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ABSTRACT

Group Relative Policy Optimization (GRPO), recently introduced by DeepSeek,
is a critic-free reinforcement learning algorithm for fine-tuning large language
models. GRPO replaces the value function in Proximal Policy Optimization (PPO)
with group-normalized rewards while retaining PPO-style token-level importance
sampling based on an old policy. We show that the GRPO update rule actually
estimates the policy gradient at the old policy rather than the current one; however,
because the old policy is refreshed every few steps, the gap remains small and the
resulting bias is negligible in practice. To validate this, we perform an ablation
study that removes importance sampling entirely and instead applies gradients
estimated at a fixed old policy across multiple optimization steps. Remarkably,
this simplified approach achieves performance comparable to standard GRPO.

Motivated by these findings, we propose a new algorithm: Trajectory level Im-
portance Corrected GRPO (TIC-GRPO). TIC-GRPO replaces token level impor-
tance ratios with a single trajectory level probability ratio, yielding an unbiased
estimate of the current policy gradient while preserving the critic free structure.
Furthermore, we present the first theoretical convergence analysis for GRPO style
methods, covering both the original GRPO and our proposed variant.

1 INTRODUCTION

Reinforcement learning from human feedback (RLHF) (Zhu et al., 2023} Bai et al.| [2022; |Green-
blatt et al., 2024) has become a standard technique for aligning large language models (LLMs)
with desired behaviors. Among RLHF approaches, Proximal Policy Optimization (PPO) (Schulman
et al.l 2017) is widely adopted but requires training an additional value network (critic), making
it resource-intensive and difficult to scale. To address this, recent work proposed Group Relative
Policy Optimization (GRPO) (Shao et al., [2024), a critic-free alternative that estimates advantages
through group-wise reward normalization while retaining PPO-style importance sampling with re-
spect to an old policy. Owing to its simplicity and effectiveness, GRPO has been integrated into
several open-source RLHF pipelines.

Despite its empirical success, the theoretical properties of GRPO remain underexplored. In partic-
ular, GRPO employs token-level importance sampling against the old policy, yet its update rule is
not a direct estimator of the current policy gradient. We show that the practical GRPO update in
fact corresponds to the policy gradient evaluated at the old policy 7,4, plus a bias term induced by
the mismatch between 7 and my4. This bias is typically small in practice because 74 is refreshed
to the current policy every few optimization steps (e.g., every 4—10), limiting divergence. An abla-
tion study confirms this intuition: when we entirely remove importance sampling and, within each
inner loop, perform all updates using gradients estimated at 7,q before refreshing it, the resulting
performance remains comparable to that of standard GRPO.

Motivated by this, we propose TIC-GRPO: replace token-level importance weights with trajectory-
level ratios, and further introduce two lightweight modifications—Ilength-corrected group normal-
ization and upper-only clipping—which together yield a stable, unbiased, and memory-efficient
update. Furthermore, we present the first theoretical convergence analysis for GRPO-style meth-
ods, covering both the original GRPO and our proposed variant. Finally, we validate TIC-GRPO
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on two standard alignment benchmark AIME. Our experiments show that TIC-GRPO significantly
outperforms standard GRPO in both accuracy and convergence rate.

Contributions This paper makes the following key contributions:

* We analyze the practical update rule of GRPO and show that it estimates the policy gradient
at the old policy meq, not the current one. We further explain why this approximation
remains effective in practice due to limited policy drift.

* We propose a new algorithm, TIC-GRPO, which replaces token-level importance sampling
with a single trajectory-level ratio. In addition, it incorporates two minor modifications:
the Length-Corrected Group Normalization Regularizer and the Upward-Only Clipping
Mechanism.

* We provide the first theoretical convergence analysis for GRPO-style methods, including
both the original GRPO and our variant.

* We empirically validate TIC-GRPO on the AIME dataset, demonstrating consistent im-
provements in accuracy and convergence speed over the original GRPO. Ablation studies
further show that our two minor modifications are effective even when applied individually
on the token-level clipping mechanism.

Related Work A recent concurrent work by Zheng et al.|(2025) proposes a similar idea of replac-
ing token-level importance sampling in GRPO with a trajectory-level formulation, named Group
Sequence Policy Optimization (GSPO). Importantly, their work was developed independently and
concurrently with ours.

In comparison, our work provides a more detailed explanation of why the original GRPO update
remains effective in practice despite its inherent bias, which we attribute to the limited policy drift
arising from frequent updates to the old policy. Moreover, we present the first theoretical conver-
gence analysis for GRPO-style methods. Our algorithm also differs in implementation details: we do
not apply sequence-length square-root scaling to the importance sampling, and we adopt a modified
clipping mechanism. In Section [6]and Appendix [A] we include GSPO as a baseline for comparison
and empirically observe that our method outperforms it.

Another important baseline considered in this work is the Decoupled Clip and Dynamic Sampling
Policy Optimization (DAPO) algorithm (Yu et al.| 2025).

2 PRELIMINARIES: REINFORCEMENT LEARNING FOR LLMsS AND GRPO

We begin by formalizing the reinforcement learning (RL) setup used for aligning large language
models (LLMs) and by reviewing the GRPO algorithm recently proposed by DeepSeek.

2.1 REINFORCEMENT LEARNING IN COT REASONING

We model Chain-of-Thought (CoT) reasoning as a sequential decision-making process under an RL
framework. Let sq denote the initial prompt. At each time step ¢, the language model generates a
token a; € V from a vocabulary V, forming an evolving reasoning chain

¢t = (s0,a1,az,...,at),
which we refer to as the partial chain or intermediate reasoning state.

To ensure consistent representation across time, each intermediate chain c; is embedded into a fixed-
dimensional space R7*¢ by zero-padding the remaining positions:
T
st = (so,a1,...,a¢, 0,...,0 )" .
——
(T'—t) tokens

Thus, all reasoning states share the same dimensionality, and the policy network at each step takes
the zero-padded full chain s; (as an element of RT*dy ag its input. Different from conventional
RL formulations—where the policy is typically parameterized on the current local state or a single
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token—our framework conditions the policy on the entire reasoning chain up to time ¢. This design
enables the model to exploit global contextual dependencies across all preceding reasoning steps
when generating the next token. We denote the final state after the reasoning sequence by s7.

Unlike conventional RL environments with dense or intermediate rewards, CoT reasoning provides
a single, sparse reward observed only at the final step T, typically reflecting task correctness or
logical validity. This structure introduces a long-horizon credit assignment challenge: intermediate
reasoning steps receive no direct feedback, yet they critically determine the final outcome.

We parameterize the model policy mp(a | s) as the probability of generating token a given the
current padded chain s € R”*?, and define the expected return as

J(0) = Esprmy [r(s7)] = BKL(mg || Trer),

where r(s7) denotes the final reward assigned to the complete chain, and the KL regularization
term constrains the policy to remain close to a reference model 7. The objective is optimized via
gradient ascent. Notably, many popular algorithms for LLM alignment, such as PPO and the more
recent GRPO family, share this gradient-ascent foundation; their primary distinctions lie in how they
efficiently estimate and stabilize the underlying policy gradient.

Since the reward is observed only at the final timestep, the policy gradient takes the form
VoJ(0) =Eqpn, [Vologmg(st) r(s7)] —BVeKL(7g || Teef),

Policy Gradient Term

where 7o (sT) = H;T:l mo(ar | s¢—1) denotes the trajectory probability.

This formulation captures the essence of reasoning as trajectory optimization: each CoT reasoning
chain corresponds to a sequence of actions optimized for correctness under delayed reward feed-
back. It provides a principled framework for analyzing how RL fine-tuning enables LLMs to extend
reasoning depth, stability, and coherence.

2.1.1 CONNECTION TO CONVENTIONAL REINFORCEMENT LEARNING

Although the reward in CoT reasoning is only provided at the final step, the framework can be
naturally related to conventional RL formulations. By expanding the joint trajectory probability as

T
To(sT) = Hﬂ'ﬁ(at | s¢-1),
t=1

the log-probability decomposes into a token-wise sum:

T
log mg(sT) = Zlogm(at | st—1).
=1

Substituting this into the policy gradient yields

Policy Gradient Term = E,., [Z r(sT) Vologmg(ay | stl)] ) (1)

t=1

The final-step reward r(sr) can thus be interpreted through the lens of the classical policy gradient
theorem, which states that

T

Policy Gradient Term = E;,.r, lz Q(st—1,a:) Vologmg(ay | st_l)] ,
t=1

where Q(s¢—1, a;) denotes the state—action value function. By comparing Eq. [I| with the classical

form, we observe that the broadcasted reward r(s7) serves the same functional role as Q(s;—1, at)

in the traditional policy gradient. Indeed, r(s7) can be viewed as an unbiased estimator of the true

state—action value, since

Egpmmg [7(sT) | 50,Q1,02, ..., ar] = Q(s¢—1,az).
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This observation reveals that CoT-RL can be regarded as a degenerate instance of standard RL,
in which the return signal is available only at the terminal step and uniformly propagated to all
preceding actions. Such equivalence provides a theoretical bridge connecting reasoning-oriented
fine-tuning with classical policy-gradient theory.

Proposed research: theoretical guarantees of PG with autoregressive policy and trajectory re-
wards. The function approximation of an LLM policy takes a autoregressive form which has not
been taken into account previously in standard RL. This task aims to first develop a convergence
theory of PG methods by explicitly leveraging the autoregressive nature of the policy, and under-
stand the impact of different forms of state space regularizations on the convergence, such as length
regularization and format regularization. In addition, in the standard analysis of PG methods, it is
often assumed the reward is provided at every step of the rollout trajectory, which facilitates the
evaluation of the policy gradients and value functions. However, to avoid reward hacking, LLM rea-
soning typically only relies on the terminal reward at the end of the trajectory, which evaluates the
correctness of the final answer. An intriguing question is how the credit assignment of the terminal
reward such as in our preliminary work ? impacts the policy gradient updates of an autoregressive
policy, which we aim to investigate using the symbolic reasoning task in Thrust 1.

Proposed research: emergence of test-time scaling. One intriguing empirical behavior of RL is
that the length of the CoT traces increases during training without explicit regularization ?. The
proposed task aims to provide theoretical understanding to this phenomenon, by using the LEGO
task studied in Thrust 1 task 1a. Recall that our preliminary work ? has established that a curriculum
of self-labeled dataset with increasing lengths can bootstrap longer reasoning capabilities. We spec-
ulate that if we train RL directly over all problem lengths, the model will first obtain signals from
the easiest task in the dataset (which requires shorter CoT), and learn through an implicit curriculum
via gradually being able to complete the increasingly difficult task in the series of tasks (requiring
longer CoT). The proposed research task will formalize this intuition and provide a rigorous anal-
ysis, which will lead to better understanding of the emergence of test-time scaling via the lens of
training dynamics.

2.2 SETUP

Let sg denote the initial prompt. At each time step ¢, the large language model generates a token
a; € V, where V denotes the vocabulary. Each token in V is represented as a vector in R, Then
we define the state at time ¢ as s} := (g, a1,...,a;) | € R¥*< To ensure consistent dimensionality
across time steps, we embed each state into a fixed-dimensional space R” *¢ via zero-padding:

o T
St 1= (5070,17...,@,5, 0,...,0 ) )
——
(T —t) tokens

where the final T' — t entries are zero vectors in R%. We also let S; denote the set of all possible
states s;. We readily observe the following inclusion relation:

S CSC...CSr.

In the CoT reasoning setting, we assume a predefined reward function
r(s) : RT*4 5 R,

which evaluates the quality of a complete generated state s. The rewards are sparse and provided
only at the final step, i.e., whent = T.

