±

0.03 0.56
±
0.06 0.64 ±

0.03 0.39 ±
0.04 0.80 ±

0.07 1.77 ±
0.15 0.52 ±

0.02

XIMP 0.53 ±
0.08 0.37 ±

0.04 0.69 ±
0.03 0.31 ±

0.03 0.49 ±
0.02 0.69 ±

0.05 0.41 ±
0.03 0.82

±
0.09 1.83

±
0.17 0.52 ±

0.02

Table 1: ADMET, Potency, and MoleculeNet results. Cells show 10-run mean/std of test MAE
based on the hyperparameters that resulted in the lowest validation score. GNN abstracts GCN,
GIN, GAT, GraphSAGE (i.e., best-performing GNN chosen as representative; fine-grained results in
Appendix D). Dark red bold = best; dark blue bold = second-best (ties: all best are marked).

Model ADMET ↓ Potency ↓ MoleculeNet ↓

HLM KSOL LogD
MDR1-

MDCKII MLM
pIC50
MERS

pIC50
SARS ESOL FreeSolv Lipo

ECFP 0.48 ±
0.02 0.38

±
0.02 0.72

±
0.01 0.36

±
0.02 0.54 ±

0.02 0.75
±
0.01 0.52

±
0.02 1.16

±
0.05 2.83

±
0.07 0.73

±
0.02

GNN 0.54
±
0.05 0.45

±
0.08 0.67 ±

0.03 0.39
±
0.03 0.56

±
0.05 0.71

±
0.02 0.42

±
0.02 0.71 ±

0.04 1.62 ±
0.14 0.52 ±

0.02

HIMP 0.49 ±
0.04 0.34 ±

0.06 0.81
±
0.07 0.33 ±

0.03 0.57
±
0.06 0.64 ±

0.03 0.41 ±
0.06 0.79 ±

0.07 1.82
±
0.1 0.54 ±

0.02

XIMP 0.48 ±
0.07 0.33 ±

0.03 0.69 ±
0.06 0.32 ±

0.01 0.52 ±
0.07 0.68 ±

0.04 0.38 ±
0.03 0.83

±
0.08 1.77 ±

0.16 0.52 ±
0.01

Table 2: ADMET, Potency, and MoleculeNet results. Cells show 10-run mean/std test MAE for the
best hyperparameters for each model chosen on the given test dataset. GNN abstracts GCN, GIN,
GAT, GraphSAGE (i.e., best-performing GNN model shown; fine-grained results in Appendix D).
Dark red bold = best; dark blue bold = second-best (ties: all best are marked).

4 EXPERIMENTAL EVALUATION

To evaluate the hypothesis that XIMP enhances predictive performance, we benchmarked it against
HIMP, several widely used GNN baselines, and Extended Connectivity Fingerprints (ECFP) (Rogers
& Hahn, 2010), a standard representation in molecular tasks. We briefly describe our experimental
framework1 and, to ensure reproducibility, provide details in Appendix A and C. For robust evidence,
we conduct extensive hyperparameter search and ablations, totaling approximately 1M training runs.

Models and Datasets. Our setup consists of an encoder followed by a regression head. The regres-
sion head is implemented as a k-layer multilayer perceptron (MLP) with ReLU activations, applied
to the graph-level embeddings produced by the encoder. For encoding, we compare GCN (Kipf &
Welling, 2017), GIN (Li & Leskovec, 2022), GAT (Veličković et al., 2018), GraphSAGE (Hamil-
ton et al., 2017), and HIMP (Section 2), plus an ECFP-based non-learnable baseline where only
the regression head is trained. Together these cover convolutional, attention-based, and inductive
aggregations. We evaluate on ten prediction tasks from MoleculeNet (Wu et al., 2018) and the
Polaris challenge (ASAP Discovery x OpenADMET, 2025a;b), a recent dataset targeting ADMET
(Absorption, Distribution, Metabolism, Excretion, Toxicity) endpoints and drug-candidate potency.

Training, Hyperparameter Search. We trained all models with Adam and MAE loss. Hyperpa-
rameters were chosen via stratified 10-fold cross-validation on binned regression targets to mitigate
target imbalance during selection. We deliberately used target-based rather than purely scaffold-based
CV: with small datasets (Appendix A), scaffold k-fold splits yield imbalanced target distributions
and (at high k with few scaffolds) small, uneven folds, making model selection unreliable. Hyperpa-
rameter tuning was performed via grid search. For final evaluation, we held out a 10% scaffold-split
test set to assess chemical-space generalization, retrained the selected configuration on the remaining
data, and evaluated with MAE. We chose this protocol because, to our knowledge, no stratified
scaffold split exists for regression: Joeres et al. (2025) consider classification only, and Zhang et al.
(2025) control input-graph similarity rather than target stratification. This induces a mismatch –

1https://anonymous.4open.science/r/ximp-CF61/
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Figure 3: Performance profiles of architectures on ADMET, Potency, and MoleculeNet, computed
from Tables 1 and 2. Panels 1-2 (left): Empirical Cumulative Distribution Functions (ECDFs) of
the performance ratio ρ = MAE(model, task)/minarch MAE(task), where ρ = 1 is best and ρ > 1
quantifies degradation; curves closer to the top-left indicate better overall performance. Panels 3-4
(right): discrete summaries across tasks. Bars show the fraction of tasks a model wins (ρ = 1) or is
within a practical tolerance (ρ ≤ τ , here τ = 1.05). Panels 1, 3 use test MAE with hyperparameters
chosen by validation; panels 2, 4 use test MAE under best hyperparameters per model and dataset.
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Figure 4: Validation MAE (x-axis) versus test MAE (y-axis) across hyperparameter configurations.
For each task, the lowest test MAE is marked by a green circle and the lowest validation MAE by a
red circle. Each panel reports the Pearson correlation (r) and R2 score. Points closer to the lower left
indicate better performance. To improve readability, non-optimal runs (neither red nor green) were
randomly subsampled at 150 per architecture.

stratified CV for selection vs. scaffold-based testing – that can complicate hyperparameter choice, as
validation folds might not match the test distribution; we nonetheless adopt this conservative setup
because scaffold splitting yields a structurally distinct and more realistic test set. Accordingly, we
report both, mean/std of the test MAE for hyperparameters selected via mean validation MAE across
stratified folds (Table 1) for final assessment, and mean/std of the test MAE for optimal test-selected
hyperparameters on the scaffold-split holdout (Table 2) as an optimistic upper bound on performance
to illustrate what could be achieved with an ideal hyperparameter search.

