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ABSTRACT

Dataset condensation aims to synthesise datasets with a few representative sam-
ples that can effectively represent the original datasets. This enables efficient train-
ing and produces models with performance close to those trained on the original
sets. Most existing dataset condensation methods conduct dataset learning under
the bilevel (inner and outer loop) based optimisation. However, due to its no-
toriously complicated loss landscape and expensive time-space complexity, the
preceding methods either develop advanced training protocols so that the learned
datasets generalise to unseen tasks or reduce the inner loop learning cost increas-
ing proportionally to the unrolling steps. This phenomenon deteriorates when the
datasets are learned via matching the trajectories of networks trained on the real
and synthetic datasets with a long horizon inner loop. To address these issues,
we introduce Sharpness-Aware Trajectory Matching (SATM), which enhances the
generalisation capability of learned synthetic datasets by minimising sharpness in
the outer loop of bilevel optimisation. Moreover, our approach is coupled with
an efficient hypergradient approximation that is mathematically well-supported
and straightforward to implement along with controllable computational over-
head. Empirical evaluations of SATM demonstrate its effectiveness across var-
ious applications, including standard in-domain benchmarks and out-of-domain
settings. Moreover, its easy-to-implement properties afford flexibility, allowing it
to integrate with other advanced sharpness-aware minimisers. We will release our
code on GitHub.

1 INTRODUCTION

The success of modern deep learning in various fields, exemplified by Segment Anything (Kirillov
et al., 2023) in computer vision and GPT (Ouyang et al., 2022) in natural language processing, comes
at a significant cost in terms of the enormous computational expenses associated with large-scale
neural network training on massive amounts of real-world data Radford et al. (2021); Li et al. (2023);
Schuhmann et al. (2022); Li et al. (2022); Gowda et al. (2023). To reduce training and dataset storage
costs, selecting the representative subset based on the specific importance criteria forms a direct
solution (Har-Peled & Mazumdar, 2004; Yang et al., 2022; Paul et al., 2021; Wang et al., 2022b).
However, these methods fail to handle the cases when the samples are distinct and the information is
uniformly distributed in the dataset. In contrast, Dataset Condensation (DC) (Zhao et al., 2021; Zhao
& Bilen, 2023; Wang et al., 2018; Cazenavette et al., 2022; Du et al., 2023) focuses on creating a
small, compact version of the original dataset that retains its representative qualities. Models trained
on the condensed dataset perform comparably to those trained on the full dataset. This approach
significantly reduces training costs and storage requirements, meanwhile expedites more challenging
machine learning tasks such as hyperparameter tuning, continual learning (Rosasco et al., 2021),
architecture search (Sangermano et al., 2022; Yu et al., 2020; Masarczyk & Tautkute, 2020), and
privacy-preserving (Shokri & Shmatikov, 2015; Dong et al., 2022).

Given the significant practical value of condensed datasets, considerable effort has been directed
toward designing innovative surrogate methods to ensure that synthetic datasets capture representa-
tive signals, thereby enhancing future deployments’ performance (Zhao & Bilen, 2023; Zhao et al.,
2021; Zhou et al., 2022; Kim et al., 2022). Bilevel Optimisation (BO) provides a DC paradigm
learning synthetic dataset through its main optimisation objective in the outer loop constrained by
training neural networks in its inner loop. One line of the representative solutions condenses datasets
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by minimising the disparity between training trajectories on synthetic and real sets, achieving no-
table performance (Cazenavette et al., 2022). The following studies either reduce the computational
cost of inner loop unrolling or steer the optimisation process to enhance the generalization of the
learned dataset to the unseen tasks. For instance, FTD (Du et al., 2023) improves the performance
of synthetic datasets by leveraging high-quality inner loop expert trajectories and incorporating mo-
mentum into the outer loop optimisation via Exponential Moving Average (EMA) and the introduced
memory overhead increases along with the synthetic dataset budget. TESLA (Cui et al., 2023) is
proposed with a two-inner loop-based algorithm to approximate the hypergradient for the dataset
updates maintaining a constant memory usage. In this work, we introduce a two inner loop-based
mechanism, that directly optimizes the generalisation ability of the synthetic dataset with control-
lable memory cost. This results in superior performance on both in-domain and out-of-domain tasks,
with reduced memory and time complexity compared to those methods.

Inspired by (Foret et al., 2020; Kwon et al., 2021; Li & Giannakis, 2024), the studies on improving
generalisation by minimising loss landscape sharpness to achieve flat convergence regions in uni-
level optimisation, we extend this concept and develop an algorithm for dataset condensation in
the more complex bilevel optimisation setting. Our approach addresses the computational overhead
caused by the notorious ascent and descent routine in sharpness-aware optimisers, which typically
double both the time and memory costs throughout the learning process. Specifically, we propose a
lightweight and efficient trajectory matching-based method, Sharpness-Aware Trajectory Matching
(SATM), that enhances the generalisation of the alliance trajectory matching algorithm significantly
and integrates with the beneficial properties introduced by FTD (Du et al., 2023) and TESLA Cui
et al. (2023) with noticeable improvement margin across various applications whilst avoiding the
redundant computation graph holding and recomputing. The main contributions of this work are
summarised as:

• We primarily study the generalisation ability of the outer loop in the bilevel optimisation
for the learned dataset, then design an algorithm, Sharpness-Aware Trajectory Matching, to
jointly minimise the sharpness and the distance between training trajectories with a tailored
loss landscape smoothing strategy.

• A simple and easy-to-implement method is proposed to handle the tremendous computa-
tional overhead introduced by the sharpness proxy in the long inner loop horizons scenario.
In addition, to reduce the redundancy of the (hyper) gradient calculation, the learning rate
in the inner loop is learned by simple model gradient aggregation without holding the com-
putational graph.

• We provide rigorous theoretical support for the proposed approximation methods by bound-
ing the errors of the approximations and analysing the approximation error effected by the
hyperparameters, which shed light on meaningful hyperparameter tuning.

• SATM outperforms the trajectory-matching-based competitors on various condensation
benchmarks with noticeable margins on in- and out-of-domain settings.