The core of an CoT reasoning is the parameterized policy. We write
mo(a | s) : R x RY x RT*4 — [0, 1]

to denote the probability of generating a token a € R? given the current state s € R7*¢ under model
parameters § € R'. Since the token a; output by the model at time step ¢ together with the previous
state s;—1 uniquely determines the state s;, we have the identity Py(s; | s;1—1) = mo(as | si—1).
Here, Py(s; | s;—1) : Rt x RTX4 x RT*d — [0, 1] denotes the conditional probability of the current
state s, given the previous state s,_1, under parameters § € R'.
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We now define the trajectory probability and value function. The joint probability of generating a
full trajectory under policy 7 is given by:

Py(st | s0) = HP95t|5t1

The goal is to maximize the expected return:

J(0) = Eaprrm, [r(s7)] = KL(mg||m0,.) = > Polsrlso)r(sr) — KL(mg|me,). ()

sTEST

Here |st| denotes the length of the response st. The length |sr| is determined by the stop token:
if the stop token appears before 7', the generation terminates at that token. Moreover, for any 0, we
stipulate that the parameterized policy g maps every state containing a stop token consistently to
the stop token.

Because the reward of any meaningful reinforcement learning problem is necessarily bounded, the
value function J(6), (¢ € R?) admits a theoretical maximum, which we denote by J*.

The optimization of .J(6) typically follows a gradient ascent (GA) scheme (Yuan et al.,[2022; Zhang
et al., [2020)}

6n+1 = 977, + ernJ(en)7
with learning rate 1. Algorithms like PPO and GRPO build on this principle with various modifica-
tions to improve performance.

In CoT reasoning setting, since the reward r(sr) is assigned only at the final timestep and does not
depend on 6, the policy gradient simplifies as:

VI0)= 3 (VP(srls0) r(s7) = Eupmn, (V1o Bo(srls0)) r(s7)]. ()

sTEST

Notation. Throughout the remainder of the paper, V denotes gradients with respect to 0 (or 0y),
unless explicitly stated otherwise.

2.3 REVIEW OF GROUP RELATIVE POLICY OPTIMIZATION (GRPO)

Group Relative Policy Optimization (GRPO), recently proposed by DeepSeek, is a reinforcement
learning algorithm for aligning LLMs without a value-function critic. Instead of computing global
advantage estimates, GRPO uses relative rewards within a group of candidate responses to estimate
local advantage. Like PPO, GRPO employs a decoupled optimization structure: the old policy 7,
is held fixed while the current policy 7y is updated over multiple gradient steps using the same batch
of trajectories, improving sample efficiency.

For the convenience of the subsequent analysis, we define the o-algebra generated by 84 as Foq :=

0(0o1a). Given a prompt s, the old policy mp,, generates a group G = {sgp1 ), cey SQGD} of full
responses. For the convenience of the subsequent analysis, we define a random variable {(+) :
St — [0, 1] that uniquely determines the group sampling. Specifically, if a state st appears w times
in the sample G, then

§alst) =
\G X
With this definition, the summation over the group can be written in the following form:

|G

|G|Zf s =Y ealsr) fsr),

sTEST

where f : Sp — R is any test function. Moreover, we shall denote this family of vectors uniformly
by

€006 = (Ec(57)) ,, cs, - 4)

"We use gradient ascent as the goal is to maximize .J(6). Gradient descent is equivalent up to a sign change.
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GRPO then computes normalized advantages within the group as:

AG(ST)ZT(UG%7 = > &alsr)r(sr), O'G—\/ > alsr)(r(sr) — pa)?,

sTEST sTEST

where § is a smoothing factor to prevent the denominator from approaching zero. The group-
normalized advantages Ag(sr) are then used to construct the objective function.

Optimization objective With my_, held fixed, we optimize

old

Larro (8, 0o1a) = Z Ea(sT)

sTEST

T
1 o
‘ST| E Chlen (3t7 67 eold) . (5)
t=1

Here,

ClipMil’l (St, 9, Hold)
. P0(5t|3t71) . ( P6(5t|5t71) ) }
= min{ —————Ag(s7), Cli ——————— €low €hi Ag(s 6
{Pemd(sﬂst—l) c(sr), Clip P, (selse_1) " e clr) ©

with the clipping function

1— €low T < 1- €low
Clip(w, €ow; €hign) = 4 T, 1 —€low <@ <1+ enigh,

1+ €high, £ > 1+ €high-

In Eq[5] note that since the large language model degenerates to the identity mapping after the stop
token, all terms between |s7| and T vanish.

Therefore, the summations are equal, i.e.,

[sT|

T
Z ClipMin (s¢, 0, 0oa) = Z ClipMin (s, 6, O1a) -

t=1 t=1

In original GRPO (Shao et al.,[2024), the clipping thresholds in the surrogate objective are symmet-
ric, i.e., €jow = €nigh- A subsequent study showed that employing asymmetric clipping (€jow 7 €nigh)
can improve empirical performance, and accordingly renamed the modified algorithm Decouple
Clip and Dynamic Sampling Policy Optimization (DAPO) (Yu et al., [2025). In addition, original
GRPO includes a regularization term involving the pretrained model 7, namely the KL divergence
KL (g || mer). However, as noted in DAPO, a model fine-tuned with human feedback may deviate
substantially from the pretrained model, and this KL-divergence regularization can hinder perfor-
mance (Yu et al.,[2025)). Consequently, it was removed. In this work, we follow the DAPO setting,
removing the KL-divergence. In the remainder of this paper, we do not distinguish between the
names DAPO and GRPO, as the two algorithms share similar mechanisms.

Eq. [5] can be maximized with stochastic gradient ascent (SGA) or adaptive methods such as Adam
(Kingma & Bal 2014} Wang et al., [2023}; Jin et al.,|2024); in this paper we adopt vanilla SGA.

Update rule 'We now present the update rule under a fixed old policy myq :
Os+1 =05 + 1V Lcrro(0s, ola),

where 7 is the learning rate and the gradient V Lgrpo (6, fo1a) can be written as

VLereo(0,00a) = Y EalsT)— ZV ClipMin (s, 6, 0o1a)) - (7

sTEST

After performing K gradient steps under a fixed old policy g
to mg,, < 7. The full algorithm is summarized in Eq.

> the reference is updated according
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3 A DECOMPOSITION OF GRPO’S GRADIENT TERM

In this section, we analyze the Gradient Term in Eq. [/| and show that it can be interpreted as an
asymptotically unbiased estimator of the policy gradient evaluated at 7g_,. To do this, we first define
the following two events:

old *

Polselsi—1)
PO(,ld(st‘st_l)
B o ]P’g(St'Stfl)
B (st,a,eold) T {]P)‘go]d(st|st_l)

and the event B(sy, 0, 044) = B* (5,0 Gold) U B~ (s¢, 6, 0014)- Then we can get:

P0(5t|8t—1)
o) Pauld (st |St*1)

B*(s¢,0,00q) == { < 1+ enign, Ag(st) > 0} ;

> 1 — €ow, Ac(sT) < 0} ,

*

VLereo(0,00a) = > Ealst) pa le 51,0,0 Vlog Py(st|st—1)Ac(sT)

sTEST
1z
— > &alsr) s |ZVIOgPG\M(SHStﬂ)T(ST)
Oota sTEST =1
%J(eo,d)

> Calsr \STIZ Blenbes) (VPy(stlsi—1) = VPoy(selse-1)) Ac(sT)

o 57 cSr o]d(St\St 1)
Hq(0,001)
T
+ D &alsr) Y ViogPoy(silsi-1)Ba(sr)
STEST t=1
ﬁ53(97901d)
( > &alsr) 7] 2 Z 15¢(s0,0,000) V 108 Py, (stst— I)AG(ST)> (8)
Oota sTEST
Zc(0,001)

In the above expression, we define

AG(ST) 1 ’I“(ST)

|3T| O 01 |ST| .

ygold ) BG(ST) =

Oola - 6+EGNW9 ol [ Z £G<5T)UG 9)

STEST

Based on the decomposition above, we observe that v.J (Oo1a) serves as an unbiased estimator of the
true policy gradient V.J (6014 ), since we clearly have
9901d‘|

EGnroy, WJ (eold)W%d} =Egnm,, [ > tolsr)— ZVlog Pou (st se—1)r(sT)

sTEST

(s
= ESTNTFQ \Y log Peold(ST|SO) ( T) ygnld
old |ST‘

= VJ(bo1a)-

The remaining three terms are error terms. These error terms can be controlled during the algorith-
mic iterations.

A natural question arises:

why does GRPO remain effective in practice, given that it estimates the gradient at the stale policy
0,14 rather than the current iterate 6?

The key insight is that the old policy g
the discrepancy between 7y and 7y,

.« 1s refreshed every K steps, i.e., mg,,, < m. As a result,

.« femains small throughout training, allowing the algorithm to
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perform reliably even with stale gradient estimates. We empirically validate our hypothesis through
a controlled ablation experiment. Specifically, we remove the importance sampling mechanism
entirely from DAPO and, within each inner optimization loop where the old policy 7, is held
fixed, directly perform updates using the policy gradient estimated at 7y, ,,. This setting isolates the
effect of importance sampling and allows us to examine how well GRPO performs when relying
solely on stale gradients.

We conduct this experiment using the qwen3_1.7b-base model (Team, [2024) on a hybrid dataset
comprising the full DAPO-17K corpus and several hundred examples from the AIME dataset (Liu
et al.| 2024} Ji et al}[2025). The model is trained for a single epoch, with each prompt used exactly
once. We use a total batch size of 128 and a mini-batch size of 32, resulting in each sample being
reused for 4 updates before refreshing the old policy.

As shown in Figure[I]in Appendix[A.]] removing importance sampling does not lead to a significant
drop in performance. Especially in the latter stages of the algorithm, removing importance sampling
even produced a slight performance gain. This result empirically supports our earlier claim that, due
to the limited drift between 7y and 7y, within each update cycle, the policy gradient at 7g,,, remains
a reliable update direction in practice.

old

This observation naturally leads to the following idea: if we could modify the importance sampling
mechanism in GRPO such that the resulting estimator becomes a consistent and asymptotically
unbiased estimate of the current policy gradient V.J(6), then the algorithm’s performance could be
further improved—both in theory and in practice.

A natural candidate for such a correction is to replace the token-level importance weights used in
GRPO with a trajectory-level importance ratio. That is, instead of reweighting each token individ-
ually, we consider using the probability ratio over the entire trajectory, aligning the estimator more
closely with the form of the true policy gradient. This simple yet principled modification forms the
basis of our proposed algorithm, which we introduce in the next section.

4 TRAJECTORY-LEVEL IMPORTANCE-CORRECTED GRPO (TIC-GRPO)

In this section, we propose our TIC-GRPO, a principled variant of GRPO. Apart from replacing
importance sampling with its trajectory-level version, this paper introduces two relatively minor
modifications. First, the group regularization is replaced by a version with a length penalty. Both of
these minor changes can be added independently to the original GRPO with token-level importance
sampling; second, the clipping mechanism is replaced by an up-only variant.

4.1 MAJOR MODIFICATION

Trajectory-level Importance Sampling. We replace the token-level importance sampling mech-
anism in Eq. [5] with a trajectory-level probability ratio Py (st | so)/Poy,(s7 | s0)-

4.2 MINOR MODIFICATIONS

Length-Corrected Group Normalization Regularizer. We replace the group regularization with
the following form:

r(sT) / 9
/ _ sl ~—He - r(st) o r(sT) )
AG(ST) - O,IG I 5 y Mg = Z é_G(ST) |ST| y Og = Z £G(ST) ( |ST| MG .

sTEST

As noted below Eq. [2] the original GRPO algorithm already effectively treats r(sr)/|sr| as a new
reward. Therefore, when applying group regularization, it is more natural to regularize with respect
to this new reward.

