
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

DATASET CONDENSATION WITH SHARPNESS-AWARE
TRAJECTORY MATCHING

Anonymous authors
Paper under double-blind review

ABSTRACT

Dataset condensation aims to synthesise datasets with a few representative sam-
ples that can effectively represent the original datasets. This enables efficient train-
ing and produces models with performance close to those trained on the original
sets. Most existing dataset condensation methods conduct dataset learning under
the bilevel (inner and outer loop) based optimisation. However, due to its no-
toriously complicated loss landscape and expensive time-space complexity, the
preceding methods either develop advanced training protocols so that the learned
datasets generalise to unseen tasks or reduce the inner loop learning cost increas-
ing proportionally to the unrolling steps. This phenomenon deteriorates when the
datasets are learned via matching the trajectories of networks trained on the real
and synthetic datasets with a long horizon inner loop. To address these issues,
we introduce Sharpness-Aware Trajectory Matching (SATM), which enhances the
generalisation capability of learned synthetic datasets by minimising sharpness in
the outer loop of bilevel optimisation. Moreover, our approach is coupled with
an efficient hypergradient approximation that is mathematically well-supported
and straightforward to implement along with controllable computational over-
head. Empirical evaluations of SATM demonstrate its effectiveness across var-
ious applications, including standard in-domain benchmarks and out-of-domain
settings. Moreover, its easy-to-implement properties afford flexibility, allowing it
to integrate with other advanced sharpness-aware minimisers. We will release our
code on GitHub.

1 INTRODUCTION

The success of modern deep learning in various fields, exemplified by Segment Anything (Kirillov
et al., 2023) in computer vision and GPT (Ouyang et al., 2022) in natural language processing, comes
at a significant cost in terms of the enormous computational expenses associated with large-scale
neural network training on massive amounts of real-world data Radford et al. (2021); Li et al. (2023);
Schuhmann et al. (2022); Li et al. (2022); Gowda et al. (2023). To reduce training and dataset storage
costs, selecting the representative subset based on the specific importance criteria forms a direct
solution (Har-Peled & Mazumdar, 2004; Yang et al., 2022; Paul et al., 2021; Wang et al., 2022b).
However, these methods fail to handle the cases when the samples are distinct and the information is
uniformly distributed in the dataset. In contrast, Dataset Condensation (DC) (Zhao et al., 2021; Zhao
& Bilen, 2023; Wang et al., 2018; Cazenavette et al., 2022; Du et al., 2023) focuses on creating a
small, compact version of the original dataset that retains its representative qualities. Models trained
on the condensed dataset perform comparably to those trained on the full dataset. This approach
significantly reduces training costs and storage requirements, meanwhile expedites more challenging
machine learning tasks such as hyperparameter tuning, continual learning (Rosasco et al., 2021),
architecture search (Sangermano et al., 2022; Yu et al., 2020; Masarczyk & Tautkute, 2020), and
privacy-preserving (Shokri & Shmatikov, 2015; Dong et al., 2022).

Given the significant practical value of condensed datasets, considerable effort has been directed
toward designing innovative surrogate methods to ensure that synthetic datasets capture representa-
tive signals, thereby enhancing future deployments’ performance (Zhao & Bilen, 2023; Zhao et al.,
2021; Zhou et al., 2022; Kim et al., 2022). Bilevel Optimisation (BO) provides a DC paradigm
learning synthetic dataset through its main optimisation objective in the outer loop constrained by
training neural networks in its inner loop. One line of the representative solutions condenses datasets

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

by minimising the disparity between training trajectories on synthetic and real sets, achieving no-
table performance (Cazenavette et al., 2022). The following studies either reduce the computational
cost of inner loop unrolling or steer the optimisation process to enhance the generalization of the
learned dataset to the unseen tasks. For instance, FTD (Du et al., 2023) improves the performance
of synthetic datasets by leveraging high-quality inner loop expert trajectories and incorporating mo-
mentum into the outer loop optimisation via Exponential Moving Average (EMA) and the introduced
memory overhead increases along with the synthetic dataset budget. TESLA (Cui et al., 2023) is
proposed with a two-inner loop-based algorithm to approximate the hypergradient for the dataset
updates maintaining a constant memory usage. In this work, we introduce a two inner loop-based
mechanism, that directly optimizes the generalisation ability of the synthetic dataset with control-
lable memory cost. This results in superior performance on both in-domain and out-of-domain tasks,
with reduced memory and time complexity compared to those methods.

Inspired by (Foret et al., 2020; Kwon et al., 2021; Li & Giannakis, 2024), the studies on improving
generalisation by minimising loss landscape sharpness to achieve flat convergence regions in uni-
level optimisation, we extend this concept and develop an algorithm for dataset condensation in
the more complex bilevel optimisation setting. Our approach addresses the computational overhead
caused by the notorious ascent and descent routine in sharpness-aware optimisers, which typically
double both the time and memory costs throughout the learning process. Specifically, we propose a
lightweight and efficient trajectory matching-based method, Sharpness-Aware Trajectory Matching
(SATM), that enhances the generalisation of the alliance trajectory matching algorithm significantly
and integrates with the beneficial properties introduced by FTD (Du et al., 2023) and TESLA Cui
et al. (2023) with noticeable improvement margin across various applications whilst avoiding the
redundant computation graph holding and recomputing. The main contributions of this work are
summarised as:

• We primarily study the generalisation ability of the outer loop in the bilevel optimisation
for the learned dataset, then design an algorithm, Sharpness-Aware Trajectory Matching, to
jointly minimise the sharpness and the distance between training trajectories with a tailored
loss landscape smoothing strategy.

• A simple and easy-to-implement method is proposed to handle the tremendous computa-
tional overhead introduced by the sharpness proxy in the long inner loop horizons scenario.
In addition, to reduce the redundancy of the (hyper) gradient calculation, the learning rate
in the inner loop is learned by simple model gradient aggregation without holding the com-
putational graph.

• We provide rigorous theoretical support for the proposed approximation methods by bound-
ing the errors of the approximations and analysing the approximation error effected by the
hyperparameters, which shed light on meaningful hyperparameter tuning.

• SATM outperforms the trajectory-matching-based competitors on various condensation
benchmarks with noticeable margins on in- and out-of-domain settings.

2 BACKGROUND AND RELATED WORK

2.1 BILEVEL OPTIMISATION AND DATASET CONDENSATION

Bilevel Optimisation (Sinha et al., 2017; Zhang et al., 2024), nesting optimisation problems as con-
straints for the main optimisation objective, is formulated as follows:

min
ϕ

Louter(θ∗(ϕ), ϕ) (1)

s.t. θ∗(ϕ) = argmin
θ

Linner(θ, ϕ) (2)

where, argminθ Linner(θ, ϕ) forms the constraint for the main optimisation objective function,
Louter. The learnable parameter ϕ in the outer loop influences the performance of the inner loop
state, θ(ϕ), while the inner loop also depends on the current free parameter on the outer loop. This
optimisation framework is widely used in various machine learning areas, including hyperparameter
tuning (Lorraine et al., 2020; Maclaurin et al., 2015; MacKay et al., 2019) and meta-learning (Finn
et al., 2017; Gao et al., 2022; Rajeswaran et al., 2019; Gao et al., 2021).

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Inspired by knowledge distillation (Gou et al., 2021; Yang et al., 2020), Wang et al. (Wang et al.,
2018) leverage BO to distill a small, compact synthetic dataset for efficient training on unseen down-
stream tasks. Several works expanding on this BO framework match gradients (Zhao & Bilen, 2021;
Zhao et al., 2021; Lee et al., 2022), features (Wang et al., 2022a), and distributions (Zhao & Bilen,
2023) produced by the synthetic and real sets. They achieve this with a few iterations of inner loop
unrolling to avoid the challenges of nested optimisation. To address the same challenge, Nguyen et
al. (Nguyen et al., 2021b;a) directly estimate the convergence of the inner loop using the Neural
Tangent Kernel (NTK) to emulate the effects from the synthetic sets. However, due to the heavy
computational demands of matrix inversion, the NTK-based method struggles to scale up for con-
densing large, complex datasets. MTT (Cazenavette et al., 2022) emphasises the benefits of a long
horizon inner loop and minimises the differences between synthetic and expert training trajectory
segments. Nonetheless, the learned synthetic dataset often overfits the neural architecture used in the
expert trajectories, resulting in limited generalisation ability. In this work, we address this problem
by exploring the flatness of the synthetic dataset’s convergence region.