2 BACKGROUND AND RELATED WORK

2.1 BILEVEL OPTIMISATION AND DATASET CONDENSATION

Bilevel Optimisation (Sinha et al., 2017; Zhang et al., 2024), nesting optimisation problems as con-
straints for the main optimisation objective, is formulated as follows:

min
ϕ

Louter(θ∗(ϕ), ϕ) (1)

s.t. θ∗(ϕ) = argmin
θ

Linner(θ, ϕ) (2)

where, argminθ Linner(θ, ϕ) forms the constraint for the main optimisation objective function,
Louter. The learnable parameter ϕ in the outer loop influences the performance of the inner loop
state, θ(ϕ), while the inner loop also depends on the current free parameter on the outer loop. This
optimisation framework is widely used in various machine learning areas, including hyperparameter
tuning (Lorraine et al., 2020; Maclaurin et al., 2015; MacKay et al., 2019) and meta-learning (Finn
et al., 2017; Gao et al., 2022; Rajeswaran et al., 2019; Gao et al., 2021).
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Inspired by knowledge distillation (Gou et al., 2021; Yang et al., 2020), Wang et al. (Wang et al.,
2018) leverage BO to distill a small, compact synthetic dataset for efficient training on unseen down-
stream tasks. Several works expanding on this BO framework match gradients (Zhao & Bilen, 2021;
Zhao et al., 2021; Lee et al., 2022), features (Wang et al., 2022a), and distributions (Zhao & Bilen,
2023) produced by the synthetic and real sets. They achieve this with a few iterations of inner loop
unrolling to avoid the challenges of nested optimisation. To address the same challenge, Nguyen et
al. (Nguyen et al., 2021b;a) directly estimate the convergence of the inner loop using the Neural
Tangent Kernel (NTK) to emulate the effects from the synthetic sets. However, due to the heavy
computational demands of matrix inversion, the NTK-based method struggles to scale up for con-
densing large, complex datasets. MTT (Cazenavette et al., 2022) emphasises the benefits of a long
horizon inner loop and minimises the differences between synthetic and expert training trajectory
segments. Nonetheless, the learned synthetic dataset often overfits the neural architecture used in the
expert trajectories, resulting in limited generalisation ability. In this work, we address this problem
by exploring the flatness of the synthetic dataset’s convergence region.

2.2 SHARPNESS-AWARE MINIMISATION

The generalisation enhanced by flat region minimums has been observed empirically and studied
theoretically (Dinh et al., 2017; Keskar et al., 2016; Neyshabur et al., 2017). Motivated by this,
Sharpness-aware minimiser (SAM) (Foret et al., 2020) optimises the objective function and sharp-
ness simultaneously to seek the optimum lying in a flat convergence region. Given the training data,
D, consider a training problem where the objective function is denoted as L(ϕ;D) with the learnable
parameter ϕ, the objective function of SAM is framed as:

min
ϕ

max
||ϵ||2≤ρ

L(ϕ+ ϵ;D) (3)

where approximating sharpness is achieved by finding the perturbation vectors ϵ maximising the
objective function in the Euclidean ball with radius, ρ, with the sharpness defined as:

max
||ϵ||2≤ρ

∣∣L(ϕ+ ϵ;D)− L(ϕ;D)|. (4)

Instead of solving this problem iteratively, a closed-form approximation of the optimal by utilisation
of the first-order Taylor expansion of the training loss is given by

ϵ = ρ
∇L(ϕ)

||∇L(ϕ)||p
≈ argmax

||ϵ|| ≤ρ

L(ϕ+ ϵ),

Overall, the updating procedure of SAM in each iteration is summarised as follows:

ϕ = ϕ− α∇L(ϕ+ ϵ) s.t. ϵ = ρ
∇L(ϕ)

||∇L(ϕ)||p
(5)

where α represents the learning rate and after computing the gradient, ∇L(ϕ + ϵ), the parameter
update procedure is instantiated by standard optimisers, such as SGD and Adam (Kingma & Ba,
2015). Without losing generality, we set p = 2 for simplicity for the rest of this work. One can
observe that due to the two-stage gradient calculation at ϕ and ϕ+ ϵ, the computational overhead of
SAM is double, compared with the conventional optimisation strategy. To reduce the computational
cost, ESAM (Du et al., 2022) randomly selects a subset of the parameters to update in each iteration.
Zhuang et al. (Zhuang et al., 2021) observes that SAM fails to identify the sharpness and mitigates
this by proposing a novel sharpness proxy. To tackle the complicated loss landscape, Li and Gi-
annakis (Li & Giannakis, 2024) introduce a momentum-like strategy for sharpness approximation
while ASAM (Kwon et al., 2021) automatically modify the sharpness reaching range by adapting
the local loss landscape geometry. In contrast, we handle complicated multi-iteration unrolling for
learning datasets in the many-shot region where both the difficulty of approximating the sharpness
and the computation resources surge.

3 METHOD

We introduce our method in this section starting with reviewing a DC framework, Matching Training
Trajectory (MTT) (Cazenavette et al., 2022), applied in this work. Then we combine the bilevel op-
timisation with sharpness-aware optimisation tailored for dataset condensation with a loss landscape
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Algorithm 1: Sharpness-Aware Trajectory Matching for dataset condensation.

1: Input: {θEt }T0 , α, β.
2: Output: ϕ
3: Init ϕ
4: while not converged or reached max steps do
5: Sample an iteration t to construct an expert segment, θEt , and θEt+M

6: θS = θEt
7: ϕ∆

j ∼ N (0, γ||ϕj ||2I)
8: ϕ = ϕ+ ϕ∆

9: for all i← 1 to N do
10: θS = θS − α∇L(θS , ϕ)
11: end for
12: Compute∇F (ϕ) by Eq. 10
13: ϵ = ρ∇F (ϕ)/||∇F (ϕ)||2
14: θ̄S = θSt+κ

15: ϕ = ϕ− ϕ∆

16: for all i← N − τ to N do
17: θ̄S = θ̄S − α∇L(θ̄S , ϕ+ ϵ)
18: end for
19: Compute∇F (ϕ+ ϵ) by Eq. 11
20: ϕ = ϕ− β∇F (ϕ+ ϵ)
21: end while

smoothing strategy for accurate sharpness approximation. To efficiently reduce the computational
burden introduced by the sharpness-aware minimisers, we design and analyse time and memory-
saving hypergradient approximations for the long horizon inner loop with the general method out-
lined in Algorithm 1.

3.1 PRELIMINARY

With the assumption that the datasets containing similar information generate close training trajec-
tories, MTT (Cazenavette et al., 2022) proposed to create the synthetic datasets by minimising the
distance between the training trajectory produced by the synthetic set, named synthetic trajectories,
and those by the real set, termed expert trajectories. A sequence of expert weight checkpoints, θEt ,
are collected during the training on the real sets in the order of iterations, t, to construct the expert
trajectories, {θEt }Tt=0 with T denoting the total length of the trajectory. The pipeline of MTT starts
with sampling a segment of expert trajectory, starting from θEt to θEt+M with 0 ≤ t ≤ t +M ≤ T .
Then, to generate a synthetic segment, a model, θSt , is initialised by, θEt , and trained on the learn-
able dataset, ϕ, to get θSt+N (ϕ) after N iteration. Afterwards, the disparity between θSt+N (ϕ) and
θEt+M is optimised to learn the synthetic dataset. Formally, the dataset condensation algorithm can
be described as:

min
ϕ

L(θS(ϕ)) := 1

δ
||θSt+N (ϕ)− θEt+M ||22 (6)

s.t. θSt+N (ϕ) = ΞN (θSt , ϕ)

where ΞN (·) represents N differentiable minimising steps on the inner loop objective, CrossEntropy
loss, LCE(θ, ϕ). The existing optimisers can instantiate this operation, such as SGD whose one-
step optimisation is exemplified by Ξ(θ, ϕ) = θ−α∇LCE(θ, ϕ) where α denotes the learning rate.
Note M and N are not necessarily equal since dense information in the synthetic datasets leads to
fast training. δ, stabilising the numerical computation, can be unpacked as ||θEt − θEt+M ||22.