Upper-Only Clipping Mechanism. We employ a minor technical modification to the standard
clipping mechanism used in importance sampling. The original clipping strategy, as defined in

Eq.fl ie.,
| Py(sr | s0) ,, : (PQ(STSO) > / }
min { POETL30) 0 oy e (Lolorloo) o) Asn

{ RSt o), i (AL o o ) Ao
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treats the sign of the estimated advantage Ay, (s7) separately: when A, (s7) > 0, the importance
weight is clipped from above by 1 + epign, Whereas when Af,(s7) < 0, it is clipped from below
by 1 — €1ow. However, we observe that retaining only the lower bound 1 — €., While leaving the
upper bound unconstrained fails to reduce the variance of the policy gradient estimator effectively
even when Ag(s7) < 0. Motivated by this, we adopt a modified clipping scheme in which only the
upper bound is enforced, as follows:

. PG(ST | 80) . ( ]Pg(sT ‘ 50) )} .
min{ ——————— Clip | =——————2, €low, €hi A ().
{Paold(ST | 30) P P9o]d(8T | 30) 1 high G( T)

Under our modified clipping scheme, the importance sampling ratio is truncated from above at
1 + enigh, independent of the sign of the estimated advantage A’G(ST). The lower bound 1 — €}y 1S
omitted and thus has no effect. This upper-only clipping more effectively reduces the variance of the
policy gradient estimator, leading to improved empirical performance. For notational convenience,

we denote:
ClipMin(sr, 8, 044) := min {9(ST|SO) Clip («9(ST|50)

, , €lows Ehigh> } Ag(sT)-
]P)eold (ST | ‘90) Peo]d(ST | SO)

The original clipping mechanism fails to control variance when the advantage is negative, as noted
by |Ye et al.[(2020); Jin et al.|(2023) in PPO. They used a dual-clip approach, while we only clip the
upper bound, allowing more tokens to contribute and improving efficiency.

It is worth noting that these two minor modification mechanisms can be applied to the original token-
level importance sampling without any other changes. Their isolated effectiveness is confirmed by
our ablation experiments in Appendix [A.3]

4.3 RULES FOR TIC-GRPO

Apart from the above modifications, all other components remain consistent with the original GRPO
formulation. The corresponding optimization objective is given by:

Lricareo(6,000) = Y, &a(s7)ClipMin (s7, 6, 60a) (10)
sTEST
Similarly, we present the update rule under a fixed old policy 7y :
Os+1 = 05 + NV Lric.creo (Vs Ooia ),
where 7 is the learning rate and the gradient V L1ic.grro (0, Goid, brer) can be written as
VLncoreo (6, 00a) = Y E(s7)V (ClipMin (s7, 6, 6aia)) - (an
sTEST

Here we claim that V Lric.greo (6, foa) can serve as a estimation of policy gradient V.J(0) at 6,
which contrasts with Eq.[7] where it serves only as an estimation at 6,4. Note that this estimation is
not as immediate as in Eq. 8} we place the detailed derivation as a separate section in Appendix

As in GRPO, the old policy my,, is refreshed every K steps by assigning 7y,
algorithm is summarized in Eq. [I3]

< To. The complete

Intuitively, TIC-GRPO should be more sample-efficient than the original GRPO. However, such
intuition alone is insufficient to rigorously justify the algorithm’s advantage. In the next section,
we address this gap by providing formal convergence rate analyses for both GRPO and TIC-GRPO
under mild assumptions—specifically, assuming the score function is Lipschitz continuous and the
reward function is bounded. To the best of our knowledge, this constitutes the first theoretical
convergence analysis for GRPO-style algorithms. We also provide experimental validation of these
findings in Section[6]and Appendix

5 CONVERGENCE RESULTS

In this section we establish the stationary-point convergence sample complexity of both the original
GRPO and TIC-GRPO under two mild and commonly used assumptions.

To facilitate convergence analysis, we begin by rewriting both algorithms in iterative update forms:
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GRPO
On,0 = On—1,K,
Onsi1 = Ons +1VLRPO(On.s,0n0), (s=0,1,...,K). (12)

TIC-GRPO
971,0 = Hn—l,Ka
On.s11 = On.s + NVLrICGRPO(On sy On0), (5 =0,1,... K). (13)

Since we now analyze the overall performance of the above stochastic algorithm, we need
to construct a filtration {.%,},>1. Specifically, for each n, the .%, is given by %, :=

o (591,07(;, €05.0.Gs s Egnmg) , where {£,, ;.G }n>1 is defined in Eq.
We now present two key assumptions that underlie our convergence analysis for both GRPO and
TIC-GRPO.

Assumption 5.1 (Lipschitz Continuous Score Function). Let L. > 0 be fixed constants.
For all states sy € Sy, the score function is Lipschitz continuous in the following sense:
[V 1ogPo(st | se—1) — VogPy:(sy | se—1)|| < L0 — 6]

In addition, we require a bounded reward assumption, stated as follows:

Assumption 5.2 (Bounded Reward). There exists a constant R > 0 such that the absolute value
of the terminal reward is uniformly bounded. Specifically, for all sy, we have |r(st)| < R.

This is a common and mild assumption in reinforcement learning, especially in the context of LLM-
based applications.

5.1 RESULTS OF GRPO

We now present the convergence result for the original GRPO:

Theorem 5.1. (Convergence of GRPO) Assume that the conditions stated in Assumptions
and are satisfied. Let 01 € R? denote an arbitrary initialization of the algorithm, and we
setn = W. Then the sequence {0, s} generated by GRPO as defined in Eq. (12| admits the

following upper bound:

1 = 21 log [V|\/E [M%] 1 L,
N; ] E[[IVJ(0ns)]*] =0 (W) +0 (\/W) + 0@ N),

where
1
Mpy ;= max max ———— e
LensN \1=islGlmg, o (a;[s,24)

N
_ 1
72 =~ O Egsrym, , |lIs7l — EllszllZaa] ] (14)
n=1

The quantities hidden in the O notation are constants depending only on other parameters of the
problem.

Due to space constraints, the proof of this theorem is deferred to Section

This represents the first rigorous theoretical result for GRPO. It can be observed that the convergence
rate of the original GRPO depends on two quantities, M and E?T_ - both of which are non-
optimizable. The first term arises because the conventional clipping mechanism only truncates the
lower bound of importance sampling when the advantage is negative, while leaving the upper bound
uncontrolled; as a result, its variance can only be bounded by M. The second term comes from
the fact that trajectories sampled under the same prompt may have different lengths, whereas the
standard GRPO applies group regularization without any length normalization, thereby introducing
a fixed error. We argue that these two factors may be among the reasons why the original GRPO
suffers from collapse on certain tasks (Li et al., 2025; (Chen et al., 2025).

10
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5.2 RESULTS OF TIC-GRPO

Theorem 5.2 (Convergence of TIC-GRPO). Assume that the conditions stated in Assumptions

and are satisfied. Let 01 o € RY denote an arbitrary initialization of the algorithm, and we set

7 = min { o8 Ililx/ﬁ’ 4K(1+; RT } . Then the sequence {0,, s} generated by TIC-GRPO as defined
hig) L ’

in Eq.[I3|admits the following upper bound:

LS S B (967 = 0 () o (ﬁ) ~

n=1 s=0

The quantities hidden in the O notation are constants depending only on other parameters of the
problem.

Due to space constraints, the proof of this theorem is deferred to Section|[C|

It can be observed that, compared with the original GRPO, our TIC-GRPO algorithm eliminates the
dependence on My and 7, n in the convergence rate, leading to a tighter convergence bound.
We note, however, that this improvement stems solely from the adoption of the Length-Corrected
Group Normalization Regularizer and the Upward-Only Clipping Mechanism. In other words, our
theoretical results do not yet capture the benefits of response-level importance sampling: adding
these two mechanisms alone on top of token-level importance sampling would achieve the same
convergence rate. We believe that the advantages of response-level importance sampling are hidden
in the constants within O(-), i.e., the constants associated with response-level importance sampling
are more favorable. We leave a precise characterization of this effect as future work.

6 EXPERIMENTS

We evaluate TIC-GRPO on the AIME benchmark. Table ?? summarizes the results, including two
baselines—GSPO and GRPO (implemented with the DAPO framework)—as well as two ablation
variants: one applying only response-level importance sampling and the other applying only upper-
bound clipping with length-corrected group normalization. TIC-GRPO consistently outperforms
all baselines and ablations, confirming the effectiveness of combining trajectory-level ratios with
the two lightweight refinements. Additional experimental details, including training and evaluation
plots and further ablation experiments, are provided in Appendix [A.2]and[A.3]

Table 1: Combined evaluation results on AIME24, AIME2S5, and MATHS500. Numbers in parenthe-
ses indicate improvement over the baseline GRPO.

Model AIME24 AIME25 MATHS500
Qwen3_1.7B_GRPO 9.17 5.31 66.6
Qwen3_1.7B_Minor_Modications_Only 10.31 (+1.14) 6.64 (+1.33) 67.4 (+0.8)
Qwen3_1.7B_Sentence_Important_Sampling_Only  10.62 (+1.45) 6.77 (+1.46) 68.0 (+1.4)
Qwen3_1.7B_GSPO 10.31 (+1.14)  6.24 (+0.93) 69 (+2.4)
Qwen3_1.7B_TIC_GRPO 11.77 (+2.60) 6.98 (+1.67) 69.8 (+3.2)
Qwen3_8B_GRPO 31.35 22.9 88.6
Qwen3_8B_GSPO 30.21 (-1.14) 22.5(-0.4) 88.4 (-0.2)
Qwen3_8B_TIC_GRPO 33.34 (+1.99) 24.12 (+1.22) 90 (+1.4)

11
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A EXPERIMENTS

A.1 REMOVING IMPORTANCE SAMPLING

Experimental Setup

We conduct this experiment using the qwen3_1.7b-base model on a hybrid dataset comprising the
full DAPO-17K corpus together with several hundred examples from the AIME benchmark. The
model is trained for a single epoch, ensuring that each prompt is used exactly once. We employ
a total batch size of 128 and a mini-batch size of 32, which means each sample is reused for four
gradient updates before the old policy is refreshed. This configuration isolates the effect of removing
importance sampling while maintaining stable optimization.

Results and Discussion

As illustrated in Figure |1} eliminating importance sampling causes no significant drop in perfor-
mance. In fact, during the latter stages of training, we observe a slight performance gain. This
outcome empirically supports our earlier claim that, because the divergence between the current
policy my and the old policy 7y, remains limited within each update cycle, the policy gradient

computed at g, continues to provide a reliable update direction in practice.

rewards
= -Qwen3_1.7b_GRPO_Only_Old_Policy GRPO_1.7b
0.2 A |
I \ \\f '/
c \ \f I
0.15 4,\/\[ ’V\J\/\/\,\/\/\/\N\/\/J v 2 Ve
0.1
0.05
Ste
0 p
20 40 60 80 100 120 140

Figure 1: Experiment using policy gradient updates computed purely with the old policy 4.

A.2 PRIMARY EMPIRICAL RESULTS

Setup. Our training dataset combines the full DAPO-17K corpus with a subset of the AIME bench-
mark (1983-2022), resulting in a few hundred samples. We train the qwen3_1.7b-base model for a
single epoch on an H200 GPU for over 24 hours. The total batch size is set to 128 and the mini-batch
size to 32, so that each trajectory is reused for four gradient updates before refreshing the old pol-
icy. Similarly, the qwen3_8b model follows the same settings; although the physical batch differs,
gradient accumulation ensures that the global batch size remains consistent. Training for qgwen3_8b-
base model is conducted on 2 H200 nodes over 48 hours. To eliminate confounding factors such as
data-sampling randomness, we disable both Dynamic Sampling and the soft length penalty.

