

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 TIC-GRPO: PROVABLE AND EFFICIENT OPTIMIZATION FOR REINFORCEMENT LEARNING FROM HUMAN FEEDBACK

006
007 **Anonymous authors**
008 Paper under double-blind review

010 011 ABSTRACT

013 Group Relative Policy Optimization (GRPO), recently introduced by DeepSeek,
014 is a critic-free reinforcement learning algorithm for fine-tuning large language
015 models. GRPO replaces the value function in Proximal Policy Optimization (PPO)
016 with group-normalized rewards while retaining PPO-style token-level importance
017 sampling based on an old policy. We show that the GRPO update rule actually
018 estimates the policy gradient at the old policy rather than the current one; however,
019 because the old policy is refreshed every few steps, the gap remains small and the
020 resulting bias is negligible in practice. To validate this, we perform an ablation
021 study that removes importance sampling entirely and instead applies gradients
022 estimated at a fixed old policy across multiple optimization steps. Remarkably,
023 this simplified approach achieves performance comparable to standard GRPO.

024 Motivated by these findings, we propose a new algorithm: Trajectory level Im-
025 portance Corrected GRPO (TIC-GRPO). TIC-GRPO replaces token level impor-
026 tance ratios with a single trajectory level probability ratio, yielding an unbiased
027 estimate of the current policy gradient while preserving the critic free structure.
028 Furthermore, we present the first theoretical convergence analysis for GRPO style
029 methods, covering both the original GRPO and our proposed variant.

030 031 1 INTRODUCTION

032 Reinforcement learning from human feedback (RLHF) (Zhu et al., 2023; Bai et al., 2022; Green-
033 blatt et al., 2024) has become a standard technique for aligning large language models (LLMs)
034 with desired behaviors. Among RLHF approaches, Proximal Policy Optimization (PPO) (Schulman
035 et al., 2017) is widely adopted but requires training an additional value network (critic), making
036 it resource-intensive and difficult to scale. To address this, recent work proposed Group Relative
037 Policy Optimization (GRPO) (Shao et al., 2024), a critic-free alternative that estimates advantages
038 through group-wise reward normalization while retaining PPO-style importance sampling with re-
039 spect to an old policy. Owing to its simplicity and effectiveness, GRPO has been integrated into
040 several open-source RLHF pipelines.

041 Despite its empirical success, the theoretical properties of GRPO remain underexplored. In partic-
042 ular, GRPO employs token-level importance sampling against the old policy, yet its update rule is
043 not a direct estimator of the current policy gradient. We show that the practical GRPO update in
044 fact corresponds to the policy gradient evaluated at the old policy π_{old} , plus a bias term induced by
045 the mismatch between π and π_{old} . This bias is typically small in practice because π_{old} is refreshed
046 to the current policy every few optimization steps (e.g., every 4–10), limiting divergence. An abla-
047 tion study confirms this intuition: when we entirely remove importance sampling and, within each
048 inner loop, perform all updates using gradients estimated at π_{old} before refreshing it, the resulting
049 performance remains comparable to that of standard GRPO.

050 Motivated by this, we propose TIC-GRPO: replace token-level importance weights with trajectory-
051 level ratios, and further introduce two lightweight modifications—length-corrected group normal-
052 ization and upper-only clipping—which together yield a stable, unbiased, and memory-efficient
053 update. Furthermore, we present the first theoretical convergence analysis for GRPO-style meth-
054 ods, covering both the original GRPO and our proposed variant. Finally, we validate TIC-GRPO

054 on two standard alignment benchmark AIME. Our experiments show that TIC-GRPO significantly
 055 outperforms standard GRPO in both accuracy and convergence rate.
 056

057 **Contributions** This paper makes the following key contributions:
 058

- 059 • We analyze the practical update rule of GRPO and show that it estimates the policy gradient
 060 at the old policy π_{old} , not the current one. We further explain why this approximation
 061 remains effective in practice due to limited policy drift.
- 062 • We propose a new algorithm, TIC-GRPO, which replaces token-level importance sampling
 063 with a single trajectory-level ratio. In addition, it incorporates two minor modifications:
 064 the Length-Corrected Group Normalization Regularizer and the Upward-Only Clipping
 065 Mechanism.
- 066 • We provide the first theoretical convergence analysis for GRPO-style methods, including
 067 both the original GRPO and our variant.
- 068 • We empirically validate TIC-GRPO on the AIME dataset, demonstrating consistent im-
 069 provements in accuracy and convergence speed over the original GRPO. Ablation studies
 070 further show that our two minor modifications are effective even when applied individually
 071 on the token-level clipping mechanism.

072 **Related Work** A recent concurrent work by Zheng et al. (2025) proposes a similar idea of replac-
 073 ing token-level importance sampling in GRPO with a trajectory-level formulation, named Group
 074 Sequence Policy Optimization (GSPO). Importantly, their work was developed independently and
 075 concurrently with ours.

076 In comparison, our work provides a more detailed explanation of why the original GRPO update
 077 remains effective in practice despite its inherent bias, which we attribute to the limited policy drift
 078 arising from frequent updates to the old policy. Moreover, we present the first theoretical con-
 079 vergence analysis for GRPO-style methods. Our algorithm also differs in implementation details: we do
 080 not apply sequence-length square-root scaling to the importance sampling, and we adopt a modified
 081 clipping mechanism. In Section 6 and Appendix A, we include GSPO as a baseline for comparison
 082 and empirically observe that our method outperforms it.

083 Another important baseline considered in this work is the Decoupled Clip and Dynamic Sampling
 084 Policy Optimization (DAPo) algorithm (Yu et al., 2025).
 085

087 2 PRELIMINARIES: REINFORCEMENT LEARNING FOR LLMs AND GRPO

089 We begin by formalizing the reinforcement learning (RL) setup used for aligning large language
 090 models (LLMs) and by reviewing the GRPO algorithm recently proposed by DeepSeek.
 091

092 2.1 REINFORCEMENT LEARNING IN CoT REASONING

094 We model Chain-of-Thought (CoT) reasoning as a sequential decision-making process under an RL
 095 framework. Let s_0 denote the initial prompt. At each time step t , the language model generates a
 096 token $a_t \in \mathcal{V}$ from a vocabulary \mathcal{V} , forming an evolving reasoning chain

$$097 \quad c_t = (s_0, a_1, a_2, \dots, a_t),$$

099 which we refer to as the *partial chain* or intermediate reasoning state.
 100

101 To ensure consistent representation across time, each intermediate chain c_t is embedded into a fixed-
 102 dimensional space $\mathbb{R}^{T \times d}$ by zero-padding the remaining positions:
 103

$$104 \quad s_t = (s_0, a_1, \dots, a_t, \underbrace{0, \dots, 0}_{(T-t) \text{ tokens}})^\top.$$

106 Thus, all reasoning states share the same dimensionality, and the policy network at each step takes
 107 the zero-padded full chain s_t (as an element of $\mathbb{R}^{T \times d}$) as its input. Different from conventional
 108 RL formulations—where the policy is typically parameterized on the current local state or a single

108 token—our framework conditions the policy on the *entire reasoning chain* up to time t . This design
 109 enables the model to exploit global contextual dependencies across all preceding reasoning steps
 110 when generating the next token. We denote the final state after the reasoning sequence by s_T .

111 Unlike conventional RL environments with dense or intermediate rewards, CoT reasoning provides
 112 a *single, sparse reward* observed only at the final step T , typically reflecting task correctness or
 113 logical validity. This structure introduces a long-horizon credit assignment challenge: intermediate
 114 reasoning steps receive no direct feedback, yet they critically determine the final outcome.

115 We parameterize the model policy $\pi_\theta(a \mid s)$ as the probability of generating token a given the
 116 current padded chain $s \in \mathbb{R}^{T \times d}$, and define the expected return as

$$117 \quad J(\theta) = \mathbb{E}_{s_T \sim \pi_\theta}[r(s_T)] - \beta \text{KL}(\pi_\theta \parallel \pi_{\text{ref}}),$$

118 where $r(s_T)$ denotes the final reward assigned to the complete chain, and the KL regularization
 119 term constrains the policy to remain close to a reference model π_{ref} . The objective is optimized via
 120 gradient ascent. Notably, many popular algorithms for LLM alignment, such as PPO and the more
 121 recent GRPO family, share this gradient-ascent foundation; their primary distinctions lie in how they
 122 efficiently estimate and stabilize the underlying policy gradient.

123 Since the reward is observed only at the final timestep, the policy gradient takes the form

$$124 \quad \nabla_\theta J(\theta) = \underbrace{\mathbb{E}_{s_T \sim \pi_\theta}[\nabla_\theta \log \pi_\theta(s_T) r(s_T)]}_{\text{Policy Gradient Term}} - \beta \nabla_\theta \text{KL}(\pi_\theta \parallel \pi_{\text{ref}}),$$

125 where $\pi_\theta(s_T) = \prod_{t=1}^T \pi_\theta(a_t \mid s_{t-1})$ denotes the trajectory probability.

126 This formulation captures the essence of *reasoning as trajectory optimization*: each CoT reasoning
 127 chain corresponds to a sequence of actions optimized for correctness under delayed reward feed-
 128 back. It provides a principled framework for analyzing how RL fine-tuning enables LLMs to extend
 129 reasoning depth, stability, and coherence.

130 2.1.1 CONNECTION TO CONVENTIONAL REINFORCEMENT LEARNING

131 Although the reward in CoT reasoning is only provided at the final step, the framework can be
 132 naturally related to conventional RL formulations. By expanding the joint trajectory probability as

$$133 \quad \pi_\theta(s_T) = \prod_{t=1}^T \pi_\theta(a_t \mid s_{t-1}),$$

134 the log-probability decomposes into a token-wise sum:

$$135 \quad \log \pi_\theta(s_T) = \sum_{t=1}^T \log \pi_\theta(a_t \mid s_{t-1}).$$

136 Substituting this into the policy gradient yields

$$137 \quad \text{Policy Gradient Term} = \mathbb{E}_{s_T \sim \pi_\theta} \left[\sum_{t=1}^T r(s_T) \nabla_\theta \log \pi_\theta(a_t \mid s_{t-1}) \right]. \quad (1)$$

138 The final-step reward $r(s_T)$ can thus be interpreted through the lens of the classical *policy gradient*
 139 *theorem*, which states that

$$140 \quad \text{Policy Gradient Term} = \mathbb{E}_{s_T \sim \pi_\theta} \left[\sum_{t=1}^T Q(s_{t-1}, a_t) \nabla_\theta \log \pi_\theta(a_t \mid s_{t-1}) \right],$$

141 where $Q(s_{t-1}, a_t)$ denotes the state-action value function. By comparing Eq. 1 with the classical
 142 form, we observe that the broadcasted reward $r(s_T)$ serves the same functional role as $Q(s_{t-1}, a_t)$
 143 in the traditional policy gradient. Indeed, $r(s_T)$ can be viewed as an *unbiased estimator* of the true
 144 state-action value, since

$$145 \quad \mathbb{E}_{s_T \sim \pi_\theta}[r(s_T) \mid s_0, a_1, a_2, \dots, a_t] = Q(s_{t-1}, a_t).$$

162 This observation reveals that CoT-RL can be regarded as a degenerate instance of standard RL,
 163 in which the return signal is available only at the terminal step and uniformly propagated to all
 164 preceding actions. Such equivalence provides a theoretical bridge connecting reasoning-oriented
 165 fine-tuning with classical policy-gradient theory.

166 **Proposed research: theoretical guarantees of PG with autoregressive policy and trajectory re-**
 167 **wards.** The function approximation of an LLM policy takes a autoregressive form which has not
 168 been taken into account previously in standard RL. This task aims to first develop a convergence
 169 theory of PG methods by explicitly leveraging the autoregressive nature of the policy, and under-
 170 stand the impact of different forms of state space regularizations on the convergence, such as length
 171 regularization and format regularization. In addition, in the standard analysis of PG methods, it is
 172 often assumed the reward is provided at every step of the rollout trajectory, which facilitates the
 173 evaluation of the policy gradients and value functions. However, to avoid reward hacking, LLM rea-
 174 soning typically only relies on the terminal reward at the end of the trajectory, which evaluates the
 175 correctness of the final answer. An intriguing question is how the credit assignment of the terminal
 176 reward such as in our preliminary work $\mathbf{?}$ impacts the policy gradient updates of an autoregressive
 177 policy, which we aim to investigate using the symbolic reasoning task in Thrust 1.

178 **Proposed research: emergence of test-time scaling.** One intriguing empirical behavior of RL is
 179 that the length of the CoT traces increases during training without explicit regularization $\mathbf{?}$. The
 180 proposed task aims to provide theoretical understanding to this phenomenon, by using the LEGO
 181 task studied in Thrust 1 task 1a. Recall that our preliminary work $\mathbf{?}$ has established that a curriculum
 182 of self-labeled dataset with increasing lengths can bootstrap longer reasoning capabilities. We spec-
 183 ualate that if we train RL directly over all problem lengths, the model will first obtain signals from
 184 the easiest task in the dataset (which requires shorter CoT), and learn through an implicit curriculum
 185 via gradually being able to complete the increasingly difficult task in the series of tasks (requiring
 186 longer CoT). The proposed research task will formalize this intuition and provide a rigorous anal-
 187 ysis, which will lead to better understanding of the emergence of test-time scaling via the lens of
 188 training dynamics.

189 2.2 SETUP

190 Let s_0 denote the initial prompt. At each time step t , the large language model generates a token
 191 $a_t \in \mathcal{V}$, where \mathcal{V} denotes the vocabulary. Each token in \mathcal{V} is represented as a vector in \mathbb{R}^d . Then
 192 we define the state at time t as $s'_t := (s_0, a_1, \dots, a_t)^\top \in \mathbb{R}^{t \times d}$. To ensure consistent dimensionality
 193 across time steps, we embed each state into a fixed-dimensional space $\mathbb{R}^{T \times d}$ via zero-padding:
 194

$$195 \quad s_t := (s_0, a_1, \dots, a_t, \underbrace{0, \dots, 0}_{(T-t) \text{ tokens}})^\top,$$

196 where the final $T - t$ entries are zero vectors in \mathbb{R}^d . We also let \mathcal{S}_t denote the set of all possible
 197 states s_t . We readily observe the following inclusion relation:
 198

$$201 \quad \mathcal{S}_1 \subset \mathcal{S}_2 \subset \dots \subset \mathcal{S}_T.$$

203 In the CoT reasoning setting, we assume a predefined reward function

$$205 \quad r(s) : \mathbb{R}^{T \times d} \rightarrow \mathbb{R},$$

206 which evaluates the quality of a complete generated state s . The rewards are sparse and provided
 207 only at the final step, i.e., when $t = T$.
 208

209 The core of an CoT reasoning is the parameterized policy. We write

$$210 \quad \pi_\theta(a \mid s) : \mathbb{R}^l \times \mathbb{R}^d \times \mathbb{R}^{T \times d} \rightarrow [0, 1]$$

212 to denote the probability of generating a token $a \in \mathbb{R}^d$ given the current state $s \in \mathbb{R}^{T \times d}$ under model
 213 parameters $\theta \in \mathbb{R}^l$. Since the token a_t output by the model at time step t together with the previous
 214 state s_{t-1} uniquely determines the state s_t , we have the identity $\mathbb{P}_\theta(s_t \mid s_{t-1}) = \pi_\theta(a_t \mid s_{t-1})$.
 215 Here, $\mathbb{P}_\theta(s_t \mid s_{t-1}) : \mathbb{R}^l \times \mathbb{R}^{T \times d} \times \mathbb{R}^{T \times d} \rightarrow [0, 1]$ denotes the conditional probability of the current
 216 state s_t given the previous state s_{t-1} , under parameters $\theta \in \mathbb{R}^l$.

216 We now define the trajectory probability and value function. The joint probability of generating a
 217 full trajectory under policy π_θ is given by:
 218

$$219 \quad 220 \quad 221 \quad \mathbb{P}_\theta(s_T | s_0) = \prod_{t=1}^T \mathbb{P}_\theta(s_t | s_{t-1}).$$

222 The goal is to maximize the expected return:

$$223 \quad 224 \quad 225 \quad J(\theta) = \mathbb{E}_{s_T \sim \pi_\theta} [r(s_T)] - \mathbf{KL}(\pi_\theta \| \pi_{\theta_{\text{ref}}}) = \sum_{s_T \in \mathcal{S}_T} \mathbb{P}_\theta(s_T | s_0) r(s_T) - \mathbf{KL}(\pi_\theta \| \pi_{\theta_{\text{ref}}}). \quad (2)$$

226 Here $|s_T|$ denotes the length of the response s_T . The length $|s_T|$ is determined by the stop token:
 227 if the stop token appears before T , the generation terminates at that token. Moreover, for any θ , we
 228 stipulate that the parameterized policy π_θ maps every state containing a stop token consistently to
 229 the stop token.

230 Because the reward of any meaningful reinforcement learning problem is necessarily bounded, the
 231 value function $J(\theta)$, ($\theta \in \mathbb{R}^d$) admits a theoretical maximum, which we denote by J^* .

232 The optimization of $J(\theta)$ typically follows a gradient ascent (GA) scheme (Yuan et al., 2022; Zhang
 233 et al., 2020)¹:

$$234 \quad \theta_{n+1} = \theta_n + \eta \nabla_{\theta_n} J(\theta_n),$$

235 with learning rate η . Algorithms like PPO and GRPO build on this principle with various modifica-
 236 tions to improve performance.

237 In CoT reasoning setting, since the reward $r(s_T)$ is assigned only at the final timestep and does not
 238 depend on θ , the policy gradient simplifies as:

$$239 \quad \nabla J(\theta) = \sum_{s_T \in \mathcal{S}_T} (\nabla \mathbb{P}_\theta(s_T | s_0)) r(s_T) = \mathbb{E}_{s_T \sim \pi_\theta} [(\nabla \log \mathbb{P}_\theta(s_T | s_0)) r(s_T)]. \quad (3)$$

240 **Notation.** *Throughout the remainder of the paper, ∇ denotes gradients with respect to θ (or θ_s),
 241 unless explicitly stated otherwise.*

242 2.3 REVIEW OF GROUP RELATIVE POLICY OPTIMIZATION (GRPO)

243 Group Relative Policy Optimization (GRPO), recently proposed by DeepSeek, is a reinforcement
 244 learning algorithm for aligning LLMs without a value-function critic. Instead of computing global
 245 advantage estimates, GRPO uses relative rewards within a group of candidate responses to estimate
 246 local advantage. Like PPO, GRPO employs a decoupled optimization structure: the old policy $\pi_{\theta_{\text{old}}}$
 247 is held fixed while the current policy π_θ is updated over multiple gradient steps using the same batch
 248 of trajectories, improving sample efficiency.

249 For the convenience of the subsequent analysis, we define the σ -algebra generated by θ_{old} as $\mathcal{F}_{\text{old}} :=$
 250 $\sigma(\theta_{\text{old}})$. Given a prompt s_0 , the old policy $\pi_{\theta_{\text{old}}}$ generates a group $G = \{s_T^{(1)}, \dots, s_T^{(|G|)}\}$ of full
 251 responses. For the convenience of the subsequent analysis, we define a random variable $\xi_G(\cdot) : S_T \rightarrow [0, 1]$ that
 252 uniquely determines the group sampling. Specifically, if a state s_T appears w times
 253 in the sample G , then

$$254 \quad 255 \quad 256 \quad 257 \quad 258 \quad \xi_G(s_T) := \frac{w}{|G|}.$$

259 With this definition, the summation over the group can be written in the following form:
 260

$$261 \quad 262 \quad 263 \quad 264 \quad \frac{1}{|G|} \sum_{i=1}^{|G|} f(s_T^{(i)}) = \sum_{s_T \in \mathcal{S}_T} \xi_G(s_T) f(s_T),$$

265 where $f : \mathcal{S}_T \rightarrow \mathbb{R}$ is any test function. Moreover, we shall denote this family of vectors uniformly
 266 by
 267

$$268 \quad 269 \quad \boldsymbol{\xi}_{\theta_{\text{old}}, G} := (\xi_G(s_T))_{s_T \in \mathcal{S}_T}. \quad (4)$$

¹We use gradient ascent as the goal is to maximize $J(\theta)$. Gradient descent is equivalent up to a sign change.

270 GRPO then computes normalized advantages within the group as:
 271

$$272 \quad A_G(s_T) = \frac{r(s_T) - \mu_G}{\sigma_G + \delta}, \quad \mu_G = \sum_{s_T \in \mathcal{S}_T} \xi_G(s_T) r(s_T), \quad \sigma_G = \sqrt{\sum_{s_T \in \mathcal{S}_T} \xi_G(s_T) (r(s_T) - \mu_G)^2},$$

$$273$$

$$274$$

275 where δ is a smoothing factor to prevent the denominator from approaching zero. The group-
 276 normalized advantages $A_G(s_T)$ are then used to construct the objective function.
 277

278 **Optimization objective** With $\pi_{\theta_{\text{old}}}$ held fixed, we optimize
 279

$$280 \quad \mathcal{L}_{\text{GRPO}}(\theta, \theta_{\text{old}}) = \sum_{s_T \in \mathcal{S}_T} \xi_G(s_T) \frac{1}{|s_T|} \sum_{t=1}^T \text{ClipMin}(s_t, \theta, \theta_{\text{old}}). \quad (5)$$

$$281$$

$$282$$

283 Here,

$$284 \quad \text{ClipMin}(s_t, \theta, \theta_{\text{old}})$$

$$285$$

$$286 \quad := \min \left\{ \frac{\mathbb{P}_\theta(s_t | s_{t-1})}{\mathbb{P}_{\theta_{\text{old}}}(s_t | s_{t-1})} A_G(s_T), \text{Clip} \left(\frac{\mathbb{P}_\theta(s_t | s_{t-1})}{\mathbb{P}_{\theta_{\text{old}}}(s_t | s_{t-1})}, \epsilon_{\text{low}}, \epsilon_{\text{high}} \right) A_G(s_T) \right\} \quad (6)$$

$$287$$

288 with the clipping function
 289

$$290 \quad \text{Clip}(x, \epsilon_{\text{low}}, \epsilon_{\text{high}}) := \begin{cases} 1 - \epsilon_{\text{low}}, & x < 1 - \epsilon_{\text{low}}, \\ x, & 1 - \epsilon_{\text{low}} \leq x \leq 1 + \epsilon_{\text{high}}, \\ 1 + \epsilon_{\text{high}}, & x > 1 + \epsilon_{\text{high}}. \end{cases}$$

$$291$$

$$292$$

$$293$$

294 In Eq 5, note that since the large language model degenerates to the identity mapping after the stop
 295 token, all terms between $|s_T|$ and T vanish.
 296

297 Therefore, the summations are equal, i.e.,
 298

$$299 \quad \sum_{t=1}^{|s_T|} \text{ClipMin}(s_t, \theta, \theta_{\text{old}}) = \sum_{t=1}^T \text{ClipMin}(s_t, \theta, \theta_{\text{old}}).$$

$$300$$

$$301$$

302 In original GRPO (Shao et al., 2024), the clipping thresholds in the surrogate objective are symmet-
 303 ric, i.e., $\epsilon_{\text{low}} = \epsilon_{\text{high}}$. A subsequent study showed that employing asymmetric clipping ($\epsilon_{\text{low}} \neq \epsilon_{\text{high}}$)
 304 can improve empirical performance, and accordingly renamed the modified algorithm Decouple
 305 Clip and Dynamic Sampling Policy Optimization (DAPO) (Yu et al., 2025). In addition, original
 306 GRPO includes a regularization term involving the pretrained model π_{ref} , namely the KL divergence
 307 $\text{KL}(\pi_\theta \parallel \pi_{\text{ref}})$. However, as noted in DAPO, a model fine-tuned with human feedback may deviate
 308 substantially from the pretrained model, and this KL-divergence regularization can hinder performance
 309 (Yu et al., 2025). Consequently, it was removed. In this work, we follow the DAPO setting,
 310 removing the KL-divergence. In the remainder of this paper, we do not distinguish between the
 311 names DAPO and GRPO, as the two algorithms share similar mechanisms.

312 Eq. 5 can be maximized with stochastic gradient ascent (SGA) or adaptive methods such as Adam
 313 (Kingma & Ba, 2014; Wang et al., 2023; Jin et al., 2024); in this paper we adopt vanilla SGA.
 314

315 **Update rule** We now present the update rule under a fixed old policy π_{old} :

$$316 \quad \theta_{s+1} = \theta_s + \eta \nabla \mathcal{L}_{\text{GRPO}}(\theta_s, \theta_{\text{old}}),$$

317 where η is the learning rate and the gradient $\nabla \mathcal{L}_{\text{GRPO}}(\theta, \theta_{\text{old}})$ can be written as
 318

$$319 \quad \nabla \mathcal{L}_{\text{GRPO}}(\theta, \theta_{\text{old}}) = \sum_{s_T \in \mathcal{S}_T} \xi_G(s_T) \frac{1}{|s_T|} \sum_{t=1}^T \nabla (\text{ClipMin}(s_t, \theta, \theta_{\text{old}})). \quad (7)$$

$$320$$

$$321$$

322 After performing K gradient steps under a fixed old policy $\pi_{\theta_{\text{old}}}$, the reference is updated according
 323 to $\pi_{\theta_{\text{old}}} \leftarrow \pi_\theta$. The full algorithm is summarized in Eq. 7.