2.2 SHARPNESS-AWARE MINIMISATION

The generalisation enhanced by flat region minimums has been observed empirically and studied
theoretically (Dinh et al., 2017; Keskar et al., 2016; Neyshabur et al., 2017). Motivated by this,
Sharpness-aware minimiser (SAM) (Foret et al., 2020) optimises the objective function and sharp-
ness simultaneously to seek the optimum lying in a flat convergence region. Given the training data,
D, consider a training problem where the objective function is denoted as L(ϕ;D) with the learnable
parameter ϕ, the objective function of SAM is framed as:

min
ϕ

max
||ϵ||2≤ρ

L(ϕ+ ϵ;D) (3)

where approximating sharpness is achieved by finding the perturbation vectors ϵ maximising the
objective function in the Euclidean ball with radius, ρ, with the sharpness defined as:

max
||ϵ||2≤ρ

∣∣L(ϕ+ ϵ;D)− L(ϕ;D)|. (4)

Instead of solving this problem iteratively, a closed-form approximation of the optimal by utilisation
of the first-order Taylor expansion of the training loss is given by

ϵ = ρ
∇L(ϕ)

||∇L(ϕ)||p
≈ argmax

||ϵ|| ≤ρ

L(ϕ+ ϵ),

Overall, the updating procedure of SAM in each iteration is summarised as follows:

ϕ = ϕ− α∇L(ϕ+ ϵ) s.t. ϵ = ρ
∇L(ϕ)

||∇L(ϕ)||p
(5)

where α represents the learning rate and after computing the gradient, ∇L(ϕ + ϵ), the parameter
update procedure is instantiated by standard optimisers, such as SGD and Adam (Kingma & Ba,
2015). Without losing generality, we set p = 2 for simplicity for the rest of this work. One can
observe that due to the two-stage gradient calculation at ϕ and ϕ+ ϵ, the computational overhead of
SAM is double, compared with the conventional optimisation strategy. To reduce the computational
cost, ESAM (Du et al., 2022) randomly selects a subset of the parameters to update in each iteration.
Zhuang et al. (Zhuang et al., 2021) observes that SAM fails to identify the sharpness and mitigates
this by proposing a novel sharpness proxy. To tackle the complicated loss landscape, Li and Gi-
annakis (Li & Giannakis, 2024) introduce a momentum-like strategy for sharpness approximation
while ASAM (Kwon et al., 2021) automatically modify the sharpness reaching range by adapting
the local loss landscape geometry. In contrast, we handle complicated multi-iteration unrolling for
learning datasets in the many-shot region where both the difficulty of approximating the sharpness
and the computation resources surge.

3 METHOD

We introduce our method in this section starting with reviewing a DC framework, Matching Training
Trajectory (MTT) (Cazenavette et al., 2022), applied in this work. Then we combine the bilevel op-
timisation with sharpness-aware optimisation tailored for dataset condensation with a loss landscape

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Algorithm 1: Sharpness-Aware Trajectory Matching for dataset condensation.

1: Input: {θEt }T0 , α, β.
2: Output: ϕ
3: Init ϕ
4: while not converged or reached max steps do
5: Sample an iteration t to construct an expert segment, θEt , and θEt+M

6: θS = θEt
7: ϕ∆

j ∼ N (0, γ||ϕj ||2I)
8: ϕ = ϕ+ ϕ∆

9: for all i← 1 to N do
10: θS = θS − α∇L(θS , ϕ)
11: end for
12: Compute∇F (ϕ) by Eq. 10
13: ϵ = ρ∇F (ϕ)/||∇F (ϕ)||2
14: θ̄S = θSt+κ

15: ϕ = ϕ− ϕ∆

16: for all i← N − τ to N do
17: θ̄S = θ̄S − α∇L(θ̄S , ϕ+ ϵ)
18: end for
19: Compute∇F (ϕ+ ϵ) by Eq. 11
20: ϕ = ϕ− β∇F (ϕ+ ϵ)
21: end while

smoothing strategy for accurate sharpness approximation. To efficiently reduce the computational
burden introduced by the sharpness-aware minimisers, we design and analyse time and memory-
saving hypergradient approximations for the long horizon inner loop with the general method out-
lined in Algorithm 1.

3.1 PRELIMINARY

With the assumption that the datasets containing similar information generate close training trajec-
tories, MTT (Cazenavette et al., 2022) proposed to create the synthetic datasets by minimising the
distance between the training trajectory produced by the synthetic set, named synthetic trajectories,
and those by the real set, termed expert trajectories. A sequence of expert weight checkpoints, θEt ,
are collected during the training on the real sets in the order of iterations, t, to construct the expert
trajectories, {θEt }Tt=0 with T denoting the total length of the trajectory. The pipeline of MTT starts
with sampling a segment of expert trajectory, starting from θEt to θEt+M with 0 ≤ t ≤ t +M ≤ T .
Then, to generate a synthetic segment, a model, θSt , is initialised by, θEt , and trained on the learn-
able dataset, ϕ, to get θSt+N (ϕ) after N iteration. Afterwards, the disparity between θSt+N (ϕ) and
θEt+M is optimised to learn the synthetic dataset. Formally, the dataset condensation algorithm can
be described as:

min
ϕ

L(θS(ϕ)) := 1

δ
||θSt+N (ϕ)− θEt+M ||22 (6)

s.t. θSt+N (ϕ) = ΞN (θSt , ϕ)

where ΞN (·) represents N differentiable minimising steps on the inner loop objective, CrossEntropy
loss, LCE(θ, ϕ). The existing optimisers can instantiate this operation, such as SGD whose one-
step optimisation is exemplified by Ξ(θ, ϕ) = θ−α∇LCE(θ, ϕ) where α denotes the learning rate.
Note M and N are not necessarily equal since dense information in the synthetic datasets leads to
fast training. δ, stabilising the numerical computation, can be unpacked as ||θEt − θEt+M ||22.

3.2 SMOOTH SHARPNESS-AWARE MINIMISATION IN OUTER LOOP

Generalising to the unseen tasks is challenging for the learned synthetic datasets. To mitigate this
issue, we steer the optimisation on the outer loop in Eq. 6 and minimise the objective function
forward landing in the flat loss landscape region to enable the synthetic data to be generalised to
both in- and out-of-domain settings. This property has been studied in (Petzka et al., 2021; Kaddour
et al., 2022), in the uni-level optimisation. In this work, we forage this into the bilevel optimisation

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

framework by integrating Shaprness-Aware minimisation. To jointly optimise the sharpness of the
outer loop and the distance between the trajectory w.r.t to the synthetic dataset, we maximise the
objective function in the ρ regime for the sharpness proxy approximation and then optimise the
distance between trajectories according to the gradient computed on the local maximum for the
dataset learning. This process is described as:

min
ϕ

max
||ϵ||2≤ρ

L(θS(ϕ+ ϵ)) =
1

δ
||θSt+N (ϕ+ ϵ)− θEt+M ||22 (7)

s.t. θSt+N (ϕ) = ΞN (θSt , ϕ). (8)

We define F (ϕ) = L(θSt+N (ϕ)) to eliminate the effect of the inner loop solution on the outer loop
loss value without losing generality. The perturbation vector, ϵ, is computed through a closed-form
solution derived through the first-order Taylor expansion of the objective function in Eq. 6.

ϵ =argmax
||ϵ||2≤ρ

L(θS(ϕ+ ϵ)) = argmax
||ϵ||2≤ρ

F (ϕ+ ϵ)

≈ argmax
||ϵ||2≤ρ

F (ϕ) + ϵ · ∇F (ϕ)

= argmax
||ϵ||2≤ρ

ϵ · ∇F (ϕ) ≈ ρ
∇F (ϕ)

||∇F (ϕ)||2
. (9)

The closed-form solution given in Eq. 9 can be interpreted as a one-step gradient ascent. However,
this one-step gradient ascent may fail to reach the local maximum of the sharpness proxy, due to
the high variance of hypergradient caused by the complicated outer loop loss landscape. This phe-
nomenon has also been observed by (Liu et al., 2022; Du et al., 2022) in the uni-level optimisation
and will aggravate in the complicated bilevel case (Abbas et al., 2022). To conduct accurate sharp-
ness approximation, motivated by (Liu et al., 2022; Haruki et al., 2019; Wen et al., 2018; Duchi
et al., 2012), we introduce fluctuation on the learnable dataset to smooth the landscape. To be more
specific, each synthetic image indexed by j is perturbed by a random noise sampled from a Gaussian
distribution with a diagonal covariance matrix whose magnitude is proportional to the norm of each
image ||ϕj ||:

ϕj = ϕj + ϕ∆
j , ϕ∆

j ∼ N (0, γ||ϕj ||2)
where γ is a tunable hyperparameter controlling the fluctuation strength. This process is conducted
on the image independently in each one-step gradient ascent.

3.3 EFFICIENT SHARPNESS-AWARE MINIMISATION IN BILEVEL OPTIMISATION

One can notice that a one-step update in the outer loop needs to compute the hypergradient twice
with one for the perturbation vector ϵ and the other for the real update gradient, ∇F (ϕ). Directly
computing those two gradients will double the computation cost in contrast with MTT and FTD
instead of TESLA which we will discuss later. To alleviate this problem, we proposed two approxi-
mation strategies, Truncated Unrolling Hypergradient (TUH) and Trajectory Reusing (TR).