Results. We find that XIMP yields the best predictive performance for the hyperparameters chosen
via mean validation MAE in 4/10 cases, whereas the strongest baseline method (HIMP) likewise
outperforms it’s competitors on a given dataset in 4/10 cases (Table 1). We note that choosing our
model according to this criterion yields less than optimal results, see Figure 4. This stems from a
mismatch between the assumed distributions of target and scaffolds in the training and test data.

Generally though, we find that XIMP is the most robust of the evaluated methods. This is reflected
in the aggregate view we provide in Figure 3 (left), which shows the per-architecture ECDFs of
the results of XIMP and its baselines and is equivalent to the performance profiles introduced
by Dolan & Moré (2002), a standard method for benchmarking algorithms. XIMP’s performance
profile dominates all baselines, both for validation selected hyperparameters as well as globally best
hyperparameters, underlining its robustness across diverse tasks. Figure 3 (right), which provides a
discrete summary perspective across tasks, further underlines XIMP’s robustness: more often than
any of it’s baselines, XIMP is either the best performing model measured by it’s performance ratio ρ
or within a practical tolerance of the best performing model.

On a more granular level, Tables 1 and 2 both further confirm the strength of XIMP’s ability to
integrate multiple chemically meaningful and interpretable reduced graphs (junction trees for coarse-
grained connectivity, ErGs for fine-grained and pharmacophoric patterns) with the molecular graph
itself. This gives it an inductive bias toward functional groups, pharmacophores, and scaffold
structures, and, unlike other methods, XIMP also allows for direct message passing between these
abstractions, allowing new features to be learned in ways not previously possible. Hence, as expected,
for the ADMET tasks that take advantage of pharmacophoric features (such as HLM, MDR1-MDCKII,
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Figure 5: Relative test error across ErG/JT settings per architecture with medians across targets. Each
panel shows ∆ in milli-MAE by target task (x-axis), colored by whether ErG, JT or a combination is
used. Here ∆ = 1000 × (MAE −mincfg MAE), so the best setting is 0; the other bars report the
gap. Bar labels report exact ∆ values, and a horizontal line at 0 marks the per-target optimum.

MLM), XIMP typically performs better than its competitors, due to its ability to include chemically
relevant features (H-Acceptor, H-Donor). Conversely, for tasks that rely on the overall structure of
the molecule (ESOL, FreeSolv, Lipophilicity), conventional GNNs perform competitively.

In low-data regimes, the inductive bias of XIMP also provides a clear advantage. For example,
the ADMET dataset comprises only 560 molecules, in contrast to the substantially larger Potency
and MoleculeNet datasets (see Appendix A). Under these conditions, XIMP achieves superior
performance in 3/5 or 4/5 tasks respectively, outperforming competing methods (Tables 1 and 2).

Hyperparameters and Ablation. We also observe that there is a large discrepancy between
test MAE for the hyperparameters chosen via mean validation MAE and globally best test MAE
(Figure 4). For the globally best test MAE, we find that XIMP outperforms its baselines in 6/10
cases and specifically on 4/5 ADMET tasks, whereas the best performing baseline methods (GNNs)
only accomplish this in 4/10 cases (the best-performing specific GNN is GIN, which is best in 2/10
cases, see Appendix D). While evaluating hyperparameters optimally chosen on the test set naturally
constitutes data leakage, we include these results as an optimistic upper bound to performance,
indicating the possibility for improvement under perfect tuning.

Finally, we evaluated how well the components of XIMP exploit multiple graph abstractions (i.e.,
ERG and JT). DIMP+MP is typically the best performing configuration for multi-abstraction settings
where ERG and JT are both active (Figure 5). In settings where I2MP+MP or I2MP+DIMP+MP are
used, XIMP shows a preference for the ERG abstraction. For the configuration without DIMP or
I2MP, no clear trend emerges; the utility of abstraction combinations appears largely dataset- and
task-dependent. The median relative test error across targets indicates that I2MP+DIMP is most
robust to abstraction choice, whereas MP alone is least, underscoring XIMP’s adaptability to diverse
abstraction combinations. A more detailed ablation study is provided in Appendix E.

5 CONCLUSION

We presented XIMP, a versatile inter-message-passing framework that learns over any number of
arbitrary graph abstractions within a single model. XIMP enables both indirect (graph↔ abstractions)
and direct (abstraction↔ abstraction) communication, a learned multi-view readout, uses abstractions
of varying coarseness to mitigate oversquashing and improve long-range communication. Although
domain-agnostic, we instantiate it in a chemistry setting with junction trees and extended reduced
graphs to demonstrate how interpretable abstractions can be exploited. Across ten diverse property-
prediction tasks, XIMP matches or surpasses strong GNN baselines and fixed fingerprints, with gains
attributable to explicit cross-abstraction messaging. Our results position multi-abstraction message
passing as a principled approach for data-scarce regimes and interpretable graph learning.

Future work includes extending XIMP to additional reductions and attribution tools for tracing
predictions across abstractions and extending XIMP to protein design via multi-level graph reductions
(atoms→residues→primary/secondary/tertiary structures). Such hierarchical integration may uncover
new insights in large protein graphs. Moreover, considering discrepancy for different hyperparameter
choices, we aim to research stratified-scaffold cross-validation methods for regression to make
hyperparameter search more reliable and consistent in chemistry settings.
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Ethics Statement. This work introduces a novel graph neural network architecture and demonstrates
its advantages in molecular property prediction. All experiments use publicly available datasets (e.g.,
MoleculeNet, Polaris), released under appropriate licenses, with no human or personally identifiable
data involved.

We recognize the potential for both positive and negative societal impact. On the positive side,
improved molecular property prediction can accelerate drug discovery and related biomedical research.
On the negative side, similar techniques could in principle be misused to aid the design of harmful
compounds. Our work does not perform molecule generation, and we strongly caution against unsafe
or unregulated deployment of predictive models in high-stakes applications.

From an environmental perspective, we limited training runs and hyperparameter searches to scales
comparable with prior molecular GNN studies. To further mitigate computational waste, we release
code, configuration files, and preprocessing scripts to ensure full reproducibility.

Finally, as with all data-driven methods, our models may inherit biases from the underlying datasets,
for example underrepresentation of certain chemical classes. We encourage practitioners to evaluate
these limitations before applying such models in real-world discovery settings.