324

3 A DECOMPOSITION OF GRPO'S GRADIENT TERM

325

326 In this section, we analyze the Gradient Term in Eq. 7 and show that it can be interpreted as an
327 asymptotically unbiased estimator of the policy gradient evaluated at $\pi_{\theta_{\text{old}}}$. To do this, we first define
328 the following two events:

329
$$\mathcal{B}^+(s_t, \theta, \theta_{\text{old}}) := \left\{ \frac{\mathbb{P}_\theta(s_t|s_{t-1})}{\mathbb{P}_{\theta_{\text{old}}}(s_t|s_{t-1})} \leq 1 + \epsilon_{\text{high}}, A_G(s_T) \geq 0 \right\},$$
330
$$\mathcal{B}^-(s_t, \theta, \theta_{\text{old}}) := \left\{ \frac{\mathbb{P}_\theta(s_t|s_{t-1})}{\mathbb{P}_{\theta_{\text{old}}}(s_t|s_{t-1})} \geq 1 - \epsilon_{\text{low}}, A_G(s_T) < 0 \right\},$$
331

332 and the event $\mathcal{B}(s_t, \theta, \theta_{\text{old}}) = \mathcal{B}^+(s_t, \theta, \theta_{\text{old}}) \cup \mathcal{B}^-(s_t, \theta, \theta_{\text{old}})$. Then we can get:

333
$$\begin{aligned} \nabla \mathcal{L}_{\text{GRPO}}(\theta, \theta_{\text{old}}) &\stackrel{(*)}{=} \sum_{s_T \in \mathcal{S}_T} \xi_G(s_T) \frac{1}{|s_T|} \sum_{t=1}^T \mathbf{1}_{\mathcal{B}(s_t, \theta, \theta_{\text{old}})} \frac{\mathbb{P}_\theta(s_t|s_{t-1})}{\mathbb{P}_{\theta_{\text{old}}}(s_t|s_{t-1})} \nabla \log \mathbb{P}_\theta(s_t|s_{t-1}) A_G(s_T) \\ &= \frac{1}{\sigma_{\theta_{\text{old}}}} \underbrace{\sum_{s_T \in \mathcal{S}_T} \xi_G(s_T) \frac{1}{|s_T|} \sum_{t=1}^T \nabla \log \mathbb{P}_{\theta_{\text{old}}}(s_t|s_{t-1}) r(s_T)}_{\tilde{\nabla} J(\theta_{\text{old}})} \\ &\quad + \frac{1}{\sigma_{\theta_{\text{old}}}} \underbrace{\sum_{s_T \in \mathcal{S}_T} \xi_G(s_T) \frac{1}{|s_T|} \sum_{t=1}^T \frac{\mathbf{1}_{\mathcal{B}(s_t, \theta, \theta_{\text{old}})}}{\mathbb{P}_{\theta_{\text{old}}}(s_t|s_{t-1})} (\nabla \mathbb{P}_\theta(s_t|s_{t-1}) - \nabla \mathbb{P}_{\theta_{\text{old}}}(s_t|s_{t-1})) A_G(s_T)}_{\Xi_g(\theta, \theta_{\text{old}})} \\ &\quad + \underbrace{\sum_{s_T \in \mathcal{S}_T} \xi_G(s_T) \sum_{t=1}^T \nabla \log \mathbb{P}_{\theta_{\text{old}}}(s_t|s_{t-1}) B_G(s_T)}_{\frac{1}{\sigma_{\theta_{\text{old}}}} \Xi_s(\theta, \theta_{\text{old}})} \\ &\quad + \underbrace{\frac{1}{\sigma_{\theta_{\text{old}}}} \left(- \sum_{s_T \in \mathcal{S}_T} \xi_G(s_T) \frac{1}{|s_T|} \sum_{t=1}^T \mathbf{1}_{\mathcal{B}^c(s_t, \theta, \theta_{\text{old}})} \nabla \log \mathbb{P}_{\theta_{\text{old}}}(s_t|s_{t-1}) A_G(s_T) \right)}_{\Xi_c(\theta, \theta_{\text{old}})}. \end{aligned} \quad (8)$$
334

357 In the above expression, we define

358
$$\sigma_{\theta_{\text{old}}} := \delta + \mathbb{E}_{G \sim \pi_{\theta_{\text{old}}}} \left[\sum_{s_T \in \mathcal{S}_T} \xi_G(s_T) \sigma_G \middle| \mathcal{F}_{\theta_{\text{old}}} \right], B_G(s_T) := \frac{A_G(s_T)}{|s_T|} - \frac{1}{\sigma_{\theta_{\text{old}}}} \frac{r(s_T)}{|s_T|}. \quad (9)$$
359

360 Based on the decomposition above, we observe that $\tilde{\nabla} J(\theta_{\text{old}})$ serves as an unbiased estimator of the
361 true policy gradient $\nabla J(\theta_{\text{old}})$, since we clearly have

362
$$\begin{aligned} \mathbb{E}_{G \sim \pi_{\theta_{\text{old}}}} \left[\tilde{\nabla} J(\theta_{\text{old}}) \middle| \mathcal{F}_{\theta_{\text{old}}} \right] &= \mathbb{E}_{G \sim \pi_{\theta_{\text{old}}}} \left[\sum_{s_T \in \mathcal{S}_T} \xi_G(s_T) \frac{1}{|s_T|} \sum_{t=1}^T \nabla \log \mathbb{P}_{\theta_{\text{old}}}(s_t|s_{t-1}) r(s_T) \middle| \mathcal{F}_{\theta_{\text{old}}} \right] \\ &= \mathbb{E}_{s_T \sim \pi_{\theta_{\text{old}}}} \left[\nabla \log \mathbb{P}_{\theta_{\text{old}}}(s_T|s_0) \frac{r(s_T)}{|s_T|} \middle| \mathcal{F}_{\theta_{\text{old}}} \right] \\ &= \nabla J(\theta_{\text{old}}). \end{aligned}$$
363

371 The remaining three terms are error terms. These error terms can be controlled during the algorithmic
372 iterations.

373 A natural question arises:

374 *why does GRPO remain effective in practice, given that it estimates the gradient at the stale policy
375 θ_{old} rather than the current iterate θ ?*

376 The key insight is that the old policy $\pi_{\theta_{\text{old}}}$ is refreshed every K steps, i.e., $\pi_{\theta_{\text{old}}} \leftarrow \pi_\theta$. As a result,
377 the discrepancy between π_θ and $\pi_{\theta_{\text{old}}}$ remains small throughout training, allowing the algorithm to

378 perform reliably even with stale gradient estimates. We empirically validate our hypothesis through
 379 a controlled ablation experiment. Specifically, we remove the importance sampling mechanism
 380 entirely from DAPO and, within each inner optimization loop where the old policy $\pi_{\theta_{\text{old}}}$ is held
 381 fixed, directly perform updates using the policy gradient estimated at $\pi_{\theta_{\text{old}}}$. This setting isolates the
 382 effect of importance sampling and allows us to examine how well GRPO performs when relying
 383 solely on stale gradients.

384 We conduct this experiment using the qwen3.1.7b-base model (Team, 2024) on a hybrid dataset
 385 comprising the full DAPO-17K corpus and several hundred examples from the AIME dataset (Liu
 386 et al., 2024; Ji et al., 2025). The model is trained for a single epoch, with each prompt used exactly
 387 once. We use a total batch size of 128 and a mini-batch size of 32, resulting in each sample being
 388 reused for 4 updates before refreshing the old policy.

389 As shown in Figure 1 in Appendix A.1, removing importance sampling does not lead to a significant
 390 drop in performance. Especially in the latter stages of the algorithm, removing importance sampling
 391 even produced a slight performance gain. This result empirically supports our earlier claim that, due
 392 to the limited drift between π_{θ} and $\pi_{\theta_{\text{old}}}$ within each update cycle, the policy gradient at $\pi_{\theta_{\text{old}}}$ remains
 393 a reliable update direction in practice.

394 This observation naturally leads to the following idea: if we could modify the importance sampling
 395 mechanism in GRPO such that the resulting estimator becomes a consistent and asymptotically
 396 unbiased estimate of the current policy gradient $\nabla J(\theta)$, then the algorithm’s performance could be
 397 further improved—both in theory and in practice.

398 A natural candidate for such a correction is to replace the token-level importance weights used in
 399 GRPO with a trajectory-level importance ratio. That is, instead of reweighting each token individ-
 400 ually, we consider using the probability ratio over the entire trajectory, aligning the estimator more
 401 closely with the form of the true policy gradient. This simple yet principled modification forms the
 402 basis of our proposed algorithm, which we introduce in the next section.

404 4 TRAJECTORY-LEVEL IMPORTANCE-CORRECTED GRPO (TIC-GRPO)

405 In this section, we propose our TIC-GRPO, a principled variant of GRPO. Apart from replacing
 406 importance sampling with its trajectory-level version, this paper introduces two relatively minor
 407 modifications. First, the group regularization is replaced by a version with a length penalty. Both of
 408 these minor changes can be added independently to the original GRPO with token-level importance
 409 sampling; second, the clipping mechanism is replaced by an up-only variant.

412 4.1 MAJOR MODIFICATION

414 **Trajectory-level Importance Sampling.** We replace the token-level importance sampling mech-
 415 anism in Eq. 5 with a trajectory-level probability ratio $\mathbb{P}_{\theta}(s_T | s_0) / \mathbb{P}_{\theta_{\text{old}}}(s_T | s_0)$.

417 4.2 MINOR MODIFICATIONS

418 **Length-Corrected Group Normalization Regularizer.** We replace the group regularization with
 419 the following form:

$$421 A'_G(s_T) = \frac{\frac{r(s_T)}{|s_T|} - \mu'_G}{\sigma'_G + \delta}, \mu'_G = \sum_{s_T \in \mathcal{S}_T} \xi_G(s_T) \frac{r(s_T)}{|s_T|}, \sigma'_G = \sqrt{\sum_{s_T \in \mathcal{S}_T} \xi_G(s_T) \left(\frac{r(s_T)}{|s_T|} - \mu'_G \right)^2}.$$

424 As noted below Eq. 2, the original GRPO algorithm already effectively treats $r(s_T) / |s_T|$ as a new
 425 reward. Therefore, when applying group regularization, it is more natural to regularize with respect
 426 to this new reward.

427 **Upper-Only Clipping Mechanism.** We employ a minor technical modification to the standard
 428 clipping mechanism used in importance sampling. The original clipping strategy, as defined in
 429 Eq. 5, i.e.,

$$431 \min \left\{ \frac{\mathbb{P}_{\theta}(s_T | s_0)}{\mathbb{P}_{\theta_{\text{old}}}(s_T | s_0)} A'_G(s_T), \text{Clip} \left(\frac{\mathbb{P}_{\theta}(s_T | s_0)}{\mathbb{P}_{\theta_{\text{old}}}(s_T | s_0)}, \epsilon_{\text{low}}, \epsilon_{\text{high}} \right) A'_G(s_T) \right\},$$

treats the sign of the estimated advantage $A'_G(s_T)$ separately: when $A'_G(s_T) \geq 0$, the importance weight is clipped from above by $1 + \epsilon_{\text{high}}$, whereas when $A'_G(s_T) < 0$, it is clipped from below by $1 - \epsilon_{\text{low}}$. However, we observe that retaining only the lower bound $1 - \epsilon_{\text{low}}$ while leaving the upper bound unconstrained fails to reduce the variance of the policy gradient estimator effectively even when $A_G(s_T) < 0$. Motivated by this, we adopt a modified clipping scheme in which only the upper bound is enforced, as follows:

$$\min \left\{ \frac{\mathbb{P}_\theta(s_T | s_0)}{\mathbb{P}_{\theta_{\text{old}}}(s_T | s_0)}, \text{Clip} \left(\frac{\mathbb{P}_\theta(s_T | s_0)}{\mathbb{P}_{\theta_{\text{old}}}(s_T | s_0)}, \epsilon_{\text{low}}, \epsilon_{\text{high}} \right) \right\} A'_G(s_T).$$

Under our modified clipping scheme, the importance sampling ratio is truncated from above at $1 + \epsilon_{\text{high}}$, independent of the sign of the estimated advantage $A'_G(s_T)$. The lower bound $1 - \epsilon_{\text{low}}$ is omitted and thus has no effect. This upper-only clipping more effectively reduces the variance of the policy gradient estimator, leading to improved empirical performance. For notational convenience, we denote:

$$\overline{\text{ClipMin}}(s_T, \theta, \theta_{\text{old}}) := \min \left\{ \frac{\mathbb{P}_\theta(s_T | s_0)}{\mathbb{P}_{\theta_{\text{old}}}(s_T | s_0)}, \text{Clip} \left(\frac{\mathbb{P}_\theta(s_T | s_0)}{\mathbb{P}_{\theta_{\text{old}}}(s_T | s_0)}, \epsilon_{\text{low}}, \epsilon_{\text{high}} \right) \right\} A'_G(s_T).$$

The original clipping mechanism fails to control variance when the advantage is negative, as noted by Ye et al. (2020); Jin et al. (2023) in PPO. They used a dual-clip approach, while we only clip the upper bound, allowing more tokens to contribute and improving efficiency.

It is worth noting that these two minor modification mechanisms can be applied to the original token-level importance sampling without any other changes. Their isolated effectiveness is confirmed by our ablation experiments in Appendix A.3.

4.3 RULES FOR TIC-GRPO

Apart from the above modifications, all other components remain consistent with the original GRPO formulation. The corresponding optimization objective is given by:

$$\mathcal{L}_{\text{TIC-GRPO}}(\theta, \theta_{\text{old}}) = \sum_{s_T \in \mathcal{S}_T} \xi_G(s_T) \overline{\text{ClipMin}}(s_T, \theta, \theta_{\text{old}}). \quad (10)$$

Similarly, we present the update rule under a fixed old policy $\pi_{\theta_{\text{old}}}$:

$$\theta_{s+1} = \theta_s + \eta \nabla \mathcal{L}_{\text{TIC-GRPO}}(\theta_s, \theta_{\text{old}}),$$

where η is the learning rate and the gradient $\nabla \mathcal{L}_{\text{TIC-GRPO}}(\theta, \theta_{\text{old}}, \theta_{\text{ref}})$ can be written as

$$\nabla \mathcal{L}_{\text{TIC-GRPO}}(\theta, \theta_{\text{old}}) = \sum_{s_T \in \mathcal{S}_T} \xi_G(s_T) \nabla (\overline{\text{ClipMin}}(s_T, \theta, \theta_{\text{old}})). \quad (11)$$

Here we claim that $\nabla \mathcal{L}_{\text{TIC-GRPO}}(\theta, \theta_{\text{old}})$ can serve as a estimation of policy gradient $\nabla J(\theta)$ at θ , which contrasts with Eq. 7, where it serves only as an estimation at θ_{old} . Note that this estimation is not as immediate as in Eq. 8; we place the detailed derivation as a separate section in Appendix B.

As in GRPO, the old policy $\pi_{\theta_{\text{old}}}$ is refreshed every K steps by assigning $\pi_{\theta_{\text{old}}} \leftarrow \pi_\theta$. The complete algorithm is summarized in Eq. 13

Intuitively, TIC-GRPO should be more sample-efficient than the original GRPO. However, such intuition alone is insufficient to rigorously justify the algorithm’s advantage. In the next section, we address this gap by providing formal convergence rate analyses for both GRPO and TIC-GRPO under mild assumptions—specifically, assuming the score function is Lipschitz continuous and the reward function is bounded. To the best of our knowledge, this constitutes the first theoretical convergence analysis for GRPO-style algorithms. We also provide experimental validation of these findings in Section 6 and Appendix A.

5 CONVERGENCE RESULTS

In this section we establish the stationary-point convergence sample complexity of both the original GRPO and TIC-GRPO under two mild and commonly used assumptions.

To facilitate convergence analysis, we begin by rewriting both algorithms in iterative update forms:

486 **GRPO**

487

488

489

490

491

TIC-GRPO

492

493

494

$$\begin{aligned} \theta_{n,0} &= \theta_{n-1,K}, \\ \theta_{n,s+1} &= \theta_{n,s} + \eta \hat{\nabla} \mathcal{L}_{\text{GRPO}}(\theta_{n,s}, \theta_{n,0}), \quad (s = 0, 1, \dots, K). \end{aligned} \quad (12)$$

495 **TIC-GRPO**

496

497

498

499

500

501

502

503

$$\begin{aligned} \theta_{n,0} &= \theta_{n-1,K}, \\ \theta_{n,s+1} &= \theta_{n,s} + \eta \hat{\nabla} \mathcal{L}_{\text{TIC-GRPO}}(\theta_{n,s}, \theta_{n,0}), \quad (s = 0, 1, \dots, K). \end{aligned} \quad (13)$$

Since we now analyze the overall performance of the above stochastic algorithm, we need to construct a filtration $\{\mathcal{F}_n\}_{n \geq 1}$. Specifically, for each n , the \mathcal{F}_n is given by $\mathcal{F}_n := \sigma(\xi_{\theta_{1,0},G}, \xi_{\theta_{2,0},G}, \dots, \xi_{\theta_{n,0},G})$, where $\{\xi_{\theta_{n,0},G}\}_{n \geq 1}$ is defined in Eq. 4.

We now present two key assumptions that underlie our convergence analysis for both GRPO and TIC-GRPO.

Assumption 5.1 (Lipschitz Continuous Score Function). *Let $L > 0$ be fixed constants. For all states $s_t \in \mathcal{S}_T$, the score function is Lipschitz continuous in the following sense: $\|\nabla \log \mathbb{P}_\theta(s_t | s_{t-1}) - \nabla \log \mathbb{P}_{\theta'}(s_t | s_{t-1})\| \leq L \|\theta - \theta'\|$.*

In addition, we require a bounded reward assumption, stated as follows:

Assumption 5.2 (Bounded Reward). *There exists a constant $R > 0$ such that the absolute value of the terminal reward is uniformly bounded. Specifically, for all s_T , we have $|r(s_T)| \leq R$.*

This is a common and mild assumption in reinforcement learning, especially in the context of LLM-based applications.

510 **5.1 RESULTS OF GRPO**

We now present the convergence result for the original GRPO:

Theorem 5.1. *(Convergence of GRPO) Assume that the conditions stated in Assumptions 5.1 and 5.2 are satisfied. Let $\theta_{1,0} \in \mathbb{R}^d$ denote an arbitrary initialization of the algorithm, and we set $\eta = \frac{1}{\log |\mathcal{V}| \sqrt{N}}$. Then the sequence $\{\theta_{n,s}\}$ generated by GRPO as defined in Eq. 12 admits the following upper bound:*

$$\frac{1}{N} \sum_{n=1}^N \sum_{s=0}^{K-1} \mathbb{E} [\|\nabla J(\theta_{n,s})\|^2] = \mathcal{O} \left(\frac{\log |\mathcal{V}| \sqrt{\mathbb{E} [\mathcal{M}_N^2]}}{\sqrt{N}} \right) + \mathcal{O} \left(\frac{1}{\sqrt{|G|}} \right) + \mathcal{O}(\bar{\sigma}_{s_T, N}^2),$$

where

$$\begin{aligned} \mathcal{M}_N &:= \max_{1 \leq n \leq N} \left\{ \max_{1 \leq i \leq |G|} \frac{1}{\pi_{\theta_{n,0}}(a_t^{(i)} | s_{t-1}^{(i)})} \right\}, \\ \bar{\sigma}_{s_T, N}^2 &:= \frac{1}{N} \sum_{n=1}^N \mathbb{E}_{\{s_T\} \sim \pi_{\theta_{n,0}}} \left[\|s_T - \mathbb{E} [s_T | \mathcal{F}_{n-1}]\|^2 \right]. \end{aligned} \quad (14)$$

The quantities hidden in the \mathcal{O} notation are constants depending only on other parameters of the problem.

Due to space constraints, the proof of this theorem is deferred to Section C.

This represents the first rigorous theoretical result for GRPO. It can be observed that the convergence rate of the original GRPO depends on two quantities, \mathcal{M}_N and $\bar{\sigma}_{s_T, N}^2$, both of which are non-optimizable. The first term arises because the conventional clipping mechanism only truncates the lower bound of importance sampling when the advantage is negative, while leaving the upper bound uncontrolled; as a result, its variance can only be bounded by \mathcal{M}_N . The second term comes from the fact that trajectories sampled under the same prompt may have different lengths, whereas the standard GRPO applies group regularization without any length normalization, thereby introducing a fixed error. We argue that these two factors may be among the reasons why the original GRPO suffers from collapse on certain tasks (Li et al., 2025; Chen et al., 2025).

540 5.2 RESULTS OF TIC-GRPO
541

542 **Theorem 5.2** (Convergence of TIC-GRPO). *Assume that the conditions stated in Assumptions 5.1
543 and 5.2 are satisfied. Let $\theta_{1,0} \in \mathbb{R}^d$ denote an arbitrary initialization of the algorithm, and we set
544 $\eta = \min \left\{ \frac{1}{\log |\mathcal{V}| \sqrt{N}}, \frac{1}{4K(1+\epsilon_{high})RL} \right\}$. Then the sequence $\{\theta_{n,s}\}$ generated by TIC-GRPO as defined
545 in Eq. 13 admits the following upper bound:*

$$547 \quad \frac{1}{N} \sum_{n=1}^N \sum_{s=0}^{K-1} \mathbb{E} [\|\nabla J(\theta_{n,s})\|^2] = \mathcal{O} \left(\frac{\log |\mathcal{V}|}{\sqrt{N}} \right) + \mathcal{O} \left(\frac{1}{\sqrt{|G|}} \right).$$

550 The quantities hidden in the \mathcal{O} notation are constants depending only on other parameters of the
551 problem.

552 Due to space constraints, the proof of this theorem is deferred to Section C.

554 It can be observed that, compared with the original GRPO, our TIC-GRPO algorithm eliminates the
555 dependence on \mathcal{M}_N and $\bar{\sigma}_{s_T, N}$ in the convergence rate, leading to a tighter convergence bound.
556 We note, however, that this improvement stems solely from the adoption of the Length-Corrected
557 Group Normalization Regularizer and the Upward-Only Clipping Mechanism. In other words, our
558 theoretical results do not yet capture the benefits of response-level importance sampling: adding
559 these two mechanisms alone on top of token-level importance sampling would achieve the same
560 convergence rate. We believe that the advantages of response-level importance sampling are hidden
561 in the constants within $\mathcal{O}(\cdot)$, i.e., the constants associated with response-level importance sampling
562 are more favorable. We leave a precise characterization of this effect as future work.

563 6 EXPERIMENTS
564

566 We evaluate TIC-GRPO on the AIME benchmark. Table ?? summarizes the results, including two
567 baselines—GSPO and GRPO (implemented with the DAPO framework)—as well as two ablation
568 variants: one applying only response-level importance sampling and the other applying only upper-
569 bound clipping with length-corrected group normalization. TIC-GRPO consistently outperforms
570 all baselines and ablations, confirming the effectiveness of combining trajectory-level ratios with
571 the two lightweight refinements. Additional experimental details, including training and evaluation
572 plots and further ablation experiments, are provided in Appendix A.2 and A.3.

573
574 Table 1: Combined evaluation results on AIME24, AIME25, and MATH500. Numbers in parentheses
575 indicate improvement over the baseline GRPO.

577 Model	AIME24	AIME25	MATH500
578 Qwen3_1.7B_GRPO	9.17	5.31	66.6
579 Qwen3_1.7B_Minor_Modifications_Only	10.31 (+1.14)	6.64 (+1.33)	67.4 (+0.8)
580 Qwen3_1.7B_Sentence_Important_Sampling_Only	10.62 (+1.45)	6.77 (+1.46)	68.0 (+1.4)
581 Qwen3_1.7B_GSPO	10.31 (+1.14)	6.24 (+0.93)	69 (+2.4)
582 Qwen3_1.7B_TIC_GRPO	11.77 (+2.60)	6.98 (+1.67)	69.8 (+3.2)
583 Qwen3_8B_GRPO	31.35	22.9	88.6
584 Qwen3_8B_GSPO	30.21 (-1.14)	22.5 (-0.4)	88.4 (-0.2)
585 Qwen3_8B_TIC_GRPO	33.34 (+1.99)	24.12 (+1.22)	90 (+1.4)

586
587
588
589
590
591
592
593

594 REFERENCES
595

596 Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda Askell, Anna Chen, Nova DasSarma, Dawn
597 Drain, Stanislav Fort, Deep Ganguli, Tom Henighan, et al. Training a helpful and harmless
598 assistant with reinforcement learning from human feedback. *arXiv preprint arXiv:2204.05862*,
599 2022.

600 Peter Chen, Xiaopeng Li, Ziniu Li, Xi Chen, and Tianyi Lin. Spectral policy optimization: Coloring
601 your incorrect reasoning in grpo. *arXiv preprint arXiv:2505.11595*, 2025.

603 Ryan Greenblatt, Carson Denison, Benjamin Wright, Fabien Roger, Monte MacDiarmid, Sam
604 Marks, Johannes Treutlein, Tim Belonax, Jack Chen, David Duvenaud, et al. Alignment fak-
605 ing in large language models. *arXiv preprint arXiv:2412.14093*, 2024.

606 Yunjie Ji, Sitong Zhao, Xiaoyu Tian, Haotian Wang, Shuaiting Chen, Yiping Peng, Han Zhao, and
607 Xiangang Li. How difficulty-aware staged reinforcement learning enhances llms' reasoning ca-
608 pabilities: A preliminary experimental study. *arXiv preprint arXiv:2504.00829*, 2025.

609 Ruinan Jin, Shuai Li, and Baoxiang Wang. On stationary point convergence of ppo-clip. In *The
610 Twelfth International Conference on Learning Representations*, 2023.

612 Ruinan Jin, Xiao Li, Yaoliang Yu, and Baoxiang Wang. A comprehensive framework for analyzing
613 the convergence of adam: Bridging the gap with SGD. *CoRR*, abs/2410.04458, 2024.

615 Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. *arXiv preprint
616 arXiv:1412.6980*, 2014.

617 Long Li, Jiaran Hao, Jason Klein Liu, Zhijian Zhou, Xiaoyu Tan, Wei Chu, Zhe Wang, Shirui Pan,
618 Chao Qu, and Yuan Qi. The choice of divergence: A neglected key to mitigating diversity collapse
619 in reinforcement learning with verifiable reward. *arXiv preprint arXiv:2509.07430*, 2025.

620 Junnan Liu, Hongwei Liu, Linchen Xiao, Ziyi Wang, Kuikun Liu, Songyang Gao, Wenwei Zhang,
621 Songyang Zhang, and Kai Chen. Are your llms capable of stable reasoning? *arXiv preprint
622 arXiv:2412.13147*, 2024.

624 John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
625 optimization algorithms. *arXiv preprint arXiv:1707.06347*, 2017.

626 Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
627 Mingchuan Zhang, YK Li, Yang Wu, et al. Deepseekmath: Pushing the limits of mathemati-
628 cal reasoning in open language models. *arXiv preprint arXiv:2402.03300*, 2024.

630 Qwen Team. Qwen2 technical report. *arXiv preprint arXiv:2407.10671*, 2, 2024.

631 Bohan Wang, Jingwen Fu, Huishuai Zhang, Nanning Zheng, and Wei Chen. Closing the gap between
632 the upper bound and lower bound of adam's iteration complexity. *Advances in Neural Information
633 Processing Systems*, 36:39006–39032, 2023.