Evaluation Figures. Figures 2] and [3| present the final evaluation performance of GRPO, GSPO,
and our proposed TIC-GRPO on Qwen 1.7B and Qwen 8B models. To display the two evaluation
plots side by side, we use a single figure environment:
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29.90 s 20kE Al —d
102 30 R 2896
27.60,
28 2
fa 25.75 d:M/'(
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84 )\ B.75 T 5!
Iy 844 844 24 4
75 8:.02 21.9
7.7 2 4
7.29
4 Fan
66 ¥ 20
6.46
57 /5’9:\ 18
48 { 16 A
13,44
39 4 14 i
12
3 T T T T T T T T T T T T T step
10 20 30 40 50 60 70 8 90 100 10 120 130 140 10 1 T T T T T T T T T T T T 1 step
10 20 30 40 50 60 70 80 9 100 110 120 130 140
@ GRPO_17b GSPO_1.7b TIC-GRPO_1.7b
—A— GRPO_8b GSPO_8b TIC-GRPO_8b

Figure 2: Evaluation performance on Qwen  Figure 3: Evaluation performance on Qwen 8B
1.7B

Training Dynamics. To further examine optimization behavior, Figures ] and [5|show the training
reward curve and critic score for Qwen 1.7B, while Figures |§| and [/| report the same metrics for
Qwen 8B.

rewards
TIC-GRPO_1.7b = -GSPO_1.7b — -GRPO_1.7b
0.3

0.25

0.2

N (
0.1 / \-\/‘jW\ V
0.05

Step

20 40 60 80 100 120 140
Figure 4: Training reward of GRPO, GSPO, and TIC-GRPO on Qwen 1.7B
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score
— -TIC-GRPO_1.7b = -GSPO_1.7b — -GRPO_1.7b

0.3
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Step

20 40 60 80 100 120 140

Figure 5: Training critic score of GRPO, GSPO, and TIC-GRPO on Qwen 1.7B

rewards
— -TIC-GRPO_8b — -GSPO_8b = -GRPO_8b

Step
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Figure 6: Training reward of GRPO, GSPO, and TIC-GRPO on Qwen 8B
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Figure 7: Training critic score of GRPO, GSPO, and TIC-GRPO on Qwen 8B
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Results. Across both model sizes, TIC-GRPO not only converges faster but also delivers the high-
est final evaluation scores, consistently outperforming GRPO and GSPO. The side-by-side evalua-
tion plots confirm that TIC-GRPO gains an early performance lead during training and maintains
the top position through the entire evaluation phase, demonstrating stable superiority. This empiri-
cal evidence supports that our TIC-GRPO yields improved convergence and sustained best-in-class
performance.

A.3 ABLATION EXPERIMENTS

To further investigate the contribution of each modification in TIC-GRPO, we conduct an abla-
tion study on the qwen3_1.7b-base model. Specifically, we evaluate two variants: (1) applying
only response-level importance sampling, and (2) applying only upper-bound clipping with length-
corrected group normalization. All other training settings remain identical to those used in the
main experiment. As illustrated in the three plots in Figures [HI0] each modification individually
improves convergence speed and final reward compared with the original GRPO baseline. These
results demonstrate that both refinements are independently effective, while their combination in
TIC-GRPO yields the strongest overall performance.

aime24 avg@32
13 3

12

1.1

10.2 4 1052 1052

10,31 10.21 0.21

9.3
8.4 A
75
6.6
5.7
48 +H

4.79
39 A

3 T T T T T T T T T T T T T step
10 20 30 40 50 60 70 80 9 100 110 120 130 140

-@- GRPO GRPO_Minor_Modications_Only
GRPO_Sentence_Important_Sampling_Only -@- TIC-GRPO

Figure 8: Evaluation performance of GRPO, GRPO_Sentence_Important_Sampling_Only, GRPO_Minor_Modications_Only
and TIC-GRPO on Qwen 1.7B
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Figure 9: Training reward of GRPO, GRPO_Sentence_Important_Sampling_Only, GRPO_Minor_Modications_Only
and TIC-GRPO on Qwen 1.7B
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Figure 10: Training critic score of GRPO, GRPO_Sentence_Important_Sampling_Only, GRPO_Minor_Modications_Only
and TIC-GRPO on Qwen 1.7B

B GRADIENT ESTIMATOR IN SECTION [4]

Here the decomposition of V Lric.grro (8, foia; Orer) as an estimation of V.J(6) is more involved
than in the original GRPO. We now explain the reason. Analogous to the original GRPO, we may
perform the following simple decomposition of VJ(6):

Po(sr | s r(s
V£TIC GRPQ(9 goldv ref Z f MVIOgPQ(ST«SO) |( T|)
sreSy 0aa\ST | SO ST
vJ(9)
Py(s7 | s0) r(st)
— )1pe ——— > VlogP - A .
> &alsr)lpesra, %) By (or [s0) * 08 o(sts0) Is7] a(sr)

sTEST

A’ (0,6014)

As in the original GRPO, we can prove that the error term A’(6,04) is a controllable error term.
However, it should be noted that V.J(6) is not a strictly unbiased estimator of V.J(#). In particular,
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we need to observe the following inequality:

]E [VJ<9)|<?901(1 Z g WVIOgPG(STl‘SO) |( |) yGOId]
sTEST Bold
a Po(s7 | 80) r(s7)
# S;T ]E [€G(ST)|</001d] (]E mv log ]P)G(ST|30) | | 'g.eold‘| >

B Po(s7 | so)
= ( Z Po,, (s7 | 50)> <IE lMngPg(sﬂso) 571 ’Jg(‘,d]>

sTEST
Po(st | s s
Z IP)@om(ST | SO)MVIOgP9(5T|SO) r(sT) Fo, ]

=E
IED9old(ST ‘ S ) | T|

sTEST

=K [VJ(Q)"?%M] :

The reason for the above inequality is that random variable £ and the parameter 6 are measurable
with respect to the o-algebra g, ¢,. Therefore, when taking the conditional expectation with
respect to the sub-g-algebra %y, ,, we cannot simply move the random variable £ outside of the
conditional expectation.

old >
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Therefore, the asymptotic unbiased decomposition of G(6,6,4) is not immediate. We state the
following:

1 Py(st | s r(s
V Lric-oreo (8, Oola) = o Z fG(ST)ID(ST,G,eold)MVIOg Po(sr]so) ( iTT) - l/eom>
old s EST old

Py (st | s0) ,
+ Ea(5T)1D(s,,0,000) = V108 Po(s7|s0) B (sT)
ZS (0000 By, (s1 | s0) ¢
—— A5 (0,00)
Oold

1 Py(st | s0) (T(ST) / )
= Py, (s7|50)1p(s ——————VlogPy(sr|s —
o g, T CTIONBter 00 g, o Ty ¥ B Pelerw) (T~

1 PQ(ST | 80) T(ST) /
—P 1p(s ——— " VlogP —
+ - Ees (éa(sT) — Po,(s7]50)) D(éT,e,amd)Pedd(sT o) og Py (s7]s0) szl Hoyq
old ST T

1
+ ——A4(0, 601a)
g,

Bola
1 r(s
=— Z Py(st | s0)V1ogPy(s7]s0) ( (s7) —M’@m)
O spcSt |s7|
v.J(0)
1 T(ST) /
+ 7 - Z IDC(ST,979<‘M) PQ(ST | S(])VlOgP@(ST‘SO) —_— — /1,90“
m ; |3T‘
ol STEST
Ac(0,6001)
1 r(st
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In the above expression, we define the following quantities:

Mleo]d = EGNWHUM [/"L/G|geold]
Uéom =0+ EGNﬂeold [U/G|yeold]

1
Bl (s7) == Ay(st) — - (T‘(ST) _ ug@) ) (16)

Oola ‘STl

C THEORETICAL ANALYSIS AND PROOFS

In this section, we present the complete proof of the theorem, including all necessary lemmas and
their proofs, and provide a proof sketch for ease of reading. Because the proofs for GRPO and
TIC-GRPO differ substantially, we organize them into two separate subsections.
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C.1 PROOF SKETCH OF GRPO

The core of the proof lies in constructing a descent lemma, namely evaluating J* — J(0,,11,0) —
(J —J (9n,0)), which follows the same principle as in classical gradient-descent methods such as
SGD, MSGD, and Adam. Here J* denotes the theoretical maximum of the value function J(6),
as defined in Subsection To expand J* — J(0r41,0) — (J* — J(0,0)), We first establish that
the second derivative of J(6,,) exists almost everywhere and is bounded. To this end, we state the
following lemma, whose proof is provided in Subsection[C.4.3]

Lemma C.1. Assume that the conditions in Assumptions and hold. Then, for any 6, §' € R,
the following inequalities are satisfied:

(T = 0) — (]~ J(O)) < )T(0—0) + L (2T og V] + 1) 0 0]
[V.7(9) 0] < (2Tlog|V\+1)ll9 0.

With the above expansion in hand, we substitute 6,,41,0 and 6,, o for 6 and ¢’ in Lemma C.1} which
yields (informal version)

(J* = J(9n+1 o)) —(J* = J(On0))

Lemma-
Z IV (0n.s)1”

K-1
+0 (||VJ(9n,S)H) o <Z (HEg(gn,mgn,O)” + ||Es(9n,s,9n,0)|| + ”Ecwnmenﬁ”))

s=0
+ O ([10n41,0 = On0ll?) + O (10ns1,0 — Onoll) -

In the above expression, the terms |24 (0y, s, 0n,0) ], [|2s(0n,s, On,0)|l, and ||Ec(0r s, 0n0)]| are de-
fined in Eq.[§]

We observe that the first term on the right-hand side of the inequality provides the desired descent
term, while {M],.%,} forms a martingale difference sequence and therefore has zero contribu-
tion after taklng expectations. Next we bound [|[VJ(0n,s)]]; [12g(0n,s:0n,0)lls |2s(0n,s56n,0)lls
IZc(0rn,s50n0)| and [|0r41,0 — Onol”, (p =1, 2) separately. To this end, we establish the follow-
ing five lemmas, whose proofs are given in Subsections [C:4:4] Subsection [C.4.6] Subsection[C.4.7]
Subsection and Subsection

Lemma C.2. Assume that the conditions in Assumptionsand hold. Then, for any 6 € R¢,
the following inequalities are satisfied:

IVJ(0)| < V2LR\/log V.

Lemma C.3. Assume that the conditions in Assumptions and (5.2 hold. Let 019 € R be an
arbitrary mltlallzanon of the algorithm, and let the sequence {Qn s} be generated by GRPO as
defined in Eq.|12| Then the term |Z4(0.,. s, 0n 0)|| satisfies the following upper bound:

E[“Eg(en,saen,O)H ’ 97171] < 16RL\/ E[M?\[ ’ ynfl] . \/E|:H9n,s - 9n,0H2 ’ yn71:|7

where My is defined in Eq.

Lemma C.4. Assume that the conditions stated in Assumptions[5.1|and[5-2|are satisfied. Let 6, o €
RY denote an arbitrary initialization of the algorithm. Then the term |2, (0p s, 0n.0)|| admits the
following upper bound:

1

\/@) +0( s@no)

ﬂn_l] = o2

5,0n,0°

E [Es(an,sy 9n,0)|yn*1} =0 (

On,0

where M., is defines in Eq. (14} and Es;~r, [HST‘ — s
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Lemma C.5. Assume that the conditions stated in Assumptions[5.1|and[5-2|are satisfied. Let 6, o €
RY denote an arbitrary initialization of the algorithm. Then the term ||E.(0, s,0,.0)|| admits the
following upper bound:

_ 2RTL+\/log|V|
E [”:‘cwn’men’o)mynfl] < g| E1/4 [Hen,s - 671,0“4}'?”*1] E [M?VL?H*J’

Y mln{elow’ €h1gh}
where M, is defines in Eq. [4]
Lemma C.6. Assume that the conditions stated in Assumptions and are satisfied. Let 01 o €

R< denote an arbitrary initialization of the algorithm. Then the term ||0,, s 11— 0, s||P, p € {1,2,4}
admits the following upper bound.:

E (100,541 = On,sll”[ Fua] < 0P QR (LY [E [ MFE|F0mr | 10g"2 V).

where M, is defines in Eq.