Reproducibility Statement. To facilitate reproducibility, we provide an anonymized code repos-
itory (https://anonymous.4open.science/r/ximp-CF61/) that includes all datasets
required for training and evaluation, removing the need to download from third-party sources. The
repository contains a detailed README with step-by-step instructions to replicate the main experi-
ments, and proofs supporting our theoretical claims are included in the Appendix. All experiments
were conducted on our group’s local compute cluster, with hardware specifications reported in Ap-
pendix A. The total compute time, including hyperparameter search and evaluation, amounted to
approximately five weeks.
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GPUs CPU Memory

8× H100 Xeon Platinum 8480C (224 thr) GPU 640 GB; RAM ∼2 TB
8× V100 16 GB Xeon E5−2698 (80 thr) GPU 128 GB; RAM ∼500 GB
4× H100 Xeon Platinum 8468V (192 thr) GPU ∼374 GiB; RAM ∼1 TB

Table 3: Specifications of GPU compute nodes (node names omitted).

Dataset Source Targets Molecules
Property Endpoint

MoleculeNet Solubility ESOL 1,128
Hydration Free Energy FreeSolv 642

Lipophilicity Lipo 4,200

Polaris ADMET Metabolic Stability (Human) HLM

560Metabolic Stability (Mouse) MLM
Solubility KSOL

Distribution Coefficient LogD
Membrane Permeability MDR1-MDCKII

Polaris Potency MERS-CoV Mpro pIC50 1,328SARS-CoV-2 Mpro pIC50

Table 4: Summary of datasets MoleculeNet (Wu et al., 2018), Polaris ADMET (ASAP Discovery
x OpenADMET, 2025a) and Polaris Potency (ASAP Discovery x OpenADMET, 2025b) used for
molecular property and potency prediction.

A DATASETS & HARDWARE

Datasets We evaluated our models on molecular property prediction tasks from two dataset collec-
tions: MoleculeNet (Wu et al., 2018) and Polaris (ASAP Discovery x OpenADMET, 2025a;b). From
MoleculeNet, we selected three standard regression benchmarks: solubility (ESOL), hydration free
energy (FreeSolv), and lipophilicity (Lipo). From the Polaris ADMET dataset, we considered four
targets relevant to drug absorption and distribution: human liver microsomal stability (HLM), mouse
liver microsomal stability (MLM), solubility (KSOL), membrane permeability (MDR1-MDCKII),
and lipophilicity (LogD). In addition, we included two potency prediction tasks from Polaris, specifi-
cally targeting drug candidate activity against the main proteases of MERS-CoV (MERS-CoV-Mpro)
and SARS-CoV-2 (SARS-CoV-2-Mpro), using the pIC50 endpoint. Please find dataset statistics in
Table 4 and hardware specifications in Table 3.

B REDUCED GRAPHS CONSTRUCTION

Junction Trees To construct a junction tree, the process begins by converting the molecular
structure into a graph. This graph is then partitioned into substructures by identifying all simple rings
using RDKit’s GetSymmSSSR function (rdk, 2025). Next, all edges not belonging to any cycle are
identified. Each simple ring and each such edge is treated as a separate cluster, represented as a node
in the cluster graph, where a cluster consists of the set of atoms in the corresponding ring, or the two
atoms connected by the corresponding edge. Edges are added between clusters if they share at least
one atom.

The resulting cluster graph may itself contain cycles, which can lead to non-unique mappings from
the molecular graph to the cluster graph. This can occur, for example, when an atom has three or
more substituents. To prevent this, the intersecting atom is added as its own cluster, and the bonds
responsible for the cycle are removed. Eliminating these cycles ensures an injective mapping from
the molecular graph to the cluster graph and removes ambiguities in the decomposition, yielding a
unique and well-defined representation. After cycle removal, the junction tree is obtained. The full
process is illustrated in Figure 1a.
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For each node in the junction tree, the following categories are assigned as one-hot encodings:
{singleton, bond, ring, bridged compound}. The edges do not contain any feature information. From
a chemical perspective, this decomposition facilitates information flow across multiple fused rings in
graph neural networks. For instance, in conventional message passing, the top left carbon atom in the
aromatic ring shown in Figure 1a could not exchange information with the chlorine atom because they
are five hops apart. In the junction tree, however, they are only two hops apart. This condensation of
cyclic structures enables the model to capture longer-range interactions more efficiently.

Extended reduced Graphs. An extended reduced graph (ErG) (Stiefl et al., 2006) is a simpli-
fied molecular representation that captures pharmacophoric and interaction-relevant features while
abstracting unnecessary atomic detail. It builds on reduced graphs, which represent chemically
meaningful moieties (e.g., H-bond donors/acceptors, aromatic rings) as pseudo-nodes linked accord-
ing to relationships in the parent molecule. ErGs extend this by treating ring systems separately
from hydrogen-bonding and charge features—where prior methods often folded these into the ring
node—improving discrimination between compounds with different molecular skeletons. They also
fully enumerate “flip-flop” atoms that can act as either H-bond donors or acceptors.

The process of generating an ErG from a chemical structure, as well as the node mapping is shown
described below and shown in Figure 1b.

1. Atoms are charged to represent the molecule under physiological conditions.

2. Initial Atom Property Assignment: H-bond donor and H-bond acceptor properties are
assigned to the atoms. Atoms that can function as both H-bond donor and H-bond acceptor
receive a distinct flip-flop property.

3. Endcap Group Identification: These are lateral hydrophobic features, typically composed
of three atoms. Thioethers are also identified as endcap groups, and are assigned a property.

4. Ring System Abstraction: Rings are abstracted as follows to capture their overall properties:

(a) Add a centroid atom for each ring and assign it a feature (aromatic, hydrophobic).
(b) Retain all substituted ring atoms and create bonds from the centroid to that atom.
(c) Retain all bridgehead atoms (atoms belonging to two or more rings), and create bonds

from the centroids to those atoms.
(d) Remove all non-substituted ring atoms and retain all bonds between the atoms that

were retained in the previous two steps.

During the ring abstraction process, if any atom constituting the ring is assigned a specific property,
that atom is considered a connected node within the ring framework. The ErG encodes the following
node features: H-bond donor, H-bond acceptor, positive charge, negative charge, hydrophic, aromatic.

C HYPERPARAMETER SEARCH SPACE

For the GNN-based methods, we explored the following hyperparameter space: number of message-
passing layers (1, 2, or 3), hidden dimensions (16 or 32), output embedding dimension (16 or 32),
batch size (64 or 128), hidden dimension of the regression head (16 or 32), and number of training
epochs (50, 100, or 150). The learning rate, Adam weight decay, dropout rate, and the number of
bins for regression stratification remained fixed at 10−3, 10−4, 0.1, and 10, respectively.