635 Deheng Ye, Zhao Liu, Mingfei Sun, Bei Shi, Peilin Zhao, Hao Wu, Hongsheng Yu, Shaojie Yang,
636 Xipeng Wu, Qingwei Guo, et al. Mastering complex control in moba games with deep reinforce-
637 ment learning. In *Proceedings of the AAAI conference on artificial intelligence*, pp. 6672–6679,
638 2020.

639 Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Weinan Dai, Tiantian
640 Fan, Gaohong Liu, Lingjun Liu, et al. Dapo: An open-source llm reinforcement learning system
641 at scale. *arXiv preprint arXiv:2503.14476*, 2025.

642 Rui Yuan, Robert M Gower, and Alessandro Lazaric. A general sample complexity analysis of
643 vanilla policy gradient. In *International Conference on Artificial Intelligence and Statistics*, pp.
644 3332–3380. PMLR, 2022.

646 Kaiqing Zhang, Alec Koppel, Hao Zhu, and Tamer Basar. Global convergence of policy gradient
647 methods to (almost) locally optimal policies. *SIAM Journal on Control and Optimization*, 58(6):
3586–3612, 2020.

648 Chujie Zheng, Shixuan Liu, Mingze Li, Xiong-Hui Chen, Bowen Yu, Chang Gao, Kai Dang,
649 Yuqiong Liu, Rui Men, An Yang, et al. Group sequence policy optimization. *arXiv preprint*
650 *arXiv:2507.18071*, 2025.

651

652 Banghua Zhu, Michael Jordan, and Jiantao Jiao. Principled reinforcement learning with human feed-
653 back from pairwise or k-wise comparisons. In *International Conference on Machine Learning*,
654 pp. 43037–43067. PMLR, 2023.

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702	CONTENTS	
703		
704		
705	1 Introduction	1
706		
707	2 Preliminaries: Reinforcement Learning for LLMs and GRPO	2
708	2.1 Reinforcement Learning in CoT Reasoning	2
709	2.1.1 Connection to Conventional Reinforcement Learning	3
710	2.2 Setup	4
711	2.3 Review of Group Relative Policy Optimization (GRPO)	5
712		
713		
714	3 A Decomposition of GRPO’s Gradient Term	7
715		
716		
717	4 Trajectory-Level Importance-Corrected GRPO (TIC-GRPO)	8
718	4.1 Major Modification	8
719	4.2 Minor Modifications	8
720	4.3 Rules for TIC-GRPO	9
721		
722		
723	5 Convergence Results	9
724		
725	5.1 Results of GRPO	10
726	5.2 Results of TIC-GRPO	11
727		
728		
729	6 Experiments	11
730		
731	A Experiments	16
732	A.1 Removing Importance Sampling	16
733	A.2 Primary Empirical Results	16
734	A.3 Ablation Experiments	19
735		
736		
737	B Gradient Estimator in Section 4	20
738		
739		
740	C Theoretical Analysis and Proofs	22
741	C.1 Proof sketch of GRPO	23
742	C.2 Proof sketch of TIC-GRPO	24
743	C.3 Auxiliary Lemmas	25
744	C.4 Complete Proofs	26
745	C.4.1 The Proof of Lemma C.12	26
746	C.4.2 The Proof of Lemma C.14	27
747	C.4.3 The Proof of Lemma C.15	27
748	C.4.4 The Proof of Lemma C.2	28
749	C.4.5 The Proof of Lemma C.1	28
750	C.4.6 The Proof of Lemma C.3	31
751	C.4.7 The Proof of Lemma C.4	31
752		
753		
754		
755		

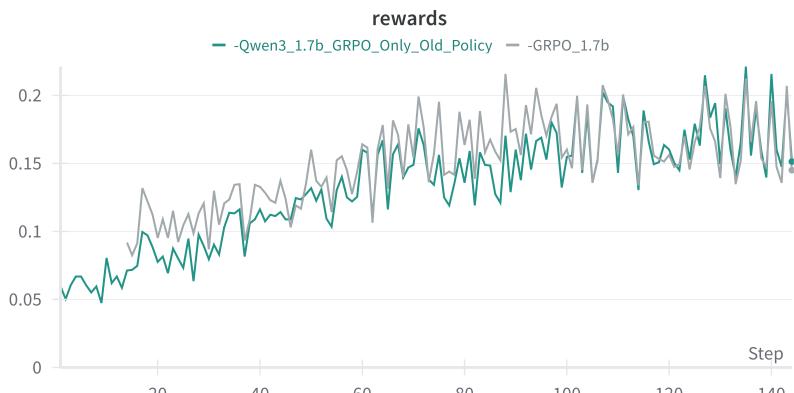
756	C.4.8 The Proof of Lemma C.5	32
757	C.4.9 The Proof of Lemma C.6	33
758	C.4.10 The Proof of Theorem 5.1	34
759	C.4.11 The Proof of Lemma C.7	37
760	C.4.12 The Proof of Lemma C.8	38
761	C.4.13 The Proof of Lemma C.9	39
762	C.4.14 The Proof of Lemma C.10	40
763	C.4.15 The Proof of Lemma C.11	41
764	C.4.16 The Proof of Theorem 5.2	42
765		
766		
767		
768		
769		
770		
771		
772		
773		
774		
775		
776		
777		
778		
779		
780		
781		
782		
783		
784		
785		
786		
787		
788		
789		
790		
791		
792		
793		
794		
795		
796		
797		
798		
799		
800		
801		
802		
803		
804		
805		
806		
807		
808		
809		

810 A EXPERIMENTS
811812
813 A.1 REMOVING IMPORTANCE SAMPLING
814815 **Experimental Setup**
816

817 We conduct this experiment using the qwen3_1.7b-base model on a hybrid dataset comprising the
818 full DAPO-17K corpus together with several hundred examples from the AIME benchmark. The
819 model is trained for a single epoch, ensuring that each prompt is used exactly once. We employ
820 a total batch size of 128 and a mini-batch size of 32, which means each sample is reused for four
821 gradient updates before the old policy is refreshed. This configuration isolates the effect of removing
822 importance sampling while maintaining stable optimization.

823 **Results and Discussion**
824

825 As illustrated in Figure 1, eliminating importance sampling causes no significant drop in perfor-
826 mance. In fact, during the latter stages of training, we observe a slight performance gain. This
827 outcome empirically supports our earlier claim that, because the divergence between the current
828 policy π_θ and the old policy $\pi_{\theta_{\text{old}}}$ remains limited within each update cycle, the policy gradient
829 computed at $\pi_{\theta_{\text{old}}}$ continues to provide a reliable update direction in practice.

846 Figure 1: Experiment using policy gradient updates computed purely with the old policy π_{old} .
847848
849 A.2 PRIMARY EMPIRICAL RESULTS
850

851
852 **Setup.** Our training dataset combines the full DAPO-17K corpus with a subset of the AIME bench-
853 mark (1983–2022), resulting in a few hundred samples. We train the qwen3_1.7b-base model for a
854 single epoch on an H200 GPU for over 24 hours. The total batch size is set to 128 and the mini-batch
855 size to 32, so that each trajectory is reused for four gradient updates before refreshing the old pol-
856 icy. Similarly, the qwen3_8b model follows the same settings; although the physical batch differs,
857 gradient accumulation ensures that the global batch size remains consistent. Training for qwen3_8b-
858 base model is conducted on 2 H200 nodes over 48 hours. To eliminate confounding factors such as
859 data-sampling randomness, we disable both Dynamic Sampling and the soft length penalty.

860
861 **Evaluation Figures.** Figures 2 and 3 present the final evaluation performance of GRPO, GSPO,
862 and our proposed TIC-GRPO on Qwen 1.7B and Qwen 8B models. To display the two evaluation
863 plots side by side, we use a single figure environment:

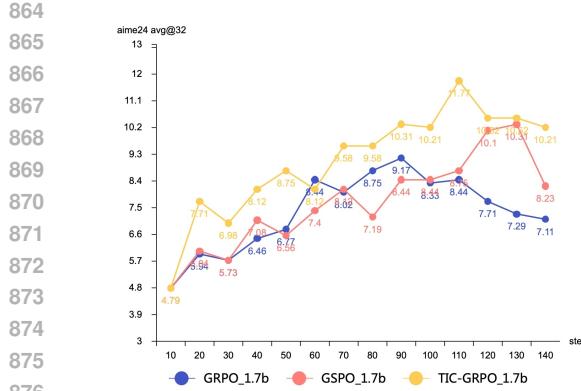
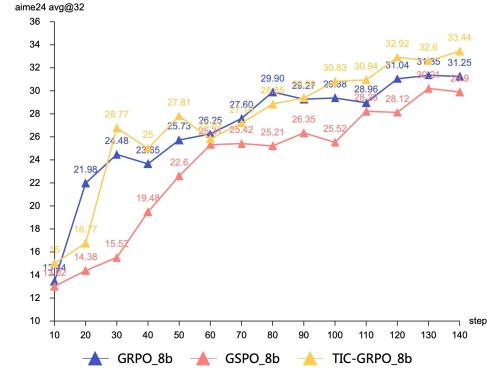
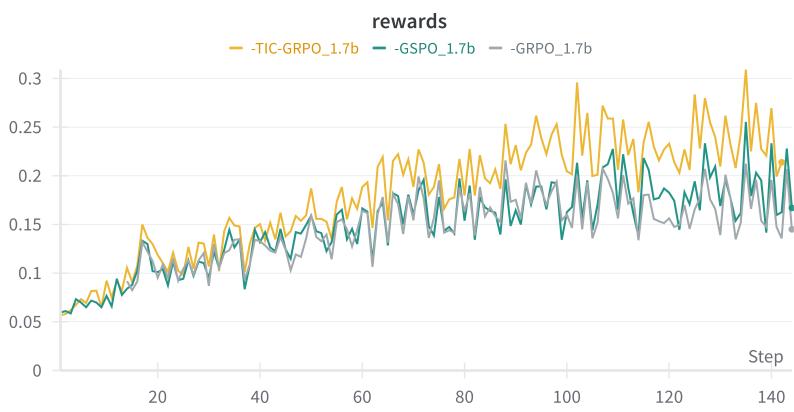


Figure 4: Training reward of GRPO, GSPO, and TIC-GRPO on Qwen 1.7B

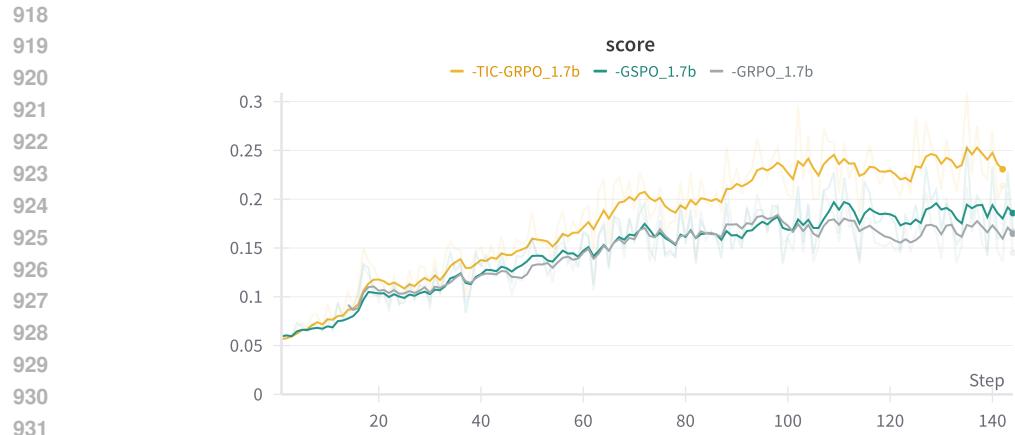


Figure 5: Training critic score of GRPO, GSPO, and TIC-GRPO on Qwen 1.7B

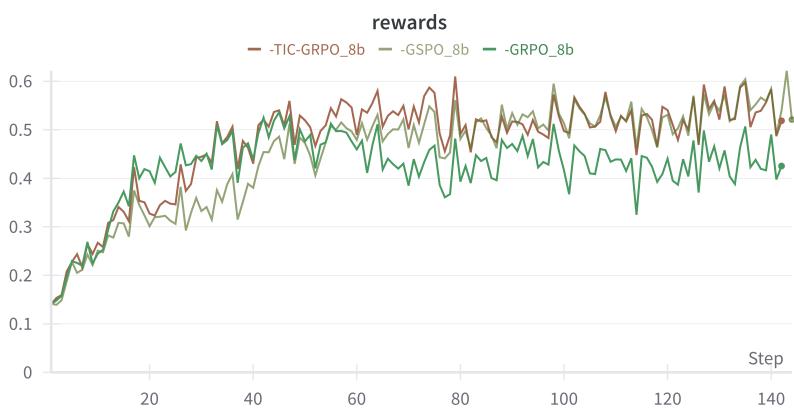


Figure 6: Training reward of GRPO, GSPO, and TIC-GRPO on Qwen 8B

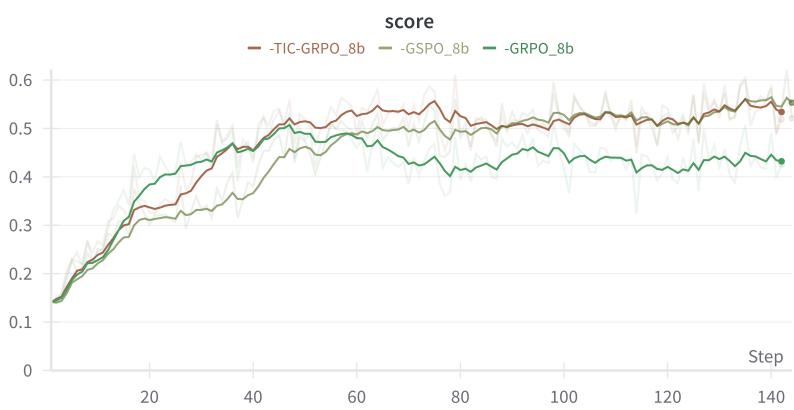
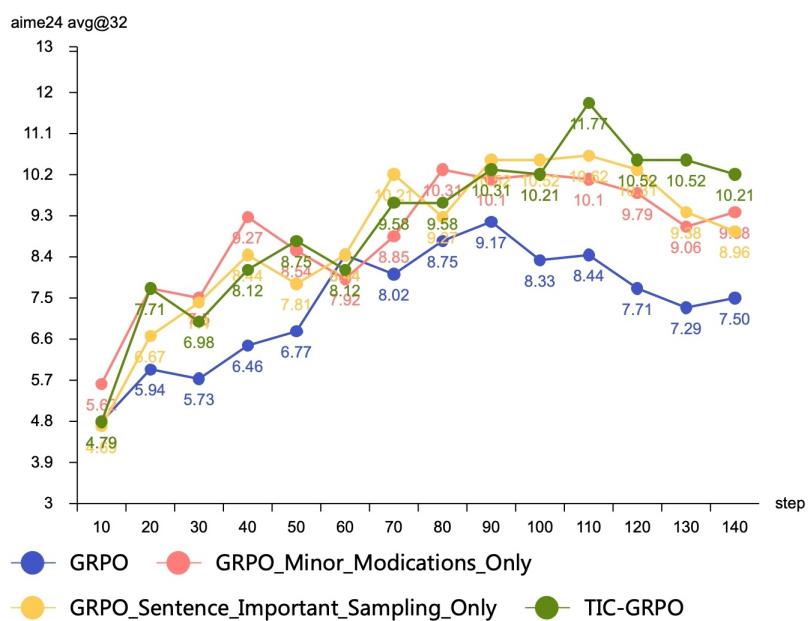


Figure 7: Training critic score of GRPO, GSPO, and TIC-GRPO on Qwen 8B

972 **Results.** Across both model sizes, TIC-GRPO not only converges faster but also delivers the high-
 973 est final evaluation scores, consistently outperforming GRPO and GSPO. The side-by-side evalua-
 974 tion plots confirm that TIC-GRPO gains an early performance lead during training and maintains
 975 the top position through the entire evaluation phase, demonstrating stable superiority. This empiri-
 976 cal evidence supports that our TIC-GRPO yields improved convergence and sustained best-in-class
 977 performance.

985 A.3 ABLATION EXPERIMENTS

986
 987
 988
 989 To further investigate the contribution of each modification in TIC-GRPO, we conduct an abla-
 990 tion study on the qwen3.1.7b-base model. Specifically, we evaluate two variants: (1) applying
 991 only response-level importance sampling, and (2) applying only upper-bound clipping with length-
 992 corrected group normalization. All other training settings remain identical to those used in the
 993 main experiment. As illustrated in the three plots in Figures 8–10, each modification individually
 994 improves convergence speed and final reward compared with the original GRPO baseline. These
 995 results demonstrate that both refinements are independently effective, while their combination in
 996 TIC-GRPO yields the strongest overall performance.



1024 Figure 8: Evaluation performance of GRPO, GRPO_Sentence_Important_Sampling_Only, GRPO_Minor_Modifications_Only
 1025 and TIC-GRPO on Qwen 1.7B

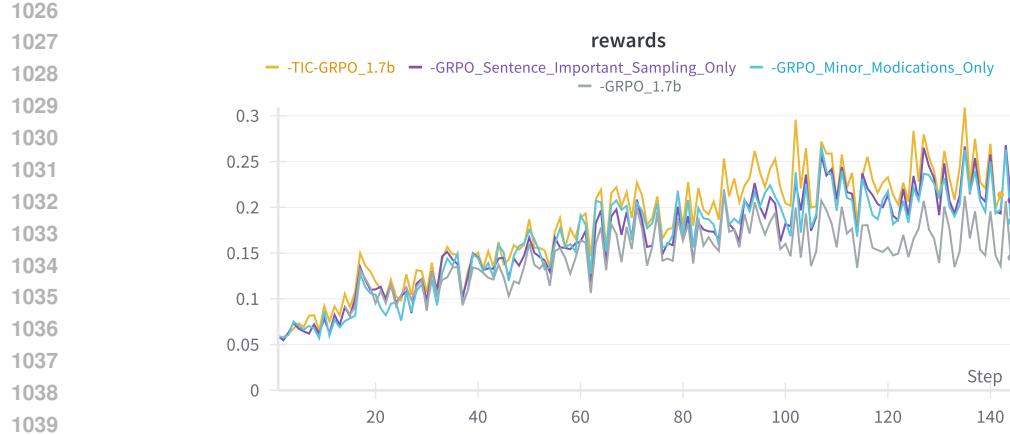


Figure 9: Training reward of GRPO, GRPO_Sentence_Important_Sampling_Only, GRPO_Minor_Modifications_Only and TIC-GRPO on Qwen 1.7B

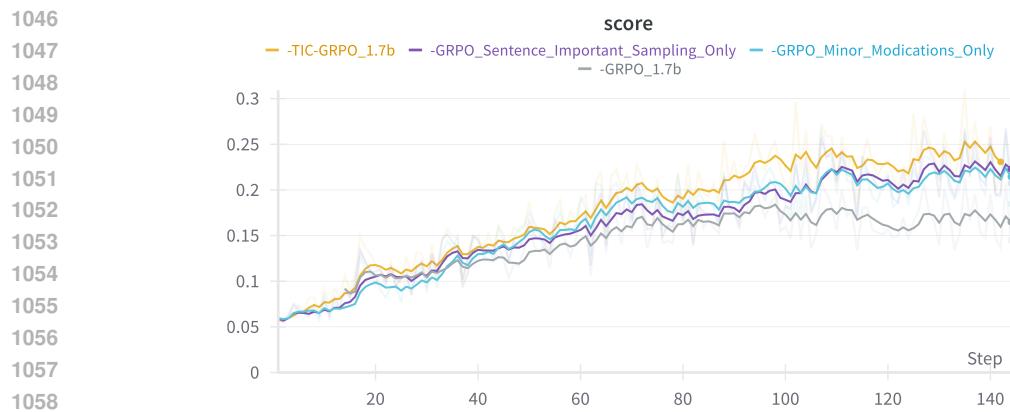


Figure 10: Training critic score of GRPO, GRPO_Sentence_Important_Sampling_Only, GRPO_Minor_Modifications_Only and TIC-GRPO on Qwen 1.7B

B GRADIENT ESTIMATOR IN SECTION 4

Here the decomposition of $\nabla \mathcal{L}_{\text{TIC-GRPO}}(\theta, \theta_{\text{old}}, \theta_{\text{ref}})$ as an estimation of $\nabla J(\theta)$ is more involved than in the original GRPO. We now explain the reason. Analogous to the original GRPO, we may perform the following simple decomposition of $\tilde{\nabla} J(\theta)$:

$$\begin{aligned} \nabla \mathcal{L}_{\text{TIC-GRPO}}(\theta, \theta_{\text{old}}, \theta_{\text{ref}}) &= \underbrace{\sum_{s_T \in \mathcal{S}_T} \xi_G(s_T) \frac{\mathbb{P}_{\theta}(s_T \mid s_0)}{\mathbb{P}_{\theta_{\text{old}}}(s_T \mid s_0)} \nabla \log \mathbb{P}_{\theta}(s_T \mid s_0) \frac{r(s_T)}{|s_T|}}_{\bar{\nabla} J(\theta)} \\ &\quad - \underbrace{\sum_{s_T \in \mathcal{S}_T} \xi_G(s_T) \mathbf{1}_{\mathcal{D}^c(s_T, \theta, \theta_{\text{old}})} \frac{\mathbb{P}_{\theta}(s_T \mid s_0)}{\mathbb{P}_{\theta_{\text{old}}}(s_T \mid s_0)} \nabla \log \mathbb{P}_{\theta}(s_T \mid s_0) \left(\frac{r(s_T)}{|s_T|} - A_G(s_T) \right)}_{\Delta'(\theta, \theta_{\text{old}})}. \end{aligned}$$

As in the original GRPO, we can prove that the error term $\Delta'(\theta, \theta_{\text{old}})$ is a controllable error term. However, it should be noted that $\bar{\nabla} J(\theta)$ is not a strictly unbiased estimator of $\nabla J(\theta)$. In particular,

1080 we need to observe the following inequality:
 1081
 1082
 1083
 1084
 1085
 1086
 1087
 1088
 1089
 1090
 1091
 1092
 1093
 1094
 1095
 1096
 1097
 1098
 1099

$$\begin{aligned}
 \mathbb{E} [\bar{\nabla} J(\theta) | \mathcal{F}_{\theta_{\text{old}}}] &= \mathbb{E} \left[\sum_{s_T \in \mathcal{S}_T} \xi_G(s_T) \frac{\mathbb{P}_\theta(s_T | s_0)}{\mathbb{P}_{\theta_{\text{old}}}(s_T | s_0)} \nabla \log \mathbb{P}_\theta(s_T | s_0) \frac{r(s_T)}{|s_T|} \middle| \mathcal{F}_{\theta_{\text{old}}} \right] \\
 &\neq \sum_{s_T \in \mathcal{S}_T} \mathbb{E} [\xi_G(s_T) | \mathcal{F}_{\theta_{\text{old}}}] \left(\mathbb{E} \left[\frac{\mathbb{P}_\theta(s_T | s_0)}{\mathbb{P}_{\theta_{\text{old}}}(s_T | s_0)} \nabla \log \mathbb{P}_\theta(s_T | s_0) \frac{r(s_T)}{|s_T|} \middle| \mathcal{F}_{\theta_{\text{old}}} \right] \right) \\
 &= \left(\sum_{s_T \in \mathcal{S}_T} \mathbb{P}_{\theta_{\text{old}}}(s_T | s_0) \right) \left(\mathbb{E} \left[\frac{\mathbb{P}_\theta(s_T | s_0)}{\mathbb{P}_{\theta_{\text{old}}}(s_T | s_0)} \nabla \log \mathbb{P}_\theta(s_T | s_0) \frac{r(s_T)}{|s_T|} \middle| \mathcal{F}_{\theta_{\text{old}}} \right] \right) \\
 &= \mathbb{E} \left[\sum_{s_T \in \mathcal{S}_T} \mathbb{P}_{\theta_{\text{old}}}(s_T | s_0) \frac{\mathbb{P}_\theta(s_T | s_0)}{\mathbb{P}_{\theta_{\text{old}}}(s_T | s_0)} \nabla \log \mathbb{P}_\theta(s_T | s_0) \frac{r(s_T)}{|s_T|} \middle| \mathcal{F}_{\theta_{\text{old}}} \right] \\
 &= \mathbb{E} [\nabla J(\theta) | \mathcal{F}_{\theta_{\text{old}}}].
 \end{aligned}$$

1113
 1114
 1115
 1116
 1117
 1118
 1119
 1120
 1121
 1122
 1123
 1124
 1125
 1126
 1127
 1128
 1129
 1130

1131 The reason for the above inequality is that random variable ξ_G and the parameter θ are measurable
 1132 with respect to the σ -algebra $\mathcal{F}_{\theta_{\text{old}}, \xi_G}$. Therefore, when taking the conditional expectation with
 1133 respect to the sub- σ -algebra $\mathcal{F}_{\theta_{\text{old}}}$, we cannot simply move the random variable ξ_G outside of the
 conditional expectation.