3.3.1 TRUNCATED UNROLLING HYPERGRADIENT

The long inner loop horizon introduces tremendous computational overhead. In our dataset con-
densation framework, the hypergradient for updating the learnable dataset is computed by differ-
entiating through the unrolled computational graph of the inner loop. This vanilla hypergradient
computation lets the memory cost scale with the number of the inner loop iterations which is not
feasible as condensing the complicated datasets requires long horizon inner loops. Instead, we trun-
cate the backpropagation by only differentiating through the last several steps of the inner loop.
This reduces both the required memory and computational time. More concretely, the truncated
hypergradient computation with N step unrolling can be expressed as:

∂Fι(ϕ)

∂ϕ
=

∂L(θ(ϕ))
∂θι

∂θι
∂ϕ

=

N∑
i=ι

∂L(θ(ϕ))
∂θN

(
N∏

i′=i

∂θi′

∂θi′−1

)
∂θi
∂ϕ

, (10)

where ι controls the number of truncated steps that N − ι steps of the inner loop will be differenti-
ated through. In addition, the risk of hyerpgradient exploding and vanishing caused by the ill-Jabian

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

∂θi
∂θi−1

, which may happen in any inner loop step, can be reduced. This mechanism can be easily im-
plemented by unholding the computational graph while optimising the inner loop and then creating
the computational graph at a certain iteration with Pytorch-based pseudocode given in Appx. A.2.

Following (Shaban et al., 2019; Bolte et al., 2024), we analyse the discrepancy between hypergra-
dients computed by the truncated and untruncated computational graph in the setting where the
synthetic trajectory is produced by optimised from the initialisation θE0 until converge.
Proposition 3.1. Assmue LCE is K-smooth, twice differentiable, and locally J-strongly convex in
θ around {θι+1, ..., θN}. Let Ξ(θ, ϕ) = θ − α∇LCE(θ, ϕ). For α ≤ 1

K , then∥∥∥∥∂F (ϕ)

∂ϕ
− ∂Fι(ϕ)

∂ϕ

∥∥∥∥ ≤ 2ι(1− αJ)N−ι+1

∥∥∥∥∂L(θ(ϕ))∂θN (ϕ)

∥∥∥∥ max
i∈{0,..ι}

∥∥∥∥∂θi∂ϕ

∥∥∥∥
where ∂F (ϕ)

∂ϕ denotes the untruncated hypergradient.

The Proposition 3.1 shows that the error of the truncated hypergradient decreases exponentially in
N − ι + 1 when θ converges to the neighbourhood of a local minimum in the inner loop and the
proof is given in Appx. A.3.

3.3.2 TRAJECTORY REUSING

The sharpness-aware minimisation requires computing the gradient twice for sharpness proxy ap-
proximation and free parameter update, which means in bilevel optimisation the inner loop is re-
quired to unroll twice. This boosts the computational spending and slows down the training speed
when inner loops comprise long trajectories. To improve the efficiency of training by benefiting
from the existing knowledge, we propose to reuse the trajectory generated by the first round of inner
loop unrolling. We denote the trajectories generated by training on the perturbed dataset as θ̂i(ϕ+ϵ).
Other than unrolling the entire second trajectory initialised by the expert segment, the training is ini-
tialised by the middle point, indexed by τ , from the first trajectory θ̂τ (ϕ+ϵ) := θτ (ϕ). Note that the
hypergradient for the dataset update is truncated implicitly since this hypergradient approximation
will not consider the steps earlier than τ which is further constrained, τ ≥ ι. Coupled with the same
truncated strategy for the first round, the hypergradient in the second trajectory is computed as:

∂Fτ,ϵ(ϕ)

∂ϕ
=

∂L(θ(ϕ))
∂θτ

∂θτ
∂ϕ

=

N∑
i=τ

∂L(θ(ϕ))
∂θN

(
N∏

i′=i

∂θi′

∂θi′−1

)
∂θi
∂ϕ

∣∣∣∣∣
ϕ=ϕ+ϵ, θ̂τ (ϕ+ϵ)=θτ (ϕ)

(11)

One may notice that the trajectory reusing strategy assumes the difference between two trajectories
before step τ can be ignored. To rigorously study the effect of this assumption, we analyse the
distance between θτ (ϕ) and θτ (ϕ + ϵ). Similar to the Growth recursion lemma (Hardt et al., 2016)
applied to upper-bound the difference between two weight points of two different trajectories trained
by the dataset with only one data point difference. We develop the bound for the difference between
two weight points at the same iteration of their trajectories generated by the datasets with and without
perturbation below. The proof is provided in Appx.A.1.
Theorem 3.2. Let L(ϕ, θ) be a function that is σ-smooth and continuous with respect to its ar-
guments ϕ and θ. Additionally, let the second-order derivatives ∇ϕ∇θL(ϕ, θ) be β-continuous.
Consider two trajectories obtained by conducting gradient descent training on the datasets ϕ and
ϕ+ϵ, respectively, with a carefully chosen learning rate α and identical initializations. After τ steps
of training, let ∆θτ = θ̂τ (ϕ+ ϵ)− θτ (ϕ). Then, we have:

∥∆θτ∥ ≤ ατ(2σ + βρ).

This theorem tells us that the bound of the distance of those two points is associated with the learning
rate and the number of iterations. Thus, when the learning rate and τ are selected reasonably,
θτ (ϕ) approximate θ̂τ (ϕ + ϵ) properly. In addition, we set τ = ι in our experiments to reduce
the hyperparameter tuning efforts even though tuning them separately may achieve better results.
We compare the time and memory complexity of our method and Reverse Model Reverse Mode
Differentiation (RMD) used in MTT (Cazenavette et al., 2022) and FTD (Du et al., 2023) in Table 1
to exhibit the efficiency provided by our method.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Methods Time Memory
MTT, FTD (RMD) O(cN) O(PN)

TESLA O(2cN) O(P)
TUH + TR O(cN + cτ) O(P (N − ι))

Table 1: The computational complexity comparison for different trajectory matching based algo-
rithms in time and memory cost. c is the time cost for computing Ξ(θ, ϕ) with θ ∈ RP and ϕ ∈ RQ.
P and Q denote the dimensions of the base model and synthetic dataset.

Learning-Rate Learning with First Order Derivative: Adapting the inner loop learning
rate, α, to the different stages of dataset learning determines the performance of the learned
dataset (Cazenavette et al., 2022). The automatic adaption is achieved by modifying the learning
rate by the hypergradient of the dataset learning objective function, ∂L(ϕ)

∂α . This hypergradient can
be computed jointly with the hypergradient for the dataset learning which is cumbersome in practice.
To mitigate this burden, we derive an analytic solution for inner loop learning rate updating:

α = α− λ
∂L(θN (ϕ))

∂θN
·

(
−

N−1∑
i=0

∂LCE(θi, ϕ)

∂ θi

)
(12)

where λ indicates the learning rate for the learning rate learning and the derivation given in
Appx. A.4. This closed-form solution only aggregates the gradient of each step instead of differen-
tiating through the inner loop unrolling graph, simplifying the hypergradient computation. As can
be noticed, two inner loop trajectories in the sharpness aware setting are capable of this Eq. 12. We
chose the first in our experiments due to the implementation simplicity without causing any signif-
icant performance differences. The visualisation comparison of the learning rate learning dynamic
produced by the first and second-order derivative is illustrated in Fig. 1.

In essence, SATM is designed to conduct efficient sharpness minimisation in the outer loop of the
bilevel optimisation-based dataset condensation methods and the proposed efficiency strategies, in-
cluding THU and TR, are flexible enough to adapt to other advanced sharpness-aware optimisers
such as ASAM (Kwon et al., 2021) and Vasson (Li & Giannakis, 2024).

4 EXPERIMENTS

We evaluate SATM on various in-domain tasks where the neural architecture and data distribution
on the dataset learning and test stage are the same with different datasets and different numbers of
images per category (IPC) . Besides, cross-architecture and cross-task evaluation are conducted to
demonstrate the generalisation achieved in sharpness minimisation on out-of-domain settings.

4.1 EXPERIMENTS SETTINGS

Dataset: We conduct experiments on three main image datasets, Cifar10 (Krizhevsky et al., 2009),
Cifar100 (Krizhevsky et al., 2009) and TinyImageNet (Le & Yang, 2015). Cifar10 categorises
50,000 images with the size 32× 32 into 10 classes while Cifar100 further categorises each of those
10 classes into 10 fine-grained subcategories. TinyImageNet comprises 100,000 images distributed
across 200 categories, each category consisting of 500 images resized to dimensions of 64× 64. We
further evaluate SATM on the subset of ImageNet, namely ImageNette, Image Woof, ImageFruit
and ImageMeow with each set containing 10 different categories of 128× 128 images.