3.2 SMOOTH SHARPNESS-AWARE MINIMISATION IN OUTER LOOP

Generalising to the unseen tasks is challenging for the learned synthetic datasets. To mitigate this
issue, we steer the optimisation on the outer loop in Eq. 6 and minimise the objective function
forward landing in the flat loss landscape region to enable the synthetic data to be generalised to
both in- and out-of-domain settings. This property has been studied in (Petzka et al., 2021; Kaddour
et al., 2022), in the uni-level optimisation. In this work, we forage this into the bilevel optimisation
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framework by integrating Shaprness-Aware minimisation. To jointly optimise the sharpness of the
outer loop and the distance between the trajectory w.r.t to the synthetic dataset, we maximise the
objective function in the ρ regime for the sharpness proxy approximation and then optimise the
distance between trajectories according to the gradient computed on the local maximum for the
dataset learning. This process is described as:

min
ϕ

max
||ϵ||2≤ρ

L(θS(ϕ+ ϵ)) =
1

δ
||θSt+N (ϕ+ ϵ)− θEt+M ||22 (7)

s.t. θSt+N (ϕ) = ΞN (θSt , ϕ). (8)

We define F (ϕ) = L(θSt+N (ϕ)) to eliminate the effect of the inner loop solution on the outer loop
loss value without losing generality. The perturbation vector, ϵ, is computed through a closed-form
solution derived through the first-order Taylor expansion of the objective function in Eq. 6.

ϵ =argmax
||ϵ||2≤ρ

L(θS(ϕ+ ϵ)) = argmax
||ϵ||2≤ρ

F (ϕ+ ϵ)

≈ argmax
||ϵ||2≤ρ

F (ϕ) + ϵ · ∇F (ϕ)

= argmax
||ϵ||2≤ρ

ϵ · ∇F (ϕ) ≈ ρ
∇F (ϕ)

||∇F (ϕ)||2
. (9)

The closed-form solution given in Eq. 9 can be interpreted as a one-step gradient ascent. However,
this one-step gradient ascent may fail to reach the local maximum of the sharpness proxy, due to
the high variance of hypergradient caused by the complicated outer loop loss landscape. This phe-
nomenon has also been observed by (Liu et al., 2022; Du et al., 2022) in the uni-level optimisation
and will aggravate in the complicated bilevel case (Abbas et al., 2022). To conduct accurate sharp-
ness approximation, motivated by (Liu et al., 2022; Haruki et al., 2019; Wen et al., 2018; Duchi
et al., 2012), we introduce fluctuation on the learnable dataset to smooth the landscape. To be more
specific, each synthetic image indexed by j is perturbed by a random noise sampled from a Gaussian
distribution with a diagonal covariance matrix whose magnitude is proportional to the norm of each
image ||ϕj ||:

ϕj = ϕj + ϕ∆
j , ϕ∆

j ∼ N (0, γ||ϕj ||2)
where γ is a tunable hyperparameter controlling the fluctuation strength. This process is conducted
on the image independently in each one-step gradient ascent.

3.3 EFFICIENT SHARPNESS-AWARE MINIMISATION IN BILEVEL OPTIMISATION

One can notice that a one-step update in the outer loop needs to compute the hypergradient twice
with one for the perturbation vector ϵ and the other for the real update gradient, ∇F (ϕ). Directly
computing those two gradients will double the computation cost in contrast with MTT and FTD
instead of TESLA which we will discuss later. To alleviate this problem, we proposed two approxi-
mation strategies, Truncated Unrolling Hypergradient (TUH) and Trajectory Reusing (TR).

3.3.1 TRUNCATED UNROLLING HYPERGRADIENT

The long inner loop horizon introduces tremendous computational overhead. In our dataset con-
densation framework, the hypergradient for updating the learnable dataset is computed by differ-
entiating through the unrolled computational graph of the inner loop. This vanilla hypergradient
computation lets the memory cost scale with the number of the inner loop iterations which is not
feasible as condensing the complicated datasets requires long horizon inner loops. Instead, we trun-
cate the backpropagation by only differentiating through the last several steps of the inner loop.
This reduces both the required memory and computational time. More concretely, the truncated
hypergradient computation with N step unrolling can be expressed as:

∂Fι(ϕ)

∂ϕ
=

∂L(θ(ϕ))
∂θι

∂θι
∂ϕ

=

N∑
i=ι

∂L(θ(ϕ))
∂θN

(
N∏

i′=i

∂θi′

∂θi′−1

)
∂θi
∂ϕ

, (10)

where ι controls the number of truncated steps that N − ι steps of the inner loop will be differenti-
ated through. In addition, the risk of hyerpgradient exploding and vanishing caused by the ill-Jabian
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∂θi
∂θi−1

, which may happen in any inner loop step, can be reduced. This mechanism can be easily im-
plemented by unholding the computational graph while optimising the inner loop and then creating
the computational graph at a certain iteration with Pytorch-based pseudocode given in Appx. A.2.

Following (Shaban et al., 2019; Bolte et al., 2024), we analyse the discrepancy between hypergra-
dients computed by the truncated and untruncated computational graph in the setting where the
synthetic trajectory is produced by optimised from the initialisation θE0 until converge.
Proposition 3.1. Assmue LCE is K-smooth, twice differentiable, and locally J-strongly convex in
θ around {θι+1, ..., θN}. Let Ξ(θ, ϕ) = θ − α∇LCE(θ, ϕ). For α ≤ 1

K , then∥∥∥∥∂F (ϕ)

∂ϕ
− ∂Fι(ϕ)

∂ϕ

∥∥∥∥ ≤ 2ι(1− αJ)N−ι+1

∥∥∥∥∂L(θ(ϕ))∂θN (ϕ)

∥∥∥∥ max
i∈{0,..ι}

∥∥∥∥∂θi∂ϕ

∥∥∥∥
where ∂F (ϕ)

∂ϕ denotes the untruncated hypergradient.

The Proposition 3.1 shows that the error of the truncated hypergradient decreases exponentially in
N − ι + 1 when θ converges to the neighbourhood of a local minimum in the inner loop and the
proof is given in Appx. A.3.