1134 Therefore, the asymptotic unbiased decomposition of $G(\theta, \theta_{\text{old}})$ is not immediate. We state the
 1135 following:

$$\begin{aligned}
 1137 \nabla \mathcal{L}_{\text{TIC-GRPO}}(\theta, \theta_{\text{old}}) &= \frac{1}{\sigma'_{\theta_{\text{old}}}} \sum_{s_T \in \mathcal{S}_T} \xi_G(s_T) \mathbf{1}_{\mathcal{D}(s_T, \theta, \theta_{\text{old}})} \frac{\mathbb{P}_\theta(s_T | s_0)}{\mathbb{P}_{\theta_{\text{old}}}(s_T | s_0)} \nabla \log \mathbb{P}_\theta(s_T | s_0) \left(\frac{r(s_T)}{|s_T|} - \mu'_{\theta_{\text{old}}} \right) \\
 1138 &+ \underbrace{\sum_{s_T \in \mathcal{S}_T} \xi_G(s_T) \mathbf{1}_{\mathcal{D}(s_T, \theta, \theta_{\text{old}})} \frac{\mathbb{P}_\theta(s_T | s_0)}{\mathbb{P}_{\theta_{\text{old}}}(s_T | s_0)} \nabla \log \mathbb{P}_\theta(s_T | s_0) B'_G(s_T)}_{\frac{1}{\sigma'_{\theta_{\text{old}}}} \Delta_s(\theta, \theta_{\text{old}})} \\
 1139 &= \frac{1}{\sigma'_{\theta_{\text{old}}}} \sum_{s_T \in \mathcal{S}_T} \mathbb{P}_{\theta_{\text{old}}}(s_T | s_0) \mathbf{1}_{\mathcal{D}(s_T, \theta, \theta_{\text{old}})} \frac{\mathbb{P}_\theta(s_T | s_0)}{\mathbb{P}_{\theta_{\text{old}}}(s_T | s_0)} \nabla \log \mathbb{P}_\theta(s_T | s_0) \left(\frac{r(s_T)}{|s_T|} - \mu'_{\theta_{\text{old}}} \right) \\
 1140 &+ \frac{1}{\sigma'_{\theta_{\text{old}}}} \sum_{s_T \in \mathcal{S}_T} (\xi_G(s_T) - \mathbb{P}_{\theta_{\text{old}}}(s_T | s_0)) \mathbf{1}_{\mathcal{D}(s_T, \theta, \theta_{\text{old}})} \frac{\mathbb{P}_\theta(s_T | s_0)}{\mathbb{P}_{\theta_{\text{old}}}(s_T | s_0)} \nabla \log \mathbb{P}_\theta(s_T | s_0) \left(\frac{r(s_T)}{|s_T|} - \mu'_{\theta_{\text{old}}} \right) \\
 1141 &+ \frac{1}{\sigma'_{\theta_{\text{old}}}} \Delta_s(\theta, \theta_{\text{old}}) \\
 1142 &= \frac{1}{\sigma'_{\theta_{\text{old}}}} \sum_{s_T \in \mathcal{S}_T} \mathbb{P}_\theta(s_T | s_0) \nabla \log \mathbb{P}_\theta(s_T | s_0) \left(\frac{r(s_T)}{|s_T|} - \mu'_{\theta_{\text{old}}} \right) \\
 1143 &\quad \underbrace{\vphantom{\sum_{s_T \in \mathcal{S}_T}}}_{\nabla J(\theta)} \\
 1144 &+ \frac{1}{\sigma'_{\theta_{\text{old}}}} \left(- \sum_{s_T \in \mathcal{S}_T} \mathbf{1}_{\mathcal{D}^c(s_T, \theta, \theta_{\text{old}})} \mathbb{P}_\theta(s_T | s_0) \nabla \log \mathbb{P}_\theta(s_T | s_0) \left(\frac{r(s_T)}{|s_T|} - \mu'_{\theta_{\text{old}}} \right) \right) \\
 1145 &\quad \underbrace{\vphantom{\sum_{s_T \in \mathcal{S}_T}}}_{\Delta_c(\theta, \theta_{\text{old}})} \\
 1146 &+ \frac{1}{\sigma'_{\theta_{\text{old}}}} \sum_{s_T \in \mathcal{S}_T} (\xi_G(s_T) - \mathbb{P}_{\theta_{\text{old}}}(s_T | s_0)) \nabla \log \mathbb{P}_{\theta_{\text{old}}}(s_T | s_0) \left(\frac{r(s_T)}{|s_T|} - \mu'_{\theta_{\text{old}}} \right) \\
 1147 &\quad \underbrace{\vphantom{\sum_{s_T \in \mathcal{S}_T}}}_{M_{\theta_{\text{old}}, 1}} \\
 1148 &+ \frac{1}{\sigma'_{\theta_{\text{old}}}} \sum_{s_T \in \mathcal{S}_T} (\xi_G(s_T) - \mathbb{P}_{\theta_{\text{old}}}(s_T | s_0)) \mathbf{1}_{\mathcal{D}(s_T, \theta, \theta_{\text{old}})} \frac{\nabla \mathbb{P}_\theta(s_T | s_0) - \nabla \mathbb{P}_{\theta_{\text{old}}}(s_T | s_0)}{\mathbb{P}_{\theta_{\text{old}}}(s_T | s_0)} \left(\frac{r(s_T)}{|s_T|} - \mu'_{\theta_{\text{old}}} \right) \\
 1149 &\quad \underbrace{\vphantom{\sum_{s_T \in \mathcal{S}_T}}}_{\Delta_{g, 1}(\theta, \theta_{\text{old}})} \\
 1150 &+ \frac{1}{\sigma'_{\theta_{\text{old}}}} \left(- \sum_{s_T \in \mathcal{S}_T} (\xi_G(s_T) - \mathbb{P}_{\theta_{\text{old}}}(s_T | s_0)) \mathbf{1}_{\mathcal{D}^c(s_T, \theta, \theta_{\text{old}})} \nabla \log \mathbb{P}_{\theta_{\text{old}}}(s_T | s_0) \left(\frac{r(s_T)}{|s_T|} - \mu'_{\theta_{\text{old}}} \right) \right) \\
 1151 &\quad \underbrace{\vphantom{\sum_{s_T \in \mathcal{S}_T}}}_{\Delta_{g, 2}(\theta, \theta_{\text{old}})} \\
 1152 &+ \frac{1}{\sigma'_{\theta_{\text{old}}}} \Delta_s(\theta, \theta_{\text{old}}). \tag{15}
 \end{aligned}$$

1176 In the above expression, we define the following quantities:

$$\begin{aligned}
 1177 \mu'_{\theta_{\text{old}}} &:= \mathbb{E}_{G \sim \pi_{\theta_{\text{old}}}} [\mu'_G | \mathcal{F}_{\theta_{\text{old}}}] \\
 1178 \sigma'_{\theta_{\text{old}}} &:= \delta + \mathbb{E}_{G \sim \pi_{\theta_{\text{old}}}} [\sigma'_G | \mathcal{F}_{\theta_{\text{old}}}] \\
 1179 B'_G(s_T) &:= A'_G(s_T) - \frac{1}{\sigma'_{\theta_{\text{old}}}} \left(\frac{r(s_T)}{|s_T|} - \mu'_{\theta_{\text{old}}} \right). \tag{16}
 \end{aligned}$$

C THEORETICAL ANALYSIS AND PROOFS

1186 In this section, we present the complete proof of the theorem, including all necessary lemmas and
 1187 their proofs, and provide a proof sketch for ease of reading. Because the proofs for GRPO and
 1188 TIC-GRPO differ substantially, we organize them into two separate subsections.

1188 C.1 PROOF SKETCH OF GRPO
1189

1190 The core of the proof lies in constructing a descent lemma, namely evaluating $J^* - J(\theta_{n+1,0}) - (J^* - J(\theta_{n,0}))$, which follows the same principle as in classical gradient-descent methods such as
1191 SGD, MSGD, and Adam. Here J^* denotes the theoretical maximum of the value function $J(\theta)$,
1192 as defined in Subsection 2.2. To expand $J^* - J(\theta_{n+1,0}) - (J^* - J(\theta_{n,0}))$, We first establish that
1193 the second derivative of $J(\theta_n)$ exists almost everywhere and is bounded. To this end, we state the
1194 following lemma, whose proof is provided in Subsection C.4.5.
1195

1196 **Lemma C.1.** *Assume that the conditions in Assumptions 5.1 and 5.2 hold. Then, for any $\theta, \theta' \in \mathbb{R}^d$,
1197 the following inequalities are satisfied:*

$$1199 (J^* - J(\theta)) - (J^* - J(\theta')) \leq -\nabla J(\theta')^\top (\theta - \theta') + \frac{RL}{2} (2T \log |\mathcal{V}| + 1) \|\theta - \theta'\|^2, \\ 1200 \|\nabla J(\theta) - \nabla J(\theta')\| \leq RL (2T \log |\mathcal{V}| + 1) \|\theta - \theta'\|. \\ 1201$$

1203 With the above expansion in hand, we substitute $\theta_{n+1,0}$ and $\theta_{n,0}$ for θ and θ' in Lemma C.1, which
1204 yields (informal version)

$$1205 (J^* - J(\theta_{n+1,0})) - (J^* - J(\theta_{n,0})) \\ 1206 \stackrel{\text{Lemma C.1}}{\leq} -\frac{\eta}{2R} \sum_{s=0}^{K-1} \|\nabla J(\theta_{n,s})\|^2 \\ 1207 + \mathcal{O}(\|\nabla J(\theta_{n,s})\|) \mathcal{O} \left(\sum_{s=0}^{K-1} (\|\Xi_g(\theta_{n,s}, \theta_{n,0})\| + \|\Xi_s(\theta_{n,s}, \theta_{n,0})\| + \|\Xi_c(\theta_{n,s}, \theta_{n,0})\|) \right) \\ 1208 + \mathcal{O}(\|\theta_{n+1,0} - \theta_{n,0}\|^2) + \mathcal{O}(\|\theta_{n+1,0} - \theta_{n,0}\|). \\ 1209$$

1210 In the above expression, the terms $\|\Xi_g(\theta_{n,s}, \theta_{n,0})\|$, $\|\Xi_s(\theta_{n,s}, \theta_{n,0})\|$, and $\|\Xi_c(\theta_{n,s}, \theta_{n,0})\|$ are de-
1211 fined in Eq. 8.

1212 We observe that the first term on the right-hand side of the inequality provides the desired descent
1213 term, while $\{M'_n, \mathcal{F}_n\}$ forms a martingale difference sequence and therefore has zero contribu-
1214 tion after taking expectations. Next, we bound $\|\nabla J(\theta_{n,s})\|$, $\|\Xi_g(\theta_{n,s}, \theta_{n,0})\|$, $\|\Xi_s(\theta_{n,s}, \theta_{n,0})\|$,
1215 $\|\Xi_c(\theta_{n,s}, \theta_{n,0})\|$ and $\|\theta_{n+1,0} - \theta_{n,0}\|^p$, ($p = 1, 2$) separately. To this end, we establish the follow-
1216 ing five lemmas, whose proofs are given in Subsections C.4.4, Subsection C.4.6, Subsection C.4.7,
1217 Subsection C.4.8 and Subsection C.4.9.

1218 **Lemma C.2.** *Assume that the conditions in Assumptions 5.1 and 5.2 hold. Then, for any $\theta \in \mathbb{R}^d$,
1219 the following inequalities are satisfied:*

$$1220 \|\nabla J(\theta)\| \leq \sqrt{2LR} \sqrt{\log |\mathcal{V}|}. \\ 1221$$

1222 **Lemma C.3.** *Assume that the conditions in Assumptions 5.1 and 5.2 hold. Let $\theta_{1,0} \in \mathbb{R}^d$ be an
1223 arbitrary initialization of the algorithm, and let the sequence $\{\theta_{n,s}\}$ be generated by GRPO as
1224 defined in Eq. 12. Then the term $\|\Xi_g(\theta_{n,s}, \theta_{n,0})\|$ satisfies the following upper bound:*

$$1225 \mathbb{E}[\|\Xi_g(\theta_{n,s}, \theta_{n,0})\| \mid \mathcal{F}_{n-1}] \leq 16RL \sqrt{\mathbb{E}[\mathcal{M}_N^2 \mid \mathcal{F}_{n-1}]} \cdot \sqrt{\mathbb{E}[\|\theta_{n,s} - \theta_{n,0}\|^2 \mid \mathcal{F}_{n-1}]}, \\ 1226$$

1227 where \mathcal{M}_N is defined in Eq. 14.

1228 **Lemma C.4.** *Assume that the conditions stated in Assumptions 5.1 and 5.2 are satisfied. Let $\theta_{1,0} \in$
1229 \mathbb{R}^d denote an arbitrary initialization of the algorithm. Then the term $\|\Xi_g(\theta_{n,s}, \theta_{n,0})\|$ admits the
1230 following upper bound:*

$$1231 \mathbb{E}[\Xi_g(\theta_{n,s}, \theta_{n,0}) \mid \mathcal{F}_{n-1}] = \mathcal{O}\left(\frac{1}{\sqrt{|G|}}\right) + \mathcal{O}(\sigma_{s,\theta_{n,0}}^2), \\ 1232$$

1233 where \mathcal{M}_n is defines in Eq. 14, and $\mathbb{E}_{s_T \sim \pi_{\theta_{n,0}}} \left[|s_T| - |s|_{\theta_{n,0}}^2 \mid \mathcal{F}_{n-1} \right] := \sigma_{s,\theta_{n,0}}^2$.

1242 **Lemma C.5.** Assume that the conditions stated in Assumptions 5.1 and 5.2 are satisfied. Let $\theta_{1,0} \in$
 1243 \mathbb{R}^d denote an arbitrary initialization of the algorithm. Then the term $\|\Xi_c(\theta_{n,s}, \theta_{n,0})\|$ admits the
 1244 following upper bound:
 1245

$$1246 \mathbb{E} [\|\Xi_c(\theta_{n,s}, \theta_{n,0})\| \mid \mathcal{F}_{n-1}] \leq \frac{2RTL\sqrt{\log |\mathcal{V}|}}{\delta \min\{\epsilon_{low}, \epsilon_{high}\}} \mathbb{E}^{1/4} [\|\theta_{n,s} - \theta_{n,0}\|^4 \mid \mathcal{F}_{n-1}] \sqrt{\mathbb{E} [\mathcal{M}_N^2 \mid \mathcal{F}_{n-1}]},$$

1247 where \mathcal{M}_n is defined in Eq. 14.
 1248

1249 **Lemma C.6.** Assume that the conditions stated in Assumptions 5.1 and 5.2 are satisfied. Let $\theta_{1,0} \in$
 1250 \mathbb{R}^d denote an arbitrary initialization of the algorithm. Then the term $\|\theta_{n,s+1} - \theta_{n,s}\|^p$, $p \in \{1, 2, 4\}$
 1251 admits the following upper bound:
 1252

$$1253 \mathbb{E} [\|\theta_{n,s+1} - \theta_{n,s}\|^p \mid \mathcal{F}_{n-1}] \leq \eta^p (2R)^p (2L)^{p/2} \sqrt{\mathbb{E} [\mathcal{M}_N^{2p} \mid \mathcal{F}_{n-1}]} \log^{p/2} |\mathcal{V}|.$$

1254 where \mathcal{M}_n is defined in Eq. 14.
 1255

1256 By incorporating the bounds from the five lemmas into the preceding computations, we obtain the
 1257 following descent inequality.
 1258

$$1259 \mathbb{E} [J^* - J(\theta_{n+1,0})] - \mathbb{E} [J^* - J(\theta_{n,0})] \\ 1260 \leq -\frac{\eta}{2R} \sum_{s=0}^{K-1} \mathbb{E} [\|\nabla J(\theta_{n,s})\|^2] + \mathcal{O} \left(\log^2 |\mathcal{V}| \sqrt{\mathbb{E} [\mathcal{M}_N^2]} \right) \eta^2 + \mathcal{O} \left(\frac{1}{\sqrt{|G|}} \right) \eta + \mathcal{O}(\bar{\sigma}_{s,\theta_{n,0}}^2) \eta.$$

1261 Finally, summing the descent inequality over $n = 1$ to N yields the result stated in Theorem 5.1.
 1262

1263 C.2 PROOF SKETCH OF TIC-GRPO

1264 As in the GRPO analysis, the core is a descent argument on $J^* - J(\theta_{n+1,0}) - (J^* - J(\theta_{n,0}))$.
 1265 We follow the same approach used in the GRPO analysis and apply Lemma C.1 to expand $J^* -$
 1266 $J(\theta_{n+1,0}) - (J^* - J(\theta_{n,0}))$, obtaining the following expression:
 1267

$$1268 (J^* - J(\theta_{n+1,0})) - (J^* - J(\theta_{n,0})) \leq -\frac{\eta}{2R} \sum_{s=0}^{K-1} \|\nabla J(\theta_{n,s})\|^2 \\ 1269 + \mathcal{O} (\|\theta_{n+1,0} - \theta_{n,0}\|^2) + \mathcal{O} \left(\sum_{s=0}^{K-1} \|\theta_{n,s} - \theta_{n,0}\| \right) + M_n \\ 1270 + \mathcal{O} (\|\nabla J(\theta_{n,s})\|) \mathcal{O} \left(\sum_{s=0}^{K-1} (\|\Delta_{g,1}(\theta_{n,s}, \theta_{n,0})\| + \|\Delta_{g,2}(\theta_{n,s}, \theta_{n,0})\| + \|\Delta_c(\theta_{n,s}, \theta_{n,0})\| \\ 1271 + \|\Delta_s(\theta_{n,s}, \theta_{n,0})\|) \right).$$

1272 In the above expression, the terms $\|\Delta_{g,1}(\theta_{n,s}, \theta_{n,0})\|$, $\|\Delta_{g,2}(\theta_{n,s}, \theta_{n,0})\|$, $\|\Delta_c(\theta_{n,s}, \theta_{n,0})\|$, and
 1273 $\|\Delta_s(\theta_{n,s}, \theta_{n,0})\|$ are defined in Eq. 15. We can reuse Lemma C.2 to estimate $\|\nabla J(\theta_{n,s})\|$; how-
 1274 ever, because the algorithmic update conditions have changed, we must re-estimate $\sum_{s=0}^{K-1} \|\theta_{n,s} -$
 1275 $\theta_{n,0}\|^p$, $(p \in \{1, 2, 4\})$. At the same time, we also need to estimate $\|\Delta_{g,1}(\theta_{n,s}, \theta_{n,0})\|$,
 1276 $\|\Delta_{g,2}(\theta_{n,s}, \theta_{n,0})\|$, $\|\Delta_c(\theta_{n,s}, \theta_{n,0})\|$ and $\|\Delta_s(\theta_{n,s}, \theta_{n,0})\|$. Similarly, the sequence $\{M_n, \mathcal{F}_n\}$ is
 1277 a martingale difference sequence, and therefore its expectation is zero and does not affect the over-
 1278 all result. We complete the above estimates through five lemmas, whose full proofs can be found in
 1279 Subsection C.4.11, Subsection C.4.12, Subsection C.4.13, Subsection C.4.14 and Subsection C.4.15.
 1280

1281 **Lemma C.7.** Assume that the conditions stated in Assumptions 5.1 and 5.2 are satisfied. Then the
 1282 term $\|\Delta_{g,1}(\theta, \theta_{old})\|$ satisfies following inequality:
 1283

$$1284 \mathbb{E} [\|\Delta_{g,1}(\theta, \theta_{old})\| \mid \mathcal{F}_{\theta_{old}}] \leq 4RLT \left(1 + \frac{\epsilon_{high}}{\log(1 + \epsilon_{high})} \log |\mathcal{V}| \right) \mathbb{E} [\|\theta - \theta_{old}\| \mid \mathcal{F}_{\theta_{old}}] \\ 1285 + 4RT^{3/2}L^{3/2} \frac{\epsilon_{high}}{\log(1 + \epsilon_{high})} \sqrt{\log |\mathcal{V}|} \mathbb{E} [\|\theta - \theta_{old}\|^2 \mid \mathcal{F}_{\theta_{old}}].$$

1296 **Lemma C.8.** Assume that the conditions stated in Assumptions 5.1 and 5.2 are satisfied. Then the
 1297 term $\|\Delta_{g,2}(\theta, \theta_{old})\|$ satisfies following inequality:
 1298

$$\begin{aligned} 1299 \mathbb{E} [\|\Delta_{g,2}(\theta, \theta_{old})\| | \mathcal{F}_{\theta_{old}}] &\leq \frac{4R}{\log(1 + \epsilon_{high})} \left[4T^2 L \log |\mathcal{V}| \sqrt{\mathbb{E} [\|\theta - \theta_{old}\|^2 | \mathcal{F}_{\theta_{old}}]} \right. \\ 1300 &\quad \left. + 2\sqrt{2}L^{3/2}T \sqrt{\log |\mathcal{V}|} \sqrt{\mathbb{E} [\|\theta - \theta_{old}\|^4 | \mathcal{F}_{\theta_{old}}]} \right]. \end{aligned}$$

1301 **Lemma C.9.** Assume that the conditions stated in Assumptions 5.1 and 5.2 are satisfied. Then the
 1302 term $\|\Delta_c(\theta, \theta_{old})\|$ satisfies following inequality:
 1303

$$\begin{aligned} 1304 \mathbb{E} [\|\Delta_c(\theta, \theta_{old})\| | \mathcal{F}_{\theta_{old}}] \\ 1305 &\leq \frac{4\sqrt{2}RLT^2}{\log(1 + \epsilon_{high})} \left(\sqrt{2} \log |\mathcal{V}| \sqrt{\mathbb{E} [\|\theta - \theta_{old}\|^2 | \mathcal{F}_{\theta_{old}}]} + \sqrt{L} \log |\mathcal{V}| \sqrt{\mathbb{E} [\|\theta - \theta_{old}\|^4 | \mathcal{F}_{\theta_{old}}]} \right). \end{aligned}$$

1306 **Lemma C.10.** Assume that the conditions stated in Assumptions 5.1 and 5.2 are satisfied. Then the
 1307 term $\|\Delta_s(\theta, \theta_{old})\|$ satisfies following inequality:
 1308

$$\mathbb{E} [\|\Delta_{s,1}(\theta, \theta_{old})\| | \mathcal{F}_{\theta_{old}}] \leq \mathcal{O} \left(\frac{1}{\sqrt{|G|}} \right).$$

1309 **Lemma C.11.** Assume that the conditions stated in Assumptions 5.1 and 5.2 are satisfied. Let $\theta_{1,0} \in \mathbb{R}^d$ denote an arbitrary initialization of the algorithm, and we set $\eta \leq$
 1310 $\frac{1}{4K(1 + \epsilon_{high})RL}$. The sequence $\{\theta_{n,s}\}$ generated by TIC-GRPO as defined in Eq. 13. Then the term
 1311 $\sum_{s=1}^K \mathbb{E} [\|\theta_{n,s} - \theta_{n,0}\|^p | \mathcal{F}_{n-1}]$ ($p \in \{1, 2, 4\}$) admits the following upper bound:
 1312

$$\sum_{s=1}^K \mathbb{E} [\|\theta_{n,s} - \theta_{n,0}\|^p | \mathcal{F}_{n-1}] \leq K^{p+1} \eta^p (2R)^p (1 + \epsilon_{high})^p 2^p (2L)^{p/2} \log^{p/2} |\mathcal{V}|.$$

1313 By incorporating the bounds from the five lemmas into the preceding computations, we obtain the
 1314 following descent inequality.
 1315

$$\begin{aligned} 1316 \mathbb{E} [J^* - J(\theta_{n+1,0})] - \mathbb{E} [J^* - J(\theta_{n,0})] \\ 1317 &\leq -\frac{\eta}{2R} \sum_{s=0}^{K-1} \mathbb{E} [\|\nabla J(\theta_{n,s})\|^2] + \mathcal{O} (\log^2 |\mathcal{V}| \eta^2) + \mathcal{O} \left(\frac{1}{\sqrt{|G|}} \right) \eta. \end{aligned}$$

1318 Finally, summing the descent inequality over $n = 1$ to N yields the result stated in Theorem 5.2.
 1319

1320 C.3 AUXILIARY LEMMAS

1321 In this subsection, we provide the technical lemmas required for the proof.

1322 **Lemma C.12** (Upper bound for $\sum_{i=1}^n x_i \log^2 x_i$). Let $x_1, \dots, x_n \in (0, 1)$ satisfy $\sum_{i=1}^n x_i = 1$.
 1323 Then

$$\sum_{i=1}^n x_i \log^2 x_i \leq \begin{cases} \frac{28}{e^2} < 4, & \text{if } n \leq 7, \\ \log^2 n, & \text{if } n \geq 8. \end{cases}$$

1324 **Lemma C.13** (Lemma C.2 of Jin et al. (2024)). Suppose that $f(x)$ is differentiable and lower
 1325 bounded, i.e. $f^* = \inf_{x \in \mathbb{R}^d} f(x) > -\infty$, and $\nabla f(x)$ is Lipschitz continuous with parameter
 1326 $\mathcal{L} > 0$, then $\forall x \in \mathbb{R}^d$, we have

$$\|\nabla f(x)\|^2 \leq 2\mathcal{L}(f(x) - f^*).$$

1327 **Lemma C.14.** Assume that the conditions in Assumptions 5.1 and 5.2 hold. Then, for any $\theta, \theta' \in$
 1328 \mathbb{R}^d , the following inequalities are satisfied:

$$\begin{aligned} 1329 \|\nabla \log \mathbb{P}_\theta(s_T | s_0)\|^p - \|\nabla \log \mathbb{P}_{\theta'}(s_T | s_0)\|^p \\ 1330 &\leq \sum_{q=1}^p \binom{p}{q} 2^{\frac{p-q}{2}} (|s_T|L)^{\frac{3(p-q)}{2}} (-\log \mathbb{P}_{\theta'}(s_T | s_0))^{\frac{p-q}{2}} \|\theta - \theta'\|^q, \end{aligned}$$

1331 and

$$|\log \mathbb{P}_\theta(s_T | s_0) - \log \mathbb{P}_{\theta'}(s_T | s_0)| \leq \|\nabla \log \mathbb{P}_{\theta'}(s_T | s_0)\| \|\theta - \theta'\| + |s_T|L \|\theta - \theta'\|^2.$$

1350
1351 **Lemma C.15.** *Assume that the conditions in Assumptions 5.1 and 5.2 hold. Then, for any $\theta \in \mathbb{R}^d$,
1352 the following inequalities are satisfied:*

$$1353 \quad \|\nabla \mathbb{P}_\theta(s_T|s_0)\| \leq \sqrt{2|s_T|Le}. \\ 1354$$

1355 **C.4 COMPLETE PROOFS**
1356

1357 In this subsection, we provide the complete proofs of all lemmas and the main theorem.
1358

1359 **C.4.1 THE PROOF OF LEMMA C.12**
1360

1361 *Proof.* We consider the univariate function $f(x) := x \log^2 x$ for $x \in (0, 1)$. Then our objective can
1362 clearly be written as

$$1363 \quad \sum_{i=1}^n f(x_i), \quad \text{subject to} \quad \sum_{i=1}^n x_i = 1. \\ 1364 \\ 1365$$

1366 It is easy to verify the limit:
1367

$$1368 \quad \lim_{x \rightarrow 0^+} x \log^2 x = 0. \\ 1369$$

1370 We now analyze the monotonicity of the function $f(x)$. To this end, we compute its derivative as
1371 follows:

$$1372 \quad f'(x) = \log^2 x + 2 \log x. \\ 1373$$

1374 Based on this, we can easily prove that $f(x)$ can be upper bounded by a piecewise function, i.e.,
1375

$$1376 \quad f(x) \leq g(x) := \begin{cases} f(x), & x \in (0, e^{-2}], \\ \frac{4}{e^2}, & x \in (e^{-2}, 1). \end{cases} \quad (17) \\ 1377 \\ 1378$$