Training and Evaluation: The expert trajectories for Cifar10 and Cifar100 are trained with 3-layer
ConvNet and collected after each epoch with the initialisation, and those for TinyImageNet and
ImageNet are trained with 4-layer and 5-layer ConvNet Gidaris & Komodakis (2018) respectively.
In the in-domain setting, the synthetic datasets are learned and evaluated on the same architectures
while in the out-of-domain settings, the learned synthetic datasets are deployed to train different
architectures, such as AlexNet (Krizhevsky et al., 2012), VGG11 (Simonyan & Zisserman, 2014)
and ResNet18 (He et al., 2016), which is novel to the synthetic datasets. The trained neural networks
are evaluated on the real test sets for generalisation ability comparison of the synthetic datasets.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Method IPC DC DSA DM MTT FTD TESLA MDC Ours
Cifar-10 1 28.3±0.5 28.8±0.7 26.0±0.8 46.2±0.8 46.8±0.3 48.5±0.8 47.5±0.4 49.0±0.3

3 - - - 55.3±0.4 56.0±0.2 - 56.0±0.3 57.1±0.4

10 44.9±0.5 52.1±0.6 48.9±0.6 65.4±0.7 66.6±0.3 66.4±0.8 66.7±0.7 67.1±0.3

50 53.9±0.5 60.6±0.5 63.0±0.4 71.6±0.2 73.8±0.3 72.6±0.7 73.7±0.3 73.9±0.2

Cifar-100 1 12.8±0.3 13.9±0.3 11.4±0.3 24.3±0.3 25.2±0.2 24.8±0.4 25.9±0.2 26.1±0.4

3 - - - 32.6±0.4 33.1±0.4 - 33.3±0.3 33.9±0.2

10 25.2±0.3 32.3±0.3 29.7±0.3 39.7±0.4 43.4±0.3 41.7±0.3 42.7±0.6 43.1±0.5

50 - 42.8±0.4 43.6±0.4 47.7±0.2 50.7±0.3 47.9±0.3 49.6±0.4 50.9±0.5

TinyImageNet 1 - - 3.9±0.2 8.8±0.3 10.4±0.3 - 9.9±0.2 10.9±0.2

3 - - - 10.5±0.3 11.6±0.5 - 12.4±0.3 13.6±0.4

10 - - 12.9±0.4 23.2±0.2 24.5±0.2 - 24.8±0.4 25.4±0.4

Table 2: Test Accuracy (%) Comparison of different image per category (IPC) setting on Cifar10,
Cifar-100 and Tiny ImageNet: the models are trained on the syntactic dataset learned by MTT and
our method independently and evaluated on the corresponding test set with real images. We cite the
results of DC, DM and MMT from FTD (Du et al., 2023).

ImageNette ImageWoof ImageFruit ImageMeow

MTT 63.0±1.3 35.8±1.8 40.3±1.3 40.4±2.2

FTD 67.7±0.7 38.8±1.4 44.9±1.5 43.3±0.6

Ours 68.2±0.5 39.4±1.2 45.2±1.3 45.4±0.9

All 87.4±1.0 67.0±1.3 63.9±2.0 66.7±1.1

Table 3: Test accuracy (%) comparison on Ci-
far10 with 10 and 50 images per class setting:
the syntactic datasets by MTT, FTD and our al-
gorithm are learned on ConvNet and tested on
AlexNet, VGG11 and ResNet18.

0 2000 4000 6000
Training Iteration

0.
01

00.
01

50.
02

00.
02

50.
03

00.
03

50.
04

00.
04

5

Le
ar

ni
ng

 R
at

e

Dynamic of Learning Rate Learning

First Order
Second Order

Figure 1: The comparison of the learning dy-
namic of learning rate learning with first and
second order differentiation when condensing on
the Cifar100-10IPC setting.

4.2 PRIMARY RESULTS

4.2.1 STANDARD DATASET CONDENSATION BENCHMARK

We compare our method against the other dataset condensation techniques, such as DC (Zhao et al.,
2021), DSA (Zhao & Bilen, 2021), DM (Zhao & Bilen, 2023), MTT(Cazenavette et al., 2022),
FTD (Du et al., 2023), TESLA (Cui et al., 2023) and MDC (He et al., 2024). The results from Ta-
ble 2 demonstrate the benefits of the flat minima that SATM outperforms the competitors on almost
all the settings of the standard dataset condensation benchmarks with various of IPCs. This benefit
can be further observed in the high-resolution image condensation task in Table 3. Note that in our
case, we merely build SATM up on Vanilla MMT (Cazenavette et al., 2022) without integrating the
flat trajectory trick in FTD and the soft label in TESLA. Limited by the computational resource,
we cannot conduct full batch training on Cifar100 with 10 IPC, 50 IPC and Tiny ImageNet with 10
IPC as that utilised on MTT and FTD, which we believe is the main reason that SATM performs
slightly worse than FTD on the Cifar100 with 10 IPC setting. Besides, there are clear improvement
margins over other trajectory-matching-based DC competitors. Moreover, in this work, we are also
interested in studying whether the advantages brought by the flatness can also be observed in cross-
architecture tasks, which leads to numerous practical applications. In Table 5, the synthetic datasets
by learned SATM for Cifar10 exhibit strong generalisation ability across the unseen architectures
on both IPC 10 and 50 settings over the candidate architectures in comparison with those learned by
MTT (Cazenavette et al., 2022), FTD (Du et al., 2023) and TESLA (Cui et al., 2023). Additionally,
one can notice that the performance of the learned dataset from the in-domain setting is not guaran-
teed in the cross-architecture setting. For instance, FTD performs similarly to SATM in the Cifar10
with 10 and 50 IPC settings when deploying on ConvNet in the dataset learning stage. However, the
performance gaps become remarkable once the same datasets are used across architectures.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Dataset (IPC) MTT EMA SAM GSAM ASAM Vasso SATM

Cifar100 (1) 24.3±0.4 24.7±0.2 25.7±0.3 25.9±0.3 25.7±0.3 25.9±0.2 26.1±0.3

Tiny ImageNet (3) 10.5±0.3 10.9±0.3 12.3±0.2 13.1±0.2 12.8±0.4 12.2±0.2 13.6±0.2

Table 4: Test Accuracy (%) Comparison with the advanced sharpness aware minimisation methods
including EMA, SAM, GSAM, ASAM and Vasso with the same expert trajectories as MTT.

Methods IPC ConvNet AlexNet VGG11 ResNet18
MTT

10
64.3±0.7 34.2±2.6 50.3±0.8 46.4±0.6

FTD 66.6±0.4 36.5±1.1 50.8±0.3 46.2±0.7

Ours 67.1±0.5 37.8±0.8 51.4±0.3 47.7±0.4

MTT
50

71.6±0.2 48.2±1.0 55.4±0.8 61.9±0.7

FTD 73.8±0.2 53.8±0.9 58.4±1.6 65.7±0.3

Ours 74.2±0.3 56.9±0.7 63.5±1.1 66.1±0.5

Table 5: Test accuracy (%) comparison on Cifar10 with 10 and 50 images per class setting: the
syntactic datasets by MTT, FTD and our algorithm are learned on ConvNet and tested on AlexNet,
VGG11 and ResNet18.

4.2.2 CONTINUAL LEARNING

We expose the learned dataset to the task incremental setting, following the same protocol discussed
in Gdumb (Prabhu et al., 2020) for a fair comparison with datasets produced by competitors such as
DM (Zhao & Bilen, 2023), MTT (Cazenavette et al., 2022), and FTD (Du et al., 2023). Typically,
models encounter a sequence of data from different categories and lose access to data from previous
categories after training. A limited memory budget is available to save dataset information from pre-
vious tasks, enabling models to retain gained knowledge while adapting to new tasks. In Figure 2,
we show that at each stage, as new categories are received, our learned datasets consistently outper-
form others in three settings: 5-task incremental with 50 images per category on Cifar10, 10-and
20-task incremental with 3 IPC on Tiny ImageNet. Given the result in Fig 2, SATM consistently
outperforms other methods whenever the models encounter new tasks on all the settings.

2 4 6 8 10
Number of Classes

65

70

75

80

85

90

95

Te
st

in
g

A
cc

ur
ac

y(
%

)

5-tasks on Cifar10 with 50 IPC

DM
MTT
FTD
Ours

20 40 60 80 100 120 140 160 180 200
Number of Classes

10

15

20

25

30

Te
st

in
g

A
cc

ur
ac

y(
%

)

10-tasks on TinyImageNet with 3 IPC

DM
MTT
FTD
Ours

1 2 3 4 5 6 7 8 9 1011121314151617181920
Number of Classes (×10)

10

15

20

25

30

35

Te
st

in
g

A
cc

ur
ac

y(
%

)

20-tasks on TinyImageNet with 3 IPC

DM
MTT
FTD
Ours

Figure 2: Test accuracy (%) comparison on continual learning. Left: 5-step class-incremental learn-
ing on Cifar10 50IPC, Middle: 10-step class-incremental learning on Tiny ImageNet 3IPC, Right:
20-step class-incremental learning on Tiny ImageNet 3IPC.