3.3.2 TRAJECTORY REUSING

The sharpness-aware minimisation requires computing the gradient twice for sharpness proxy ap-
proximation and free parameter update, which means in bilevel optimisation the inner loop is re-
quired to unroll twice. This boosts the computational spending and slows down the training speed
when inner loops comprise long trajectories. To improve the efficiency of training by benefiting
from the existing knowledge, we propose to reuse the trajectory generated by the first round of inner
loop unrolling. We denote the trajectories generated by training on the perturbed dataset as θ̂i(ϕ+ϵ).
Other than unrolling the entire second trajectory initialised by the expert segment, the training is ini-
tialised by the middle point, indexed by τ , from the first trajectory θ̂τ (ϕ+ϵ) := θτ (ϕ). Note that the
hypergradient for the dataset update is truncated implicitly since this hypergradient approximation
will not consider the steps earlier than τ which is further constrained, τ ≥ ι. Coupled with the same
truncated strategy for the first round, the hypergradient in the second trajectory is computed as:

∂Fτ,ϵ(ϕ)

∂ϕ
=

∂L(θ(ϕ))
∂θτ

∂θτ
∂ϕ

=

N∑
i=τ

∂L(θ(ϕ))
∂θN

(
N∏

i′=i

∂θi′

∂θi′−1

)
∂θi
∂ϕ

∣∣∣∣∣
ϕ=ϕ+ϵ, θ̂τ (ϕ+ϵ)=θτ (ϕ)

(11)

One may notice that the trajectory reusing strategy assumes the difference between two trajectories
before step τ can be ignored. To rigorously study the effect of this assumption, we analyse the
distance between θτ (ϕ) and θτ (ϕ + ϵ). Similar to the Growth recursion lemma (Hardt et al., 2016)
applied to upper-bound the difference between two weight points of two different trajectories trained
by the dataset with only one data point difference. We develop the bound for the difference between
two weight points at the same iteration of their trajectories generated by the datasets with and without
perturbation below. The proof is provided in Appx.A.1.
Theorem 3.2. Let L(ϕ, θ) be a function that is σ-smooth and continuous with respect to its ar-
guments ϕ and θ. Additionally, let the second-order derivatives ∇ϕ∇θL(ϕ, θ) be β-continuous.
Consider two trajectories obtained by conducting gradient descent training on the datasets ϕ and
ϕ+ϵ, respectively, with a carefully chosen learning rate α and identical initializations. After τ steps
of training, let ∆θτ = θ̂τ (ϕ+ ϵ)− θτ (ϕ). Then, we have:

∥∆θτ∥ ≤ ατ(2σ + βρ).

This theorem tells us that the bound of the distance of those two points is associated with the learning
rate and the number of iterations. Thus, when the learning rate and τ are selected reasonably,
θτ (ϕ) approximate θ̂τ (ϕ + ϵ) properly. In addition, we set τ = ι in our experiments to reduce
the hyperparameter tuning efforts even though tuning them separately may achieve better results.
We compare the time and memory complexity of our method and Reverse Model Reverse Mode
Differentiation (RMD) used in MTT (Cazenavette et al., 2022) and FTD (Du et al., 2023) in Table 1
to exhibit the efficiency provided by our method.
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Methods Time Memory
MTT, FTD (RMD) O(cN) O(PN)

TESLA O(2cN) O(P )
TUH + TR O(cN + cτ) O(P (N − ι))

Table 1: The computational complexity comparison for different trajectory matching based algo-
rithms in time and memory cost. c is the time cost for computing Ξ(θ, ϕ) with θ ∈ RP and ϕ ∈ RQ.
P and Q denote the dimensions of the base model and synthetic dataset.

Learning-Rate Learning with First Order Derivative: Adapting the inner loop learning
rate, α, to the different stages of dataset learning determines the performance of the learned
dataset (Cazenavette et al., 2022). The automatic adaption is achieved by modifying the learning
rate by the hypergradient of the dataset learning objective function, ∂L(ϕ)

∂α . This hypergradient can
be computed jointly with the hypergradient for the dataset learning which is cumbersome in practice.
To mitigate this burden, we derive an analytic solution for inner loop learning rate updating:

α = α− λ
∂L(θN (ϕ))

∂θN
·

(
−

N−1∑
i=0

∂LCE(θi, ϕ)

∂ θi

)
(12)

where λ indicates the learning rate for the learning rate learning and the derivation given in
Appx. A.4. This closed-form solution only aggregates the gradient of each step instead of differen-
tiating through the inner loop unrolling graph, simplifying the hypergradient computation. As can
be noticed, two inner loop trajectories in the sharpness aware setting are capable of this Eq. 12. We
chose the first in our experiments due to the implementation simplicity without causing any signif-
icant performance differences. The visualisation comparison of the learning rate learning dynamic
produced by the first and second-order derivative is illustrated in Fig. 1.

In essence, SATM is designed to conduct efficient sharpness minimisation in the outer loop of the
bilevel optimisation-based dataset condensation methods and the proposed efficiency strategies, in-
cluding THU and TR, are flexible enough to adapt to other advanced sharpness-aware optimisers
such as ASAM (Kwon et al., 2021) and Vasson (Li & Giannakis, 2024).

4 EXPERIMENTS

We evaluate SATM on various in-domain tasks where the neural architecture and data distribution
on the dataset learning and test stage are the same with different datasets and different numbers of
images per category (IPC) . Besides, cross-architecture and cross-task evaluation are conducted to
demonstrate the generalisation achieved in sharpness minimisation on out-of-domain settings.

4.1 EXPERIMENTS SETTINGS

Dataset: We conduct experiments on three main image datasets, Cifar10 (Krizhevsky et al., 2009),
Cifar100 (Krizhevsky et al., 2009) and TinyImageNet (Le & Yang, 2015). Cifar10 categorises
50,000 images with the size 32× 32 into 10 classes while Cifar100 further categorises each of those
10 classes into 10 fine-grained subcategories. TinyImageNet comprises 100,000 images distributed
across 200 categories, each category consisting of 500 images resized to dimensions of 64× 64. We
further evaluate SATM on the subset of ImageNet, namely ImageNette, Image Woof, ImageFruit
and ImageMeow with each set containing 10 different categories of 128× 128 images.

Training and Evaluation: The expert trajectories for Cifar10 and Cifar100 are trained with 3-layer
ConvNet and collected after each epoch with the initialisation, and those for TinyImageNet and
ImageNet are trained with 4-layer and 5-layer ConvNet Gidaris & Komodakis (2018) respectively.
In the in-domain setting, the synthetic datasets are learned and evaluated on the same architectures
while in the out-of-domain settings, the learned synthetic datasets are deployed to train different
architectures, such as AlexNet (Krizhevsky et al., 2012), VGG11 (Simonyan & Zisserman, 2014)
and ResNet18 (He et al., 2016), which is novel to the synthetic datasets. The trained neural networks
are evaluated on the real test sets for generalisation ability comparison of the synthetic datasets.
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Method IPC DC DSA DM MTT FTD TESLA MDC Ours
Cifar-10 1 28.3±0.5 28.8±0.7 26.0±0.8 46.2±0.8 46.8±0.3 48.5±0.8 47.5±0.4 49.0±0.3

3 - - - 55.3±0.4 56.0±0.2 - 56.0±0.3 57.1±0.4

10 44.9±0.5 52.1±0.6 48.9±0.6 65.4±0.7 66.6±0.3 66.4±0.8 66.7±0.7 67.1±0.3

50 53.9±0.5 60.6±0.5 63.0±0.4 71.6±0.2 73.8±0.3 72.6±0.7 73.7±0.3 73.9±0.2

Cifar-100 1 12.8±0.3 13.9±0.3 11.4±0.3 24.3±0.3 25.2±0.2 24.8±0.4 25.9±0.2 26.1±0.4