For XIMP specifically, we included additional hyperparameters controlling the selection of graph
abstraction schemes (ERG vs. JT), the choice of message-passing schemes (I2MP vs. DIMP
(Section 3), binary hyperparameters), and the granularity (resolution) of JT, varied as an integer from
1 to 3. Moreover, we included the selection of the embedding dimension of the reduced graphs (16
and 32). For HIMP, we included a binary hyperparameter choosing whether inter-message passing is
active or not.

For ECFP, we examined the daylight atomic invariants initial atom identifiers with output channels
(16, 32, 1024, 2048). We decided to include the fingerprints of size 16 and 32 for completeness and
to allow for a direct comparison with GNN model embedding dimensions. The fingerprint radius was
set to values (2, 3, or 4) resulting in ECFP 4, ECFP 6, and ECFP 8 variants.
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Model ADMET ↓ Potency ↓ MoleculeNet ↓

HLM KSOL LogD
MDR1-

MDCKII MLM
pIC50
MERS

pIC50
SARS ESOL FreeSolv Lipo

ECFP 0.56
±
0.02 0.42

±
0.01 0.86

±
0.02 0.38

±
0.01 0.55

±
0.02 0.79

±
0.01 0.57

±
0.01 1.21

±
0.06 2.94

±
0.06 0.73

±
0.02

GAT 0.62
±
0.03 0.52

±
0.05 0.75

±
0.08 0.41

±
0.02 0.66

±
0.05 0.71

±
0.02 0.45

±
0.05 0.74

±
0.04 2.02

±
0.32 0.61

±
0.02

GCN 0.57
±
0.05 0.48

±
0.07 0.68 ±

0.07 0.40
±
0.04 0.66

±
0.04 0.71

±
0.02 0.48

±
0.05 0.74

±
0.02 1.75

±
0.25 0.59

±
0.02

GIN 0.56
±
0.02 0.50

±
0.10 0.75

±
0.06 0.41

±
0.06 0.64

±
0.05 0.73

±
0.02 0.46

±
0.04 0.71 ±

0.04 1.91
±
0.27 0.52 ±

0.02

GraphSAGE 0.56
±
0.03 0.49

±
0.07 0.69

±
0.06 0.37

±
0.02 0.64

±
0.05 0.73

±
0.02 0.52

±
0.05 0.73

±
0.04 1.58 ±

0.17 0.54
±
0.02

HIMP 0.54
±
0.05 0.35 ±

0.04 0.80
±
0.05 0.35

±
0.03 0.56

±
0.06 0.64 ±

0.03 0.39 ±
0.04 0.80

±
0.07 1.77

±
0.15 0.52 ±

0.02

XIMP 0.53 ±
0.08 0.37

±
0.04 0.69

±
0.03 0.31 ±

0.03 0.49 ±
0.02 0.69

±
0.05 0.41

±
0.03 0.82

±
0.09 1.83

±
0.17 0.52 ±

0.02

Table 5: Potency, ADMET, and MoleculeNet results. Cells show the test MAE based on the
hyperparameters that resulted in the lowest validation score. The best result for a given task is marked
in bold.

Model ADMET ↓ Potency ↓ MoleculeNet ↓

HLM KSOL LogD
MDR1-

MDCKII MLM
pIC50
MERS

pIC50
SARS ESOL FreeSolv Lipo

ECFP 0.48 ±
0.02 0.38

±
0.02 0.72

±
0.01 0.36

±
0.02 0.54

±
0.02 0.75

±
0.01 0.52

±
0.02 1.16

±
0.05 2.83

±
0.07 0.73

±
0.02

GAT 0.59
±
0.04 0.45

±
0.08 0.76

±
0.05 0.40

±
0.05 0.66

±
0.07 0.71

±
0.02 0.42

±
0.02 0.74

±
0.05 1.82

±
0.27 0.60

±
0.02

GCN 0.54
±
0.05 0.50

±
0.07 0.69

±
0.05 0.39

±
0.05 0.64

±
0.06 0.71

±
0.02 0.45

±
0.03 0.75

±
0.02 1.62 ±

0.14 0.59
±
0.03

GIN 0.54
±
0.03 0.50

±
0.07 0.70

±
0.04 0.40

±
0.06 0.56

±
0.05 0.74

±
0.01 0.49

±
0.07 0.71 ±

0.04 2.02
±
0.33 0.52 ±

0.02

GraphSAGE 0.56
±
0.04 0.52

±
0.08 0.67 ±

0.03 0.39
±
0.03 0.63

±
0.03 0.73

±
0.03 0.50

±
0.07 0.73

±
0.04 2.06

±
0.54 0.54

±
0.02

HIMP 0.49
±
0.04 0.34

±
0.06 0.81

±
0.07 0.33

±
0.03 0.57

±
0.06 0.64 ±

0.03 0.41
±
0.06 0.79

±
0.07 1.82

±
0.10 0.54

±
0.02

XIMP 0.48 ±
0.07 0.33 ±

0.03 0.69
±
0.06 0.32 ±

0.01 0.52 ±
0.07 0.68

±
0.04 0.38 ±

0.03 0.83
±
0.08 1.77

±
0.16 0.52 ±

0.01

Table 6: Potency, ADMET, and MoleculeNet results. Cells show test MAE for the best hyperparame-
ters for each model chosen on the given dataset. The best result for a given task is marked in bold.

D EXTENDED RESULTS

In Tables 5 and 6, we provide a fine-grained view of our results that more clearly highlights the
limitations of conventional GNNs than the aggregated summary in the main paper. Across both tables,
conventional architectures (GIN, GCN, GAT, GraphSAGE) are the top performer on at most 2/10
tasks, whereas XIMP leads on 4/10 tasks with validation-selected hyperparameters and on 6/10 tasks
with per-dataset best hyperparameters (evaluated on the test set). This underscores the benefit of
advanced inter-message-passing methods that integrate chemically meaningful, interpretable graph
abstractions: XIMP, in particular, shows a clear advantage over competing architectures, especially
under the best-hyperparameter setting.

E ABLATION STUDY

We conducted an extensive evaluation study to evaluate the impact of the different message passing
schemes (I2MP and DIMP), graph reductions (ERG, JT), and their resolutions. As we deem it the
most relevant metric due to the necessity to generalize to chemical scaffold unseen during training,
we conduct our ablation study using test MAE of the models trained with the hyperparameters chosen
via mean validation MAE.