4.3 FURTHER ANALYSIS

4.3.1 COMPATIBILITY WITH ADVANCED SHARPNESS-AWARE OPTIMISERS

We study the compatibility of the proposed hypergradient approximation method on other sharp-
ness minimisation-based methods including EMA, SAM (Foret et al., 2020), GSAM (Zhuang et al.,
2021), ASAM (Kwon et al., 2021) and Vasso (Li & Giannakis, 2024) with our loss landscape
smoothing mechanism removed. For a fair comparison, the hyperparameters of each method are
properly tuned for the adaption to all the tasks including Cifar100 with 1 IPC and Tiny ImageNet
with 3 IPC. We repeat each method 5 times and report the mean and variance in Table 4. The results
imply that all the sharpness methods consistently improve MTT (Cazenavette et al., 2022), which
justifies the benefit of sharpness minimisation. However, the competitors all fail to defeat our method

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

0 2000 4000 6000
Training Iteration

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

0.
06

Hy
pe

rg
ra

di
en

t N
or

m

Cifar100 3IPC
MTT: Mean:4.8 × 10 3, Std:2.4 × 10 3

Ours: Mean: 2.2 × 10 3, Std:8.9 × 10 4

0 2000 4000 6000
Training Iteration

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

0.
06

Hy
pe

rg
ra

di
en

t N
or

m

Tiny ImageNet 3IPC
MTT: Mean:4.0 × 10 3, Std:3.1 × 10 3

Ours: Mean: 2.3 × 10 3, Std:1.3 × 10 3

0 2000 4000 6000
Training Iteration

0.
01

4
0.

01
6

0.
01

8
0.

02
0

0.
02

2
0.

02
4

Hy
pe

rg
ra

di
en

t N
or

m

Dynamic of Sharpness on Tiny ImageNet 3 IPC
Ours

Figure 3: Sharpness analysis by visualisation. Hypergradient Norm comparison between MTT and
SATM. Left: the hypergradient norm on Cifar100 with 10 IPC; Middle: the hypergradient norm on
Tiny ImageNet with 3 IPC. Right: Sharpness dynamic on Tiny ImageNet with 3 IPC.

due to the failure to accurately compute the sharpness proxy. Moreover, EMA, equivalent to FTD
without Sharpness-aware minimisers to generate expert trajectories, gains minimal improvement.

4.3.2 HYPERGRADIENT ANALYSIS

To illustrate the effects of sharpness minimisation on the process of synthetic dataset learning, we
record the hypergradient norm of MTT and SATM during training and report their mean and variance
over training iterations. Depicted in Fig 3, SATM has a smaller mean and variance than MTT on
Cifar100 with 3 IPC and Tiny ImnageNet 3IPC. Additionally, fewer spikes of hypergraident in
SATM can be observed, indicating more stable training. Moreover, the dynamic of the sharpness,
measured by L(ϕ+ ϵ)−L(ϕ), with decreasing trend shows that the synthetic dataset is landing into
the flat loss region.

4.3.3 TWO INNER LOOP ROUTINE

Our method has a similar training protocol with TESLA (Cui et al., 2023), as both require executing
the inner loop twice to enable outer loop updates. However, TESLA trades off time complexity in
its two inner loops to maintain a constant memory cost that is agnostic to the unrolling inner loop
steps. In contrast, our model also achieves constant memory usage by differentiating through the last
N steps of the inner loop, thanks to provable hypergradient approximation error bound. Moreover,
it requires only a partial second inner loop execution and aims to converge into a flat loss region
improving the generalization of synthetic data significantly, outperforming TESLA even without
relying on soft-label fitting tricks.

5 CONCLUSIONS, LIMITATIONS AND FUTURE WORKS

In this work, we explore the generalisation ability of condensed datasets produced by training
trajectory-matching-based algorithms via jointly optimising the sharpness and the distance between
real and synthetic trajectories. We propose Sharpness-Aware Trajectory Matching (SATM) to reduce
the computational cost caused by the long horizon inner loop and the mini-max optimisation for the
sharpness minimisation through the proposed hypergradient approximation strategies. Those strate-
gies have clear theoretical motivation, limited error in practice, and a framework flexible enough to
adapt to other sharpness-aware based algorithms. The improvement of the generalisation is observed
in a variety of in- and out-of-domain tasks such as cross-architecture and cross-task (continual learn-
ing) with a comprehensive analysis of the algorithm’s sharpness properties on the training dynamics.

Despite the superior performance of SATM, we observed that the proposed algorithm can poten-
tially serve as a ”plug-and-play” model for other dataset condensation methods and, more broadly,
for various bilevel optimisation applications, such as loss function learning, optimiser learning and
middle shot learning. However, these possibilities are not explored in this work and we leave them
to the future work. Moreover, beyond focusing on reusing the trajectory to enhance training effi-
ciency in reaching flat regions, future research could be in advanced gradient estimation directions,
such as implicit gradients, showing promise for managing long-horizon inner loops and avoiding
second-order unrolling. This could potentially eliminate the entire second trajectory resulting in
higher computational efficiency and less approximation error.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Momin Abbas, Quan Xiao, Lisha Chen, Pin-Yu Chen, and Tianyi Chen. Sharp-maml: Sharpness-
aware model-agnostic meta learning. In ICML, 2022.

Jérôme Bolte, Edouard Pauwels, and Samuel Vaiter. One-step differentiation of iterative algorithms.
In NeurIPS, 2024.

George Cazenavette, Tongzhou Wang, Antonio Torralba, Alexei A Efros, and Jun-Yan Zhu. Dataset
distillation by matching training trajectories. In CVPR, 2022.

Justin Cui, Ruochen Wang, Si Si, and Cho-Jui Hsieh. Scaling up dataset distillation to imagenet-1k
with constant memory. In International Conference on Machine Learning, 2023.

Laurent Dinh, Razvan Pascanu, Samy Bengio, and Yoshua Bengio. Sharp minima can generalize
for deep nets. In ICML, 2017.

Tian Dong, Bo Zhao, and Lingjuan Lyu. Privacy for free: How does dataset condensation help
privacy? In ICML, 2022.

Jiawei Du, Hanshu Yan, Jiashi Feng, Joey Tianyi Zhou, Liangli Zhen, Rick Siow Mong Goh, and
Vincent Tan. Efficient sharpness-aware minimization for improved training of neural networks.
In ICLR, 2022.

Jiawei Du, Yidi Jiang, Vincent YF Tan, Joey Tianyi Zhou, and Haizhou Li. Minimizing the accu-
mulated trajectory error to improve dataset distillation. In CVPR, 2023.

John C Duchi, Peter L Bartlett, and Martin J Wainwright. Randomized smoothing for stochastic
optimization. SIAM Journal on Optimization, 22(2):674–701, 2012.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation
of deep networks. In ICML, 2017.

Pierre Foret, Ariel Kleiner, Hossein Mobahi, and Behnam Neyshabur. Sharpness-aware minimiza-
tion for efficiently improving generalization. arXiv preprint arXiv:2010.01412, 2020.

Boyan Gao, Henry Gouk, and Timothy M Hospedales. Searching for robustness: Loss learning for
noisy classification tasks. In ICCV, 2021.

Boyan Gao, Henry Gouk, Yongxin Yang, and Timothy Hospedales. Loss function learning for
domain generalization by implicit gradient. In ICML, 2022.

Spyros Gidaris and Nikos Komodakis. Dynamic few-shot visual learning without forgetting. In
CVPR, 2018.

Jianping Gou, Baosheng Yu, Stephen J Maybank, and Dacheng Tao. Knowledge distillation: A
survey. International Journal of Computer Vision, 129(6):1789–1819, 2021.

Shreyank N Gowda, Xinyue Hao, Gen Li, Laura Sevilla-Lara, and Shashank Narayana Gowda.
Watt for what: Rethinking deep learning’s energy-performance relationship. arXiv preprint
arXiv:2310.06522, 2023.

Ziyao Guo, Kai Wang, George Cazenavette, HUI LI, Kaipeng Zhang, and Yang You. Towards
lossless dataset distillation via difficulty-aligned trajectory matching. In ICLR, 2024.

Sariel Har-Peled and Soham Mazumdar. On coresets for k-means and k-median clustering. In
Proceedings of the thirty-sixth annual ACM symposium on Theory of computing, pp. 291–300,
2004.

Moritz Hardt, Ben Recht, and Yoram Singer. Train faster, generalize better: Stability of stochastic
gradient descent. In ICML, 2016.

Kosuke Haruki, Taiji Suzuki, Yohei Hamakawa, Takeshi Toda, Ryuji Sakai, Masahiro Ozawa, and
Mitsuhiro Kimura. Gradient noise convolution (gnc): Smoothing loss function for distributed
large-batch sgd. arXiv preprint arXiv:1906.10822, 2019.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In CVPR, 2016.

Yang He, Lingao Xiao, Joey Tianyi Zhou, and Ivor Tsang. Multisize dataset condensation. arXiv
preprint arXiv:2403.06075, 2024.

Jean Kaddour, Linqing Liu, Ricardo Silva, and Matt J Kusner. When do flat minima optimizers
work? In NeurIPS, 2022.

Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal, Mikhail Smelyanskiy, and Ping Tak Pe-
ter Tang. On large-batch training for deep learning: Generalization gap and sharp minima. arXiv
preprint arXiv:1609.04836, 2016.

Jang-Hyun Kim, Jinuk Kim, Seong Joon Oh, Sangdoo Yun, Hwanjun Song, Joonhyun Jeong, Jung-
Woo Ha, and Hyun Oh Song. Dataset condensation via efficient synthetic-data parameterization.
In ICML, 2022.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In ICLR, 2015.

Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson, Tete
Xiao, Spencer Whitehead, Alexander C Berg, Wan-Yen Lo, et al. Segment anything. In ICCV,
2023.

Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. CIFAR-10 and CIFAR-100 datasets. URl:
https://www. cs. toronto. edu/kriz/cifar. html, 6(1):1, 2009.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convo-
lutional neural networks. In NeurIPS, 2012.

Jungmin Kwon, Jeongseop Kim, Hyunseo Park, and In Kwon Choi. Asam: Adaptive sharpness-
aware minimization for scale-invariant learning of deep neural networks. In ICML, 2021.

Ya Le and Xuan Yang. Tiny imagenet visual recognition challenge. CS 231N, 7(7):3, 2015.

Saehyung Lee, Sanghyuk Chun, Sangwon Jung, Sangdoo Yun, and Sungroh Yoon. Dataset conden-
sation with contrastive signals. In ICML, 2022.

Bingcong Li and Georgios Giannakis. Enhancing sharpness-aware optimization through variance
suppression. In NeurIPS, 2024.

Junnan Li, Dongxu Li, Caiming Xiong, and Steven Hoi. Blip: Bootstrapping language-image pre-
training for unified vision-language understanding and generation. In ICML, 2022.

Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi. BLIP-2: Bootstrapping language-image
pre-training with frozen image encoders and large language models. In ICML, 2023.

Yong Liu, Siqi Mai, Minhao Cheng, Xiangning Chen, Cho-Jui Hsieh, and Yang You. Random
sharpness-aware minimization. In NeurIPS, 2022.

Jonathan Lorraine, Paul Vicol, and David Duvenaud. Optimizing millions of hyperparameters by
implicit differentiation. In AISTATS, 2020.

Matthew MacKay, Paul Vicol, Jon Lorraine, David Duvenaud, and Roger Grosse. Self-tuning net-
works: Bilevel optimization of hyperparameters using structured best-response functions. arXiv
preprint arXiv:1903.03088, 2019.

Dougal Maclaurin, David Duvenaud, and Ryan Adams. Gradient-based hyperparameter optimiza-
tion through reversible learning. In ICML, 2015.

Wojciech Masarczyk and Ivona Tautkute. Reducing catastrophic forgetting with learning on syn-
thetic data. In CVPR (Workshop), 2020.

Behnam Neyshabur, Srinadh Bhojanapalli, David McAllester, and Nati Srebro. Exploring general-
ization in deep learning. In NeurIPS, 2017.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Timothy Nguyen, Zhourong Chen, and Jaehoon Lee. Dataset meta-learning from kernel ridge-
regression. In ICLR, 2021a.

Timothy Nguyen, Roman Novak, Lechao Xiao, and Jaehoon Lee. Dataset distillation with infinitely
wide convolutional networks. In NeurIPS, 2021b.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow
instructions with human feedback. In NeurIPS, 2022.

Mansheej Paul, Surya Ganguli, and Gintare Karolina Dziugaite. Deep learning on a data diet:
Finding important examples early in training. In NeurIPS, 2021.

Henning Petzka, Michael Kamp, Linara Adilova, Cristian Sminchisescu, and Mario Boley. Relative
flatness and generalization. In NeurIPS, 2021.

Ameya Prabhu, Philip HS Torr, and Puneet K Dokania. Gdumb: A simple approach that questions
our progress in continual learning. In ECCV, 2020.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In ICML, 2021.

Aravind Rajeswaran, Chelsea Finn, Sham M Kakade, and Sergey Levine. Meta-learning with im-
plicit gradients. In NeurIPS, 2019.

Andrea Rosasco, Antonio Carta, Andrea Cossu, Vincenzo Lomonaco, and Davide Bacciu. Dis-
tilled replay: Overcoming forgetting through synthetic samples. In International Workshop on
Continual Semi-Supervised Learning, pp. 104–117. Springer, 2021.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng
Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al. Imagenet large scale visual
recognition challenge. International journal of computer vision, 115:211–252, 2015.

Mattia Sangermano, Antonio Carta, Andrea Cossu, and Davide Bacciu. Sample condensation in
online continual learning. In IJCNN, 2022.

Christoph Schuhmann, Romain Beaumont, Richard Vencu, Cade Gordon, Ross Wightman, Mehdi
Cherti, Theo Coombes, Aarush Katta, Clayton Mullis, Mitchell Wortsman, et al. Laion-5b: An
open large-scale dataset for training next generation image-text models. In NeurIPs, 2022.

Amirreza Shaban, Ching-An Cheng, Nathan Hatch, and Byron Boots. Truncated back-propagation
for bilevel optimization. In AISTATS, 2019.

Reza Shokri and Vitaly Shmatikov. Privacy-preserving deep learning. In SIGSAC, 2015.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556, 2014.

Ankur Sinha, Pekka Malo, and Kalyanmoy Deb. A review on bilevel optimization: From classical
to evolutionary approaches and applications. IEEE transactions on evolutionary computation, 22
(2):276–295, 2017.

Peng Sun, Bei Shi, Daiwei Yu, and Tao Lin. On the diversity and realism of distilled dataset: An
efficient dataset distillation paradigm. In CVPR, 2024.

Kai Wang, Bo Zhao, Xiangyu Peng, Zheng Zhu, Shuo Yang, Shuo Wang, Guan Huang, Hakan
Bilen, Xinchao Wang, and Yang You. Cafe: Learning to condense dataset by aligning features.
In CVPR, 2022a.

Tongzhou Wang, Jun-Yan Zhu, Antonio Torralba, and Alexei A Efros. Dataset distillation. arXiv
preprint arXiv:1811.10959, 2018.

Zhenyi Wang, Li Shen, Le Fang, Qiuling Suo, Tiehang Duan, and Mingchen Gao. Improving task-
free continual learning by distributionally robust memory evolution. In ICML, 2022b.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Wei Wen, Yandan Wang, Feng Yan, Cong Xu, Chunpeng Wu, Yiran Chen, and Hai Li. Smoothout:
Smoothing out sharp minima to improve generalization in deep learning. arXiv preprint
arXiv:1805.07898, 2018.

S Yang, Z Xie, H Peng, M Xu, M Sun, and P Li. Dataset pruning: Reducing training data by
examining generalization influence. arXiv preprint arXiv:2205.09329, 2022.

Yiding Yang, Jiayan Qiu, Mingli Song, Dacheng Tao, and Xinchao Wang. Distilling knowledge
from graph convolutional networks. In CVPR, 2020.

Lu Yu, Bartlomiej Twardowski, Xialei Liu, Luis Herranz, Kai Wang, Yongmei Cheng, Shangling
Jui, and Joost van de Weijer. Semantic drift compensation for class-incremental learning. In
CVPR, 2020.

Yihua Zhang, Prashant Khanduri, Ioannis Tsaknakis, Yuguang Yao, Mingyi Hong, and Sijia Liu.
An introduction to bilevel optimization: Foundations and applications in signal processing and
machine learning. IEEE Signal Processing Magazine, 41(1):38–59, 2024.

Bo Zhao and Hakan Bilen. Dataset condensation with differentiable siamese augmentation. In
ICML, 2021.

Bo Zhao and Hakan Bilen. Dataset condensation with distribution matching. In WACV, 2023.

Bo Zhao, Konda Reddy Mopuri, and Hakan Bilen. Dataset condensation with gradient matching. In
ICLR, 2021.

Yongchao Zhou, Ehsan Nezhadarya, and Jimmy Ba. Dataset distillation using neural feature regres-
sion. NeurIPS, 2022.

Juntang Zhuang, Boqing Gong, Liangzhe Yuan, Yin Cui, Hartwig Adam, Nicha C Dvornek, James
s Duncan, Ting Liu, et al. Surrogate gap minimization improves sharpness-aware training. In
ICLR, 2021.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A APPENDIX

A.1 PROOF FOR THEOREM 3.2

Theorem 3.2. Let L(ϕ, θ) be a function that is σ-smooth and continuous with respect to its ar-
guments ϕ and θ. Additionally, let the second-order derivatives ∇ϕ∇θL(ϕ, θ) be β-continuous.
Consider two trajectories obtained by conducting gradient descent training on the datasets ϕ and
ϕ+ϵ, respectively, with a carefully chosen learning rate α and identical initializations. After τ steps
of training, let ∆θτ = θ̂τ (ϕ+ ϵ)− θτ (ϕ). Then, we have:

∥∆θτ∥ ≤ ατ(2σ + βρ).