3 - - - 32.6±0.4 33.1±0.4 - 33.3±0.3 33.9±0.2

10 25.2±0.3 32.3±0.3 29.7±0.3 39.7±0.4 43.4±0.3 41.7±0.3 42.7±0.6 43.1±0.5

50 - 42.8±0.4 43.6±0.4 47.7±0.2 50.7±0.3 47.9±0.3 49.6±0.4 50.9±0.5

TinyImageNet 1 - - 3.9±0.2 8.8±0.3 10.4±0.3 - 9.9±0.2 10.9±0.2

3 - - - 10.5±0.3 11.6±0.5 - 12.4±0.3 13.6±0.4

10 - - 12.9±0.4 23.2±0.2 24.5±0.2 - 24.8±0.4 25.4±0.4

Table 2: Test Accuracy (%) Comparison of different image per category (IPC) setting on Cifar10,
Cifar-100 and Tiny ImageNet: the models are trained on the syntactic dataset learned by MTT and
our method independently and evaluated on the corresponding test set with real images. We cite the
results of DC, DM and MMT from FTD (Du et al., 2023).

ImageNette ImageWoof ImageFruit ImageMeow

MTT 63.0±1.3 35.8±1.8 40.3±1.3 40.4±2.2

FTD 67.7±0.7 38.8±1.4 44.9±1.5 43.3±0.6

Ours 68.2±0.5 39.4±1.2 45.2±1.3 45.4±0.9

All 87.4±1.0 67.0±1.3 63.9±2.0 66.7±1.1

Table 3: Test accuracy (%) comparison on Ci-
far10 with 10 and 50 images per class setting:
the syntactic datasets by MTT, FTD and our al-
gorithm are learned on ConvNet and tested on
AlexNet, VGG11 and ResNet18.
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Figure 1: The comparison of the learning dy-
namic of learning rate learning with first and
second order differentiation when condensing on
the Cifar100-10IPC setting.

4.2 PRIMARY RESULTS

4.2.1 STANDARD DATASET CONDENSATION BENCHMARK

We compare our method against the other dataset condensation techniques, such as DC (Zhao et al.,
2021), DSA (Zhao & Bilen, 2021), DM (Zhao & Bilen, 2023), MTT(Cazenavette et al., 2022),
FTD (Du et al., 2023), TESLA (Cui et al., 2023) and MDC (He et al., 2024). The results from Ta-
ble 2 demonstrate the benefits of the flat minima that SATM outperforms the competitors on almost
all the settings of the standard dataset condensation benchmarks with various of IPCs. This benefit
can be further observed in the high-resolution image condensation task in Table 3. Note that in our
case, we merely build SATM up on Vanilla MMT (Cazenavette et al., 2022) without integrating the
flat trajectory trick in FTD and the soft label in TESLA. Limited by the computational resource,
we cannot conduct full batch training on Cifar100 with 10 IPC, 50 IPC and Tiny ImageNet with 10
IPC as that utilised on MTT and FTD, which we believe is the main reason that SATM performs
slightly worse than FTD on the Cifar100 with 10 IPC setting. Besides, there are clear improvement
margins over other trajectory-matching-based DC competitors. Moreover, in this work, we are also
interested in studying whether the advantages brought by the flatness can also be observed in cross-
architecture tasks, which leads to numerous practical applications. In Table 5, the synthetic datasets
by learned SATM for Cifar10 exhibit strong generalisation ability across the unseen architectures
on both IPC 10 and 50 settings over the candidate architectures in comparison with those learned by
MTT (Cazenavette et al., 2022), FTD (Du et al., 2023) and TESLA (Cui et al., 2023). Additionally,
one can notice that the performance of the learned dataset from the in-domain setting is not guaran-
teed in the cross-architecture setting. For instance, FTD performs similarly to SATM in the Cifar10
with 10 and 50 IPC settings when deploying on ConvNet in the dataset learning stage. However, the
performance gaps become remarkable once the same datasets are used across architectures.
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Dataset (IPC) MTT EMA SAM GSAM ASAM Vasso SATM

Cifar100 (1) 24.3±0.4 24.7±0.2 25.7±0.3 25.9±0.3 25.7±0.3 25.9±0.2 26.1±0.3

Tiny ImageNet (3) 10.5±0.3 10.9±0.3 12.3±0.2 13.1±0.2 12.8±0.4 12.2±0.2 13.6±0.2

Table 4: Test Accuracy (%) Comparison with the advanced sharpness aware minimisation methods
including EMA, SAM, GSAM, ASAM and Vasso with the same expert trajectories as MTT.

Methods IPC ConvNet AlexNet VGG11 ResNet18
MTT

10
64.3±0.7 34.2±2.6 50.3±0.8 46.4±0.6

FTD 66.6±0.4 36.5±1.1 50.8±0.3 46.2±0.7

Ours 67.1±0.5 37.8±0.8 51.4±0.3 47.7±0.4

MTT
50

71.6±0.2 48.2±1.0 55.4±0.8 61.9±0.7

FTD 73.8±0.2 53.8±0.9 58.4±1.6 65.7±0.3

Ours 74.2±0.3 56.9±0.7 63.5±1.1 66.1±0.5

Table 5: Test accuracy (%) comparison on Cifar10 with 10 and 50 images per class setting: the
syntactic datasets by MTT, FTD and our algorithm are learned on ConvNet and tested on AlexNet,
VGG11 and ResNet18.

4.2.2 CONTINUAL LEARNING

We expose the learned dataset to the task incremental setting, following the same protocol discussed
in Gdumb (Prabhu et al., 2020) for a fair comparison with datasets produced by competitors such as
DM (Zhao & Bilen, 2023), MTT (Cazenavette et al., 2022), and FTD (Du et al., 2023). Typically,
models encounter a sequence of data from different categories and lose access to data from previous
categories after training. A limited memory budget is available to save dataset information from pre-
vious tasks, enabling models to retain gained knowledge while adapting to new tasks. In Figure 2,
we show that at each stage, as new categories are received, our learned datasets consistently outper-
form others in three settings: 5-task incremental with 50 images per category on Cifar10, 10-and
20-task incremental with 3 IPC on Tiny ImageNet. Given the result in Fig 2, SATM consistently
outperforms other methods whenever the models encounter new tasks on all the settings.
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Figure 2: Test accuracy (%) comparison on continual learning. Left: 5-step class-incremental learn-
ing on Cifar10 50IPC, Middle: 10-step class-incremental learning on Tiny ImageNet 3IPC, Right:
20-step class-incremental learning on Tiny ImageNet 3IPC.