1379 It is easy to verify that $g(x)$ is continuously differentiable of first order, and its derivative is given
1380 by:

$$1381 \quad g'(x) = \begin{cases} \log^2 x + 2 \log x, & x \in (0, e^{-2}], \\ \frac{4}{e^2}, & x \in (e^{-2}, 1). \end{cases} \\ 1382 \\ 1383$$

1384 Furthermore, it is straightforward to show that $g''(x) \leq 0$ for all $x \in (0, e^{-2})$, i.e.,
1385

$$1386 \quad g''(x) = \frac{2(\log x + 1)}{x} \leq 0, \quad \forall x \in (0, e^{-2}). \\ 1387 \\ 1388$$

1389 In addition, since $g'(x) = 0$ for all $x \in [e^{-2}, 1]$, and $g''(x) \leq 0$ on $(0, 1)$, we conclude that $g'(x)$
1390 is monotonically decreasing over $(0, 1)$. This implies that $g(x)$ is concave on the interval $(0, 1)$. We
1391 can therefore use this property to estimate our objective as follows:

$$1392 \quad \sum_{i=1}^n f(x_i) \stackrel{\text{Eq. 17}}{\leq} \sum_{i=1}^n g(x_i) \stackrel{\text{Jensen's inequality}}{\leq} ng\left(\frac{\sum_{i=1}^n x_i}{n}\right) = ng\left(\frac{1}{n}\right). \\ 1393 \\ 1394$$

1395 According to the definition of g in Eq. 17, it is easy to verify that when $n \leq 7$, we have
1396

$$1397 \quad ng\left(\frac{1}{n}\right) \leq \frac{28}{e^2} < 4. \\ 1398 \\ 1399$$

1400 On the other hand, for $n \geq 8$, we observe that

$$1401 \quad ng\left(\frac{1}{n}\right) = nf\left(\frac{1}{n}\right) = \log^2 n. \\ 1402 \\ 1403$$

With this, we complete the proof. \square

1404 C.4.2 THE PROOF OF LEMMA C.14
14051406 *Proof.* For any arbitrary trajectory $\{s_t\}_{t=0}^T$, we have:

$$\begin{aligned}
& \|\nabla \log \mathbb{P}_\theta(s_T|s_0) - \nabla \log \mathbb{P}_{\theta'}(s_T|s_0)\| \leq \|\nabla \log \mathbb{P}_\theta(s_T|s_0) - \nabla \log \mathbb{P}_{\theta'}(s_T|s_0)\| \\
&= \left\| \sum_{t=1}^T (\nabla \log \mathbb{P}_\theta(s_t|s_{t-1}) - \nabla \log \mathbb{P}_{\theta'}(s_t|s_{t-1})) \right\| \\
&\leq \sum_{t=1}^T \|\nabla \log \mathbb{P}_\theta(s_t|s_{t-1}) - \nabla \log \mathbb{P}_{\theta'}(s_t|s_{t-1})\| \\
&= \sum_{t=1}^T \|\nabla \log \mathbb{P}_\theta(s_t|s_{t-1}) - \nabla \log \mathbb{P}_{\theta'}(s_t|s_{t-1})\| \\
&\leq |s_T|L\|\theta - \theta'\|. \tag{18}
\end{aligned}$$

1419 Then for any $p \in \mathbb{Z}_+$, it is clear that:

$$\begin{aligned}
& |\|\nabla \log \mathbb{P}_\theta(s_T|s_0)\|^p - \|\nabla \log \mathbb{P}_{\theta'}(s_T|s_0)\|^p| \\
&= \left| \|\nabla \log \mathbb{P}_{\theta'}(s_T|s_0) + (\nabla \log \mathbb{P}_\theta(s_T|s_0) - \nabla \log \mathbb{P}_{\theta'}(s_T|s_0))\|^p - \|\nabla \log \mathbb{P}_{\theta'}(s_T|s_0)\|^p \right| \\
&\stackrel{\text{The Binomial theorem}}{=} \sum_{q=0}^p \binom{p}{q} \|\nabla \log \mathbb{P}_{\theta'}(s_T|s_0)\|^{p-q} \|\nabla \log \mathbb{P}_\theta(s_T|s_0) - \nabla \log \mathbb{P}_{\theta'}(s_T|s_0)\|^q \\
&\quad - \|\nabla \log \mathbb{P}_{\theta'}(s_T|s_0)\|^p \\
&= \sum_{q=1}^p \binom{p}{q} \|\nabla \log \mathbb{P}_{\theta'}(s_T|s_0)\|^{p-q} \|\nabla \log \mathbb{P}_\theta(s_T|s_0) - \nabla \log \mathbb{P}_{\theta'}(s_T|s_0)\|^q \\
&\stackrel{\text{Lemma C.13}}{\leq} \sum_{q=1}^p \binom{p}{q} (2|s_T|L)^{\frac{p-q}{2}} (-\log \mathbb{P}_{\theta'}(s_T|s_0))^{\frac{p-q}{2}} \|\nabla \log \mathbb{P}_\theta(s_T|s_0) - \nabla \log \mathbb{P}_{\theta'}(s_T|s_0)\|^q \\
&\stackrel{\text{Eq. 18}}{\leq} \sum_{q=1}^p \binom{p}{q} 2^{\frac{p-q}{2}} (|s_T|L)^{\frac{3(p-q)}{2}} (-\log \mathbb{P}_{\theta'}(s_T|s_0))^{\frac{p-q}{2}} \|\theta - \theta'\|^q.
\end{aligned}$$

1436 Next, we focus on the second inequality, for which we have

$$\begin{aligned}
& |\log \mathbb{P}_\theta(s_T|s_0) - \log \mathbb{P}_{\theta'}(s_T|s_0)| \\
&\stackrel{(*)}{=} |\nabla \log \mathbb{P}_{\theta''}(s_T|s_0)^\top (\theta - \theta')| \\
&= \left| \nabla \log \mathbb{P}_{\theta'}(s_T|s_0)^\top (\theta - \theta') + (\nabla \log \mathbb{P}_{\theta'}(s_T|s_0) - \nabla \log \mathbb{P}_{\theta''}(s_T|s_0))^\top (\theta - \theta') \right| \\
&\leq \|\nabla \log \mathbb{P}_{\theta'}(s_T|s_0)\| \|\theta - \theta'\| + |s_T|L\|\theta - \theta'\|^2.
\end{aligned}$$

1444 In the above derivation, step (*) follows from the *Lagrange's mean value* theorem, where θ'' denotes
1445 some point lying between θ and θ' .1446 With this, we complete the proof. □1448 C.4.3 THE PROOF OF LEMMA C.15
14491450 *Proof.* For an arbitrary trajectory $\{s_t\}_{t=0}^T$, the following differentiation holds:

$$\begin{aligned}
\|\nabla \mathbb{P}_\theta(s_T|s_0)\| &= \mathbb{P}_\theta(s_T|s_0) \|\nabla \log \mathbb{P}_\theta(s_T|s_0)\| \\
&\stackrel{\text{Lemma C.13, C.14}}{\leq} -\sqrt{2|s_T|L} \mathbb{P}_\theta(s_T|s_0) \log \mathbb{P}_\theta(s_T|s_0) \\
&\leq \sqrt{2|s_T|L} e.
\end{aligned}$$

1456 With this, we complete the proof. □

1458 C.4.4 THE PROOF OF LEMMA C.2
14591460 *Proof.* From Eq. 3, we know that

1461
1462
$$\nabla J(\theta) = \sum_{s_T \in \mathcal{S}_T} \mathbb{P}_\theta(s_T | s_0) \nabla \log \mathbb{P}_\theta(s_T | s_0) \frac{r(s_T)}{|s_T|},$$

1463

1464 which means following inequality:
1465

1466
1467
$$\|\nabla J(\theta)\| \leq R \sum_{s_T \in \mathcal{S}_T} \mathbb{P}_\theta(s_T | s_0) \frac{1}{|s_T|} \|\nabla \log \mathbb{P}_\theta(s_T | s_0)\|$$

1468
1469
$$\stackrel{(*)}{\leq} \sqrt{2L} R \sum_{s_T \in \mathcal{S}_T} \frac{1}{\sqrt{|s_T|}} \mathbb{P}_\theta(s_T | s_0) \sqrt{-\log \mathbb{P}_\theta(s_T | s_0)}$$

1470
1471
$$\stackrel{\text{Jensen's inequality}}{\leq} \sqrt{2L} R \sqrt{\log |\mathcal{V}|}.$$

1472

1473 Here, step $(*)$ follows from Lemma C.14, which guarantees that $\nabla \log \mathbb{P}_\theta(s_T | s_0)$ is Lipschitz
1474 continuous with constant $|s_T|L$. Applying Lemma C.13, we then obtain
1475

1476
$$\|\nabla \log \mathbb{P}_\theta(s_T | s_0)\| \leq \sqrt{2|s_T|L} \sqrt{-\log \mathbb{P}_\theta(s_T | s_0)}.$$

1477

1478 With this, we complete the proof. □1481 C.4.5 THE PROOF OF LEMMA C.1
14821483 *Proof.* First, for any trajectory $\{s_t\}_{t=0}^T$, by Lemma C.14, the mapping

1484
$$\theta \mapsto \nabla_\theta \log \mathbb{P}_\theta(s_t | s_t)$$

1485

1486 is $|s_T|L$ -Lipschitz continuous on \mathbb{R}^d , where $|s_T|L > 0$ is the Lipschitz constant. By *Rademacher's
1487 theorem*, any Lipschitz mapping from \mathbb{R}^d to \mathbb{R}^d is differentiable almost everywhere (a.e.) in \mathbb{R}^d .
1488 Therefore, $\nabla \log \mathbb{P}_\theta(s_T | s_0)$ is differentiable a.e., and $\nabla^2 \log \mathbb{P}_\theta(s_T | s_0)$ exists for almost every θ .1489 Moreover, the Lipschitz continuity implies the uniform bound
1490

1491
$$\|\nabla^2 \log \mathbb{P}_\theta(s_t | s_{t-1})\| \leq L \quad \text{a.e.} \tag{19}$$

1492

1493 Then, we construct the following univariate function:

1494
$$f_{s_T}(\tau) := \mathbb{P}_{\theta(\tau)}(s_t | s_{t-1}),$$

1495
$$\theta(t) := \theta' + (\theta - \theta')\tau, \quad (\tau \in [0, 1]).$$

1496

1497 Intuitively, this can be interpreted as the value at a point along the line segment connecting $\mathbb{P}_\theta(s_T | s_0)$
1498 and $\mathbb{P}_{\theta'}(s_T | s_0)$, parameterized by the ratio between its distance to θ' and the total distance
1499 $\|\theta - \theta'\|$.1500 It is clear that f_{s_T} is differentiable on $(0, 1)$. In particular, its derivative can be computed as
1501

1502
$$f'_{s_T}(t) = (\theta - \theta')^\top \nabla \mathbb{P}_{\theta(t)}(s_T | s_0)$$

1503
$$= (\theta - \theta')^\top (\mathbb{P}_{\theta(t)}(s_T | s_0) \nabla \log \mathbb{P}_{\theta(t)}(s_T | s_0))$$

1504
$$= f_{s_T}(t) (\theta - \theta')^\top \nabla \log \mathbb{P}_{\theta(t)}(s_T | s_0).$$

1505

1506 According to Lemma C.15, we have
1507

1508
$$|f'_{s_T}(t)| \leq \sqrt{2|s_T|L} e,$$

1509

1510 which implies that $f_{s_T}(t)$ is absolutely continuous on $[0, 1]$. On the other hand, by Lemma C.14, we
1511 know that

1512
$$\nabla \log_{\theta(t)}(s_T | s_0)$$

1512 is Lipschitz continuous on $[0, 1]$ with Lipschitz constant $|s_T|L$, which implies that
 1513 $(\theta - \theta')^\top \nabla \log_{\theta(t)}(s_T | s_0)$ is also absolutely continuous on $[0, 1]$. Therefore, as the product of
 1514 $f_{s_T}(t)$ and $\nabla \log_{\theta(t)}(s_T | s_0)$,
 1515

$$1517 \quad f'_{s_T}(t) := f_{s_T}(t) (\theta - \theta')^\top \nabla \log \mathbb{P}_{\theta(t)}(s_T | s_0)$$

1519 is absolutely continuous on $[0, 1]$. By the *Second Fundamental Theorem of Calculus for Absolutely*
 1520 *Continuous Functions*, $f''_{s_T}(t)$ exists in $[0, 1]$ almost everywhere, i.e.,
 1521

$$1523 \quad f''_{s_T}(t) = f_{s_T}(t) \left((\theta - \theta')^\top \nabla \log \mathbb{P}_{\theta(t)}(s_T | s_0) \right)^2 \\ 1524 \quad + f_{s_T}(t) (\theta - \theta')^\top \nabla^2 \log \mathbb{P}_{\theta(t)}(s_T | s_0) (\theta - \theta') \quad \text{a.e.}, \quad (20)$$

1522 and the following *Newton–Leibniz* formula holds in the sense of the Lebesgue integral
 1523

$$1530 \quad f'_{s_T}(1) - f'_{s_T}(0) = \int_0^1 f''_{s_T}(t) dt. \quad (21)$$

1531 We then compute $f_{s_T}(1) - f_{s_T}(0)$. Specifically, we have the following:
 1532

$$1536 \quad f_{s_T}(1) - f_{s_T}(0) = \int_0^1 f'_{s_T}(t) dt \\ 1537 = \int_0^1 f'_{s_T}(0) dt + \int_0^1 (f'_{s_T}(t) - f'_{s_T}(0)) dt \\ 1538 \stackrel{\text{Eq. 21}}{=} f'_{s_T}(0) + \int_0^1 dt \int_0^t f''_{s_T}(s) ds \\ 1539 \stackrel{\text{Eq. 20}}{=} f'_{s_T}(0) + \int_0^1 dt \int_0^t \left(f_{s_T}(s) \left((\theta - \theta')^\top \nabla \log \mathbb{P}_{\theta(s)}(s_T | s_0) \right)^2 \right) ds \\ 1540 + \int_0^1 dt \int_0^t \left(f_{s_T}(s) (\theta - \theta')^\top \nabla^2 \log \mathbb{P}_{\theta(s)}(s_T | s_0) (\theta - \theta') \right) ds \\ 1541 \geq \mathbb{P}_{\theta'}(s_T | s_0) (\theta - \theta')^\top \nabla \log \mathbb{P}_{\theta'}(s_T | s_0) \\ 1542 - \int_0^1 dt \int_0^t \mathbb{P}_{\theta(s)}(s_T | s_0) \|\theta - \theta'\|^2 \|\nabla \log \mathbb{P}_{\theta(s)}(s_T | s_0)\|^2 ds \\ 1543 - \int_0^1 dt \int_0^t \mathbb{P}_{\theta(s)}(s_T | s_0) \|\theta - \theta'\|^2 \|\nabla^2 \log \mathbb{P}_{\theta(t)}(s_T | s_0)\| ds \\ 1544 \stackrel{\text{Eq. 19}}{\geq} \mathbb{P}_{\theta'}(s_T | s_0) (\theta - \theta')^\top \nabla \log \mathbb{P}_{\theta'}(s_T | s_0) \\ 1545 - \int_0^1 dt \int_0^t \mathbb{P}_{\theta(s)}(s_T | s_0) \|\theta - \theta'\|^2 \|\nabla \log \mathbb{P}_{\theta(s)}(s_T | s_0)\|^2 ds \\ 1546 - |s_T|L \int_0^1 dt \int_0^t \mathbb{P}_{\theta(s)}(s_T | s_0) \|\theta - \theta'\|^2 ds. \quad (22)$$

1547 According to Eq. 2, we know the following expression for the value function:
 1548

$$1549 \quad J(\theta) = \mathbb{E}_{s_T \sim \pi_\theta} \left[\frac{r(s_T)}{|s_T|} \right] = \sum_{s_T \in \mathcal{S}_T} \mathbb{P}_\theta(s_T | s_0) \frac{r(s_T)}{|s_T|}.$$

1566 Then we calculate $(J^* - J(\theta)) - (J^* - J(\theta'))$, acquiring:

$$\begin{aligned}
1568 \quad (J^* - J(\theta)) - (J^* - J(\theta')) &= - \sum_{s_T \in \mathcal{S}_T} (\mathbb{P}_\theta(s_T|s_0) - \mathbb{P}_{\theta'}(s_T|s_0)) \frac{r(s_T)}{|s_T|} \\
1569 \\
1570 \quad &= - \sum_{s_T \in \mathcal{S}_T} (f_{s_T}(1) - f_{s_T}(0)) \frac{r(s_T)}{|s_T|} \\
1571 \\
1572 \quad &\stackrel{\text{Eq. 22}}{\leq} - \sum_{s_T \in \mathcal{S}_T} \mathbb{P}_{\theta'}(s_T|s_0) (\theta - \theta')^\top \nabla \log \mathbb{P}_{\theta'}(s_T|s_0) \frac{r(s_T)}{|s_T|} \\
1573 \\
1574 \quad &\quad + R \sum_{s_T \in \mathcal{S}_T} \frac{1}{|s_T|} \left(\int_0^1 dt \int_0^t \mathbb{P}_{\theta(s)}(s_T|s_0) \|\theta - \theta'\|^2 \|\nabla \log \mathbb{P}_{\theta(s)}(s_T|s_0)\|^2 ds \right) \\
1575 \\
1576 \quad &\quad + RL \sum_{s_T \in \mathcal{S}_T} \left(\int_0^1 dt \int_0^t \mathbb{P}_{\theta(s)}(s_T|s_0) \|\theta - \theta'\|^2 ds \right) \\
1577 \\
1578 \quad &= -\nabla J(\theta')^\top (\theta - \theta') \\
1579 \\
1580 \quad &\quad + R \int_0^1 dt \int_0^t \sum_{s_T \in \mathcal{S}_T} \frac{1}{|s_T|} \left(\mathbb{P}_{\theta(s)}(s_T|s_0) \|\theta - \theta'\|^2 \|\nabla \log \mathbb{P}_{\theta(s)}(s_T|s_0)\|^2 ds \right) \\
1581 \\
1582 \quad &\quad + \frac{RL}{2} \|\theta - \theta'\|^2 \\
1583 \\
1584 \quad &\stackrel{\text{Lemma C.13}}{\leq} -\nabla J(\theta')^\top (\theta - \theta') \\
1585 \\
1586 \quad &\quad + 2RL \|\theta - \theta'\|^2 \int_0^1 dt \int_0^t \sum_{s_T \in \mathcal{S}_T} -(\mathbb{P}_{\theta(s)}(s_T|s_0) \log \mathbb{P}_{\theta(s)}(s_T|s_0)) ds \\
1587 \\
1588 \quad &\quad + \frac{RL}{2} \|\theta - \theta'\|^2 \\
1589 \\
1590 \quad &\stackrel{\text{Jensen's inequality}}{\leq} -\nabla J(\theta')^\top (\theta - \theta') + 2TL \|\theta - \theta'\|^2 \int_0^1 dt \int_0^t \log |\mathcal{V}| ds \\
1591 \\
1592 \quad &\quad + \frac{RL}{2} \|\theta - \theta'\|^2 \\
1593 \\
1594 \quad &= -\nabla J(\theta')^\top (\theta - \theta') + \frac{RL}{2} (2T \log |\mathcal{V}| + 1) \|\theta - \theta'\|^2. \tag{23}
\end{aligned}$$

1600 At this point, the proof of the first inequality is complete. We now proceed to establish the second
1601 inequality.

1602 For the gradient $\nabla J(\theta)$, we denote its i -th component by $(\nabla J(\theta))_i$. Next, for an arbitrary index i
1603 and points θ, θ' , we construct the following univariate function:

$$\begin{aligned}
1604 \quad g_i(t) &:= (\nabla J(\theta(t)))_i, \\
1605 \quad \theta(t) &:= \theta' + (\theta - \theta')t, \quad t \in [0, 1].
\end{aligned}$$

1606 We define $[\nabla^2 J(\theta)]_i$ as the i -th row of the Hessian matrix $\nabla^2 J(\theta)$. Then it is straightforward to see
1607 that

$$g'_i(t) = [\nabla^2 J(\theta(t))]_i(\theta - \theta') \text{ a.e.}$$

1608 Analogous to the derivation from Eq. 20 to Eq. 21, we can also establish the following *Newton-Leibniz*
1609 formula:

$$g_i(1) - g_i(0) = \int_0^1 g'_i(t) dt = \int_0^1 [\nabla^2 J(\theta(t))]_i(\theta - \theta') dt$$

1610 By combining all the components, we obtain

$$\nabla J(\theta) - \nabla J(\theta') = \int_0^1 \nabla^2 J(\theta(t))(\theta - \theta') dt.$$

1611 Taking norms on both sides and applying the derivation in Eq. 23, we obtain

$$\|\nabla J(\theta) - \nabla J(\theta')\| \leq RL (2T \log |\mathcal{V}| + 1) \|\theta - \theta'\|.$$

1612 With this, we complete the proof. \square

1620 C.4.6 THE PROOF OF LEMMA C.3
16211622 *Proof.* First, by the definition of $\Xi_g(\theta_{n,s}, \theta_{n,0})$, we obtain
1623

1624
$$\|\Xi_g(\theta_{n,s}, \theta_{n,0})\| \leq 2R\mathcal{M}_N \sum_{s_T \in \mathcal{S}_T} \xi_G(s_T) \sum_{t=1}^T \|\nabla \mathbb{P}_{\theta_{n,s}}(s_t|s_{t-1}) - \nabla \mathbb{P}_{\theta_{n,0}}(s_t|s_{t-1})\|$$

1625
1626
$$\stackrel{(*)}{\leq} 16RL\mathcal{M}_N \|\theta_{n,s} - \theta_{n,0}\|. \quad (24)$$

1627

1628 In step (*) we use the following derivation:
1629

1630
$$\begin{aligned} & \|\nabla \mathbb{P}_{\theta_{n,s}}(s_t|s_{t-1}) - \nabla \mathbb{P}_{\theta_{n,0}}(s_t|s_{t-1})\| \\ & \stackrel{(**)}{\leq} (\mathbb{P}_{\theta_\zeta}(s_t|s_{t-1}) \|\nabla \mathbb{P}_{\theta_\zeta}(s_t|s_{t-1})\|^2 + L \mathbb{P}_{\theta_\zeta}(s_t|s_{t-1})) \|\theta_{n,s} - \theta_{n,0}\| \\ & \leq (2L (\mathbb{P}_{\theta_\zeta}(s_T|s_{t-1}) (-\log \mathbb{P}_{\theta_\zeta}(s_t|s_{t-1})) + L) \|\theta_{n,s} - \theta_{n,0}\| \\ & \leq 8L \|\theta_{n,s} - \theta_{n,0}\| \end{aligned}$$

1631

1632 In step (**), θ_ζ denotes a point lying between $\theta_{n,s}$ and $\theta_{n,0}$. Here we apply the mean value theorem
1633 for integrals in the sense of Lebesgue integration. The reader may refer to Lemma C.1 for the
1634 treatment of $\mathbb{P}_{\theta_{n,s}}(s_T | s_0)$, which we do not repeat here.
16351636 Taking the conditional expectation with respect to \mathcal{F}_{n-1} on both sides of Eq. 24, we obtain
1637

1638
$$\begin{aligned} \mathbb{E} [\|\Xi_g(\theta_{n,s}, \theta_{n,0})\| | \mathcal{F}_{n-1}] & \leq 16RL \mathbb{E} [\mathcal{M}_N \|\theta_{n,s} - \theta_{n,0}\| | \mathcal{F}_{n-1}] \\ & \leq 16RL \sqrt{\mathbb{E} [\mathcal{M}_N^2 | \mathcal{F}_{n-1}]} \cdot \sqrt{\mathbb{E} [\|\theta_{n,s} - \theta_{n,0}\|^2 | \mathcal{F}_{n-1}]} \end{aligned}$$

1639

1640 With this, we complete the proof. \square
16411642 C.4.7 THE PROOF OF LEMMA C.4
16431644 *Proof.* From Eq. 9, we obtain
1645

1646
$$\begin{aligned} B_G(s_T) &= \frac{A_G(s_T)}{|s_T|} - \frac{1}{\sigma_{\theta_{\text{old}}}} \frac{r(s_T)}{|s_T|} \\ &= \frac{1}{|s_T|} \left(\frac{r(s_T) - \mu_G}{\sigma_G + \delta} \right) - \frac{1}{\sigma_{\theta_{\text{old}}}} \frac{r(s_T)}{|s_T|} \\ &= \frac{r(s_T)}{|s_T|} \underbrace{\left(\frac{1}{\sigma_G + \delta} - \frac{1}{\sigma_{\theta_{\text{old}}}} \right)}_{B_1} - \frac{1}{|s_T|} \frac{\mu_G}{\sigma_G + \delta} \\ &= \frac{r(s_T)}{|s_T|} B_1 - \frac{1}{|s_T|} \underbrace{\left(\frac{\mu_G}{\sigma_G + \delta} - \frac{\mu_{\theta_{\text{old}}}}{\sigma_{\theta_{\text{old}}}} \right)}_{B_2} - \frac{\mu_{\theta_{\text{old}}}}{|s_T| \sigma_{\theta_{\text{old}}}} \\ &= \frac{r(s_T)}{|s_T|} B_1 - \frac{1}{|s_T|} B_2 - \underbrace{\left(\frac{1}{|s_T|} - |s|_{\theta_{\text{old}}}^{-1} \right)}_{B_3} \frac{\mu_{\theta_{\text{old}}}}{\sigma_{\theta_{\text{old}}}} - |s|_{\theta_{\text{old}}}^{-1} \frac{\mu_{\theta_{\text{old}}}}{\sigma_{\theta_{\text{old}}}}. \end{aligned}$$

1647

1648 In the above expression, we set
1649

1650
$$|s|_{\theta_{\text{old}}} := \sum_{s_T \in \mathcal{S}_T} \mathbb{P}_{\theta_{\text{old}}}(s_T | s_0) |s_T|$$

1651

1652 Next we treat B_1 , B_2 , and B_3 separately. First, for B_1 , we have:
1653

1654
$$\mathbb{E} [B_1^2 | \mathcal{F}_{\theta_{\text{old}}}] \leq \frac{1}{\delta^4} \mathbb{E} [(\sigma_G - \mathbb{E} [\sigma_G | \mathcal{F}_{\theta_{\text{old}}}])^2 | \mathcal{F}_{\theta_{\text{old}}}] \leq \frac{16R^2}{\delta^4 \sqrt{|G|}}$$