By incorporating the bounds from the five lemmas into the preceding computations, we obtain the
following descent inequality.
E[J* = J(Ont1.0)] =E[J" = J(0n0)]
K—1

2 2 2 2 1
< _ﬁ [HVJ(Hn,s)H ] +0 (IOg VI E[MN]> n+0 (\/@) n+0(@ 89n0)77

Finally, summing the descent inequality over n = 1 to N yields the result stated in Theorem[5.1]

C.2 PROOF SKETCH OF TIC-GRPO

As in the GRPO analysis, the core is a descent argument on J* — J(6,,11,0) — (J* — J(Qmo)).
We follow the same approach used in the GRPO analysis and apply Lemma [C.1| to expand J* —
J(0n+1,0) — (J* = J(6,0)), obtaining the following expression:

K—1

(I = JOn10)) = (I = J(000)) < =51 > [V (6,.)]

s=0

K-1
2) + @ <Z ||0n,s - en,()) + Mn
s=0

K-1
+0 (”VJ(an,s)H) o <Z (HAg,l(gn,s;Hn,O)H + ”Ag,Q(en,& on,O)” + HAc(gn,s, 0n,0)H
s=0

+||AS(9n,Sa9n,0)||))~

In the above expression, the terms [[Ag 1(6n,s,0n.0)s |8¢,2(0n.s,0n.0)ls [|Ac(On,s,0n,0), and
1A (0.5, 0n0)| are defined in Eq. |15 We can reuse Lemmato estimate ||VJ(6,, s)|| how-
ever because the algorithmic update conditions have changed, we must re-estimate ZéK 0 ||9n s —
n,0 (p € {1,2,4}). At the same time, we also need to estimate |[Ag1(6p s,0n 0)||
|\Ag,2(9n75,9n,0)||, ||Ac( s 0n0)| and ||As(6,,5,0n.0)|- Similarly, the sequence {M,,, %#,} is

a martingale difference sequence, and therefore its expectation is zero and does not affect the over-
all result. We complete the above estimates through five lemmas, whose full proofs can be found in

Subsection[C.4.11] Subsection[C.4.12] Subsection[C.4.13} Subsection[C.4.14]and Subsection[C.4.13]

O ([|6n+1,0 — 6

Lemma C.7. Assume that the conditions stated in Assumptions[5.1)and[3.2| are satisfied. Then the
term ||Ag 1(8, 001a)|| satisfies following inequality:

€high
E[||A 0,0, <4RLT (14 ————1 E [0 — 0,7
[” g,l( ) ld)”‘yeald] <A4R ( + log(l +€high) 0g|V|> [” ld||| 90111]
+ART32[32 Mt oo VIR (116 — Oual|2] Fe,,] -
log(l T ehigh) og ‘ | [” ldH l 9011/]
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Lemma C.8. Assume that the conditions stated in Assumptions[5.1|and[5.2] are satisfied. Then the
term ||Ag 2(0, 0,1q)|| satisfies following inequality:

4R
EIIA 0,0, Z <
[[1Ag.2(8, 0oia) || | Fo,,) < Toa (L + )

+2V2LY2T/1og VIVETI0 = Goall 1 F0,] | -

Lemma C.9. Assume that the conditions stated in Assumptions[5.1|and[5.2] are satisfied. Then the
term || Ac(8, 0o || satisfies following inequality:

E [ Ac(8, Ooia) [ F6,]

4y/2RLT?
_— 21 E — 2|7, 1 F _ 1 .
ﬂmewWVWWHW%Mum+fww¢me%M%m

Lemma C.10. Assume that the conditions stated in Assumptions[5.1|and[3.2| are satisfied. Then the
term || As(0, 0014) || satisfies following inequality:

1
As1(0,6, Fo,ul LO| — | .

Lemma C.11. Assume that the conditions stated in Assumptions [5.1| and [5.2] are satis-
fied. Let 010 € R? denote an arbitrary initialization of the algorlthm and we set 1 <
m The sequence {0,, s} generated by TIC-GRPO as defined in Eq. . Then the term

Zle E||6n,s — Onol|?|Fn-1] (p € {1,2,4}) admits the following upper bound:
K
D E[[|0n,s = 0n0lIP| Fn1] < KPP (2R)P(1 + eign)P 2P (2L)P/? log?’* |V,

s=1

[4T2L10g |V|\/IE 10 — Ooial?|-Z0,.]

By incorporating the bounds from the five lemmas into the preceding computations, we obtain the
following descent inequality.

E[J* = J(Ony1,0)] —E[J* = J(0n,0)]
ZE IVJ(@ nS)H ] +O(1og |V|77 )+O

()

Finally, summing the descent inequality over n = 1 to N yields the result stated in Theorem[5.2]

C.3 AUXILIARY LEMMAS

In this subsection, we provide the technical lemmas required for the proof.

Lemma C.12 (Upper bound for Y . | x; log? z;). Let z1,...,z, € (0,1) satisfy Srixo= 1
Then

n 28 .
9 — <4, fn<T,
in log”z; < e
i= log®n, ifn > 8.
Lemma C.13 (Lemma C.2 of Jin et al. (2024)). Suppose that f(x) is differentiable and lower
bounded, i.e. f* = inf cpra f(x) > —o0, and V f(x) is Lipschitz continuous with parameter

L >0, thenV z € R we have

Vi@ < 2£(f (@) - 1)
Lemma C.14. Assume that the conditions in Assumptzonsﬂand -hold Then, for any 0, 0’ €
R?, the following inequalities are satisfied:

1V log Py (sz[s0)[[” — IV log Por (sso)[|”|

Z() (lsriL)™

(— log Py (s7]50)) "2 (|0 — 0|7,

and
|log Py (s7]s0) — log Py (s7[s0)| < |V log Py (s]s0)[[10 — 0'[| + [sz|L]|6 — 6",
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Lemma C.15. Assume that the conditions in Assumptionsand hold. Then, for any § € R?,
the following inequalities are satisfied:

IV Py(sr|so)|l < v/2|sr|Le.

C.4 COMPLETE PROOFS

In this subsection, we provide the complete proofs of all lemmas and the main theorem.

C.4.1 THE PROOF oF LEMMA[C.12]

Proof. We consider the univariate function f(z) := x log® x for = € (0,1). Then our objective can
clearly be written as

Z flx:), subject to Z x; = 1.
i=1 =1
It is easy to verify the limit:

lim zlog®z = 0.
z—0t

We now analyze the monotonicity of the function f(x). To this end, we compute its derivative as
follows:

f'(x) = log*x + 2log .

Based on this, we can easily prove that f(x) can be upper bounded by a piecewise function, i.e.,
a7

It is easy to verify that g(x) is continuously differentiable of first order, and its derivative is given
by:

log? z + 2logz, =€ (0,e72],

g'(x) =
%, x € (e721).

Furthermore, it is straightforward to show that g’ (x) < 0 for all z € (0,e72), i.e.,

§"(z) = 2(logz + 1)

<0, Va e (0,e7?).
x

In addition, since ¢/(z) = 0 for all z € [e~2,1], and ¢”(z) < 0 on (0, 1), we conclude that ¢'(z)

is monotonically decreasing over (0, 1). This implies that g(x) is concave on the interval (0, 1). We
can therefore use this property to estimate our objective as follows:

n Eq. n Jensen’s inequality n ) 1
) < T < n M =n Z ).
S @) < Y glw) g - g
1=1

; n

=1
According to the definition of g in Eq.[17] it is easy to verify that when n < 7, we have

28
1
On the other hand, for n > 8, we observe that
ng (%) =nf (%) = log” n.

With this, we complete the proof. O
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C.4.2 THE PROOF OF LEMMA [C. 14]

Proof. For any arbitrary trajectory {s;}7_,, we have:

IV 1ogPg(sz[so)|| — [V 1og Por (srlso)l[| < [|VIogPo(sr|se) — Viog Py (srlso)ll
T

(VlogPy(st|si—1) — V1og Py (se|si—1))
=1

Me

HVIOgPQ(St|5t 1) — VIOgPQ’(Stlst—l)H

o~
Il

1

I
[M]=

[V 1og Py (s¢|si—1) — V1og Pos (s¢]se—1)]|
1
st|L[|6 —¢'|. (18)

-
I

Then for any p € Z,, it is clear that:

IV log Po(sz]so)[[” — IV 1og Por (srlso) ||
= [[IVlog Py (sr|s0) + (Vlog Py(sr[s0) — V1og Py (sr[s0)) " — ||V log Py (s7|s0) "]

e Bnoneleorem ™ (5) 1 log Py (s7/0) [7~[|V log Py (s7]s0) — V log Py (s77]50) |
q=0
— [|V1ogPor (s7|s0)||”

p
=3 (7)1 108 Ba (o)1 ¥ o Bafsrlso) ~ Vlog s sl
q=1
Lemma p p—gq p—q
<> (5) (2[s7|L)7 (—log Py (sr]s0)) = [[ViogPg(sr|so) — V1og Py (st|so)|
q=1
Eq@ p pP—gq /
< Z 2 (Jsp|L) 7 (— log By (s7]0)) =" (|6 — /]|
q=1

Next, we focus on the second inequality, for which we have
|log Py (st|s0) — log Py (s|s0)]
|V log Py (sr]50)T (0 — )]
= ’VIOgP91(8T|80)T(9 —0') + (Viog Py (sr|so) — V1ogPgr (sr|so)) " (6 —6)
< [V log Py (slso)ll|0 — ¢'l| + |s7| L]0 — ']

In the above derivation, step (x) follows from the Lagrange’s mean value theorem, where 6 denotes
some point lying between 6 and 6.

With this, we complete the proof. O

C.4.3 THE PROOF OF LEMMA[C.T3]
Proof. For an arbitrary trajectory {s;}7_, the following differentiation holds:
IV Pg(st[s0)[| = Polsr|s0) ||V log Po(s|so)ll

Lemmamm
< —\/2|ST|LP9(8T|SO)logP9(8T|80)
< \/2|st|Le.

With this, we complete the proof.
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C.4.4 THE PROOF OF LEMMA[C.Z]
Proof. From Eq.[3] we know that

r(sT)

vI0)= Y P9(5T|50)V10gP9(5T|50)W,

sTEST
which means following inequality:

IVIO)I <R Y P STISO)

sTEST | |

<\/ LR Z Py(sr|s0)v/—logPy(s7]|s0)
sp€ST V

Jensen’s inequality

< V2LR+/log|V|.

Here, step (*) follows from Lemma|C.14] which guarantees that V log Py (sr|so) is Lipschitz con-
tinuous with constant |s7|L. Applying Lemma|C.13| we then obtain

IV log Py (s7lso)| < v/2[s7|Ly/~ log Po(srls0).
With this, we complete the proof.

[V 1og Pg(s7]s0)|

C.4.5 THE PROOF OF LEMMA[C.T]

Proof. First, for any trajectory {s;}7_, by Lemma|C.14] the mapping
0 — VoglogPy(st | st)

is |s7|L-Lipschitz continuous on RY, where |s7|L > 0 is the Lipschitz constant. By Rademacher’s
theorem, any Lipschitz mapping from R? to R? is differentiable almost everywhere (a.e.) in R%.
Therefore, V log Pp (st | so) is differentiable a.e., and V2 log Py(s | so) exists for almost every 6.

Moreover, the Lipschitz continuity implies the uniform bound

[V*1ogPy(ss | si-1)|| < L ae. (19)
Then, we construct the following univariate function:

Jor (T) = Po(r)(stlse-1),

Ot) =0+ (0 —0)7, (r€]0,1]).