4.3 FURTHER ANALYSIS

4.3.1 COMPATIBILITY WITH ADVANCED SHARPNESS-AWARE OPTIMISERS

We study the compatibility of the proposed hypergradient approximation method on other sharp-
ness minimisation-based methods including EMA, SAM (Foret et al., 2020), GSAM (Zhuang et al.,
2021), ASAM (Kwon et al., 2021) and Vasso (Li & Giannakis, 2024) with our loss landscape
smoothing mechanism removed. For a fair comparison, the hyperparameters of each method are
properly tuned for the adaption to all the tasks including Cifar100 with 1 IPC and Tiny ImageNet
with 3 IPC. We repeat each method 5 times and report the mean and variance in Table 4. The results
imply that all the sharpness methods consistently improve MTT (Cazenavette et al., 2022), which
justifies the benefit of sharpness minimisation. However, the competitors all fail to defeat our method
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Figure 3: Sharpness analysis by visualisation. Hypergradient Norm comparison between MTT and
SATM. Left: the hypergradient norm on Cifar100 with 10 IPC; Middle: the hypergradient norm on
Tiny ImageNet with 3 IPC. Right: Sharpness dynamic on Tiny ImageNet with 3 IPC.

due to the failure to accurately compute the sharpness proxy. Moreover, EMA, equivalent to FTD
without Sharpness-aware minimisers to generate expert trajectories, gains minimal improvement.

4.3.2 HYPERGRADIENT ANALYSIS

To illustrate the effects of sharpness minimisation on the process of synthetic dataset learning, we
record the hypergradient norm of MTT and SATM during training and report their mean and variance
over training iterations. Depicted in Fig 3, SATM has a smaller mean and variance than MTT on
Cifar100 with 3 IPC and Tiny ImnageNet 3IPC. Additionally, fewer spikes of hypergraident in
SATM can be observed, indicating more stable training. Moreover, the dynamic of the sharpness,
measured by L(ϕ+ ϵ)−L(ϕ), with decreasing trend shows that the synthetic dataset is landing into
the flat loss region.

4.3.3 TWO INNER LOOP ROUTINE

Our method has a similar training protocol with TESLA (Cui et al., 2023), as both require executing
the inner loop twice to enable outer loop updates. However, TESLA trades off time complexity in
its two inner loops to maintain a constant memory cost that is agnostic to the unrolling inner loop
steps. In contrast, our model also achieves constant memory usage by differentiating through the last
N steps of the inner loop, thanks to provable hypergradient approximation error bound. Moreover,
it requires only a partial second inner loop execution and aims to converge into a flat loss region
improving the generalization of synthetic data significantly, outperforming TESLA even without
relying on soft-label fitting tricks.

5 CONCLUSIONS, LIMITATIONS AND FUTURE WORKS

In this work, we explore the generalisation ability of condensed datasets produced by training
trajectory-matching-based algorithms via jointly optimising the sharpness and the distance between
real and synthetic trajectories. We propose Sharpness-Aware Trajectory Matching (SATM) to reduce
the computational cost caused by the long horizon inner loop and the mini-max optimisation for the
sharpness minimisation through the proposed hypergradient approximation strategies. Those strate-
gies have clear theoretical motivation, limited error in practice, and a framework flexible enough to
adapt to other sharpness-aware based algorithms. The improvement of the generalisation is observed
in a variety of in- and out-of-domain tasks such as cross-architecture and cross-task (continual learn-
ing) with a comprehensive analysis of the algorithm’s sharpness properties on the training dynamics.

Despite the superior performance of SATM, we observed that the proposed algorithm can poten-
tially serve as a ”plug-and-play” model for other dataset condensation methods and, more broadly,
for various bilevel optimisation applications, such as loss function learning, optimiser learning and
middle shot learning. However, these possibilities are not explored in this work and we leave them
to the future work. Moreover, beyond focusing on reusing the trajectory to enhance training effi-
ciency in reaching flat regions, future research could be in advanced gradient estimation directions,
such as implicit gradients, showing promise for managing long-horizon inner loops and avoiding
second-order unrolling. This could potentially eliminate the entire second trajectory resulting in
higher computational efficiency and less approximation error.
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A APPENDIX

A.1 PROOF FOR THEOREM 3.2

Theorem 3.2. Let L(ϕ, θ) be a function that is σ-smooth and continuous with respect to its ar-
guments ϕ and θ. Additionally, let the second-order derivatives ∇ϕ∇θL(ϕ, θ) be β-continuous.
Consider two trajectories obtained by conducting gradient descent training on the datasets ϕ and
ϕ+ϵ, respectively, with a carefully chosen learning rate α and identical initializations. After τ steps
of training, let ∆θτ = θ̂τ (ϕ+ ϵ)− θτ (ϕ). Then, we have:

∥∆θτ∥ ≤ ατ(2σ + βρ).

Proof. Let:

θ̂τ = θ0 − α

τ∑
i

∇L(ϕ+ ϵ, θ̂i)

θτ = θ0 − α

τ∑
i

∇L(ϕ, θi)

then after N step iterations, the difference between θN and θ̂N is

∥∆θτ∥ =
∥∥∥θ̂τ − θτ

∥∥∥ =

∥∥∥∥∥−α

τ∑
i

(∇L(ϕ+ ϵ, θ̂i)−∇L(ϕ, θi))

∥∥∥∥∥
= α

∥∥∥∥∥
τ∑
i

(∇L(ϕ+ ϵ, θ̂i)−∇L(ϕ, θi))

∥∥∥∥∥
We compute the gradient difference:

||∇L(ϕ+ ϵ, θ̂i)−∇L(ϕ, θi)||
≈ ||∇L(ϕ, θ̂i) +∇ϕ∇θL(ϕ, θ̂i) · ϵ−∇L(ϕ, θi)||
≤ ||∇L(ϕ, θ̂i)−∇L(ϕ, θi)||+ ||∇ϕ∇θL(ϕ, θ̂i) · ϵ||
≤ 2σ + ||∇ϕ∇θL(ϕ, θ̂i)||||ϵ||

With ∇ϕ∇θL(ϕ, θ̂i) is β smooth and ||ϵ|| = ρ :

||∇L(ϕ+ ϵ, θ̂i)−∇L(ϕ, θi)||2 ≤ 2σ + βρ

Then:

∥∆θτ∥ ≤ ατ(2σ + βρ)

A.2 PYTORCH BASED PSEUDOCODE FOR TRUNCATED UNROLLING HYPERGRADIENT

Algorithm 2: Trucated hypergradient computation
stop gradient:
for i = 1, . . . , ι do

θi = θi−1 − α ∗ torch.grad(LCE(θ, ϕ), θ)
end for
with gradient:
for i = 1, . . . , N − ι do

θi = θi−1 − α ∗ torch.grad(LCE(θ, ϕ), θ, retain graph = True, create graph = True)
end for
Return: θN (ϕ)
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A.3 PROOF OF PROPOSITION 3.1

Proposition 3.1. Assmue LCE is K-smooth, twice differentiable, and locally J-strongly convex in
θ around {θι+1, ..., θN}. Let Ξ(θ, ϕ) = θ − α∇LCE(θ, ϕ). For α ≤ 1

K , then∥∥∥∥∂F (ϕ)

∂ϕ
− ∂Fι(ϕ)

∂ϕ

∥∥∥∥ ≤ 2ι(1− αJ)N−ι+1

∥∥∥∥∂L(θ(ϕ))∂θN (ϕ)

∥∥∥∥ max
i∈{0,..ι}

∥∥∥∥∂θi∂ϕ

∥∥∥∥
where ∂F (ϕ)

∂ϕ denotes the untruncated hypergradient.