1655

1674 Similarly, we readily obtain
 1675

$$\mathbb{E} [B_2^2 | \mathcal{F}_{\theta_{\text{old}}}] \leq \frac{4R^2}{\delta^2 |G|} + \frac{32R^3}{\delta^4 \sqrt{|G|}}.$$

1676 For B_3 , we have
 1677

$$\mathbb{E} [B_3^2 | \mathcal{F}_{\theta_{\text{old}}}] \leq \mathbb{E}_{s_T \sim \pi_{\theta_{\text{old}}}} [|s_T| - |s|_{\theta_{\text{old}}}^2 | \mathcal{F}_{\theta_{\text{old}}}] := \sigma_{s, \theta_{\text{old}}}^2.$$

1678 This quantity represents the variance of the sentence length under the policy $\pi_{\theta_{\text{old}}}$.
 1679

1680 We now compute $\mathbb{E} [\Xi_s(\theta_{n,s}, \theta_{n,0}) | \mathcal{F}_{n-1}]$ directly, and we have
 1681

$$\begin{aligned} \mathbb{E} [\Xi_s(\theta_{n,s}, \theta_{n,0}) | \mathcal{F}_{n-1}] &= \sum_{s_T \in \mathcal{S}_T} \mathbb{E} \left[\xi_G(s_T) \sum_{t=1}^T \nabla \log \mathbb{P}_{\theta_{n,0}}(s_t | s_{t-1}) B_G(s_T) \middle| \mathcal{F}_{n-1} \right] \\ &= \sum_{s_T \in \mathcal{S}_T} \mathbb{E} \left[\xi_G(s_T) \sum_{t=1}^T \nabla \log \mathbb{P}_{\theta_{n,0}}(s_t | s_{t-1}) \frac{r(s_T)}{|s_T|} B_1 \middle| \mathcal{F}_{n-1} \right] \\ &\quad - \sum_{s_T \in \mathcal{S}_T} \mathbb{E} \left[\xi_G(s_T) \sum_{t=1}^T \nabla \log \mathbb{P}_{\theta_{n,0}}(s_t | s_{t-1}) \frac{B_2}{|s_T|} \middle| \mathcal{F}_{n-1} \right] \\ &\quad + \sum_{s_T \in \mathcal{S}_T} \mathbb{E} \left[\xi_G(s_T) \sum_{t=1}^T \nabla \log \mathbb{P}_{\theta_{n,0}}(s_t | s_{t-1}) \frac{\mu_{\theta_{n,0}}}{\sigma_{\theta_{n,0}}} B_3 \middle| \mathcal{F}_{n-1} \right] \\ &\quad + \sum_{s_T \in \mathcal{S}_T} \mathbb{E} \left[\xi_G(s_T) \sum_{t=1}^T \nabla \log \mathbb{P}_{\theta_{n,0}}(s_t | s_{t-1}) |s|_{\theta_{n,0}}^{(-1)} \frac{\mu_{\theta_{n,0}}}{\sigma_{\theta_{n,0}}} \middle| \mathcal{F}_{n-1} \right] \\ &= \mathcal{O} \left(\frac{1}{\sqrt{|G|}} \right) + \mathcal{O}(\sigma_{s, \theta_{n,0}}^2), \end{aligned}$$

1682 The constant hidden in the \mathcal{O} notation depends only on the constants specified in the assumptions
 1683 and is independent of n .
 1684

□

1685 C.4.8 THE PROOF OF LEMMA C.5

1686 *Proof.* First, for the event $\mathcal{B}^c(s_t, \theta_{n,s}, \theta_{n,0})$, we have:
 1687

$$\begin{aligned} \mathcal{B}^c(s_t, \theta_{n,s}, \theta_{n,0}) &= \left\{ \frac{\mathbb{P}_{\theta_{n,s}}(s_t | s_{t-1})}{\mathbb{P}_{\theta_{n,0}}(s_t | s_{t-1})} \geq 1 + \epsilon_{\text{high}}, A_G(s_T) \geq 0 \right\} \cup \left\{ \frac{\mathbb{P}_{\theta_{n,s}}(s_t | s_{t-1})}{\mathbb{P}_{\theta_{n,0}}(s_t | s_{t-1})} \leq 1 - \epsilon_{\text{low}}, A_G(s_T) < 0 \right\} \\ &\subset \left\{ \left\| \frac{\mathbb{P}_{\theta_{n,s}}(s_t | s_{t-1})}{\mathbb{P}_{\theta_{n,0}}(s_t | s_{t-1})} - 1 \right\| \geq \min\{\epsilon_{\text{low}}, \epsilon_{\text{high}}\} \right\}. \end{aligned}$$

1688 Next, based on the above derivation, we apply *Markov's* inequality to handle $\Xi_c(\theta_{n,s}, \theta_{n,0})$:
 1689

$$\|\Xi_c(\theta_{n,s}, \theta_{n,0})\| \tag{25}$$

$$\begin{aligned} &\stackrel{\text{Markov's inequality}}{\leq} \frac{2R}{\delta \min\{\epsilon_{\text{low}}, \epsilon_{\text{high}}\}} \sum_{s_T \in \mathcal{S}_T} \xi_G(s_T) \sum_{t=1}^T \left\| \frac{\mathbb{P}_{\theta_{n,s}}(s_t | s_{t-1})}{\mathbb{P}_{\theta_{n,0}}(s_t | s_{t-1})} - 1 \right\| \|\nabla \log \mathbb{P}_{\theta_{n,0}}(s_t | s_{t-1})\| \\ &\leq \frac{2R\mathcal{M}_N \sqrt{2L}}{\delta \min\{\epsilon_{\text{low}}, \epsilon_{\text{high}}\}} \sum_{s_T \in \mathcal{S}_T} \xi_G(s_T) \sum_{t=1}^T \|\mathbb{P}_{\theta_{n,0}}(s_t | s_{t-1}) - \mathbb{P}_{\theta_{n,s}}(s_t | s_{t-1})\| \sqrt{-\log \mathbb{P}_{\theta_{n,0}}(s_t | s_{t-1})} \\ &\stackrel{\text{Lagrange mean value theorem}}{\leq} \frac{2R\mathcal{M}_N \sqrt{2L}}{\delta \min\{\epsilon_{\text{low}}, \epsilon_{\text{high}}\}} \sum_{s_T \in \mathcal{S}_T} \xi_G(s_T) \sum_{t=1}^T \|\nabla \mathbb{P}_{\theta_{\zeta, s_t}}(s_t | s_{t-1})\| \|\theta_{n,s} - \theta_{n,0}\| \sqrt{-\log \mathbb{P}_{\theta_{n,0}}(s_t | s_{t-1})} \\ &\stackrel{(*)}{\leq} \frac{2R\mathcal{M}_N L}{\delta \min\{\epsilon_{\text{low}}, \epsilon_{\text{high}}\}} \sum_{s_T \in \mathcal{S}_T} \xi_G(s_T) \sum_{t=1}^T \|\theta_{n,s} - \theta_{n,0}\| \sqrt{-\log \mathbb{P}_{\theta_{n,0}}(s_t | s_{t-1})}. \end{aligned} \tag{26}$$

1728 In the above derivation, at step (*) we handle $\|\nabla \mathbb{P}_{\theta_{\zeta, s_t}}(s_t | s_{t-1})\|$ using the following method:
1729

$$\begin{aligned} 1730 \|\nabla \mathbb{P}_{\theta_{\zeta, s_t}}(s_t | s_{t-1})\| &= \mathbb{P}_{\theta_{\zeta, s_t}}(s_t | s_{t-1}) \|\nabla \log \mathbb{P}_{\theta_{\zeta, s_t}}(s_t | s_{t-1})\| \\ 1731 &\stackrel{\text{Lemma C.13}}{\leq} \sqrt{2L} \mathbb{P}_{\theta_{\zeta, s_t}}(s_t | s_{t-1}) \sqrt{-\log \mathbb{P}_{\theta_{\zeta, s_t}}(s_t | s_{t-1})} \\ 1732 &\leq \frac{\sqrt{2L}}{2} \end{aligned}$$

1733 Taking the conditional expectation with respect to \mathcal{F}_{n-1} on both sides of Eq. 25, we obtain
1734

$$\begin{aligned} 1735 \mathbb{E} [\|\Xi_c(\theta_{n,s}, \theta_{n,0})\| | \mathcal{F}_{n-1}] \\ 1736 &\leq \frac{2RL}{\delta \min\{\epsilon_{\text{low}}, \epsilon_{\text{high}}\}} \mathbb{E} \left[\mathcal{M}_N \|\theta_{n,s} - \theta_{n,0}\| \sum_{s_T \in \mathcal{S}_T} \xi_G(s_T) \sum_{t=1}^T \sqrt{-\log \mathbb{P}_{\theta_{n,0}}(s_t | s_{t-1})} \middle| \mathcal{F}_{n-1} \right] \\ 1737 &\leq \frac{2RTL \sqrt{\log |\mathcal{V}|}}{\delta \min\{\epsilon_{\text{low}}, \epsilon_{\text{high}}\}} \mathbb{E}^{1/4} [\|\theta_{n,s} - \theta_{n,0}\|^4 | \mathcal{F}_{n-1}] \sqrt{\mathbb{E} [\mathcal{M}_N^2 | \mathcal{F}_{n-1}]} \end{aligned}$$

1738 With this, we complete the proof. \square
1739

1740 C.4.9 THE PROOF OF LEMMA C.6

1741 *Proof.* For any $p \in \{1, 2, 4\}$, we can compute the following expression:
1742

$$\begin{aligned} 1743 \|\theta_{n,s+1} - \theta_{n,s}\|^p \\ 1744 &\leq \eta^p \left\| \sum_{s_T \in \mathcal{S}_T} \xi_G(s_T) \frac{1}{|s_T|} \sum_{t=1}^T \mathbf{1}_{\mathcal{B}(s_t, \theta_{n,s}, \theta_{n,0})} (\nabla (\text{ClipMin}(s_T, \theta_{n,s}, \theta_{n,0}))) A_G(s_T) \right\|^p \\ 1745 &\stackrel{\text{AM-GM inequality}}{\leq} \eta^p (2R)^p \underbrace{\left\| \sum_{s_T \in \mathcal{S}_T} \xi_G(s_T) \frac{1}{|s_T|} \sum_{t=1}^T \mathbf{1}_{\mathcal{B}(s_t, \theta_{n,s}, \theta_{n,0})} (\nabla (\text{ClipMin}(s_T, \theta_{n,s}, \theta_{n,0}))) \right\|^p}_{\Psi_{n,s}}. \end{aligned} \tag{27}$$

1746 Then for Ψ_s , we have:
1747

$$\begin{aligned} 1748 \Psi_{n,s} \\ 1749 &\stackrel{\text{AM-GM inequality}}{\leq} \sum_{s_T \in \mathcal{S}_T} \xi_G(s_T) \frac{1}{|s_T|} \sum_{t=1}^T \mathbf{1}_{\mathcal{B}(s_t, \theta_{n,s}, \theta_{n,0})} \|\nabla (\text{ClipMin}(s_T, \theta_{n,s}, \theta_{n,0}))\|^p \\ 1750 &\leq \sum_{s_T \in \mathcal{S}_T} \xi_G(s_T) \frac{1}{|s_T|} \sum_{t=1}^T \mathbf{1}_{\mathcal{B}(s_t, \theta_{n,s}, \theta_{n,0})} \left(\frac{\mathbb{P}_{\theta_{n,s}}(s_t | s_{t-1})}{\mathbb{P}_{\theta_{n,0}}(s_t | s_{t-1})} \right)^p \|\nabla \log \mathbb{P}_{\theta_{n,s}}(s_t | s_{t-1})\|^p \\ 1751 &\stackrel{\text{Lemma C.13}}{\leq} (2L)^{p/2} \sum_{s_T \in \mathcal{S}_T} \xi_G(s_T) \frac{1}{|s_T|} \sum_{t=1}^T \mathbf{1}_{\mathcal{B}(s_t, \theta_{n,s}, \theta_{n,0})} \left(\frac{\mathbb{P}_{\theta_{n,s}}(s_t | s_{t-1})}{\mathbb{P}_{\theta_{n,0}}(s_t | s_{t-1})} \right)^p \left| -\log \mathbb{P}_{\theta_{n,s}}(s_t | s_{t-1}) \right|^{p/2} \\ 1752 &\leq (2L)^{p/2} \sum_{s_T \in \mathcal{S}_T} \xi_G(s_T) \mathcal{M}_N^p \frac{1}{|s_T|} \sum_{t=1}^T \mathbb{P}_{\theta_{n,s}}^p(s_t | s_{t-1}) \left| -\log \mathbb{P}_{\theta_{n,s}}(s_t | s_{t-1}) \right|^{p/2}, \end{aligned}$$

1753 where \mathcal{M}_N is defined in Eq. 14. In step (*), we use the following inequality to obtain an upper
1754 bound:
1755

$$\mathbf{1}_{\mathcal{B}(s_t, \theta_{n,s}, \theta_{n,0})} \text{Clip} \left(\frac{\mathbb{P}_{\theta_{n,s}}(s_t | s_{t-1})}{\mathbb{P}_{\theta_{n,0}}(s_t | s_{t-1})}, \epsilon_{\text{low}}, \epsilon_{\text{high}} \right) \leq \mathbf{1}_{\mathcal{B}(s_t, \theta_{n,s}, \theta_{n,0})} \frac{\mathbb{P}_{\theta_{n,s}}(s_t | s_{t-1})}{\mathbb{P}_{\theta_{n,0}}(s_t | s_{t-1})}.$$

1756 Note that in this case we **cannot** apply the following relaxation:
1757

$$\mathbf{1}_{\mathcal{B}(s_t, \theta_{n,s}, \theta_{n,0})} \text{Clip} \left(\frac{\mathbb{P}_{\theta_{n,s}}(s_t | s_{t-1})}{\mathbb{P}_{\theta_{n,0}}(s_t | s_{t-1})}, \epsilon_{\text{low}}, \epsilon_{\text{high}} \right) \leq \mathbf{1}_{\mathcal{B}(s_t, \theta_{n,s}, \theta_{n,0})} \epsilon_{\text{low}} \text{ or } \mathbf{1}_{\mathcal{B}(s_t, \theta_{n,s}, \theta_{n,0})} \epsilon_{\text{high}}.$$

1782 This is because, when $A_G(s_T) \leq 0$, the original Clip mechanism imposes no upper bound on the
 1783 ratio $\mathbb{P}_{\theta_{n,s}}(s_t|s_{t-1})/\mathbb{P}_{\theta_{n,0}}(s_t|s_{t-1})$. Then we take the conditional expectation with respect to \mathcal{F}_{n-1}
 1784 on both sides of the above inequality, and we obtain
 1785

$$\begin{aligned}
 & \mathbb{E} [\Psi_{n,s} | \mathcal{F}_{n-1}] \\
 & \leq (2L)^{p/2} \mathbb{E} \left[\sum_{s_T \in \mathcal{S}_T} \xi_G(s_T) \mathcal{M}_N^p \frac{1}{|s_T|} \sum_{t=1}^T \mathbb{P}_{\theta_{n,s}}^p(s_t|s_{t-1}) |-\log \mathbb{P}_{\theta_{n,s}}(s_t|s_{t-1})|^{p/2} \middle| \mathcal{F}_{n-1} \right] \\
 & \stackrel{\text{Cauchy-Schwarz inequality}}{\leq} (2L)^{p/2} \sqrt{\mathbb{E} \left[\sum_{s_T \in \mathcal{S}_T} \xi_G(s_T) \mathcal{M}_N^{2p} \middle| \mathcal{F}_{n-1} \right]} \\
 & \quad \times \sqrt{\mathbb{E} \left[\sum_{s_T \in \mathcal{S}_T} \frac{1}{|s_T|} \sum_{t=1}^T \mathbb{P}_{\theta_{n,s}}(s_t|s_{t-1}) |-\log \mathbb{P}_{\theta_{n,s}}(s_t|s_{t-1})|^p \middle| \mathcal{F}_{n-1} \right]} \\
 & \stackrel{\text{Lemma C.12}}{\leq} (2L)^{p/2} \sqrt{\mathbb{E} [\mathcal{M}_N^{2p} | \mathcal{F}_{n-1}]} \log^{p/2} |\mathcal{V}|.
 \end{aligned}$$

1802 Substituting the above estimate for Ψ_s into Eq. 27, we obtain
 1803

$$\mathbb{E} [\|\theta_{n,s+1} - \theta_{n,s}\|^p | \mathcal{F}_{n-1}] \leq \eta^p (2R)^p (2L)^{p/2} \sqrt{\mathbb{E} [\mathcal{M}_N^{2p} | \mathcal{F}_{n-1}]} \log^{p/2} |\mathcal{V}|.$$

1810 With this, we complete the proof. □
 1811
 1812
 1813
 1814
 1815
 1816

1817 C.4.10 THE PROOF OF THEOREM 5.1

1818 *Proof.* Then we focus on
 1819

$$(J^* - J(\theta_{n+1,0})) - (J^* - J(\theta_{n,0})).$$

1826 To handle this, we invoke Lemma C.1. In particular, we have
 1827
 1828

$$\begin{aligned}
 & (J^* - J(\theta_{n+1,0})) - (J^* - J(\theta_{n,0})) \\
 & \stackrel{\text{Lemma C.1}}{\leq} -\nabla J(\theta_{n,0})^\top (\theta_{n+1,0} - \theta_{n,0}) + \frac{RL}{2} (2T \log |\mathcal{V}| + 1) \|\theta_{n+1,0} - \theta_{n,0}\|^2 \\
 & = -\eta \underbrace{\sum_{s=0}^{K-1} \nabla J(\theta_{n,0})^\top \nabla \mathcal{L}_{\text{GRPO}}(\theta_{n,s}, \theta_{n,0})}_{Y_n} + \frac{RL}{2} (2T \log |\mathcal{V}| + 1) \|\theta_{n+1,0} - \theta_{n,0}\|^2. \quad (28)
 \end{aligned}$$

1836 According to Eq. 8, we can further process the term Y_n , which yields:
 1837

$$\begin{aligned}
 1838 \quad & Y_n = -\frac{\eta}{\sigma_{\theta_{n,0}}} \sum_{s=0}^{K-1} \|\nabla J(\theta_{n,0})\|^2 - \underbrace{\frac{\eta}{\sigma_{\theta_{n,0}}} \sum_{s=0}^{K-1} \nabla J(\theta_{n,0})^\top (\tilde{\nabla} J(\theta_{n,0}) - \nabla J(\theta_{n,0}))}_{M'_n} \\
 1839 \\
 1840 \quad & - \frac{\eta}{\sigma_{\theta_{n,0}}} \sum_{s=0}^{K-1} \nabla J(\theta_{n,0})^\top (\Xi_g(\theta_{n,s}, \theta_{n,0}) + \Xi_s(\theta_{n,s}, \theta_{n,0}) + \Xi_c(\theta_{n,s}, \theta_{n,0})) \\
 1841 \\
 1842 \quad & \leq -\frac{\eta}{2R} \sum_{s=0}^{K-1} \|\nabla J(\theta_{n,s})\|^2 + \underbrace{\frac{\eta}{\sigma_{\theta_{n,0}}} \sum_{s=0}^{K-1} |\|\nabla J(\theta_{n,0})\|^2 - \|\nabla J(\theta_{n,s})\|^2|}_{Y_{n,1}} \\
 1843 \\
 1844 \quad & + \frac{\eta}{\sigma_{\theta_{n,0}}} \sum_{s=0}^{K-1} \|\nabla J(\theta_{n,0})\| (\|\Xi_g(\theta_{n,s}, \theta_{n,0})\| + \|\Xi_s(\theta_{n,s}, \theta_{n,0})\| + \|\Xi_c(\theta_{n,s}, \theta_{n,0})\|) + M'_n \\
 1845 \\
 1846 \quad & \stackrel{\text{Lemma C.2}}{\leq} -\frac{\eta}{2R} \sum_{s=0}^{K-1} \|\nabla J(\theta_{n,s})\|^2 + \frac{\eta}{\delta} Y_{n,1} \\
 1847 \\
 1848 \quad & + \frac{\eta}{\delta} \sqrt{2L} T R \sqrt{\log |\mathcal{V}|} \sum_{s=0}^{K-1} (\|\Xi_g(\theta_{n,s}, \theta_{n,0})\| + \|\Xi_s(\theta_{n,s}, \theta_{n,0})\| + \|\Xi_c(\theta_{n,s}, \theta_{n,0})\|) + M'_n \\
 1849 \\
 1850 \quad & \stackrel{(*)}{\leq} -\frac{\eta}{2R} \sum_{s=0}^{K-1} \|\nabla J(\theta_{n,s})\|^2 + \frac{6\sqrt{2}}{\delta} \eta L^{3/2} T^2 R^2 \log^{3/2} |\mathcal{V}| \sum_{s=0}^{K-1} \|\theta_{n,s} - \theta_{n,0}\| \\
 1851 \\
 1852 \quad & + \frac{9}{\delta} \eta R^2 T^2 L^2 \log^2 |\mathcal{V}| \sum_{s=0}^{K-1} \|\theta_{n,s} - \theta_{n,0}\|^2 \\
 1853 \\
 1854 \quad & + \frac{\eta}{\delta} \sqrt{2L} T R \sqrt{\log |\mathcal{V}|} \sum_{s=0}^{K-1} (\|\Xi_g(\theta_{n,s}, \theta_{n,0})\| + \|\Xi_s(\theta_{n,s}, \theta_{n,0})\| + \|\Xi_c(\theta_{n,s}, \theta_{n,0})\|) + M'_n. \\
 1855 \\
 1856 \quad & \tag{29}
 \end{aligned}$$

1872 It can be observed that the sequence $\{M'_n, \mathcal{F}_n\}_{n \geq 1}$ constitutes a martingale difference sequence. In
 1873 step $(*)$ we specifically apply the following relaxation to $Y_{n,1}$:

$$\begin{aligned}
 1874 \quad & Y_{n,1} = \sum_{s=0}^{K-1} |\|\nabla J(\theta_{n,0})\|^2 - \|\nabla J(\theta_{n,s})\|^2| \\
 1875 \\
 1876 \quad & = \sum_{s=0}^{K-1} |\|\nabla J(\theta_{n,0}) + \nabla J(\theta_{n,s}) - \nabla J(\theta_{n,0})\|^2 - \|\nabla J(\theta_{n,0})\|^2| \\
 1877 \\
 1878 \quad & = \sum_{s=0}^{K-1} |\|\nabla J(\theta_{n,0})\|^2 + 2\|\nabla J(\theta_{n,0})\| \|\nabla J(\theta_{n,s}) - \nabla J(\theta_{n,0})\| + \|\nabla J(\theta_{n,s}) - \nabla J(\theta_{n,0})\|^2 - \|\nabla J(\theta_{n,0})\|^2| \\
 1879 \\
 1880 \quad & \leq 2 \sum_{s=0}^{K-1} \|\nabla J(\theta_{n,0})\| \|\nabla J(\theta_{n,s}) - \nabla J(\theta_{n,0})\| + \sum_{s=0}^{K-1} \|\nabla J(\theta_{n,s}) - \nabla J(\theta_{n,0})\|^2 \\
 1881 \\
 1882 \quad & \stackrel{\text{Lemma C.2 and C.1}}{\leq} 6\sqrt{2} L^{3/2} T^2 R^2 \log^{3/2} |\mathcal{V}| \sum_{s=0}^{K-1} \|\theta_{n,s} - \theta_{n,0}\| + 9R^2 T^2 L^2 \log^2 |\mathcal{V}| \sum_{s=0}^{K-1} \|\theta_{n,s} - \theta_{n,0}\|^2.
 \end{aligned}$$

1890 Taking the conditional expectation with respect to \mathcal{F}_{n-1} on both sides of Eq. 29, we obtain
 1891

$$\begin{aligned}
 & \mathbb{E}[Y_n | \mathcal{F}_{n-1}] \\
 & \leq -\frac{\eta}{2R} \sum_{s=0}^{K-1} \mathbb{E}[\|\nabla J(\theta_{n,s})\|^2 | \mathcal{F}_{n-1}] + \frac{6\sqrt{2}}{\delta} \eta L^{3/2} T^2 R^2 \log^{3/2} |\mathcal{V}| \sum_{s=0}^{K-1} \mathbb{E}[\|\theta_{n,s} - \theta_{n,0}\| | \mathcal{F}_{n-1}] \\
 & \quad + \frac{9}{\delta} \eta R^2 T^2 L^2 \log^2 |\mathcal{V}| \sum_{s=0}^{K-1} \mathbb{E}[\|\theta_{n,s} - \theta_{n,0}\|^2 | \mathcal{F}_{n-1}] \\
 & \quad + \frac{\eta}{\delta} \sqrt{2L} T R \sqrt{\log |\mathcal{V}|} \sum_{s=0}^{K-1} (\mathbb{E}[\|\Xi_g(\theta_{n,s}, \theta_{n,0})\| | \mathcal{F}_{n-1}] + \mathbb{E}[\|\Xi_s(\theta_{n,s}, \theta_{n,0})\| | \mathcal{F}_{n-1}] \\
 & \quad + \mathbb{E}[\|\Xi_c(\theta_{n,s}, \theta_{n,0})\| | \mathcal{F}_{n-1}]) .
 \end{aligned}$$

1904 Substituting the above result into Eq. 28, we obtain
 1905

$$\begin{aligned}
 & \mathbb{E}[J^* - J(\theta_{n+1,0}) - (J^* - J(\theta_{n,0})) | \mathcal{F}_{n-1}] \\
 & \leq -\frac{\eta}{2R} \sum_{s=0}^{K-1} \mathbb{E}[\|\nabla J(\theta_{n,s})\|^2 | \mathcal{F}_{n-1}] + \frac{6\sqrt{2}}{\delta} \eta L^{3/2} T^2 R^2 \log^{3/2} |\mathcal{V}| \sum_{s=0}^{K-1} \mathbb{E}[\|\theta_{n,s} - \theta_{n,0}\| | \mathcal{F}_{n-1}] \\
 & \quad + \left(\frac{9}{\delta} \eta R^2 T^2 L^2 \log^2 |\mathcal{V}| + \frac{1}{2} (2L \log |\mathcal{V}| + TL) \right) \sum_{s=0}^{K-1} \mathbb{E}[\|\theta_{n,s} - \theta_{n,0}\|^2 | \mathcal{F}_{n-1}] \\
 & \quad + \frac{\eta}{\delta} \sqrt{2L} T R \sqrt{\log |\mathcal{V}|} \sum_{s=0}^{K-1} (\mathbb{E}[\|\Xi_g(\theta_{n,s}, \theta_{n,0})\| | \mathcal{F}_{n-1}] + \mathbb{E}[\|\Xi_s(\theta_{n,s}, \theta_{n,0})\| | \mathcal{F}_{n-1}] \\
 & \quad + \mathbb{E}[\|\Xi_c(\theta_{n,s}, \theta_{n,0})\| | \mathcal{F}_{n-1}]) .
 \end{aligned}$$