Proof. Let:

θ̂τ = θ0 − α

τ∑
i

∇L(ϕ+ ϵ, θ̂i)

θτ = θ0 − α

τ∑
i

∇L(ϕ, θi)

then after N step iterations, the difference between θN and θ̂N is

∥∆θτ∥ =
∥∥∥θ̂τ − θτ

∥∥∥ =

∥∥∥∥∥−α

τ∑
i

(∇L(ϕ+ ϵ, θ̂i)−∇L(ϕ, θi))

∥∥∥∥∥
= α

∥∥∥∥∥
τ∑
i

(∇L(ϕ+ ϵ, θ̂i)−∇L(ϕ, θi))

∥∥∥∥∥
We compute the gradient difference:

||∇L(ϕ+ ϵ, θ̂i)−∇L(ϕ, θi)||
≈ ||∇L(ϕ, θ̂i) +∇ϕ∇θL(ϕ, θ̂i) · ϵ−∇L(ϕ, θi)||
≤ ||∇L(ϕ, θ̂i)−∇L(ϕ, θi)||+ ||∇ϕ∇θL(ϕ, θ̂i) · ϵ||
≤ 2σ + ||∇ϕ∇θL(ϕ, θ̂i)||||ϵ||

With ∇ϕ∇θL(ϕ, θ̂i) is β smooth and ||ϵ|| = ρ :

||∇L(ϕ+ ϵ, θ̂i)−∇L(ϕ, θi)||2 ≤ 2σ + βρ

Then:

∥∆θτ∥ ≤ ατ(2σ + βρ)

A.2 PYTORCH BASED PSEUDOCODE FOR TRUNCATED UNROLLING HYPERGRADIENT

Algorithm 2: Trucated hypergradient computation
stop gradient:
for i = 1, . . . , ι do

θi = θi−1 − α ∗ torch.grad(LCE(θ, ϕ), θ)
end for
with gradient:
for i = 1, . . . , N − ι do

θi = θi−1 − α ∗ torch.grad(LCE(θ, ϕ), θ, retain graph = True, create graph = True)
end for
Return: θN (ϕ)

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

A.3 PROOF OF PROPOSITION 3.1

Proposition 3.1. Assmue LCE is K-smooth, twice differentiable, and locally J-strongly convex in
θ around {θι+1, ..., θN}. Let Ξ(θ, ϕ) = θ − α∇LCE(θ, ϕ). For α ≤ 1

K , then∥∥∥∥∂F (ϕ)

∂ϕ
− ∂Fι(ϕ)

∂ϕ

∥∥∥∥ ≤ 2ι(1− αJ)N−ι+1

∥∥∥∥∂L(θ(ϕ))∂θN (ϕ)

∥∥∥∥ max
i∈{0,..ι}

∥∥∥∥∂θi∂ϕ

∥∥∥∥
where ∂F (ϕ)

∂ϕ denotes the untruncated hypergradient.

Proof. Let

Ai+1 =
∂θi+1

∂θi
, Bi+1 =

∂θi+1

∂ϕ

then

∂F (ϕ)

∂ϕ
=

∂L(θ(ϕ))
∂ϕ

+

N∑
i=0

BiAi+1 · · ·AN
∂L(θ(ϕ))
∂θN (ϕ)

Let eι =
∂F (ϕ)
∂ϕ − ∂Fι(ϕ)

∂ϕ ,

eι =

(
ι∑

i=0

BiAi+1 · · ·Aι

)
Aι+1 · · ·AN

∂L(θ(ϕ))
∂θN (ϕ)

Given LCE is locally J-strongly convex with respect to θ in the neighborhood of {θι+1, . . . , θN},

∥eι∥ ≤

∥∥∥∥∥
ι∑

i=0

BiAi+1 · · ·Aι

∥∥∥∥∥
∥∥∥∥∥Aι+1 · · ·AN

∂L(θ(ϕ))
∂θN (ϕ)

∥∥∥∥∥
≤ (1− αJ)N−ι+1

∥∥∥∥∂L(θ(ϕ))∂θN (ϕ)

∥∥∥∥
∥∥∥∥∥

ι∑
i=0

BiAi+1 · · ·Aι

∥∥∥∥∥
In the worst case, when LCE is K-smooth but nonconvex, then if the smallest eigenvalue of
∂2LCE(θ,ϕ)

∂θ ∂θ is −K, then ∥Ai∥ = 1 + αK ≤ 2 for i = 0, . . . , ι.

A.4 THE DERIVATION OF LEARNING RATE LEARNING WITH FIRST ORDER DERIVATIVE

In this section, we provide the derivation of the hypergradient calculation for learning rate α. Given
the outer loop objective, L(θ(ϕ)), and the inner loop object LCE(θi, ϕ) with N iteration unrolling,
the computation can be dedicated by:

∂L(θN (ϕ))

∂α
=

∂L(θN (ϕ))

∂θN
· ∂(θN , ϕ)

∂α

=
∂L(θN (ϕ))

∂θN
· ∂Ξ(θN−1, ϕ)

∂α

=
∂L(θN (ϕ))

∂θN
· ∂

∂α

(
θN−1 − α

∂LCE(θN−1, ϕ)

∂θN−1

)

=
∂L(θN (ϕ))

∂θN
·

(
∂θN−1

∂α
− ∂LCE(θN−1, ϕ)

∂θN−1

)

we treat
∂LCE(θN−1, ϕ)

∂θN−1
as a constant w.r.t. α

=
∂L(θN (ϕ))

∂θN
·

(
∂

∂α
Ξ(θN−2, ϕ)−

∂LCE(θN−1, ϕ)

∂θN−1

)

=
∂L(θN (ϕ))

∂θN
·

(
−

N−1∑
i=0

∂LCE(θi, ϕ)

∂ θi

)

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

A.5 COMPUTATIONAL RESOURCE

We conduct all our experiments on two Tesla V100-32GB GPUs with Intel(R) Xeon(R) W-2245
CPU @ 3.90GHz and one A100-40GB GPU with Intel(R) Xeon(R) Gold 5118 CPU @ 2.30GHz
which are on different servers. Thus, we cannot run the full batch of synthetic dataset learning as the
same as other trajectory matching-based methods when the inner loop trajectories contain many un-
rolling iterations. Those cases include Cifar100-10IPC, Cifar100-50IPC, and Tiny ImageNet 1IPC.
In our case, stochastic gradient descent with mini-batch is utilised in the outer loop instead.

A.6 HYPERPARAMETERS AND EXPERIMENT DETAILS

The hyperparameters used for condensing datasets in all the settings are given in Tab 6 with Con-
vNet (Gidaris & Komodakis, 2018) applied to construct the training trajectories.

Dataset Model IPC
Synthetic

Steps
(N)

Expert
Epochs

(M)

Max Start
Epoch

(T)

Synthetic
Batch Size ZCA

Learning
Rate

(Images)

Learning
Rate

(Step size)

CIFAR-10 ConvNetD3

1 50 2 2 - Y 1000 1×10−6

3 50 2 2 - Y 100 1×10−5

10 30 2 20 - Y 50 1×10−5

50 30 2 40 - Y 100 1×10−5

CIFAR-100 ConvNetD3
1 40 3 20 - Y 500 1×10−5

3 45 3 20 - Y 1000 5×10−5

10 20 2 20 500 Y 1000 1×10−5

50 80 2 40 500 Y 1000 1×10−5

Tiny ImageNet ConvNetD4
1 30 2 10 200 Y 1000 1×10−4

3 30 2 15 200 Y 1000 1×10−4

10 20 2 40 200 Y 10000 1×10−4

Table 6: Hyper-parameters used for our SATM. A synthetic batch size of “-” represents that a
full batch set is used in each outer loop iteration. ConvNetD3 and ConvNet4D denote the 3-layer
and 4-layer ConvNet (Gidaris & Komodakis, 2018) respectively. In all the settings, ZCA whiten-
ing (Nguyen et al., 2021b;a) is applied.

A.7 COMPUTATIONAL COST COMPARSION

We computed and recorded the memory and time costs when running SATM and then compared
them with MTT and TESLA following Tesla’s experimental protocol. The results were primarily
measured on a single NVIDIA A6000 GPU, except for MTT on ImageNet-1K (Russakovsky et al.,
2015), which required two A6000 GPUs.

In most of our experiments, only one-third of the inner loop is retained to compute the hypergradients
for sharpness approximation and synthetic dataset optimization. In the worst-case scenario, we keep
half of the inner loop to ensure training stability and efficiency. Given the result in Table 7, our
strategy significantly reduces memory consumption compared to MTT, enabling the dataset to be
trained on a single A6000 GPU.

MTT Memory TESLA Memory SATM (N/2) Memory SATM (N/3) Memory

CIFAR-100 17.1±0.1 GB 3.6±0.1 GB 8.7±0.1 GB 5.7±0.1 GB
ImageNet-1K 79.9±0.1 GB 13.9±0.1 GB 39.6±0.1 GB 26.6±0.1 GB

Table 7: Comparison of memory usage across different methods and datasets. We refer to the
cases where one-third and one-half of the inner loop are retained as SATM (N/3) and SATM (N/2),
respectively.