Message Passing Schemes Concerning message passing schemes, we find that for the test MAE of
the models trained with the hyperparameters chosen via mean validation MAE, DIMP yields the best
results most reliably. As shown in Table 7, XIMP employing DIMP outperforms other higher order
message passing schemes in only 5 out of 10 cases, which is seconded by XIMP with DIMP+I2MP.
Our results together illustrate the effectiveness of our devised higher order intra message passing
schemes and likewise highlight the necessity of careful hyperparameter selection.
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Model ADMET ↓ Potency ↓ MoleculeNet ↓

HLM KSOL LogD
MDR1-

MDCKII MLM

pIC50
MERS-

CoV

pIC50
SARS-
CoV-2 ESOL FreeSolv Lipo

XIMP (a) 0.543 0.382 0.731 0.319 0.625 0.644 0.404 0.794 1.907 0.526
XIMP (b) 0.486 0.280 0.726 0.365 0.507 0.644 0.371 0.794 2.054 0.494
XIMP (c) 0.486 0.280 0.754 0.330 0.493 0.657 0.515 0.818 2.054 0.512
XIMP (d) 0.569 0.297 0.801 0.376 0.493 0.761 0.404 0.765 1.877 0.536

Table 7: XIMP ablation (a/b/c/d) with XIMP (a) (I2MP+MP), XIMP (b) (DIMP+MP), XIMP (c)
(MP; plain message passing with late fusion of the different graph-level embedings) across all target
tasks (columns), and XIMP (d) (DIMP+I2MP+MP). Test MAE of validation-selected configs only.
The best result for a task is marked in bold.

Model
JT

coar. ADMET ↓ Potency ↓ MoleculeNet ↓

HLM KSOL LogD
MDR1-

MDCKII MLM

pIC50
MERS-

CoV

pIC50
SARS-
CoV-2 ESOL FreeSolv Lipo

XIMP (a) 1 0.483 0.337 0.757 0.298 0.513 0.812 0.453 0.812 1.952 0.526
XIMP (a) 2 0.543 0.387 0.731 0.315 0.625 0.731 0.501 0.920 2.043 0.521
XIMP (a) 3 0.555 0.382 0.730 0.359 0.529 0.795 0.542 0.890 1.800 0.583
XIMP (b) 1 0.450 0.343 0.726 0.350 0.535 0.665 0.428 0.794 1.664 0.494
XIMP (b) 2 0.593 0.452 0.698 0.360 0.488 0.852 0.363 0.825 1.743 0.527
XIMP (b) 3 0.548 0.386 0.731 0.369 0.489 0.689 0.397 0.828 2.080 0.529
XIMP (c) 1 0.536 0.361 0.792 0.315 0.491 0.630 0.515 0.759 1.890 0.513
XIMP (c) 2 0.512 0.368 0.754 0.364 0.516 0.709 0.403 0.816 1.507 0.538
XIMP (c) 3 0.661 0.321 0.683 0.346 0.639 0.707 0.434 0.889 1.796 0.516
XIMP 1 0.536 0.333 0.829 0.376 0.493 0.796 0.440 0.765 1.979 0.536
XIMP 2 0.569 0.297 0.801 0.343 0.517 0.848 0.409 0.749 1.862 0.530
XIMP 3 0.595 0.376 0.728 0.342 0.557 0.958 0.441 0.935 2.138 0.550

Table 8: XIMP ablation (a/b/c/base) with XIMP (a) (I2MP only), XIMP (b) (DIMP only), and XIMP
(c) (neither; plain message passing with late fusion of the different graph-level embedings) across
all target tasks (columns) showing the test MAE for configurations selected by the lowest validation
MAE within each jt coarseness (rows) and target task (columns). The table isolates how changing
jt resolution ∈ {1, 2, 3} impacts generalization for each XIMP variant across targets. Lower is better.
The absolute per-target minima (best raw test MAE) for each variant and task are marked in bold.

Junction Tree Resolution. Moreover, we evaluated how XIMP with different combinations of
intermessage passing (i.e., I2MP, DIMP) responds to different JT resolutions (Table 8). To this
purpose, we conducted the following experiments only using only JTs and evaluated test MAE for the
hyperparameters selected by lowest validation MAE per jt resolution. Our results indicate that this is
in large parts a datasets and task dependent property. For example, in ADMET’s KSOL and LogD
tasks, a resolution of 2 or more appeared to be preferable in most DIMP and I2MP combinations,
whereas, for example, for the MDR1-MDCKII and MLM tasks, a resolution of 1 was preferable in
almost all cases. For the pIC50 tasks as well as ESOL and FreeSolv, the architectural combination
seemed to have a larger impact; with, for example a resolution of 1 being optimal for pIC50 (SARS-
CoV2 Mpro) and XIMP with I2MP and a resolution of 3 being optimal for pIC50 (SARS-CoV2
Mpro) and XIMP with DIMP. To conclude, it appears that the optimal combination of message
passing schemes and feature tree resolution is not only highly dependent on the underlying data but
also the task to be learned; indicating latent mechanisms deeply rooted in the chemical relevance of
the abstractions and the corresponding information flow between them.
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F GRAPH ISOMORPHISM NETWORKS

The GIN update (matrix notation, used henceforth) is

X(l+1) = MLP(l)
(
(A+ (1 + ϵ(l)) I)X(l)

)
,

where A ∈ {0, 1}|V (G)|×|V (G)| denotes the adjacency matrix, I ∈ R|V (G)|×|V (G)| the identity,
X(l) ∈ R|V (G)|×dx the node feature matrix at layer l, and ϵ(l) ∈ R a learnable scalar. For GIN-E the
layer update is given by

X(l+1) = MLP(l)
(
(1 + ϵ(l))X(l) + M(l)

A (X(l),E)
)

with

[M(l)
A (X,E)]v =

n∑
u=1

Avu σ
(
x(l)
u + Evu

)
,

where E ∈ R|V (G)|×|V (G)|×de denotes the tensor of edge feature vectors and Evu the edge feature
vector for the edge between nodes u and v. If de ̸= dx, an additional learnable transformation can be
applied to Evu to transform the edge feature vector to the space of the node embeddings.