Intuitively, this can be interpreted as the value at a point along the line segment connecting Py (st |
s0) and Py (st | sg), parameterized by the ratio between its distance to ' and the total distance

10 —6"].
It is clear that f,,. is differentiable on (0, 1). In particular, its derivative can be computed as
T
for @) = (0 —0") VPog)(s7ls0)
T
=(0—-0") (Pog)(s7]50)V log Po(ry(sr]s0))
T
= fsr(t) (0 = 0") " Vlog Py (srs0)-
According to Lemma|C.15] we have
|for (B)] < /2|57 |Le,

which implies that f,..(t) is absolutely continuous on [0, 1]. On the other hand, by Lemma|C.14] we
know that

VIOgg(t) (ST ‘ 80)
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is Lipschitz continuous on [0,1] with Lipschitz constant |sp|L, which implies that
O—-60)"v logg() (sT | s0) is also absolutely continuous on [0, 1]. Therefore, as the product of

fsr (t) and Vogy ) (st | s0),

FL(t) == for(t) (0 — 0") T V1og Py (s7/50)

is absolutely continuous on [0, 1]. By the Second Fundamental Theorem of Calculus for Absolutely
Continuous Functions, f (t) exists in [0, 1] almost everywhere, i.e.,

" nT 2
T (O =For () (0 = 0)" Vlog Py (s1ls0) )
+ for () (0 —0') T V2 1og Py (s7]0) (0 — 0') ace., (20)

and the following Newton—Leibniz formula holds in the sense of the Lebesgue integral

1
£~ (o) = / £ (8. 1)

We then compute f,,. (1) — f5,(0). Specifically, we have the following:

)= 1) = [ 12,0

_ / f(0)dt+ / (Fp (8) = 1, (0))at

B o R

Equ /dt/ (fST 0 VlogP, S>(ST80>)2> ds

+ / dt/ For(s) (0= 0" V2 log Pyay (s7]s0) (0 — e')) ds
0 0
> Py (sr|s0) (0 — 0') " Vlog Py (s7|s0)
1 t
= [t [ Basrlso) 10 = 017 Vo P (srlso) s
0 0
1 t 9
= [ at [ B (srlso) 16 =017 192 108 B srlso) s
0
Eq. m

> Py (sr]so) (0 — )" Vlog Py (s7]s0)

— [t [ oo srlso) 10— 017 [ tog oy sriso) s
0 0

1 t
~folL [ at [ B srlso) [0~ 0| as. 22)
0 0

According to Eq. 2] we know the following expression for the value function:

IO =Barmry | 2] = 5 Bofisrlsn) 2.

lsrl | 5%, st
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Then we calculate (J* — J(0)) — (J* — J(6')), acquiring:
("= J(O) = (T = J(O) == > (Po(sr|s0) = Por(s750)) %T)

STEST ‘ T‘

Y (1) — fur(0)) ST

sTEST |ST|
Ee r(s
s - Z Py (s7]50) (0 — 6') " V log Py (ST‘SO)(iT)
sz
sTEST
! 1 t 7112 9

+ R Z Tel dt ]PG(S)(ST|S()) He -0 || ||VIOgIP)9(s)(ST|S())H ds

sTEST |ST| 0 0

1 t ,
+RL Z (/ dt/ Po(s) (s7]s0) |6 — 6’| ds)
sTEST 0 0

=-VJ@O) (0-0)

1 t
1 2
+R/dt/ Py(s) (s7]50) |0 — 0']|7 ||V log Po(s) (s7|50) || ds
0 0 2 |sT|<9()( rlso) | 171V log Py(s) (s7s0) | )

sTEST
RL
+ 7“9 -0
Lemm,
T vI0)T (0-0)

1 t
+2RL[6 - 9/”2/ dt/ Z - (Pe(s)(sﬂso) log IP>0(s)($T|80)dS)
0 0

sTEST
RL
+ 7“9 -0

Jensen’s inequality

1 t
V)T (6—9’)+2TL||9—0’||2/ dt/ log |V|ds
0 0
RL
+ 7\\9—9/”2

RL
=-VJO) (0-0)+ — (2Tlog V| + 1) [0 — 0'|2. (23)
At this point, the proof of the first inequality is complete. We now proceed to establish the second

inequality.

For the gradient V.J(0), we denote its i-th component by (V.J(6));. Next, for an arbitrary index 4
and points 6, ', we construct the following univariate function:

gi(t) :== (VJ(6(1)))s
0(t) =60+ (0—0")t, telo,1].

We define [V2.J(6)]; as the i-th row of the Hessian matrix V2.J(6). Then it is straightforward to see
that

gi(t) = [V2J(0(t)):i(0 — 0') ae.
Analogous to the derivation from Eq. 20 to Eq. 2I] we can also establish the following New-
ton—Leibniz formula:

1 1
5i(1) = 5:0) = [ gittat = [ [V 5600))(6 - e
0 0
By combining all the components, we obtain
1
VJ(0) -VJO) = / V2J(0(1)(0 — 6')dt.
0

Taking norms on both sides and applying the derivation in Eq. we obtain
VJ(6) — VJ(0')|| < RL (2T log|V| + 1) [|6 — &'
With this, we complete the proof. O
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C.4.6 THE PROOF OF LEMMA[C.3|

Proof. First, by the definition of Z4(6,, s, 0r,0), we obtain

T
129 (On,s: On0)ll S 2RMn Y Ea(sr) Y IV s, (stlsi-1) = VPo, o(selse—1)]

sTEST t=1

(*)
< 16RLMy||0n,5s — On 0

. (24)
In step (x) we use the following derivation:
IV Py, .(stlsi—1) = Vo, (selse-1)||
(%)
< (P (selse—1) [V Poco) (selse—1)II” + LPo, (s¢]se-1)) [0n,s — On.ol

< (2L (Po, (s7]50-1)(—10g Py, (selsi1)) + L) [0n.s — Ol
S 8L||0n,9 - 6n,OH

In step (*x), 6. denotes a point lying between 6,, ; and 6,, o. Here we apply the mean value theorem
for integrals in the sense of Lebesgue integration. The reader may refer to Lemma [C.I] for the
treatment of Py, (st | s0), which we do not repeat here.

Taking the conditional expectation with respect to .%,,_1 on both sides of Eq. we obtain
E H|Eg(0n,Sa an,O)H ‘ﬁn—l] S 16RLE [MN”an,s - 971,0” ‘ﬁn—l]
< 16RL\E (M| 1] - \JE (80,0 — 0012 Facs].

With this, we complete the proof. O

C.4.7 THE PROOF OF LEMMA [C4]
Proof. From Eq.[9} we obtain

Ag(ST) 1 T(ST)
B - _
&) = T o Jor]

1 (T(ST)—MG> 1 r(sr)

og+9 004 |ST]

( 1 1 ) 1 e
lst| \oc+6 oo,/ Isrlog+d
By

_ T(ST) By — 1 ( ke Meom) _ Hbya
|ST| |ST| oG +90 T014 |ST|O'901(1

Ba

T(ST) 1 ( 1 1> Kb —1 Mg
- Bi— —By— [ — —|s | g| L Hou
|5T| 1 |5T| 2 |5T| | |t9(,]d o | |9

old ol

Bs

In the above expression, we set

|s

Oola = Z IEJJ90|<1(5T|$0)|5T|

sTEST

Next we treat By, Bs, and Bs separately. First, for By, we have:

1 16R?
E[B}|Z0,] < 51 E |(06 — Elo6lFa))* | Fou| <

VA
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Similarly, we readily obtain

4R? 32R3
+

2G| s/|GI

E [B§|<gz9old] <

For B3, we have

E I:B§|§Gnld:| < I['?‘STNﬂ'eOld [HST‘ - |S|gold|yguld] = 0?,901‘,'

This quantity represents the variance of the sentence length under the policy 7, .

We now compute E [Z,(0,, s, 0r,0)|-Fn—1] directly, and we have

E[*—*s(en ED) n0)|f/n 1 Z ElgG ST ZVIOg]P)Gng(St'St I)BG(ST)

/n 1]

sTEST t=1
Z E §G ST ZVIOgP0n0(3t|5t 1) |( T|)Bl ﬁn_1‘|
sTEST
By o~
- Z E fg(sT)ZVlog]P’gmo(sﬂst,l)ﬁ Fn-1
sTEST L t=1 ST

T
Ko,
+ Y E EG(ST)ZVIogPen,o(StBt—l)a = 3‘1%_11

sTEST L t=1 9"’0

Ho,,
+ 3 E|&(sr Zwogﬂ»m(mst Dlslg, ) =

STGST L t=1 6'71,0

1
:O<\/|?> +O( ann)

The constant hidden in the O notation depends only on the constants specified in the assumptions
and is independent of n.

yn—1‘|

O

C.4.8 THE PROOF OF LEMMA

Proof. First, for the event B°(s;, 0, 5,65,0), we have:

Pen,s(st|5t—1)
Py, o (st|st—1)

]P)en s St‘st 1
— 1|| > min
{ H PGn oSt ‘St 1 {Eluwv 6hlgh}

]P’en,s (St|5t—1)

B (3t7 97’7,,87 9n,0) = { Penyo (St|5t_1)

> 1+ enigh, Ag(sr) > 0} u { <1 —éow, Ac(sT) < 0}

Next, based on the above derivation, we apply Markov’s inequality to handle =.(0,, 5, 0y, 0) :

1Z¢(On,s5 On,0) I (25)
T

5m1n{elow,eh,gh} Z Salsr) Z

STEST t=1

Markov'’s inequality Pé)n s St‘st 1

—1 ViogP B
Py, , St\st 1) H [V 1og Py, ,(stse—1)|

2RMNV2L
S —N\/i Z §G ST Z ||]P)9n0 5t|5t 1 gn‘s(8t|5t_1)|| \/— IOg]P)gnwu(S”St_l)

d min{e€jow, €high} =

Lagrange mean value theorem QRMN V2L

- 6 min{€pow, enign}

() 2RMNL
< VR ST () Zuensfen,onwlogmn,o(sdst_l). (26)

d min{ €jow, €n;
{ low hlgh} sreST

Z a(sr) Z IV Py, ., (stlse—1)[l[|0n,s — 9n,0||\/— log Py, , (s¢[st—1)
t=1
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In the above derivation, at step () we handle ||V Py, _ (s¢|s¢—1)| using the following method:
[V Po,.., (stlse—1)[ =Py, ., <5t|3t )[IV1og Py, ,, (st]si—1)l
Lemma
V2LPy, , (st]st-1 \/ log Py, ., (stlst-1)

v

Taking the conditional expectation with respect to .%,,_1 on both sides of Eq. @ we obtain
[HHC(Qn ER en 0)||| n— 1]

2RL
E | Mullfs —noll S €alsr) XM log Py, , (st]s—1)

~ dmin{epow, €nigh } Npr Sl

2RTL+/1
R \/W E1/4 “|0n,s - en,()Hﬂg”*l] E [M?VLg?nil]

) mln{ﬁlow, Gmgh}

]

With this, we complete the proof. O

C.4.9 THE PROOF OF LEMMA[C.6]
Proof. For any p € {1,2,4}, we can compute the following expression:

Hgn,erl - an,s ||p
p

T
1 . .
> fG(ST)@ > 1B(s1.00.00.0) (V (CHpMin(sz, 0, s, 0.0))) Ac(s7)
t=1

sTEST
AM-GM inequalit 1 L b
- inequality . .
< p Z &a(sﬂm Z 1505000 .60 0) (V (CUpMin(sr, 0,5, 00)))
sTEST Tl =
‘I’n,s
(27)

Then for ¥, we have:
\Iln,s

AM-GM mequallty

Z gG ST Z B(s¢,0n,s,0n,0) ||v (Chlen(STaan Sagn 0))H

STEST
T
Pe (st|5t1)>p
s B(s:.,0 — = ViogPy, _(s¢lsi—1)|P
S%fau Z it (FE o ) IV 0o, ()
Lemmd 1 T PO (3t|5t—1) P /2
< (2L)? ¢a(sT) 18(s1.6, .0 ( —1log Py, . (s]si-1)["
D P Ui |
T
2
< (L2 Y talsr) MNl Z (selsi—1) [~ logPs, (selse—1)|"
STEST =

where My is defined in Eq. In step (), we use the following inequality to obtain an upper
bound:

Pen,s(st‘stfl)
P9n,0(5t|5t71)

P, . (stlst—1)

7€|0W7€high> < 185,60 5.0m0 .
(elnebno) o - (silsi—1)

18(31,0,,L,S,9,L,0)Clip (

Note that in this case we cannot apply the following relaxation:

Pen,s (St|8t71)

1B(5¢,01.4,0,,0)ClIP (Po o 1)7€IoW7€high) S 1B(s4,0,.0,0n.0)Clow OF 1B(s,.6,, .6, 0)Chigh-
n,0 -
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This is because, when Ag(s7) < 0, the original Clip mechanism imposes no upper bound on the
ratio Py, _ (s¢|st—1)/ Po, o (s¢|si—1). Then we take the conditional expectation with respect to .%,, 1
on both sides of the above inequality, and we obtain

E [\I/n,s|yn71]
1 T /2
RLPPE| Y Eo(st)M |—Z (selsi-1) [~ 1ogPa, . (stlsi-1)[" an]
STEST =1
Cuuchy—Sctharz inequahly p /2 l Z ginl‘|
€Sy
X, |E [ > or] 2 Zpen J(selse-1) | = log Py, (selse-1) ‘ﬁn—ll
sTEST
Lemmal[C.12] )
<@L\ B [ MY Fo ] Tog?? V).
Substituting the above estimate for ¥, into Eq.[27} we obtain
E (100,541 = On,sll”[ Fua] < QR (LY [E [ MEP|F0or | 10g"/2 V).
With this, we complete the proof. [
C.4.10 THE PROOF OF THEOREM[3.1]
Proof. Then we focus on
(J* = J(On+1,0) = (J* = J(Ony)) -
To handle this, we invoke Lemma|[C.I] In particular, we have
(J* = J(Ons1.0)) = (J" = J(6n0))
LemmalC] RL
< =V (0n0) " (Ontr0 = Ono) + — (2T log [V +1) [[0n 1.0 = O o*
= RL
=1 VI (010)" VLrpo(0n,s,0n0) + 5 (2T10g V| + 1) 10110 = Ouol®.  (28)
s=0

Yn
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According to Eq.[8] we can further process the term Y,,, which yields:

K—-1 K—
n
Vo= = 3 V6ol - Z )7 (VI(0n0) = VI (000))
n,0 s=0 'n,O =0
My,
K—
Z g(an,Sa en,O) + Es (9”,.97 en,O) + Ec(an,sa en,O))
n K-1 77 K-1
< =55 2 VIO )P+ —— >[IV T(On0)I* = IV (0ns)II|
s=0 0—0"'0 s=0
Yn,l
K-1
n = = = /
+ oo Z VI (n,0)ll (1Zg(0n,s, 0n,0)ll + 1Es(On,s, On,0) 1] + 1Ec(On,s, On,0)[]) + My,
n,0  g—Q

Lemma-
77 Z ||VJ ns ||2 nYnl

K—

n /21,
+ g 2L logIV Z ||~—*g n,ss nO)H + ”HS( n,s) nO)” + HHC( n,8) nO)”) +M/
=0
() = 6f
< _% VT (0no)|I? + —=nL32T?R?log®? |V Z 16,5 — o
s=0 s=0
K-1
+ 67)R2T2L2 log? |V| Z 10,5 — On,oll?
s=0
7 K—-1
+ EVQLTR IOg |V‘ Z (”Eg(en,aen,O)H + ||E<9(9n,8a0n70)|| + HEC(07E,S7071,0)||) + MTIL
s=0

(29)

It can be observed that the sequence {1}, %, },>1 constitutes a martingale difference sequence. In
step (*) we specifically apply the following relaxation to Y,, 1:

Yo = |HVJ n0) I = VI (05,617
s=0
K-1
= > IVI(On0) + VI (On,6) = VI(On,0)17 = IV (0n,0)]1]
s=0
K-1
= “|VJ n O)”2 + 2||VJ( n 0)” ”v‘]( n 9) v‘](on,O)” + HVJ(en,s) - v‘](on,O)”2 - ||v‘](6n,0)||2|
s=0
K—-1
<2 Z IV T On0) 11V (On,s) = VIOn0)ll + Y IV (On,s) = VI (0,0)]°
s=0 s=0
Lemmal[C2land[C]] K-1 K1
< 6V2LY 2T R%0g®? V| > (|0, — Onoll + 9RT?L*log? V| > (|0 — 0r 0l|*.
s=0 s=0
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Taking the conditional expectation with respect to .%,,_1 on both sides of Eq.[29] we obtain

E[Y, \fn 1]
6\/7 K-1
<-55 Z E ||VJ( n S)H | Fn— 1] I L3/2T2R210g3/2 V| Z E[[|65,s — Onoll | Fn-1]
s=0

K-1
9
+ gnRQTQLz 10g2 |V| E “|9n,s - 9n,0‘|2|§n—1}
0

s=

N

+ BT R 108 IV] Y. (E 1 (O, O 0) 1 Z 1] + (I 0,00 7]

s=

[}

FE[Ec(0n.s, On0)ll|Fn-1]) -
Substituting the above result into Eq.[28] we obtain

E [J* — J(9n+170) - (J* - ,](Hn 0 |<g\n—1]

" K-1 6\/7 K-1
<5 X:jo E |V (00,5)*| Fnn] + —-0L*T° R?log™? V) ZO E (/1615 — 0l [ Fn—1]
9 1 K-1
+ (577R2T2L2 log? [V| + 3 (2L1log |V| + TL)) Z E [|6n.s = 00l Fn1]
s=0
1 K-1
V LTR+/log|V| Z On,s, nO)Hlfjn 1]+ E[]2,(6 ns,gnﬁ)”lyn—l]
+E[H-‘C( n,s n,0)|||yn71])-
Substituting into the above inequality the results on On.s, On.0) Il Fn-1]
E [|1Z50n.s) 0n.0) | Fn-1], E[|Zc(0, Oo1a) ||| F—1], from Lemmasu C.5] respectively, we
obtain
E [J* = J(Bnsr0) — (J* = J(0n0)) | Fucs]
y = K-1
<=5 Y E[IVIOn )2 Faa] + 0 (108" V1) 1 Y E 006 = nolll Fami]
s=0 s=0

K—-1
O (log? [Vin +1og [V]) > E [[[0n.s — ol *[Fn-1]
s=0

K—-1
+0 <\/log Vi /JE [M%v|%w]> iy ST E [[6s — Buoll2] F ]
s=0

+@(\/W)n<o<\/|%|>+0( seno)>

K-1 1/4
+ (@ (10g3/2 |V| E [M?\[L?n,O]) n (Z E [Hon,s - 0n,0||4‘yn—1]> .
s=0

Note that the quantities hidden in the O notation are constants depending only on other parameters
of the problem and are independent of the iteration number n.

Then, substituting the estimate for
K
> E[[|6n,s — OnollP|Faa], pe{1,2,4}
s=1
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from Lemma|[C.6|into the above expression, we finally obtain

E[J* = J(0nt1,0)] — E[J" = J(0n0)]

K-1
n 2 !
<-3p szo E [V (0ns)?] +O <log 4 E[Mm) 0w+ 0 <m> n+ 002, )

Summing the above inequality over the index n from 1 to IV, we finally obtain

ﬁ:KE_jO [1V7(6,.0)12] = (Nln) +o(1og2|V| E[an> ‘o (ﬁ) 0@, ).

Therefore, we conclude that when n = W, we achieve the optimal convergence rate:

With this, we complete the proof. O

C.4.11 THE PROOF OF LEMMA
Proof. By calculation, we obtain

V Py(sr|s0) — VPg,,(s7]50)
Pg, (s7]50)

1D(5T»9,0()Id)

<[00 22 g TPl =T Pl
< (sT,0, old)]P)emd(STlso) (s7,0,6001) Py (sr|s0)

Py(s7|s0) Pow (s7]50)
<1 Lolsriso) |14 ViogP 1— e
s D(s1,0,001a) Peo,d(8T|So) D(s7,0,004) ¥ 108 OOId(5T|SO) Py (ST|SO)

+ |1 1D(57,6,000) (V 10g Py (s|s0) — V1og Py, (sT]s0))|

Py(sr|s
< 1’D(sT,0,901d)v]0g Poas(s750) (0(T|0)) - 1>

+ |ST L 97901(1 .
B e [sIZ110 = Bl

]PQ(ST‘SO) _ 1:

Next, we employ the following elementary inequality to handle the term o (sr]50)
old

€high

r—1 < ———
| ‘ - log(1+€high)

|10gm’, Va € (0, 1+ €nign)-

This is a trivial result, and hence we omit the proof here.

By applying the above inequality, we further obtain

\Y ]PG(ST|80) -V ]P)aold (ST|80)
IP>9old (STISO)

1D(ST,979old)

€high
< m llog Py(s7|s0) — log Pg,, (sT[s0)| ||V 1og Pa,, (sT[s0) || + [s7|L[|0 — Ooiall
LemmalC.14] €high

o8 + gy (IIV 1og Py, (s7]50)1110 = bowall + |s7| L[|V log Po,, (s7[50)][]16 — botall®)

+ |s7| L]0 — Ooua|
LemmalC.13] 2 i
< |8T‘L <_€hgh
log(l + 6high)

€high 3/2 2
—_— L —logP 0 — 6, .
1Og(l+€mgh)(|8T| )3/2\/—1log Py, (s7]s0)]| 1d ||

log oy, (s7]50) + 1) 10— Gl
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Next, summing over the relevant terms and applying Jensen’s inequality, we obtain

E|Ag.1(6, 0oia) [l Foy]

VPy(sr|sg) — VP, (s7|s
<2R Z E (gg(ST)—F]P)aO]d(ST‘So)) 1D(3T79,901d) 9( T| 0) 9014( T‘ O) ’ ﬁaold
]Poold (ST | 30)
sTEST
2énigh
<R Y forl [ Palor ol (o S og P orlsn) + 1) 16 = Ol Za

sTEST

€high
+ 4R ST;ST |s7| E |:P901d(ST|SO)MT3/2L3/2 \/— log Py, (sT]s0) |0 — 901d||2‘960w:|

Jensen’s inequality €hich
< ARLT [ 14+ ——=1 _log|V| | E[||0 — Ooal||-Z
< (14 s 0w V1) B 110 — Gl o

ART3/2[3/2__hish /] E (6 — Oyal2Zo. 1.
+ log(l + fhigh) Og‘v| [” Oldll ‘ Gold]

With this, we complete the proof.