In terms of time cost illustrated in Table 8, SATM consistently outperforms the two inner-loop-based
algorithms, Tesla. In the one-third inner loop case, SATM even consumes less time than MTT which
requires retaining a full single inner loop.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

MTT Time TESLA Time SATM (N/2) Time SATM (N/3) Time

CIFAR-100 12.1±0.6 sec 15.3±0.5 sec 12.8±0.6 sec 12.0±0.5 sec
ImageNet-1K 45.9±0.5 sec 47.4±0.7 sec 46.1±0.4 sec 45.4±0.4 sec

Table 8: Comparison of execution time across different methods and datasets. We refer to the
cases where one-third and one-half of the inner loop are retained as SATM (N/3) and SATM (N/2),
respectively.

CIFAR-100 ImageNet-1K
Datasets

0

10

20

30

40

Se
co

nd
s (

Ru
nt

im
e

pe
r 1

0
ite

ra
tio

ns
) MTT runtime

TESLA runtime
SATM(N/3) runtime
MTT memory
TESLA memory
SATM(N/3) memory

0

10

20

30

40

50

60

70

80

GB
 (M

em
or

y)

Runtime and Memory Usage Comparison

Figure 4: GPU memory and runtime comparison among MTT, TESLA and SATM (N/3) on CI-
FAR100 and ImageNet-1K with results measured with a batch size of 100 and 50 inner loop steps.

To further justify the memory efficiency of SATM, we challenge the ImageNet-1K setting following
the training and evaluation protocol from Tesla. By truncating the inner loop computational graph
hold for hypergradient computation, SATM is executable on the heavy memory setting with results
given in Table 9.

Dataset IPC TESLA SATM

ImageNet-1K 1 7.7±0.2 8.2±0.4
2 10.5±0.3 11.4±0.2

10 17.8±1.3 18.5±0.9
50 27.9±1.2 28.4±1.1

Table 9: Comparison of TESLA and SATM across different IPCs on ImageNet-1K.

A.8 FLAT INNER LOOP STUDY

SATM is developed based on MTT without incorporating the components introduced in FTD (Du
et al., 2023), particularly the expert trajectories generated by sharpness-aware optimizers such as
GSAM. However, understanding whether SATM can be compatible with advanced expert trajecto-
ries is desirable to study. Therefore, we follow the expert trajectory generation protocol and execute
SATM on the flat expert trajectories with the results in Table 10. It can be observed that the inclusion
of a flat inner loop leads to clear improvements in SATM-FI compared to both standard SATM and
FTD. Furthermore, the authors of FTD noted the limited performance contribution of EMA, which
was originally intended to guide the synthetic dataset toward convergence on a flat loss landscape.
SATM addresses this limitation and effectively demonstrates the benefits of leveraging flatness for
improved generalization.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

IPC MTT FTD SATM SATM-FI

1 46.2±0.8 46.8±0.3 49.0±0.3 48.7±0.4
CIFAR-10 10 65.4±0.7 66.6±0.3 67.1±0.4 67.9±0.3

50 71.6±0.2 73.8±0.2 73.9±0.2 74.2±0.4

1 24.3±0.3 25.2±0.2 26.1±0.4 26.6±0.5
CIFAR-100 10 39.7±0.4 43.4±0.3 43.1±0.5 43.9±0.7

50 47.7±0.2 50.7±0.3 50.9±0.5 51.4±0.5

Tiny-ImageNet 1 8.8±0.3 10.4±0.3 10.9±0.2 11.7±0.4
10 23.2±0.1 24.5±0.2 25.4±0.4 25.6±0.6

Table 10: Accuracy (%) Comparison of MTT, FTD, SATM, and SATM-FI across different datasets
and configurations.

A.9 TRUNCATED STEP STUDY

We chose the settings that require the long inner loops for dataset learning to study the correlation
between the number of inner loop steps remaining for differentiation and the model performance.
Table 11 details the experimental settings, including the dataset, the number of images per category
(IPC), and the inner loop steps N . For example, “CIFAR-10 (1 IPC, 50 steps)” refers to condensing
one synthetic image per category with 50 inner loop steps. To analyze the effect on performance,
we retained the last 1

k steps, where k = 2, 3, 4, 5, 6, of the total inner loop steps. For simplicity, the
inner loop steps remained for the first round of hypergradient computation and trajectory reusing in
the second round is kept the same which is applied across all experiments. The operation int(Nk)
is used to determine the remaining inner loop steps. We examined how accuracy changes with
the remaining inner loop steps by executing SATM for 10000 training iterations. A clear trend
emerged: performance improves as the number of truncated iterations decreases and converges once
the differentiation steps reach a certain threshold.

Configuration/Steps 1
6

1
5

1
4

1
3

1
2

CIFAR-10 (1IPC, 50step) 45.2 48.8 47.5 49.0 49.2
CIFAR-100 (50IPC, 80step) 23.4 33.4 48.7 50.9 50.5

Table 11: Accuracy (%) change along with the truncated inner loop step change on CIFAR-10 and
CIFAR-100 datasets.

A.10 MORE RELATED WORK AND COMPARISON WITH RECENT METHOD

A recent method, RDED (Sun et al., 2024), introduces new perspectives to the dataset distilla-
tion field by constructing synthetic images from original image crops and labelling them with a
pre-trained model. In comparison, our work falls within the training trajectory matching area and
focuses on efficient bilevel optimization with a long inner loop with the goal of enhancing the gen-
eralization ability of synthetic data by developing an efficient, sharpness-aware optimizer for bilevel
optimization.

DATM (Guo et al., 2024) utilizes the difficulty of training trajectories to implement a curriculum
learning-based dataset condensation protocol. While this approach is relevant, it is somewhat dis-
tinct from research focused on optimization efficiency and generalization, such as Tesla, FTD, and
SATM, which prioritize optimization efficiency through gradient approximation. Additionally, from
an implementation perspective, DATM feeds expert trajectories in an easy-to-hard sequence directly
into FTD. In contrast, our work focuses on the flatness of the loss landscape of the learning dataset
from a bilevel optimization perspective, rather than emphasizing pure performance comparisons.
Nevertheless, we believe our method is compatible with DATM. To demonstrate this, we conducted
experiments combining DATM’s easy-to-hard training protocol with SATM, yielding the following
results in Table 12.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

IPC MTT FTD DATM SATM-DA

1 46.2± 0.8 46.8± 0.3 46.9± 0.5 48.6± 0.4
CIFAR-10 10 65.4± 0.7 66.6± 0.3 66.8± 0.2 68.1± 0.3

50 71.6± 0.2 73.8± 0.2 76.1± 0.3 76.4± 0.6

1 24.3± 0.3 25.2± 0.2 27.9± 0.2 28.2± 0.8
CIFAR-100 10 39.7± 0.4 43.4± 0.3 47.2± 0.4 48.3± 0.4

50 47.7± 0.2 50.7± 0.3 55.0± 0.2 55.7± 0.3

Tiny-ImageNet 1 8.8± 0.3 10.4± 0.3 17.1± 0.3 16.4± 0.4
10 23.2± 0.1 24.5± 0.2 31.1± 0.3 32.3± 0.6

Table 12: Accuracy (%) Comparison of MTT, FTD, DATM, and SATM-DA across different IPCs,
datasets and configurations.

A.11 ILLUSTRATION FOR THE SYNTHETIC IMAGES

We visualise the learned synthetic datasets on Cifar10, Cifar100 and Tiny ImageNet in this section.

Figure 5: Cifar10 with 1IPC

Figure 6: Cifar10 with 3IPC

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Figure 7: Cifar10 with 10IPC

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Figure 8: Cifar100 with 1IPC

22

	Introduction
	Background and Related Work
	Bilevel Optimisation and Dataset condensation
	Sharpness-aware Minimisation

	Method
	Preliminary
	Smooth Sharpness-Aware Minimisation in Outer loop
	Efficient Sharpness-Aware Minimisation in Bilevel Optimisation
	Truncated Unrolling Hypergradient
	Trajectory Reusing

	Experiments
	Experiments Settings
	Primary Results
	Standard Dataset Condensation Benchmark
	Continual Learning

	Further Analysis
	Compatibility with Advanced Sharpness-Aware Optimisers
	Hypergradient Analysis
	Two Inner Loop Routine

	Conclusions, Limitations and Future Works
	Appendix
	Proof for Theorem 3.2
	Pytorch Based Pseudocode for Truncated Unrolling Hypergradient
	Proof of Proposition 3.1
	The Derivation of Learning Rate Learning with First Order Derivative
	Computational Resource
	Hyperparameters and Experiment Details
	Computational Cost Comparsion
	Flat Inner Loop Study
	Truncated Step Study
	More related work and comparison with Recent Method
	Illustration for the Synthetic Images