G HIERACHICAL INTER-MESSAGE PASSING (HIMP)

In the case where the abstracted graph is hierarchical (such as a JT), HIMP follows the follow scheme:

Let X(l) ∈ R|V (G)|×dx and T (l) ∈ R|V (T )|×dx denote matrices storing the embeddings of nodes of
G and T in layer l, respectively and S ∈ {0, 1}|V (G)|×|V (T )| be the mapping matrix that captures the
assignment of nodes of the molecular graph to nodes of the JT. Then the inter-message passing step
changes the embedding matrices X(l) and T (l) according to

X(l) ←X(l) + σ
(
ST (l)W

(l)
1

)
T (l) ← T (l) + σ(STX(l+1)W

(l)
2 ),

where σ denotes a non-linearity and the matrices W (l)
1 and W

(l)
2 ∈ Rdx×dx are trainable parameters

specific for layer l.

The READ function after layer L is given by

hG =
1

|V (G)|

|V (G)|∑
i=1

x
(L)
i

⊕ 1

|V (T )|

|V (T )|∑
i=1

t
(L)
i ,

where
⊕

denotes an aggregation operation (i.e., concatenation || or summation
∑

), x(L)
i ∈ Rdx and

t
(L)
i ∈ Rdx are the final embeddings of the i-th node of the graph G and tree T , respectively.

H COMPLEXITY ANALYSIS

Below, we provide an analysis of the time and space complexity of XIMP.

Per-layer time complexity. For HIMP, each message-passing layer consists of (i) intra-graph
updates on the molecular graph G with |V (G)| nodes and adjacency A, and (ii) updates on its
junction tree T with |V (T )| nodes. This yields a per-layer cost of O(|E(G)|dx + |V (G)|d2x +
|V (T )|d2x), dominated by aggregation and MLP operations. XIMP generalizes this to n reduced
graphs T1, . . . , Tn, adding (a) indirect inter-message passing (G↔ Ti) at cost O

(∑n
i=1|V (G)|d2x

)
and (b) direct inter-message passing (Ti ↔ Tj for i < j) at cost O

(∑
i<j |V (Ti)|d2x + |V (Tj)|d2x

)
.

Thus, per-layer complexity scales as

O
(
|E(G)|dx + (|V (G)|+

∑
i|V (Ti)|)d2x + n|V (G)|d2x +

∑
i<j(|V (Ti)|+|V (Tj)|)d2x

)
,

which is polynomial in the number of abstractions n. Compared to HIMP, XIMP introduces only
moderate quadratic overhead in dx, while enabling richer cross-abstraction communication.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Parameter count. HIMP maintains two GNN encoders (GIN-E on G, GIN on T ) plus linear
projections for inter-message passing. The parameter count therefore scales as Θ(L · d2x), with
constants depending on MLP depth. XIMP extends this by (i) duplicating the abstraction encoder
for each Ti, and (ii) introducing additional projection matrices Wi,1,Wi,2 ∈ Rdx×dx for indirect
inter-message passing and Wi→j ∈ Rdx×dx for direct inter-abstraction exchange. The resulting
parameter count is

Θ
(
L · ((1 + n) d2x + n · d2x + n2 · d2x)

)
,

dominated by O(n2d2x) for pairwise abstractions. While this quadratic dependence in n is more
expensive than HIMP, in practice n ≤ 2 or 3 (JT, ErG, coarsened JT), making XIMP only a constant-
factor increase.

Memory and storage complexity. For both HIMP and XIMP, node embeddings per layer require
O((|V (G)|+

∑
i|V (Ti)|)dx) memory, with gradient checkpoints doubling this during backpropa-

gation. HIMP stores one mapping matrix S ∈ {0, 1}|V (G)|×|V (T )|, whereas XIMP stores multiple
Si and pairwise compositions S̃ik, yielding additional O(n|V (G)|+n2|V (G)|) storage. Parameter
storage follows the counts above, O((1 + n+ n2)d2x), which is negligible compared to activations
when |V (G)|≫ dx. Thus, XIMP scales linearly in graph size but quadratically in the number of
abstractions n—a reasonable trade-off given the interpretability and predictive gains.

I EXPRESSIVITY OF XIMP VERSUS HIMP

The expressive power of message-passing neural networks is, in general, limited by the 1-Weisfeiler-
Leman (1-WL) test, which characterizes their ability to distinguish non-isomorphic graphs. HIMP
augments this framework by jointly operating on the molecular graph G and its junction-tree ab-
straction T , with information exchange mediated by the assignment matrix S ∈ {0, 1}|V (G)|×|V (T )|.
Inter-message passing (IMP) integrates abstract representations after each layer, thereby enabling the
model to separate graph pairs indistinguishable by 1-WL on G but distinguishable on T . For instance,
molecules such as decalin and bicyclopentyl cannot be separated by 1-WL on the molecular graph
but are discriminated by their distinct junction trees (Fey et al., 2020).

XIMP generalizes this architecture by (i) supporting an arbitrary collection of reduced graphs {Ti}ni=1,
with indirect inter-message passing (I2MP) between G and each Ti, and (ii) introducing direct inter-
message passing (DIMP) between abstractions via normalized projections S̃ik = D−1

T,iS
⊤
i D

−1
G,kSk.

These mechanisms yield pairwise abstraction embeddings that cannot be realized by HIMP, while
retaining HIMP as the special case n = 1 with DIMP disabled.

Theorem I.1 (equiv. Theorem 3.3)). LetHHIMP(L, dx) andHXIMP(L, dx, n) denote the hypothesis
classes realized by HIMP and XIMP with depth L, hidden dimension dx, and number of abstractions
n. Then for any L, dx and n ≥ 1,

HHIMP(L, dx) ⊆ HXIMP(L, dx, n).

Proof. The inclusion follows by construction. For n = 1, choosing a single abstraction T1 equal
to the junction tree and disabling DIMP (which is equivalent to learning all-zero projection matri-
ces for messages other than those passed between G and T1) reduces XIMP to HIMP. Therefore
every function in HHIMP(L, dx) is realizable in HXIMP(L, dx, n). For n > 1, XIMP introduces
additional encoders and projection matrices (W

(l)
i,1,W

(l)
i,2,W

(l)
i→j), yielding cross-abstraction fea-

ture pathways absent in HIMP. HenceHXIMP(L, dx, n) strictly containsHHIMP(L, dx) whenever
multiple abstractions are employed.