1917 Substituting into the above inequality the results on $\mathbb{E}[\|\Xi_g(\theta_{n,s}, \theta_{n,0})\| | \mathcal{F}_{n-1}]$,
 1918 $\mathbb{E}[\|\Xi_s(\theta_{n,s}, \theta_{n,0})\| | \mathcal{F}_{n-1}]$, $\mathbb{E}[\|\Xi_c(\theta, \theta_{\text{old}})\| | \mathcal{F}_{n-1}]$, from Lemmas C.3, C.4, C.5, respectively, we
 1919 obtain
 1920

$$\begin{aligned}
 & \mathbb{E}[J^* - J(\theta_{n+1,0}) - (J^* - J(\theta_{n,0})) | \mathcal{F}_{n-1}] \\
 & \leq -\frac{\eta}{2R} \sum_{s=0}^{K-1} \mathbb{E}[\|\nabla J(\theta_{n,s})\|^2 | \mathcal{F}_{n-1}] + \mathcal{O}(\log^{3/2} |\mathcal{V}|) \eta \sum_{s=0}^{K-1} \mathbb{E}[\|\theta_{n,s} - \theta_{n,0}\| | \mathcal{F}_{n-1}] \\
 & \quad + \mathcal{O}(\log^2 |\mathcal{V}| \eta + \log |\mathcal{V}|) \sum_{s=0}^{K-1} \mathbb{E}[\|\theta_{n,s} - \theta_{n,0}\|^2 | \mathcal{F}_{n-1}] \\
 & \quad + \mathcal{O}\left(\sqrt{\log |\mathcal{V}|} \sqrt{\mathbb{E}[\mathcal{M}_N^2 | \mathcal{F}_{\theta_{n,0}}]}\right) \eta \sqrt{\sum_{s=0}^{K-1} \mathbb{E}[\|\theta_{n,s} - \theta_{n,0}\|^2 | \mathcal{F}_{n-1}]} \\
 & \quad + \mathcal{O}\left(\sqrt{\log |\mathcal{V}|}\right) \eta \left(\mathcal{O}\left(\frac{1}{\sqrt{|G|}}\right) + \mathcal{O}(\sigma_{s, \theta_{n,0}}^2) \right) \\
 & \quad + \mathcal{O}\left(\log^{3/2} |\mathcal{V}| \sqrt{\mathbb{E}[\mathcal{M}_N^2 | \mathcal{F}_{n,0}]}\right) \eta \left(\sum_{s=0}^{K-1} \mathbb{E}[\|\theta_{n,s} - \theta_{n,0}\|^4 | \mathcal{F}_{n-1}] \right)^{1/4} .
 \end{aligned}$$

1938 Note that the quantities hidden in the \mathcal{O} notation are constants depending only on other parameters
 1939 of the problem and are independent of the iteration number n .
 1940

1941 Then, substituting the estimate for
 1942

$$\sum_{s=1}^K \mathbb{E}[\|\theta_{n,s} - \theta_{n,0}\|^p | \mathcal{F}_{n-1}], \quad p \in \{1, 2, 4\}$$

1944 from Lemma C.6 into the above expression, we finally obtain
1945

$$\begin{aligned} 1946 \quad & \mathbb{E}[J^* - J(\theta_{n+1,0})] - \mathbb{E}[J^* - J(\theta_{n,0})] \\ 1947 \quad & \leq -\frac{\eta}{2R} \sum_{s=0}^{K-1} \mathbb{E}[\|\nabla J(\theta_{n,s})\|^2] + \mathcal{O}\left(\log^2 |\mathcal{V}| \sqrt{\mathbb{E}[\mathcal{M}_N^2]}\right) \eta^2 + \mathcal{O}\left(\frac{1}{\sqrt{|G|}}\right) \eta + \mathcal{O}(\sigma_{s,\theta_{n,0}}^2) \eta. \end{aligned}$$

1950 Summing the above inequality over the index n from 1 to N , we finally obtain
1951

$$\begin{aligned} 1952 \quad & \frac{1}{N} \sum_{n=1}^N \sum_{s=0}^{K-1} \mathbb{E}[\|\nabla J(\theta_{n,s})\|^2] = \mathcal{O}\left(\frac{1}{N\eta}\right) + \mathcal{O}\left(\log^2 |\mathcal{V}| \sqrt{\mathbb{E}[\mathcal{M}_N^2]}\right) \eta + \mathcal{O}\left(\frac{1}{\sqrt{|G|}}\right) + \mathcal{O}(\bar{\sigma}_{s_T,N}^2). \end{aligned}$$

1955 Therefore, we conclude that when $\eta = \frac{1}{\log |\mathcal{V}| \sqrt{N}}$, we achieve the optimal convergence rate:
1956

$$\begin{aligned} 1958 \quad & \frac{1}{N} \sum_{n=1}^N \sum_{s=0}^{K-1} \mathbb{E}[\|\nabla J(\theta_{n,s})\|^2] = \mathcal{O}\left(\frac{\log |\mathcal{V}| \sqrt{\mathbb{E}[\mathcal{M}_N^2]}}{\sqrt{N}}\right) + \mathcal{O}\left(\frac{1}{\sqrt{|G|}}\right) + \mathcal{O}(\bar{\sigma}_{s_T,N}^2). \end{aligned}$$

1961 With this, we complete the proof. \square
1962

1964 C.4.11 THE PROOF OF LEMMA C.7

1965 *Proof.* By calculation, we obtain
1966

$$\begin{aligned} 1967 \quad & \left\| \mathbf{1}_{\mathcal{D}(s_T, \theta, \theta_{\text{old}})} \frac{\nabla \mathbb{P}_\theta(s_T | s_0) - \nabla \mathbb{P}_{\theta_{\text{old}}}(s_T | s_0)}{\mathbb{P}_{\theta_{\text{old}}}(s_T | s_0)} \right\| \\ 1968 \quad & \leq \left\| \mathbf{1}_{\mathcal{D}(s_T, \theta, \theta_{\text{old}})} \frac{\mathbb{P}_\theta(s_T | s_0)}{\mathbb{P}_{\theta_{\text{old}}}(s_T | s_0)} \right\| \cdot \left\| \mathbf{1}_{\mathcal{D}(s_T, \theta, \theta_{\text{old}})} \frac{\nabla \mathbb{P}_\theta(s_T | s_0) - \nabla \mathbb{P}_{\theta_{\text{old}}}(s_T | s_0)}{\mathbb{P}_\theta(s_T | s_0)} \right\| \\ 1969 \quad & \leq \left\| \mathbf{1}_{\mathcal{D}(s_T, \theta, \theta_{\text{old}})} \frac{\mathbb{P}_\theta(s_T | s_0)}{\mathbb{P}_{\theta_{\text{old}}}(s_T | s_0)} \right\| \left\| \mathbf{1}_{\mathcal{D}(s_T, \theta, \theta_{\text{old}})} \nabla \log \mathbb{P}_{\theta_{\text{old}}}(s_T | s_0) \left(1 - \frac{\mathbb{P}_{\theta_{\text{old}}}(s_T | s_0)}{\mathbb{P}_\theta(s_T | s_0)}\right) \right\| \\ 1970 \quad & \quad + \left\| \mathbf{1}_{\mathcal{D}(s_T, \theta, \theta_{\text{old}})} (\nabla \log \mathbb{P}_\theta(s_T | s_0) - \nabla \log \mathbb{P}_{\theta_{\text{old}}}(s_T | s_0)) \right\| \\ 1971 \quad & \leq \left\| \mathbf{1}_{\mathcal{D}(s_T, \theta, \theta_{\text{old}})} \nabla \log \mathbb{P}_{\theta_{\text{old}}}(s_T | s_0) \left(\frac{\mathbb{P}_\theta(s_T | s_0)}{\mathbb{P}_{\theta_{\text{old}}}(s_T | s_0)} - 1 \right) \right\| + |s_T| L \|\theta - \theta_{\text{old}}\|. \end{aligned}$$

1972 Next, we employ the following elementary inequality to handle the term $\frac{\mathbb{P}_\theta(s_T | s_0)}{\mathbb{P}_{\theta_{\text{old}}}(s_T | s_0)} - 1$:
1973

$$1974 \quad |x - 1| \leq \frac{\epsilon_{\text{high}}}{\log(1 + \epsilon_{\text{high}})} |\log x|, \quad \forall x \in (0, 1 + \epsilon_{\text{high}}). \\ 1975$$

1976 This is a trivial result, and hence we omit the proof here.
1977

1978 By applying the above inequality, we further obtain
1979

$$\begin{aligned} 1980 \quad & \left\| \mathbf{1}_{\mathcal{D}(s_T, \theta, \theta_{\text{old}})} \frac{\nabla \mathbb{P}_\theta(s_T | s_0) - \nabla \mathbb{P}_{\theta_{\text{old}}}(s_T | s_0)}{\mathbb{P}_{\theta_{\text{old}}}(s_T | s_0)} \right\| \\ 1981 \quad & \leq \frac{\epsilon_{\text{high}}}{\log(1 + \epsilon_{\text{high}})} |\log \mathbb{P}_\theta(s_T | s_0) - \log \mathbb{P}_{\theta_{\text{old}}}(s_T | s_0)| \|\nabla \log \mathbb{P}_{\theta_{\text{old}}}(s_T | s_0)\| + |s_T| L \|\theta - \theta_{\text{old}}\| \\ 1982 \quad & \stackrel{\text{Lemma C.14}}{\leq} \frac{\epsilon_{\text{high}}}{\log(1 + \epsilon_{\text{high}})} (\|\nabla \log \mathbb{P}_{\theta_{\text{old}}}(s_T | s_0)\|^2 \|\theta - \theta_{\text{old}}\| + |s_T| L \|\nabla \log \mathbb{P}_{\theta_{\text{old}}}(s_T | s_0)\| \|\theta - \theta_{\text{old}}\|^2) \\ 1983 \quad & \quad + |s_T| L \|\theta - \theta_{\text{old}}\| \\ 1984 \quad & \stackrel{\text{Lemma C.13}}{\leq} |s_T| L \left(-\frac{2\epsilon_{\text{high}}}{\log(1 + \epsilon_{\text{high}})} \log \mathbb{P}_{\theta_{\text{old}}}(s_T | s_0) + 1 \right) \|\theta - \theta_{\text{old}}\| \\ 1985 \quad & \quad + \frac{\epsilon_{\text{high}}}{\log(1 + \epsilon_{\text{high}})} (|s_T| L)^{3/2} \sqrt{-\log \mathbb{P}_{\theta_{\text{old}}}(s_T | s_0)} \|\theta - \theta_{\text{old}}\|^2. \end{aligned}$$

1998 Next, summing over the relevant terms and applying *Jensen's* inequality, we obtain
 1999
 2000

$$\begin{aligned}
 & \mathbb{E} [\|\Delta_{g,1}(\theta, \theta_{\text{old}})\| \mid \mathcal{F}_{\theta_{\text{old}}}] \\
 & \leq 2R \sum_{s_T \in \mathcal{S}_T} \mathbb{E} \left[(\xi_G(s_T) + \mathbb{P}_{\theta_{\text{old}}}(s_T|s_0)) \left\| \mathbf{1}_{\mathcal{D}(s_T, \theta, \theta_{\text{old}})} \frac{\nabla \mathbb{P}_{\theta}(s_T|s_0) - \nabla \mathbb{P}_{\theta_{\text{old}}}(s_T|s_0)}{\mathbb{P}_{\theta_{\text{old}}}(s_T|s_0)} \right\| \mid \mathcal{F}_{\theta_{\text{old}}} \right] \\
 & \leq 4R \sum_{s_T \in \mathcal{S}_T} |s_T| \mathbb{E} \left[\mathbb{P}_{\theta_{\text{old}}}(s_T|s_0) L \left(-\frac{2\epsilon_{\text{high}}}{\log(1 + \epsilon_{\text{high}})} \log \mathbb{P}_{\theta_{\text{old}}}(s_T|s_0) + 1 \right) \|\theta - \theta_{\text{old}}\| \mid \mathcal{F}_{\theta_{\text{old}}} \right] \\
 & \quad + 4R \sum_{s_T \in \mathcal{S}_T} |s_T| \mathbb{E} \left[\mathbb{P}_{\theta_{\text{old}}}(s_T|s_0) \frac{\epsilon_{\text{high}}}{\log(1 + \epsilon_{\text{high}})} T^{3/2} L^{3/2} \sqrt{-\log \mathbb{P}_{\theta_{\text{old}}}(s_T|s_0)} \|\theta - \theta_{\text{old}}\|^2 \mid \mathcal{F}_{\theta_{\text{old}}} \right] \\
 & \stackrel{\text{Jensen's inequality}}{\leq} 4RLT \left(1 + \frac{\epsilon_{\text{high}}}{\log(1 + \epsilon_{\text{high}})} \log |\mathcal{V}| \right) \mathbb{E} [\|\theta - \theta_{\text{old}}\| \mid \mathcal{F}_{\theta_{\text{old}}}] \\
 & \quad + 4RT^{3/2} L^{3/2} \frac{\epsilon_{\text{high}}}{\log(1 + \epsilon_{\text{high}})} \sqrt{\log |\mathcal{V}|} \mathbb{E} [\|\theta - \theta_{\text{old}}\|^2 \mid \mathcal{F}_{\theta_{\text{old}}}].
 \end{aligned}$$

2017 With this, we complete the proof. □
 2018
 2019
 2020
 2021
 2022
 2023

C.4.12 THE PROOF OF LEMMA C.8

2026 *Proof.* We first focus on the event $\mathcal{D}^c(s_T, \theta, \theta_{\text{old}})$, for which we have:
 2027
 2028

$$\begin{aligned}
 \mathcal{D}^c(s_T, \theta, \theta_{\text{old}}) &= \left\{ \frac{\mathbb{P}_{\theta}(s_T|s_0)}{\mathbb{P}_{\theta_{\text{old}}}(s_T|s_0)} \geq 1 + \epsilon_{\text{high}} \right\} \\
 &\subset \{|\log \mathbb{P}_{\theta}(s_T|s_0) - \log \mathbb{P}_{\theta_{\text{old}}}(s_T|s_0)| \geq \log(1 + \epsilon_{\text{high}})\} \\
 &\stackrel{\text{Lemma C.14}}{\subset} \{ \|\nabla \log \mathbb{P}_{\theta_{\text{old}}}(s_T|s_0)\| \|\theta - \theta_{\text{old}}\| + |s_T| L \|\theta - \theta_{\text{old}}\|^2 \geq \log(1 + \epsilon_{\text{high}}) \}. \quad (30)
 \end{aligned}$$

2035
 2036 Then we clearly have
 2037

$$\begin{aligned}
 & \mathbb{E} [\|\Delta_{g,2}(\theta, \theta_{\text{old}})\| \mid \mathcal{F}_{\theta_{\text{old}}}] \\
 & \leq 4R \mathbb{E} \left[\sum_{s_T \in \mathcal{S}_T} (\xi_G(s_T) + \mathbb{P}_{\theta_{\text{old}}}(s_T|s_0)) \mathbf{1}_{\mathcal{D}^c(s_T, \theta, \theta_{\text{old}})} \|\nabla \log \mathbb{P}_{\theta_{\text{old}}}(s_T|s_0)\| \mid \mathcal{F}_{\theta_{\text{old}}} \right] \\
 & \stackrel{\text{Markov's inequality}}{\leq} \frac{4R}{\log(1 + \epsilon_{\text{high}})} \underbrace{\mathbb{E} \left[\sum_{s_T \in \mathcal{S}_T} (\xi_G(s_T) + \mathbb{P}_{\theta_{\text{old}}}(s_T|s_0)) \|\nabla \log \mathbb{P}_{\theta_{\text{old}}}(s_T|s_0)\|^2 \|\theta - \theta_{\text{old}}\| \mid \mathcal{F}_{\theta_{\text{old}}} \right]}_{O_1} \\
 & \quad + \frac{4LR}{\log(1 + \epsilon_{\text{high}})} \underbrace{\mathbb{E} \left[\sum_{s_T \in \mathcal{S}_T} (\xi_G(s_T) + \mathbb{P}_{\theta_{\text{old}}}(s_T|s_0)) \|\nabla \log \mathbb{P}_{\theta_{\text{old}}}(s_T|s_0)\| \|\theta - \theta_{\text{old}}\|^2 \mid \mathcal{F}_{\theta_{\text{old}}} \right]}_{O_2}.
 \end{aligned} \quad (31)$$

2052 We split the analysis into two parts. We first treat O_1 , we have
 2053

$$\begin{aligned}
 O_1 &\stackrel{\text{Cauchy-Schwarz inequality}}{\leq} \mathbb{E} \left[\sqrt{\sum_{s_T \in \mathcal{S}_T} (\xi_G(s_T) + \mathbb{P}_{\theta_{\text{old}}}(s_T|s_0)) \|\theta - \theta_{\text{old}}\|^2} \right. \\
 &\quad \times \left. \sqrt{\sum_{s_T \in \mathcal{S}_T} (\xi_G(s_T) + \mathbb{P}_{\theta_{\text{old}}}(s_T|s_0)) \|\nabla \log \mathbb{P}_{\theta_{\text{old}}}(s_T|s_0)\|^4 \mid \mathcal{F}_{\theta_{\text{old}}}} \right] \\
 &\stackrel{\text{Cauchy-Schwarz inequality}}{\leq} \sqrt{\mathbb{E} \left[\sum_{s_T \in \mathcal{S}_T} (\xi_G(s_T) + \mathbb{P}_{\theta_{\text{old}}}(s_T|s_0)) \|\theta - \theta_{\text{old}}\|^2 \mid \mathcal{F}_{\theta_{\text{old}}} \right]} \\
 &\quad \times \sqrt{\mathbb{E} \left[\sum_{s_T \in \mathcal{S}_T} (\xi_G(s_T) + \mathbb{P}_{\theta_{\text{old}}}(s_T|s_0)) \|\nabla \log \mathbb{P}_{\theta_{\text{old}}}(s_T|s_0)\|^4 \mid \mathcal{F}_{\theta_{\text{old}}} \right]} \\
 &= \sqrt{2 \mathbb{E} [\|\theta - \theta_{\text{old}}\|^2 \mid \mathcal{F}_{\theta_{\text{old}}}] \sqrt{\sum_{s_T \in \mathcal{S}_T} \|\nabla \log \mathbb{P}_{\theta_{\text{old}}}(s_T|s_0)\|^4 \mathbb{E} \left[(\xi_G(s_T) + \mathbb{P}_{\theta_{\text{old}}}(s_T|s_0)) \mid \mathcal{F}_{\theta_{\text{old}}} \right]}} \\
 &= 2 \sqrt{\mathbb{E} [\|\theta - \theta_{\text{old}}\|^2 \mid \mathcal{F}_{\theta_{\text{old}}}] \sqrt{\sum_{s_T \in \mathcal{S}_T} \mathbb{P}_{\theta_{\text{old}}}(s_T|s_0) \|\nabla \log \mathbb{P}_{\theta_{\text{old}}}(s_T|s_0)\|^4}} \\
 &\stackrel{\text{Lemma C.13}}{\leq} 4TL \sqrt{\mathbb{E} [\|\theta - \theta_{\text{old}}\|^2 \mid \mathcal{F}_{\theta_{\text{old}}}] \sqrt{\sum_{s_T \in \mathcal{S}_T} \mathbb{P}_{\theta_{\text{old}}}(s_T|s_0) |\log \mathbb{P}_{\theta_{\text{old}}}(s_T|s_0)|^2}} \\
 &\stackrel{\text{Lemma C.12}}{\leq} 4T^2 L \log |\mathcal{V}| \sqrt{\mathbb{E} [\|\theta - \theta_{\text{old}}\|^2 \mid \mathcal{F}_{\theta_{\text{old}}}]}.
 \end{aligned}$$

2073 For O_2 , by a similar argument we obtain
 2074

$$O_2 \leq 2\sqrt{2LT} \sqrt{\log |\mathcal{V}|} \sqrt{\mathbb{E} [\|\theta - \theta_{\text{old}}\|^4 \mid \mathcal{F}_{\theta_{\text{old}}}]}$$

2075 Substituting the above estimates for O_1 and O_2 into Eq. 31, we finally obtain
 2076

$$\begin{aligned}
 \mathbb{E} [\|\Delta_{g,2}(\theta, \theta_{\text{old}})\| \mid \mathcal{F}_{\theta_{\text{old}}}] &\leq \frac{4R}{\log(1 + \epsilon_{\text{high}})} \left[4T^2 L \log |\mathcal{V}| \sqrt{\mathbb{E} [\|\theta - \theta_{\text{old}}\|^2 \mid \mathcal{F}_{\theta_{\text{old}}}] \right. \\
 &\quad \left. + 2\sqrt{2}L^{3/2}T \sqrt{\log |\mathcal{V}|} \sqrt{\mathbb{E} [\|\theta - \theta_{\text{old}}\|^4 \mid \mathcal{F}_{\theta_{\text{old}}}]}} \right].
 \end{aligned}$$

2077 With this, we complete the proof. \square
 2078

2079 C.4.13 THE PROOF OF LEMMA C.9

2080 *Proof.* First, for the event $\mathcal{D}^c(s_T, \theta, \theta_{\text{old}})$, we have:
 2081

$$\begin{aligned}
 \mathcal{D}^c(s_T, \theta, \theta_{\text{old}}) &= \left\{ \frac{\mathbb{P}_{\theta}(s_T|s_0)}{\mathbb{P}_{\theta_{\text{old}}}(s_T|s_0)} \geq 1 + \epsilon_{\text{high}} \right\} \\
 &\subset \{|\log \mathbb{P}_{\theta}(s_T|s_0) - \log \mathbb{P}_{\theta_{\text{old}}}(s_T|s_0)| \geq \log(1 + \epsilon_{\text{high}})\} \\
 &\stackrel{\text{Lemma C.14}}{\subset} \{ \|\nabla \log \mathbb{P}_{\theta}(s_T|s_0)\| \|\theta - \theta_{\text{old}}\| + TL \|\theta - \theta_{\text{old}}\|^2 \geq \log(1 + \epsilon_{\text{high}}) \}.
 \end{aligned} \tag{32}$$

2082 Then by direct computation, we obtain
 2083

$$\begin{aligned}
 \mathbb{E} [\|\Delta_c(\theta, \theta_{\text{old}})\| \mid \mathcal{F}_{\theta_{\text{old}}}] &\leq 4R \sum_{s_T \in \mathcal{S}_T} \mathbb{E} [\mathbf{1}_{\mathcal{D}^c(s_T, \theta, \theta_{\text{old}})} \mathbb{P}_{\theta}(s_T \mid s_0) \|\nabla \log \mathbb{P}_{\theta}(s_T|s_0)\| \mid \mathcal{F}_{\theta_{\text{old}}}] \\
 &\stackrel{\text{Markov's inequality}}{\leq} \frac{4R}{\log(1 + \epsilon_{\text{high}})} \underbrace{\sum_{s_T \in \mathcal{S}_T} \mathbb{E} [\|\theta - \theta_{\text{old}}\| \mathbb{P}_{\theta}(s_T|s_0) \|\nabla \log \mathbb{P}_{\theta}(s_T|s_0)\|^2 \mid \mathcal{F}_{\theta_{\text{old}}}]}_{R_1} \\
 &\quad + \frac{4RLT}{\log(1 + \epsilon_{\text{high}})} \underbrace{\sum_{s_T \in \mathcal{S}_T} \mathbb{E} [\|\theta - \theta_{\text{old}}\|^2 \mathbb{P}_{\theta}(s_T|s_0) \|\nabla \log \mathbb{P}_{\theta}(s_T|s_0)\| \mid \mathcal{F}_{\theta_{\text{old}}}]}_{R_2}.
 \end{aligned} \tag{33}$$

2106 We divide the expression into two parts. For the first part R_1 , we have:
2107

$$\begin{aligned}
2108 \quad R_1 &\stackrel{\text{Cauchy-Schwarz inequality}}{\leq} \sqrt{\mathbb{E} \left[\sum_{s_T \in \mathcal{S}_T} \|\theta - \theta_{\text{old}}\|^2 \mathbb{P}_{\theta}(s_T | s_0) \middle| \mathcal{F}_{\theta_{\text{old}}} \right]} \\
2109 &\quad \times \sqrt{\mathbb{E} \left[\sum_{s_T \in \mathcal{S}_T} \mathbb{P}_{\theta}(s_T | s_0) \|\nabla \log \mathbb{P}_{\theta}(s_T | s_0)\|^4 \middle| \mathcal{F}_{\theta_{\text{old}}} \right]} \\
2110 &\stackrel{\text{Lemma C.13}}{\leq} 2L \sqrt{\mathbb{E} [\|\theta - \theta_{\text{old}}\|^2 | \mathcal{F}_{\theta_{\text{old}}}] \sqrt{\mathbb{E} \left[\sum_{s_T \in \mathcal{S}_T} \mathbb{P}_{\theta}(s_T | s_0) |\log \mathbb{P}_{\theta}(s_T | s_0)|^2 \middle| \mathcal{F}_{\theta_{\text{old}}} \right]}} \\
2111 &\stackrel{\text{Lemma C.12}}{\leq} 2T^2 L \log |\mathcal{V}| \sqrt{\mathbb{E} [\|\theta - \theta_{\text{old}}\|^2 | \mathcal{F}_{\theta_{\text{old}}}]}. \\
2112
\end{aligned}$$

2120 For O_2 , by a similar argument we obtain
2121

$$R_2 \leq 2\sqrt{2LT} \sqrt{\log |\mathcal{V}|} \sqrt{\mathbb{E} [\|\theta - \theta_{\text{old}}\|^4 | \mathcal{F}_{\theta_{\text{old}}}]}. \\ 2122$$