Proof. Let

Ai+1 =
∂θi+1

∂θi
, Bi+1 =

∂θi+1

∂ϕ

then

∂F (ϕ)

∂ϕ
=

∂L(θ(ϕ))
∂ϕ

+

N∑
i=0

BiAi+1 · · ·AN
∂L(θ(ϕ))
∂θN (ϕ)

Let eι =
∂F (ϕ)
∂ϕ − ∂Fι(ϕ)

∂ϕ ,

eι =

(
ι∑

i=0

BiAi+1 · · ·Aι

)
Aι+1 · · ·AN

∂L(θ(ϕ))
∂θN (ϕ)

Given LCE is locally J-strongly convex with respect to θ in the neighborhood of {θι+1, . . . , θN},

∥eι∥ ≤

∥∥∥∥∥
ι∑

i=0

BiAi+1 · · ·Aι

∥∥∥∥∥
∥∥∥∥∥Aι+1 · · ·AN

∂L(θ(ϕ))
∂θN (ϕ)

∥∥∥∥∥
≤ (1− αJ)N−ι+1

∥∥∥∥∂L(θ(ϕ))∂θN (ϕ)

∥∥∥∥
∥∥∥∥∥

ι∑
i=0

BiAi+1 · · ·Aι

∥∥∥∥∥
In the worst case, when LCE is K-smooth but nonconvex, then if the smallest eigenvalue of
∂2LCE(θ,ϕ)

∂θ ∂θ is −K, then ∥Ai∥ = 1 + αK ≤ 2 for i = 0, . . . , ι.

A.4 THE DERIVATION OF LEARNING RATE LEARNING WITH FIRST ORDER DERIVATIVE

In this section, we provide the derivation of the hypergradient calculation for learning rate α. Given
the outer loop objective, L(θ(ϕ)), and the inner loop object LCE(θi, ϕ) with N iteration unrolling,
the computation can be dedicated by:

∂L(θN (ϕ))

∂α
=

∂L(θN (ϕ))

∂θN
· ∂(θN , ϕ)

∂α

=
∂L(θN (ϕ))

∂θN
· ∂Ξ(θN−1, ϕ)

∂α

=
∂L(θN (ϕ))

∂θN
· ∂

∂α

(
θN−1 − α

∂LCE(θN−1, ϕ)

∂θN−1

)

=
∂L(θN (ϕ))

∂θN
·

(
∂θN−1

∂α
− ∂LCE(θN−1, ϕ)

∂θN−1

)

we treat
∂LCE(θN−1, ϕ)

∂θN−1
as a constant w.r.t. α

=
∂L(θN (ϕ))

∂θN
·

(
∂

∂α
Ξ(θN−2, ϕ)−

∂LCE(θN−1, ϕ)

∂θN−1

)

=
∂L(θN (ϕ))

∂θN
·

(
−

N−1∑
i=0

∂LCE(θi, ϕ)

∂ θi

)
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A.5 COMPUTATIONAL RESOURCE

We conduct all our experiments on two Tesla V100-32GB GPUs with Intel(R) Xeon(R) W-2245
CPU @ 3.90GHz and one A100-40GB GPU with Intel(R) Xeon(R) Gold 5118 CPU @ 2.30GHz
which are on different servers. Thus, we cannot run the full batch of synthetic dataset learning as the
same as other trajectory matching-based methods when the inner loop trajectories contain many un-
rolling iterations. Those cases include Cifar100-10IPC, Cifar100-50IPC, and Tiny ImageNet 1IPC.
In our case, stochastic gradient descent with mini-batch is utilised in the outer loop instead.

A.6 HYPERPARAMETERS AND EXPERIMENT DETAILS

The hyperparameters used for condensing datasets in all the settings are given in Tab 6 with Con-
vNet (Gidaris & Komodakis, 2018) applied to construct the training trajectories.

Dataset Model IPC
Synthetic

Steps
(N )

Expert
Epochs

(M )

Max Start
Epoch

(T )

Synthetic
Batch Size ZCA

Learning
Rate

(Images)

Learning
Rate

(Step size)

CIFAR-10 ConvNetD3

1 50 2 2 - Y 1000 1×10−6

3 50 2 2 - Y 100 1×10−5

10 30 2 20 - Y 50 1×10−5

50 30 2 40 - Y 100 1×10−5

CIFAR-100 ConvNetD3
1 40 3 20 - Y 500 1×10−5

3 45 3 20 - Y 1000 5×10−5

10 20 2 20 500 Y 1000 1×10−5

50 80 2 40 500 Y 1000 1×10−5

Tiny ImageNet ConvNetD4
1 30 2 10 200 Y 1000 1×10−4

3 30 2 15 200 Y 1000 1×10−4

10 20 2 40 200 Y 10000 1×10−4

Table 6: Hyper-parameters used for our SATM. A synthetic batch size of “-” represents that a
full batch set is used in each outer loop iteration. ConvNetD3 and ConvNet4D denote the 3-layer
and 4-layer ConvNet (Gidaris & Komodakis, 2018) respectively. In all the settings, ZCA whiten-
ing (Nguyen et al., 2021b;a) is applied.

A.7 COMPUTATIONAL COST COMPARSION

We computed and recorded the memory and time costs when running SATM and then compared
them with MTT and TESLA following Tesla’s experimental protocol. The results were primarily
measured on a single NVIDIA A6000 GPU, except for MTT on ImageNet-1K (Russakovsky et al.,
2015), which required two A6000 GPUs.

In most of our experiments, only one-third of the inner loop is retained to compute the hypergradients
for sharpness approximation and synthetic dataset optimization. In the worst-case scenario, we keep
half of the inner loop to ensure training stability and efficiency. Given the result in Table 7, our
strategy significantly reduces memory consumption compared to MTT, enabling the dataset to be
trained on a single A6000 GPU.

MTT Memory TESLA Memory SATM (N/2) Memory SATM (N/3) Memory

CIFAR-100 17.1±0.1 GB 3.6±0.1 GB 8.7±0.1 GB 5.7±0.1 GB
ImageNet-1K 79.9±0.1 GB 13.9±0.1 GB 39.6±0.1 GB 26.6±0.1 GB

Table 7: Comparison of memory usage across different methods and datasets. We refer to the
cases where one-third and one-half of the inner loop are retained as SATM (N/3) and SATM (N/2),
respectively.