While neither HIMP nor XIMP extend beyond the formal limitations of k-WL in the classical sense,
XIMP admits strictly richer hypothesis classes in practice due to: (i) the integration of chemically
structured priors across multiple abstractions (junction trees, pharmacophoric ErGs, and multi-
resolution variants), (ii) the construction of cross-view embeddings via S̃ik, and (iii) the mitigation of
oversquashing through multi-coarseness junction trees. Together, these components enlarge the set of
practically distinguishable molecular graphs, while preserving HIMP as a special case.
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Structural Abstractions Alone Enable Separation. To highlight how jointly leveraging multiple
graph abstractions can overcome the limitations of 1-WL, we prove the following proposition. It
formalizes, in our chemical setting, the I2MP+MP communication pattern employed by XIMP.
Proposition I.2 (equiv. Proposition 3.4). There exist two molecules whose molecular graphs G,
junction trees T , and extended reduced graphs R are each indistinguishable by unlabeled 1-WL when
considered in isolation, yet their compound graph

G+ = G ∪̇ T ∪̇ R

(where ∪̇ denotes the disjoint union) augmented with the inter-graph edges

EX = {(v, u) | ST [v, u] = 1} ∪ {(v, w) | SR[v, w] = 1},

is distinguishable by unlabeled 1-WL. Here ST ∈ {0, 1}|V (G)|×|V (T )| and SR ∈ {0, 1}|V (G)|×|V (R)|

record atom–cluster (for T ) and atom–ErG-node (for R) incidences.

Proof. Consider M1 = 3-Hydroxypyridine (SMILES Oc1cnccc1) and M2 = 4-Hydroxypyridine
(SMILES Oc1ccncc1). We run color refinement with constant initialization (no node or edge
attributes) in all views.

Single views. (i) As the molecular graphs G1, G2 are each a six-cycle with a single pendant leaf (the
-OH group), unlabeled 1-WL produces identical stable partitions. (ii) The junction trees T1, T2 each
consist of one ring cluster (size six) and one bond cluster for the exocyclic O–C bond, joined by one
edge, hence unlabeled 1-WL fails to distinguish the pair. (iii) The ErGs R1, R2 collapse the ring to a
centroid and keep O, the substituted ring carbon, and the ring N as nodes, giving in both cases the
unlabeled path O−C∗−centroid−N (whereby C∗ denotes the ring carbon bonded to the exocyclic
oxygen). Therefore, they are indistinguishable by unlabeled 1-WL .

Compound view. Form G+
i = Gi ∪̇ Ti ∪̇ Ri and add cross edges via ST ,SR: each ring atom in

Gi connects to the ring cluster in Ti and to the ring centroid in Ri; the O-bearing carbon C∗ and O
connect to the O–C bond cluster in Ti and to their nodes in Ri; the ring N connects to its ErG node
and to the centroid. These cross-layer edges anchor two specific ring atoms in Gi (the O-bearing
carbon C∗ and the nitrogen N ) to distinguished endpoints across Ti and Ri.

Along the six-membered cycle of G, the anchored atoms C∗ and N are separated by two edges in M1

and by three edges in M2. Under unlabeled 1-WL on G+
i , the neighborhood multisets at the anchored

nodes (and their witnesses via cross edges into Ti and Ri) differ and this asymmetry propagates,
yielding distinct stable colorings of G+

1 and G+
2 , even though G, T , and R are each indistinguishable

alone. Hence the claim.

J DIMP NORMALIZATION

Extending upon Section 3, recall that D−1
G,k splits each atom’s contribution evenly across its Tk-

memberships, preventing over-weighting in the Tk→G projection, while D−1
T,i then averages these

per-atom signals over the atoms summarized by each node of Ti. We below shot that this prevents
multiplicity-induced overweighting and ensures stable message magnitudes across overlaps.
Proposition J.1 (equiv. Proposition 3.1). Let Tk, Ti be left-total abstractions of G, with Sk ∈
{0, 1}|V (G)|×|V (Tk)|, Si ∈ {0, 1}|V (G)|×|V (Ti)| and S̃i = D−1

T,i S
⊤
i and S̃k = D−1

G,k Sk such that

S̃ik = S̃iS̃k. Further, let let M̃(l)
k→i = S̃ikT

(l)
k be the messages from Tk to Ti before the application

of the trainable parameter matrix or a nonlinearity. Then, the following statements hold:

1. ∥M̃(l)
k→i∥∞≤ ∥Tk∥∞ and ∥M̃(l)

k→i∥1≤ α∥Tk∥1 for some α ∈ R, |V (Ti)|
|V (Tk)| ≤ α ≤ |V (Ti)|

2. For any x ∈ Rdx and Tk = 1x⊤ ∈ R|V (Tk)|×dx , S̃ik Tk = 1x⊤

Proof. The proof consists of one fundamental Lemma, from which the claimed statements follow.
We begin by showing the Lemma.

Lemma J.2 (Row-stochasticity). S̃ik has nonnegative entries and each row sums to 1, i.e., S̃ik1 = 1.
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Proof. By construction, S̃k is row-normalized: each row v sums to
∑

uk
(D−1

G,kSk)v,uk
= 1. Sim-

ilarly, each row ui of S̃⊤
i sums to

∑
v(D

−1
T,iS

⊤
i )ui,v = 1. Products of nonnegative row-stochastic

matrices are row-stochastic, hence S̃ik1 = 1.

Corollary J.3 (Stable row magnitudes). Let ∥·∥∞ denote the row-wise max norm on matrices, i.e.,
∥A∥∞= maxu

∑
j |Auj |. Then, for any Tk ∈ R|V (Tk)|×dx ,

∥S̃ik Tk∥∞ ≤ ∥Tk∥∞.

Equivalently, each row (S̃ik Tk)ui,: is a convex combination of the rows of Tk.

Proof. Each row of S̃ik is a probability vector by Lemma J.2, so left-multiplication forms convex
combinations of rows of Tk. The∞-operator norm of any row-stochastic matrix equals 1, hence
∥S̃ikTk∥∞≤ ∥Tk∥∞.

Corollary J.4 (Stable column magnitudes). Let ∥·∥1 denote the column-wise max norm on matrices,
i.e., ∥A∥1= maxu

∑
j |Auj |. Then, for any Tk ∈ R|V (Tk)|×dx , there exists α ∈ R s.t. 0 ≤ α ≤

∥S̃ikTk∥1≤ α∥Tk∥1.

Proof. By the submultiplicative property of induced norms, it follows that ∥S̃ik Tk∥1≤ ∥S̃ik∥1∥Tk∥1.
As S̃ik ∈ {x ∈ R|0 ≤ x ≤ 1}|V (Ti)|×|V (Tk)| with each row each row of S̃ik being interpretable as a
probability vector by Lemma J.2, ∥S̃ik∥1≤ |V (Ti)|. Hence, ∥S̃ik Tk∥1 ≤ α∥Tk∥1 with α ≤ |V (Ti)|.
As the column sum is a max norm, we can further write |V (Ti)|

|V (Tk)| ≤ α, which represents the average
column sum, which is always lower or equal than the max column sum.