2123 Substituting the above estimates for R_1 and R_2 into Eq. 33, we finally obtain
2124

$$\begin{aligned}
2125 \quad &\mathbb{E} [\|\Delta_c(\theta, \theta_{\text{old}})\| | \mathcal{F}_{\theta_{\text{old}}}] \\
2126 &\leq \frac{4\sqrt{2}RLT^2}{\log(1 + \epsilon_{\text{high}})} \left(\sqrt{2} \log |\mathcal{V}| \sqrt{\mathbb{E} [\|\theta - \theta_{\text{old}}\|^2 | \mathcal{F}_{\theta_{\text{old}}}] + \sqrt{L} \log |\mathcal{V}| \sqrt{\mathbb{E} [\|\theta - \theta_{\text{old}}\|^4 | \mathcal{F}_{\theta_{\text{old}}}]}} \right). \\
2127
\end{aligned}$$

2128 With this, we complete the proof. \square
2129

2132 C.4.14 THE PROOF OF LEMMA C.10

2133 *Proof.* First, we know that
2134

$$B'_G(s_T) := A'_G(s_T) - \frac{1}{\sigma'_{\theta_{\text{old}}}} \left(\frac{r(s_T)}{|s_T|} - \mu'_{\theta_{\text{old}}} \right).$$

2135 Then, we can compute the following difference:
2136

$$\begin{aligned}
2137 \quad B'_G(s_T) &\leq \frac{|r(s_T)|}{|s_T|} \left| \frac{1}{\sigma_G + \delta} - \frac{1}{\sigma'_{\theta_{\text{old}}}} \right| + \left| \frac{\mu'_G}{\sigma_G + \delta} - \frac{\mu'_{\theta_{\text{old}}}}{\sigma'_{\theta_{\text{old}}}} \right| \\
2138 &\leq R \left| \frac{1}{\sigma_G + \delta} - \frac{1}{\sigma'_{\theta_{\text{old}}}} \right| + R \left| \frac{1}{\sigma_G + \delta} - \frac{1}{\sigma'_{\theta_{\text{old}}}} \right| + \frac{1}{\delta} |\mu'_G - \mu'_{\theta_{\text{old}}}| \\
2139 &= 2R \left| \frac{1}{\sigma_G + \delta} - \frac{1}{\sigma'_{\theta_{\text{old}}}} \right| + \frac{1}{\delta} |\mu'_G - \mu'_{\theta_{\text{old}}}| \\
2140 &\leq \frac{2R}{\delta^2} |\sigma_G - \sigma'_{\theta_{\text{old}}}| + \frac{1}{\delta} |\mu'_G - \mu'_{\theta_{\text{old}}}|. \\
2141
\end{aligned}$$

2142 By a straightforward calculation, we obtain
2143

$$\begin{aligned}
2144 \quad &\mathbb{E} \left[\sum_{s_T \in \mathcal{S}_T} \xi_G(s_T) B'^2_G(s_T) \middle| \mathcal{F}_{\theta_{\text{old}}} \right] \\
2145 &\leq \frac{4R^2}{\delta^4} \mathbb{E} \left[\sum_{s_T \in \mathcal{S}_T} \xi_G(s_T) (\sigma_G - \mathbb{E} [\sigma_G | \mathcal{F}_{\theta_{\text{old}}}])^2 \middle| \mathcal{F}_{\theta_{\text{old}}} \right] + \frac{1}{\delta^2} \mathbb{E} \left[\sum_{s_T \in \mathcal{S}_T} \xi_G(s_T) (\mu'_G - \mu'_{\theta_{\text{old}}})^2 \middle| \mathcal{F}_{\theta_{\text{old}}} \right] \\
2146 &\leq \frac{8R^2}{\delta^4 |G|} + \frac{1}{\delta^2} \frac{1}{|G|}. \\
2147
\end{aligned} \tag{34}$$

2160 Then we can estimate $\mathbb{E} [\|\Delta_s(\theta, \theta_{\text{old}})\| \mid \mathcal{F}_{\theta_{\text{old}}}]$. Specifically, we have

$$\begin{aligned} 2161 \mathbb{E} [\|\Delta_{s,1}(\theta, \theta_{\text{old}})\| \mid \mathcal{F}_{\theta_{\text{old}}}] \\ 2162 &\leq \sqrt{2TL} (1 + \epsilon_{\text{high}}) \sqrt{\sum_{s_T \in \mathcal{S}_T} \mathbb{E} \left[\xi_G(s_T) \|\log \mathbb{P}_\theta(s_T | s_0)\|^2 \mid \mathcal{F}_{\theta_{\text{old}}} \right]} \sqrt{\mathbb{E} \left[\sum_{s_T \in \mathcal{S}_T} \xi_G(s_T) B'_G(s_T) \mid \mathcal{F}_{\theta_{\text{old}}} \right]} \\ 2163 &= \mathcal{O} \left(\frac{1}{\sqrt{|G|}} \right). \end{aligned}$$

2164 With this, we complete the proof. \square

2171 C.4.15 THE PROOF OF LEMMA C.11

2172 *Proof.* For any $p \in \{1, 2, 4\}$, we can compute the following expression:

$$\begin{aligned} 2173 \|\theta_{n,s+1} - \theta_{n,s}\|^p &\leq \eta^p \left\| \sum_{s_T \in \mathcal{S}_T} \xi_G(s_T) \mathbf{1}_{\mathcal{D}(s_T, \theta_{n,s}, \theta_{n,0})} \frac{1}{|s_T|} \nabla (\text{ClipMin}(s_T, \theta_{n,s}, \theta_{n,0})) A'_G(s_T) \right\|^p \\ 2174 &\stackrel{\text{AM-GM inequality}}{\leq} \eta^p (2R)^p \underbrace{\sum_{s_T \in \mathcal{S}_T} \xi_G(s_T) \mathbf{1}_{\mathcal{D}(s_T, \theta_{n,s}, \theta_{n,0})} \left\| \frac{1}{|s_T|} \nabla (\text{ClipMin}(s_T, \theta_{n,s}, \theta_{n,0})) \right\|^p}_{\Theta_{n,s}}. \quad (35) \end{aligned}$$

2175 Next, we derive bounds for $\Theta_{n,s}$. As a consequence, we obtain

$$\begin{aligned} 2176 \Theta_{n,s} &\leq (1 + \epsilon_{\text{high}})^p \sum_{s_T \in \mathcal{S}_T} \xi_G(s_T) \left\| \frac{1}{|s_T|} \sum_{t=1}^T \nabla \log \mathbb{P}_{\theta_{n,s}}(s_t | s_{t-1}) \right\|^p \\ 2177 &\leq (1 + \epsilon_{\text{high}})^p \sum_{s_T \in \mathcal{S}_T} \xi_G(s_T) \frac{1}{|s_T|} \sum_{t=1}^T \|\nabla \log \mathbb{P}_{\theta_{n,s}}(s_t | s_{t-1})\|^p \\ 2178 &\leq (1 + \epsilon_{\text{high}})^p 2^{p-1} \sum_{s_T \in \mathcal{S}_T} \xi_G(s_T) \frac{1}{|s_T|} \sum_{t=1}^T \|\nabla \log \mathbb{P}_{\theta_{n,0}}(s_t | s_{t-1})\|^p \\ 2179 &\quad + (1 + \epsilon_{\text{high}})^p 2^{p-1} \sum_{s_T \in \mathcal{S}_T} \xi_G(s_T) \frac{1}{|s_T|} \sum_{t=1}^T \|\nabla \log \mathbb{P}_{\theta_{n,s}}(s_t | s_{t-1}) - \nabla \log \mathbb{P}_{\theta_{n,0}}(s_t | s_{t-1})\|^p \\ 2180 &\stackrel{\text{Lemma C.14}}{\leq} (1 + \epsilon_{\text{high}})^p 2^{p-1} \sum_{s_T \in \mathcal{S}_T} \xi_G(s_T) \frac{1}{|s_T|} \sum_{t=1}^T \|\nabla \log \mathbb{P}_{\theta_{n,0}}(s_t | s_{t-1})\|^p \\ 2181 &\quad + (1 + \epsilon_{\text{high}})^p 2^{p-1} L^p \sum_{s_T \in \mathcal{S}_T} \xi_G(s_T) \|\theta_{n,s} - \theta_{n,0}\|^p \\ 2182 &= (1 + \epsilon_{\text{high}})^p 2^{p-1} \sum_{s_T \in \mathcal{S}_T} \xi_G(s_T) \frac{1}{|s_T|} \sum_{t=1}^T \|\nabla \log \mathbb{P}_{\theta_{n,0}}(s_t | s_{t-1})\|^p \\ 2183 &\quad + (1 + \epsilon_{\text{high}})^p 2^{p-1} L^p \|\theta_{n,s} - \theta_{n,0}\|^p. \quad (36) \end{aligned}$$

2184 Taking the conditional expectation with respect to \mathcal{F}_{n-1} on both sides of the above inequality, we get:

$$\begin{aligned} 2185 \mathbb{E} [\Theta_{n,s} \mid \mathcal{F}_{n-1}] \\ 2186 &\leq (1 + \epsilon_{\text{high}})^p 2^{p-1} \left(\sum_{s_T \in \mathcal{S}_T} \mathbb{P}_{\theta_{n,0}}(s_T | s_0) \frac{1}{|s_T|} \sum_{t=1}^T \|\nabla \log \mathbb{P}_{\theta_{n,0}}(s_t | s_{t-1})\|^p + L^p \|\theta_{n,s} - \theta_{n,0}\|^p \right) \\ 2187 &\stackrel{\text{Lemma C.13}}{\leq} (1 + \epsilon_{\text{high}})^p 2^{p-1} \left((2L)^{p/2} \sum_{s_T \in \mathcal{S}_T} \mathbb{P}_{\theta_{n,0}}(s_T | s_0) \frac{1}{|s_T|} \sum_{t=1}^T |-\log \mathbb{P}_{\theta_{n,0}}(s_t | s_{t-1})|^{p/2} + L^p \|\theta_{n,s} - \theta_{n,0}\|^p \right) \\ 2188 &\stackrel{\text{Lemma C.12}}{\leq} (1 + \epsilon_{\text{high}})^p 2^{p-1} \left((2L)^{p/2} \log^{p/2} |\mathcal{V}| + L^p \mathbb{E} [\|\theta_{n,s} - \theta_{n,0}\|^p \mid \mathcal{F}_{n-1}] \right). \end{aligned}$$

2214 Substituting the above result into Eq. 35, we obtain
 2215

$$\begin{aligned} 2216 \quad & \mathbb{E} [\|\theta_{n,s+1} - \theta_{n,s}\|^p | \mathcal{F}_{n-1}] \\ 2217 \quad & \leq \eta^p (2R)^p (1 + \epsilon_{\text{high}})^p 2^{p-1} \left((2L)^{p/2} \log^{p/2} |\mathcal{V}| + L^{p/2} \mathbb{E} [\|\theta_{n,s} - \theta_{n,0}\|^p | \mathcal{F}_{n-1}] \right). \quad (37) \\ 2218 \end{aligned}$$

2219 We now consider
 2220

$$\sum_{s=0}^K \mathbb{E} [\|\theta_{n,s+1} - \theta_{n,0}\|^p | \mathcal{F}_{n-1}]$$

2224 and obtain

$$\begin{aligned} 2225 \quad & \sum_{s=1}^K \mathbb{E} [\|\theta_{n,s} - \theta_{n,0}\|^p | \mathcal{F}_{n-1}] \\ 2226 \quad & \stackrel{\text{AM-GM inequality}}{\leq} \sum_{s=1}^K s^{p-1} \sum_{k=1}^s \mathbb{E} [\|\theta_{n,k} - \theta_{n,k-1}\|^p | \mathcal{F}_{n-1}] \\ 2227 \quad & \stackrel{\text{Eq. 37}}{\leq} \sum_{s=1}^K s^{p-1} \sum_{k=1}^s \eta^p (2R)^p (1 + \epsilon_{\text{high}})^p 2^{p-1} \left((2L)^{p/2} \log^{p/2} |\mathcal{V}| + L^{p/2} \mathbb{E} [\|\theta_{n,k-1} - \theta_{n,0}\|^p | \mathcal{F}_{n-1}] \right) \\ 2228 \quad & \leq K^{p+1} \eta^p (2R)^p (1 + \epsilon_{\text{high}})^p 2^{p-1} (2L)^{p/2} \log^{p/2} |\mathcal{V}| \\ 2229 \quad & + K^p \eta^p (2R)^p (1 + \epsilon_{\text{high}})^p 2^{p-1} L^p \sum_{s=1}^K \mathbb{E} [\|\theta_{n,s} - \theta_{n,0}\|^p | \mathcal{F}_{n-1}]. \\ 2230 \quad & \end{aligned}$$

2231 Since we have the following condition on the learning rate η :
 2232

$$\eta \leq \frac{1}{4K(1 + \epsilon_{\text{high}})RL}.$$

2233 Hence we can further obtain
 2234

$$\begin{aligned} 2235 \quad & \sum_{s=1}^K \mathbb{E} [\|\theta_{n,s} - \theta_{n,0}\|^p | \mathcal{F}_{n-1}] \\ 2236 \quad & \leq K^{p+1} \eta^p (2R)^p (1 + \epsilon_{\text{high}})^p 2^{p-1} (2L)^{p/2} \log^{p/2} |\mathcal{V}| \\ 2237 \quad & + K^p \eta^p (2R)^p (1 + \epsilon_{\text{high}})^p 2^{p-1} L^p \sum_{s=1}^K \mathbb{E} [\|\theta_{n,s} - \theta_{n,0}\|^p | \mathcal{F}_{n-1}] \\ 2238 \quad & \leq K^{p+1} \eta^p (2R)^p (1 + \epsilon_{\text{high}})^p 2^{p-1} (2L)^{p/2} \log^{p/2} |\mathcal{V}| \\ 2239 \quad & + \frac{1}{2} \sum_{s=1}^K \mathbb{E} [\|\theta_{n,s} - \theta_{n,0}\|^p | \mathcal{F}_{n-1}], \\ 2240 \quad & \end{aligned}$$

2241 which means,
 2242

$$\sum_{s=1}^K \mathbb{E} [\|\theta_{n,s} - \theta_{n,0}\|^p | \mathcal{F}_{n-1}] \leq K^{p+1} \eta^p (2R)^p (1 + \epsilon_{\text{high}})^p 2^p (2L)^{p/2} \log^{p/2} |\mathcal{V}|.$$

2243 With this, we complete the proof. □
 2244

2245 C.4.16 THE PROOF OF THEOREM 5.2

2246 *Proof.* First we focus on
 2247

$$(J^* - J(\theta_{n+1,0})) - (J^* - J(\theta_{n,0})).$$

2268 To handle this, we invoke Lemma C.1. In particular, we have
 2269

$$\begin{aligned}
 2271 \quad & (J^* - J(\theta_{n+1,0})) - (J^* - J(\theta_{n,0})) \\
 2272 \leq & -\nabla J(\theta_{n,0})^\top (\theta_{n+1,0} - \theta_{n,0}) + \frac{RL}{2} (2T \log |\mathcal{V}| + 1) \|\theta_{n+1,0} - \theta_{n,0}\|^2 \\
 2273 = & -\eta \underbrace{\sum_{s=0}^{K-1} \nabla J(\theta_{n,0})^\top \nabla \mathcal{L}_{\text{TIC-GRPO}}(\theta_{n,s}, \theta_{n,0})}_{X_n} + \frac{RL}{2} (2T \log |\mathcal{V}| + 1) \|\theta_{n+1,0} - \theta_{n,0}\|^2. \quad (38)
 \end{aligned}$$

2280 Then we get that
 2281

$$\begin{aligned}
 2283 \quad X_n & \stackrel{\text{Eq. 15}}{=} -\frac{\eta}{\sigma_{\theta_{n,0}}} \sum_{s=0}^{K-1} \nabla J(\theta_{n,0})^\top \nabla J(\theta_{n,s}) - \underbrace{\frac{\eta}{\sigma_{\theta_{n,0}}} \sum_{s=0}^{K-1} \nabla J(\theta_{n,0})^\top M_{\theta_{n,0},1}}_{M_n} \\
 2284 & - \frac{\eta}{\sigma_{\theta_{n,0}}} \sum_{s=0}^{K-1} \nabla J(\theta_{n,0})^\top (\Delta_{g,1}(\theta_{n,s}, \theta_{n,0}) + \Delta_{g,2}(\theta_{n,s}, \theta_{n,0}) + \Delta_c(\theta_{n,s}, \theta_{n,0}) + \Delta_s(\theta_{n,s}, \theta_{n,0})) \\
 2285 & = -\frac{\eta}{2R} \sum_{s=0}^{K-1} \|\nabla J(\theta_{n,s})\|^2 + \frac{\eta}{\sigma_{\theta_{n,0}}} \sum_{s=0}^{K-1} \nabla J(\theta_{n,s})^\top (\nabla J(\theta_{n,0}) - \nabla J(\theta_{n,s})) \\
 2286 & - \frac{\eta}{\sigma_{\theta_{n,0}}} \sum_{s=0}^{K-1} \nabla J(\theta_{n,0})^\top (\Delta_{g,1}(\theta_{n,s}, \theta_{n,0}) + \Delta_{g,2}(\theta_{n,s}, \theta_{n,0}) + \Delta_c(\theta_{n,s}, \theta_{n,0}) + \Delta_s(\theta_{n,s}, \theta_{n,0})) \\
 2287 & + M_n \\
 2288 & \stackrel{\text{Lemma C.2}}{\leq} -\frac{\eta}{2R} \sum_{s=0}^{K-1} \|\nabla J(\theta_{n,s})\|^2 + \frac{\eta}{\delta} \sqrt{2L} R^2 \sqrt{\log |\mathcal{V}|} (2 \log |\mathcal{V}| + 1) L \sum_{s=0}^{K-1} \|\theta_{n,s} - \theta_{n,0}\| \\
 2289 & + \frac{\eta}{\delta} \sqrt{2L} R \sqrt{\log |\mathcal{V}|} \sum_{s=0}^{K-1} (\|\Delta_{g,1}(\theta_{n,s}, \theta_{n,0})\| + \|\Delta_{g,2}(\theta_{n,s}, \theta_{n,0})\| + \|\Delta_c(\theta_{n,s}, \theta_{n,0})\| + \|\Delta_s(\theta_{n,s}, \theta_{n,0})\|) \\
 2290 & + M_n.
 \end{aligned}$$

2306 It can be observed that the sequence $\{M_n, \mathcal{F}_n\}_{n \geq 1}$ constitutes a martingale difference sequence.
 2307 Taking the conditional expectation with respect to \mathcal{F}_{n-1} on both sides of the above inequality, we
 2308 obtain

$$\begin{aligned}
 2310 \quad & \mathbb{E}[X_n | \mathcal{F}_{n-1}] \\
 2311 \leq & -\frac{\eta}{2R} \sum_{s=0}^{K-1} \mathbb{E}[\|\nabla J(\theta_{n,s})\|^2 | \mathcal{F}_{n-1}] + \frac{3\sqrt{2}\eta}{\delta} L^{3/2} \log^{3/2} |\mathcal{V}| \sum_{s=0}^{K-1} \mathbb{E}[\|\theta_{n,s} - \theta_{n,0}\| | \mathcal{F}_{n-1}] \\
 2312 & + \frac{\eta}{\delta} \sqrt{2L} R \sqrt{\log |\mathcal{V}|} \sum_{s=0}^{K-1} (\mathbb{E}[\|\Delta_{g,1}(\theta_{n,s}, \theta_{n,0})\| | \mathcal{F}_{n-1}] + \mathbb{E}[\|\Delta_{g,2}(\theta_{n,s}, \theta_{n,0})\| | \mathcal{F}_{n-1}] \\
 2313 & + \mathbb{E}[\|\Delta_c(\theta_{n,s}, \theta_{n,0})\| | \mathcal{F}_{n-1}] + \mathbb{E}[\|\Delta_s(\theta_{n,s}, \theta_{n,0})\| | \mathcal{F}_{n-1}]) .
 \end{aligned}$$

2318 Substituting into the above inequality the results on $\mathbb{E}[\|\Delta_{g,1}(\theta_{n,s}, \theta_{n,0})\| | \mathcal{F}_{n-1}]$,
 2319 $\mathbb{E}[\|\Delta_{g,2}(\theta_{n,s}, \theta_{n,0})\| | \mathcal{F}_{n-1}]$, $\mathbb{E}[\|\Delta_c(\theta, \theta_{\text{old}})\| | \mathcal{F}_{n-1}]$, and $\mathbb{E}[\|\Delta_s(\theta, \theta_{\text{old}})\| | \mathcal{F}_{n-1}]$ from Lemmas

2322 C.15, C.8, C.9, and C.10, respectively, we obtain
 2323
 2324 $\mathbb{E}[X_n | \mathcal{F}_{n-1}]$
 2325 $\leq -\frac{\eta}{2R} \sum_{s=0}^{K-1} \mathbb{E}[\|\nabla J(\theta_{n,s})\|^2 | \mathcal{F}_{n-1}] + \mathcal{O}(\log^{3/2} |\mathcal{V}|) \eta \sum_{s=0}^{K-1} \mathbb{E}[\|\theta_{n,s} - \theta_{n,0}\| | \mathcal{F}_{n-1}]$
 2326
 2327
 2328 $+ \mathcal{O}(\sqrt{\log |\mathcal{V}|}) \sum_{s=0}^{K-1} \mathbb{E}[\|\theta_{n,s} - \theta_{n,0}\|^2 | \mathcal{F}_{n-1}] + \mathcal{O}(\log |\mathcal{V}|) \eta \sqrt{\sum_{s=0}^{K-1} \mathbb{E}[\|\theta_{n,s} - \theta_{n,0}\|^2 | \mathcal{F}_{n-1}]}$
 2329
 2330
 2331 $+ \mathcal{O}(\log |\mathcal{V}|) \sqrt{\sum_{s=0}^{K-1} \mathbb{E}[\|\theta_{n,s} - \theta_{n,0}\|^4 | \mathcal{F}_{n-1}]} + \mathcal{O}\left(\frac{1}{\sqrt{|G|}}\right) \eta\right).$
 2332
 2333
 2334 Note that the quantities hidden in the \mathcal{O} notation are constants depending only on other parameters
 2335 of the problem and are independent of the iteration number n .
 2336
 2337 Then, substituting the estimate for

$$\sum_{s=1}^K \mathbb{E}[\|\theta_{n,s} - \theta_{n,0}\|^p | \mathcal{F}_{n-1}], \quad p \in \{1, 2, 4\}$$

2341 from Lemma C.11 into the above expression, we finally obtain

$$\mathbb{E}[X_n | \mathcal{F}_{n-1}] \leq -\frac{\eta}{2R} \sum_{s=0}^{K-1} \mathbb{E}[\|\nabla J(\theta_{n,s})\|^2 | \mathcal{F}_{n-1}] + \mathcal{O}(\log^2 |\mathcal{V}| \eta^2) + \mathcal{O}\left(\frac{1}{\sqrt{|G|}}\right) \eta.$$

2345 Substituting the above expression into Eq. 38, we finally obtain

$$\begin{aligned} \mathbb{E}[(J^* - J(\theta_{n+1,0})) - (J^* - J(\theta_{n,0})) | \mathcal{F}_{n-1}] \\ \leq -\frac{\eta}{2R} \sum_{s=0}^{K-1} \mathbb{E}[\|\nabla J(\theta_{n,s})\|^2 | \mathcal{F}_{n-1}] + \mathcal{O}(\log^2 |\mathcal{V}| \eta^2) \\ + \mathcal{O}\left(\frac{\log |\mathcal{V}|}{|G|^{1/4}}\right) \eta + \frac{1}{2} (2TL \log |\mathcal{V}| + L) \mathbb{E}[\|\theta_{n+1,0} - \theta_{n,0}\|^2 | \mathcal{F}_{n-1}] \\ \leq -\frac{\eta}{2R} \sum_{s=0}^{K-1} \mathbb{E}[\|\nabla J(\theta_{n,s})\|^2 | \mathcal{F}_{n-1}] + \mathcal{O}(\log^2 |\mathcal{V}| \eta^2) + \mathcal{O}\left(\frac{1}{\sqrt{|G|}}\right) \eta \\ + \frac{1}{2} (2TL \log |\mathcal{V}| + L) \sum_{s=1}^K \mathbb{E}[\|\theta_{n,s} - \theta_{n,0}\|^2 | \mathcal{F}_{n-1}] \\ \stackrel{\text{Lemma C.11}}{\leq} -\frac{\eta}{2R} \sum_{s=0}^{K-1} \mathbb{E}[\|\nabla J(\theta_{n,s})\|^2 | \mathcal{F}_{n-1}] + \mathcal{O}(\log^2 |\mathcal{V}| \eta^2) + \mathcal{O}\left(\frac{1}{\sqrt{|G|}}\right) \eta. \end{aligned}$$

2361 Taking expectation on both sides of the above inequality, we obtain

$$\begin{aligned} \mathbb{E}[J^* - J(\theta_{n+1,0})] - \mathbb{E}[J^* - J(\theta_{n,0})] \\ \leq -\frac{\eta}{2R} \sum_{s=0}^{K-1} \mathbb{E}[\|\nabla J(\theta_{n,s})\|^2] + \mathcal{O}(\log^2 |\mathcal{V}| \eta^2) + \mathcal{O}\left(\frac{1}{\sqrt{|G|}}\right) \eta. \end{aligned}$$

2367 Summing the above inequality over the index n from 1 to N , we finally obtain

$$\frac{1}{N} \sum_{n=1}^N \sum_{s=0}^{K-1} \mathbb{E}[\|\nabla J(\theta_{n,s})\|^2] = \mathcal{O}\left(\frac{1}{N\eta}\right) + \mathcal{O}(\log^2 |\mathcal{V}| \eta) + \mathcal{O}\left(\frac{1}{\sqrt{|G|}}\right).$$

2371 Therefore, we conclude that when $\eta = \frac{1}{\log |\mathcal{V}| \sqrt{N}}$, we achieve the optimal convergence rate:

$$\frac{1}{N} \sum_{n=1}^N \sum_{s=0}^{K-1} \mathbb{E}[\|\nabla J(\theta_{n,s})\|^2] = \mathcal{O}\left(\frac{\log |\mathcal{V}|}{\sqrt{N}}\right) + \mathcal{O}\left(\frac{1}{\sqrt{|G|}}\right).$$

2375 With this, we complete the proof. \square