In terms of time cost illustrated in Table 8, SATM consistently outperforms the two inner-loop-based
algorithms, Tesla. In the one-third inner loop case, SATM even consumes less time than MTT which
requires retaining a full single inner loop.
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MTT Time TESLA Time SATM (N/2) Time SATM (N/3) Time

CIFAR-100 12.1±0.6 sec 15.3±0.5 sec 12.8±0.6 sec 12.0±0.5 sec
ImageNet-1K 45.9±0.5 sec 47.4±0.7 sec 46.1±0.4 sec 45.4±0.4 sec

Table 8: Comparison of execution time across different methods and datasets. We refer to the
cases where one-third and one-half of the inner loop are retained as SATM (N/3) and SATM (N/2),
respectively.
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Figure 4: GPU memory and runtime comparison among MTT, TESLA and SATM (N/3) on CI-
FAR100 and ImageNet-1K with results measured with a batch size of 100 and 50 inner loop steps.

To further justify the memory efficiency of SATM, we challenge the ImageNet-1K setting following
the training and evaluation protocol from Tesla. By truncating the inner loop computational graph
hold for hypergradient computation, SATM is executable on the heavy memory setting with results
given in Table 9.

Dataset IPC TESLA SATM

ImageNet-1K 1 7.7±0.2 8.2±0.4
2 10.5±0.3 11.4±0.2

10 17.8±1.3 18.5±0.9
50 27.9±1.2 28.4±1.1

Table 9: Comparison of TESLA and SATM across different IPCs on ImageNet-1K.

A.8 FLAT INNER LOOP STUDY

SATM is developed based on MTT without incorporating the components introduced in FTD (Du
et al., 2023), particularly the expert trajectories generated by sharpness-aware optimizers such as
GSAM. However, understanding whether SATM can be compatible with advanced expert trajecto-
ries is desirable to study. Therefore, we follow the expert trajectory generation protocol and execute
SATM on the flat expert trajectories with the results in Table 10. It can be observed that the inclusion
of a flat inner loop leads to clear improvements in SATM-FI compared to both standard SATM and
FTD. Furthermore, the authors of FTD noted the limited performance contribution of EMA, which
was originally intended to guide the synthetic dataset toward convergence on a flat loss landscape.
SATM addresses this limitation and effectively demonstrates the benefits of leveraging flatness for
improved generalization.
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IPC MTT FTD SATM SATM-FI

1 46.2±0.8 46.8±0.3 49.0±0.3 48.7±0.4
CIFAR-10 10 65.4±0.7 66.6±0.3 67.1±0.4 67.9±0.3

50 71.6±0.2 73.8±0.2 73.9±0.2 74.2±0.4

1 24.3±0.3 25.2±0.2 26.1±0.4 26.6±0.5
CIFAR-100 10 39.7±0.4 43.4±0.3 43.1±0.5 43.9±0.7

50 47.7±0.2 50.7±0.3 50.9±0.5 51.4±0.5

Tiny-ImageNet 1 8.8±0.3 10.4±0.3 10.9±0.2 11.7±0.4
10 23.2±0.1 24.5±0.2 25.4±0.4 25.6±0.6

Table 10: Accuracy (%) Comparison of MTT, FTD, SATM, and SATM-FI across different datasets
and configurations.

A.9 TRUNCATED STEP STUDY

We chose the settings that require the long inner loops for dataset learning to study the correlation
between the number of inner loop steps remaining for differentiation and the model performance.
Table 11 details the experimental settings, including the dataset, the number of images per category
(IPC), and the inner loop steps N . For example, “CIFAR-10 (1 IPC, 50 steps)” refers to condensing
one synthetic image per category with 50 inner loop steps. To analyze the effect on performance,
we retained the last 1

k steps, where k = 2, 3, 4, 5, 6, of the total inner loop steps. For simplicity, the
inner loop steps remained for the first round of hypergradient computation and trajectory reusing in
the second round is kept the same which is applied across all experiments. The operation int(Nk )
is used to determine the remaining inner loop steps. We examined how accuracy changes with
the remaining inner loop steps by executing SATM for 10000 training iterations. A clear trend
emerged: performance improves as the number of truncated iterations decreases and converges once
the differentiation steps reach a certain threshold.

Configuration/Steps 1
6

1
5

1
4

1
3

1
2

CIFAR-10 (1IPC, 50step) 45.2 48.8 47.5 49.0 49.2
CIFAR-100 (50IPC, 80step) 23.4 33.4 48.7 50.9 50.5

Table 11: Accuracy (%) change along with the truncated inner loop step change on CIFAR-10 and
CIFAR-100 datasets.

A.10 MORE RELATED WORK AND COMPARISON WITH RECENT METHOD

A recent method, RDED (Sun et al., 2024), introduces new perspectives to the dataset distilla-
tion field by constructing synthetic images from original image crops and labelling them with a
pre-trained model. In comparison, our work falls within the training trajectory matching area and
focuses on efficient bilevel optimization with a long inner loop with the goal of enhancing the gen-
eralization ability of synthetic data by developing an efficient, sharpness-aware optimizer for bilevel
optimization.

DATM (Guo et al., 2024) utilizes the difficulty of training trajectories to implement a curriculum
learning-based dataset condensation protocol. While this approach is relevant, it is somewhat dis-
tinct from research focused on optimization efficiency and generalization, such as Tesla, FTD, and
SATM, which prioritize optimization efficiency through gradient approximation. Additionally, from
an implementation perspective, DATM feeds expert trajectories in an easy-to-hard sequence directly
into FTD. In contrast, our work focuses on the flatness of the loss landscape of the learning dataset
from a bilevel optimization perspective, rather than emphasizing pure performance comparisons.
Nevertheless, we believe our method is compatible with DATM. To demonstrate this, we conducted
experiments combining DATM’s easy-to-hard training protocol with SATM, yielding the following
results in Table 12.
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IPC MTT FTD DATM SATM-DA

1 46.2± 0.8 46.8± 0.3 46.9± 0.5 48.6± 0.4
CIFAR-10 10 65.4± 0.7 66.6± 0.3 66.8± 0.2 68.1± 0.3

50 71.6± 0.2 73.8± 0.2 76.1± 0.3 76.4± 0.6

1 24.3± 0.3 25.2± 0.2 27.9± 0.2 28.2± 0.8
CIFAR-100 10 39.7± 0.4 43.4± 0.3 47.2± 0.4 48.3± 0.4

50 47.7± 0.2 50.7± 0.3 55.0± 0.2 55.7± 0.3

Tiny-ImageNet 1 8.8± 0.3 10.4± 0.3 17.1± 0.3 16.4± 0.4
10 23.2± 0.1 24.5± 0.2 31.1± 0.3 32.3± 0.6

Table 12: Accuracy (%) Comparison of MTT, FTD, DATM, and SATM-DA across different IPCs,
datasets and configurations.

A.11 ILLUSTRATION FOR THE SYNTHETIC IMAGES

We visualise the learned synthetic datasets on Cifar10, Cifar100 and Tiny ImageNet in this section.

Figure 5: Cifar10 with 1IPC

Figure 6: Cifar10 with 3IPC
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Figure 7: Cifar10 with 10IPC
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Figure 8: Cifar100 with 1IPC
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