Corollary J.5 (Constant preservation). For any x ∈ Rdx and any constant embedding Tk = 1x⊤ ∈
R|V (Tk)|×dx ,

S̃ik Tk = 1x⊤.

Equivalently, S̃ik1 = 1.

Proof. Using Lemma J.2, S̃ik1 = 1. Thus S̃ik(1x
⊤) = (S̃ik1)x

⊤ = 1x⊤.

In summary, statement 1 follows by Corollaries J.3 and J.4, whereby statement 2 is equivalent
to J.5.

K OVERSQUASHING AND JTS

For the purposes of the following theoretical considerations, we model JT construction as a simple
contraction that replaces each ring with a single node inheriting all of the ring’s incident edges.
Moreover, we restrict attention to the XIMP communication graph induced by IMP and I2MP; this
suffices to obtain reduced communication paths. Incorporating DIMP would likely shorten paths
further but would unnecessarily complicate the proof.

Proposition K.1 (equiv. Proposition 3.2). In the XIMP communication graph, contracting rings into
single nodes and iteratively folding leaves into their parents with standard couplings never increases
shortest-path distances. Distances between node pairs whose minimal path includes a subpath of at
least three consecutive vertices inside a contracted region are strictly reduced. Successive rounds
yield cumulative reductions.

Proof. Consider that XIMPs communication graph for IMP+ I2MP is the disjoint union of the
molecular graph, its JT abstraction, and the reduced JT(s), augmented with coupling edges that
connect each abstract node to the nodes it summarizes. We first prove two auxiliary lemmas, from
which the main claim follows.

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Lemma K.2. Let the graph distance dH : V (H)× V (H)→ N0 ∪ {∞} p dH(u, v) := min{ |P |:
P is a u–v path in H }, Let G = (V,E) be a finite, connected, undirected, unweighted graph and
let S ⊆ V induce a nonempty, connected subgraph. Let G′ be obtained by contracting S to a single
vertex s⋆ and connecting s⋆ to every neighbor of S in G. Let π : V → V (G′) be the contraction
map defined by π(x) = s⋆ for x ∈ S and π(x) = x otherwise. Form G̃ as the disjoint union G ∪̇ G′

together with the coupling edges {(x, π(x)) : x ∈ V }.
Fix u, v ∈ V , and let P = (x0 = u, x1, . . . , xk = v) be a shortest u–v path in G. Denote by

ℓ(P ) := |{ i ∈ {0, . . . , k − 1} : xi ∈ S and xi+1 ∈ S }|

the number of edges of P whose endpoints both lie in S.

Then, for the distance d between u and v

dG̃(u, v) ≤ dG(u, v) − ℓ(P ) + 2.

In particular, if ℓ(P ) ≥ 3 for some shortest u–v path P in G, then

dG̃(u, v) ≤ dG(u, v)− 1 < dG(u, v).

Proof. Let P = (x0, . . . , xk) be as stated, so k = dG(u, v). Consider the sequence

W = (π(x0), π(x1), . . . , π(xk))

in G′. For each index i:

• If xi, xi+1 ∈ S, then π(xi) = π(xi+1) = s⋆, so this step contributes zero length after
suppressing consecutive duplicates.

• If exactly one of xi, xi+1 lies in S, then G′ contains the edge (s⋆, y), where y is the endpoint
outside S, by construction of the contraction, hence W traverses a valid edge.

• If xi, xi+1 /∈ S, then (xi, xi+1) ∈ E is preserved in G′, so again W traverses a valid edge.

After removing consecutive repetitions of s⋆ in W , we obtain a walk in G′ from π(u) to π(v) of
length at most k − ℓ(P ). Therefore

dG′(π(u), π(v)) ≤ k − ℓ(P ).

In G̃, take the path that goes from u to π(u) via one coupling edge, then follows a shortest path from
π(u) to π(v) in G′, and finally uses one coupling edge from π(v) to v. Its length is at most

1 + dG′(π(u), π(v)) + 1 ≤ 1 + (k − ℓ(P )) + 1 = dG(u, v)− ℓ(P ) + 2,

which proves the displayed inequality.

If ℓ(P ) ≥ 3, this bound gives dG̃(u, v) ≤ dG(u, v) − 1, yielding the strict inequality dG̃(u, v) <
dG(u, v).

Note that the constant ”+2” is unavoidable when the shortcut uses the contracted copy G′ (one
coupling edge to enter G′, one to exit). The threshold ℓ(P ) ≥ 3 is tight: when ℓ(P ) = 2, the bound
only guarantees dG̃(u, v) ≤ dG(u, v) in general.

Next, we generalize to repeated application of graph contraction operations on the communication
graph.

Lemma K.3. Let H(0) = (V (0), E(0)) be a finite, connected, undirected, unweighted graph. For
j = 1, . . . ,M do:

1. choose a nonempty connected subgraph Sj ⊆ H(j−1);

2. form the contracted copy Cj by contracting Sj to a single vertex s⋆j and connecting s⋆j to all
neighbors of Sj in H(j−1) (self-loops removed, parallel edges suppressed);
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3. set

H(j) := H(j−1) ∪̇ Cj and add coupling edges {(x, πj(x)) : x ∈ V (j−1)},

where πj maps x ∈ Sj to s⋆j and fixes x /∈ Sj .

Fix u, v ∈ V (0) and, for each j, let Pj−1 be a shortest u–v path in H(j−1). Define

ℓj := |{ i : the i-th edge of Pj−1 has both endpoints in Sj }|.

Then

dH(M)(u, v) ≤ dH(0)(u, v) −
M∑
j=1

ℓj + 2M.

In particular, if
∑M

j=1 ℓj ≥ 2M + 1, then dH(M)(u, v) ≤ dH(0)(u, v)− 1.

Proof. Apply Lemma K.2 at step j with G←H(j−1), S← Sj , G′←Cj and the coupling edges
{(x, πj(x))}. This yields

dH(j)(u, v) ≤ dH(j−1)(u, v) − ℓj + 2.

Summing over j = 1, . . . ,M gives the claimed bound; the strict case follows immediately.

Ring abstraction followed by repeated JT leaf folding is the instance where the Sj are, first, ring-
induced subgraphs in H(0), and subsequently the connected leaf-parent regions selected by the
resolution-lowering operator at each round. Hence, the Lemma K.3 applies verbatim, from which the
main claim follows.
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