C.4.12 THE PROOF OF LEMMA [C.§]

Proof. 'We first focus on the event D(sr, 0, 6414), for which we have:

Po(sr|s0)

D (57,0, ) = 4 —5L150)
(57,6, Bua) {Peo,d<sT80>
€ {llog Po(s7]s0) — 1og Pay (sz]s0)| = 10g(1 + exgn)}

LemmalC.14]
C IV 10g Py, (s7l50) 16 — Oorall + [s7[ L]0 — boal|* > log(1 + enign) } - (30)

>1+ Ghigh}

Then we clearly have

El|Ag2(0, 01) [l |- F 0,

SARE | Y (Salst) + Poy (s7150)) 1pe (570,000 |V 108 Poy, (57 | 80)||’<%(,m]

sTEST

Markov’s inequality 4R
< Toa(1 + enm) E [T;ST (€ (sT) + Py (57]50)) ||V 1og Pa,, (57]50) 1210 — Oota| %]
O,
b B | (éolsr) + Pau(srls0)) [V 105 Pa (s7ls0)) 16 — 6l 2| 7
log(1+€high) sTEST o Boa \ 71150 & 004 \ST'|50 old Ooia | -
Oz
€1y

38



Under review as a conference paper at ICLR 2026

We split the analysis into two parts. We first treat O, we have

Cauchy—Schwarz inequality
O < E| [ (6alsr) +Po(s7]s0)16 — bl

sTEST

x Z (€G(ST) + Peold(sT‘80>) ||Vlogpeold(8T|SO)||4‘yeold

sTEST

Cauchy-Schwarz inequality
< E l Y (Ealsr) + Poy(srls0))ll6 - eold||2|3fo.d]

sTEST

X E l Z (gG(ST) + ]P)enld(ST‘so)) ||VIOgP9a|d(ST|SO)”4 ‘y0<)ld‘|

sTEST

= \/2E [”0 - 901d||2|y901d] Z ||VIOgIP901d (ST|SO)H4E [(SG(ST) + ]P)eold(ST|SO))‘yeold‘|

sTEST

=2VE[|0 - 9old||2|<%om]\/ Y Poy(s7l50)[IV 1og Poy, (s71s0) |

sTEST

LemmalC T3l
< 4TL\/E[||9—9old|2|c%md}\/ > P, (sls0)| log Py, (s]s0)[>

sTEST

LemmalC12]
S 4T2L10g‘V|\/EH|9790]dH2|g\9"m}'

For O3, by a similar argument we obtain
02 < 2V2LT/log[VIVE [0 = b [ Fo,u]
Substituting the above estimates for O; and O into Eq.[31] we finally obtain

4R
o < 2 _ 2| or
E[[[Ag,2(8, 0ia) | | Fo,4] < Tog (L + ) [4T Llog |[VIVE[[[0 — Ooual|?-Fo,)
+2V2LT o VIVEI0 — foal[ " P -

With this, we complete the proof. O

C.4.13 THE PROOF oF LEMMA [C.9]

Proof. First, for the event D¢(s, 6, 6o14), we have:

. P9(8T|80)
De 0,004) =< —————>1 i
(57,0, 001a) {P«%m(SﬂSO) 2> 1 + €nign

C {[log Py(s7|s0) — log Py, (sT|s0)| > log(1 + enign) }

L
TEH IV 10g Po(srlso)l[10 — Ooall + TLYO — Oa]* > log(1 + engn)} . (32)

Then by direct computation, we obtain
E[[|Ac(8, o) | | Fou) < 4R DY E [Ape(sr 0,00 Polsr | 50)[|V log Py (sr]s0)ll|Fo]

sTEST
Markov'’s inequality 4R
o E [[|0 — Ooal| P log P |17
= 1og(1 + enigh) STZe;ST [116 = Boa|| Po (s7|50) |V 1og Py (s|50)[|*] Fo |
Ry
4RLT
S E [0 — faall® Po(srls0) |V log Po(sr]s0) [ Z,] 33)

log(1 + €nign) o

R2
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We divide the expression into two parts. For the first part R;, we have:

Cauchy-Schwarz inequality
Ry < [ > 116 = baall? Pa(srs0) feom]
sTEST
X E[ > Po(srlso)|ViogPy(sr|so)|* yeold]
sTEST

LemmalC13]

< 2LVE[[0 — foall?[ Fou] | E l > Po(srlso)|log Po(sr|s0)? ﬁeom]

sTEST

LemmalC12]

272 Llog [VIVE[[|0 — Ooa||?| Fo,.)-

For O, by a similar argument we obtain

Ry < 2V2LT/log VIVE[0 — bua [ o).
Substituting the above estimates for Ry and R, into Eq.[33] we finally obtain

E [ Ac(8, Oota) [ 76

4V2RLT?
—————— (V21og |[VIVE[||0 — 6o||?|-Z VEL1og |VIVE[||0 — 6oa|*|Z .
< Toa(L + o) (V2108 VI VETI = oalP[Za,.] + VL 1og [VIVETO — Goal[*[ 7))

With this, we complete the proof. O

C.4.14 THE PROOF OF LEMMA [C. 10!

Proof. First, we know that

Bitor) = Ag(or) - - (152 -5, )

o) |sT|

old

Then, we can compute the following difference:

1 1 / ¢
Blg(ST) < ‘T(ST)l - = Hag ’u,eold
sT| |oc+d oy, og+d oy,
1 1 1 1 1
R o - - o
SRlors o | P Ploars o | s e e
1 1 1
— 2R o = / _ li
og+d op + ) "UG Hoa
2R !/ 1 ! !/
§572|0'G_0—001d+5’uc_p/601d'
By a straightforward calculation, we obtain
E| Y &alsr)BE(s)| Fou
sTEST
4R? 2| 1 , ;2
< 5T E Z §G(ST) (UG —E [O'G‘yeold]) FOga| T 57 E Z fG(ST) (MG - /1'90“) ygold
sTEST sTEST
8R* 1 1
—_— + =—. 34
_54|G|+62|G| (34
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Then we can estimate E [|| A (8, 0o ||| Za,,] - Specifically, we have
E (125,10, Ooia) [ | F0,]

< VETE(1+ ) | 3 E [alor)ogPosrlso)l?| i [Z €alsr)B2(s1)

‘/eold‘|
sTEST sTEST
1
VIG|

With this, we complete the proof. O

C.4.15 THE PROOF OF LEMMA |C. 11|

Proof. Forany p € {1,2,4}, we can compute the following expression:

p
1 1 N T1°
H9n78+1 - 9”,S||p < 77p Z £G<ST)1D(ST,97L,5507L,O)@V (Chlen (STa en,sa 971,0)) A/G(ST)

sTEST

PN (st (ap b, 600)

sTEST

P
. (35)

AM-GM inequality
<

1 S,
’V (ClipMin (s1,0n.s, 971,0))
|st]

On,s

Next, we derive bounds for ©,. As a consequence we obtain
p

Ons < (1 +enign)” > Ealsr)

sTEST

o7l ZVlog]P’g”(st|st 1)

t=1

< (1 + enign)” Z ¢a(sr)— ZHVIOgPa“(SHSt 1)“

sTEST

1
< (1+ emgn)P2 71 Y §G(ST)@ Z |V 1og P, , (s¢]st—1)]|”

sTEST

+ (1 + enign)?277" > Ealsr)— Zuwogpgm(stpt 1) — Viog Py, (se]se-1)|”

sTEST
Lemmal[C.14] _ 1
< (L4 engn)20 0 > fg(ST)m Z IV 1og Py, o (se|se—1)I”
sTEST T t=1
+ (14 enign)’2" ' L7 Y £a(s7) 10,6 — Onol”
sTEST
= (1 +engn)2"" Y Lalsr)— Z IV1og Py, ,(selse—1)l”
sTEST
+ (1 + enign)2P L LP[|0y,,5 — 9n,0||p~ (36)

Taking the conditional expectation with respect to .%#,,_1 on both sides of the above inequality, we
get:

E [Gn,s|<gzn—l}

T
1
< (1 + enign)"2"” ( > Po,,(s7ls0) ST|Z||v10gPen,o<st|st_1>|p+LPon,s—en,mw)
t=1

sTEST

LemmalC.13] _ 1 T
< (L enign)?2P7! ((QL)”/2 > Pen,o(ST\SO)@ > | —logPy, ,(silsi—1)[P/> + LP||0p,s — 9n,0||p>
STEST t=1

LemmalC.17]
< (1 + a2 ((2L)7/2 108" V] 4+ LV E (0,5 = ol Fur])
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Substituting the above result into Eq. [35] we obtain
E [||0n,8+1 - 0n,s‘|p|§n71]
< PR (1 + ewign)' 2"~ ((2L)7/2 108" V| 4+ L2 (1005 = O oll”|Faca]) . 3D

‘We now consider

K
ZE [Hen’erl - 9n’0||p|§n71]

s=0

and obtain

K
S E (0.5 — On.ollP|F]

s=1
AM-GM inequality X LS
< Zsp* ZE U10nk = On k1| Fn-1]
s=1 k=1
qum K S
< DT Y P @RY (Lt )2 (L) log?”? (V] 4 L E ([ k1 — B0l o))
s=1 k=1
< KPP (2R)P(1 + enign)P2P~H(2L)P/2 log?/? |V)|
K
+ KPnP(2R)P(1 + eign)P2° ' LP Y "B [[|0n,« — On ol Fn1]
s=1

Since we have the following condition on the learning rate n:

1
< —
= 4K(1+ Ehigh)RL

Hence we can further obtain

K
ZE [Hen,s - 9n70||p|33n—1]
s=1

< KPP (2R)P(1 + enign)P2P~H(2L)P/ 2 1ogP/? V)|

K
+ KPnP (2R)P(1+ €5ign)"2" ' LP > B [[|0,« — O 0]”|-Fn1]
s=1
< KPYUP(2R)P(1 + enign)P 2P (2L)P/? log?? | V)|
1 K
+ 5 SzzlE H|9n,s - 0n,0||p‘ynfl] 3

which means,
K
D E[l0n,s = 0n olP|Fn1] < KPP (2R)P(1 + eyign)P 2P (2L)P/? log”’* |V,
s=1

With this, we complete the proof.

C.4.16 THE PROOF OF THEOREM[5.2]

Proof. First we focus on

(J* = J(Ons1.0)) = (J* = J(no)) -
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To handle this, we invoke Lemma[C.1} In particular, we have

(J* = J(Ont1,0)) = (J" = (b))

LemmalCI] RL
< VI (n0)" Onrr0 = Ono) + = (2T 1og [V +1) 11,0 = O o*
K-1
RL
==Y VJ(0no) VLriccrro(On,s, 0n0) t5 (2T log [V| + 1) [|0n11.0 = Onol®.  (38)
s=0
Xn
Then we get that
Ea Il K-1 K-1
x,ad 7 VI (00.0) VT (Brg) —— VI (O0) Mo, o1
o1’} 0g
0 =0 0 =0
My,
K—-1
- 0_077 VJ(on,o)T (Ag,l(on,.ﬁ an,O) + Ag,2(0n787 on,O) + AC(G’I’L,Sv on,O) + A ( n,s» Gn 0))
0 =0
K-1 K-1
Ui n
_7R Z ”V‘](@n,s)”2 + — Z VJ(HTL,S)T(VJ(HH,O) - V'](en,s»
.0 5=0
K—
oo Z 9,1(971,8’ 971,0) + Ag,2(9n757 071,0) + Ac(on,S7 971,0) + As(en ER) en 0))
n ,0 =0
+ M,
Lemma K-l
< Z IV (00,0)|I? + V2LE*log VI(210g [V + DL Y [6n. ~ b0l
s=0
n
+ 5 V2LRy/log V| Z (1Ag,1(On,s, On0)l| + | Ag,2(On,s, On0) || + [[Ac(On,ss On0) || + [[As(bn,s, 0n,0)])
s=0
+ M,,.

It can be observed that the sequence {M,,, Jn}n>1 constitutes a martingale difference sequence.
Taking the conditional expectation with respect to .%,,_1 on both sides of the above inequality, we
obtain

E [Xn‘ﬁn—l]
K—1 K-1
3v2 :
< —5r 2 B[V, Z0m] + S5 L 10g%2 V] 3 E (60 — 0| o]
s=0 =
77
+ g log |V| Z 1 Ag

n ER) Hn,O)‘Hynfl] + E [HAg,2(9n,s; Hn,O)H ‘ynfl]
s=0
+E [”A ( n,ss 9n,0)|| ‘ynfl] +E [”Aswn,m 9n’0)|||ﬁn,1]) .

Substituting into the above inequality the results on

E [”Ag,l(enm 9n,0)|||yn71]’
E [HAgQ(an,Sa an,O)H‘an—l]’ E A0, Ooia)|l|-Fn—1], and E[[|As(0, Ooia)|||F,

n—1] from Lemmas

43



Under review as a conference paper at ICLR 2026

[CT3] [C8] [C9] and[C-10] respectively, we obtain

E[X,|Zn 1]
K-1 K-1

< lR ZE IVJ(0 n8>|| | Fn— 1] +0 10g5/2\V| UZE ||9n,s—9n,0||‘yn—1}
s=0 s=0

K-1
IOg |V Z ]E ”977,,5 - n OH "g.n 1] + O IOg ‘V| Z E ”071 s 9n,0||2’9n71]
s=0

K-1

1
O(log |V E (10, — Onoll*Fn— Ol —— .
o8IV 3= B 100 = 0ol 7,1] + (\/ﬁ>n>

Note that the quantities hidden in the O notation are constants depending only on other parameters
of the problem and are independent of the iteration number n.

Then, substituting the estimate for

K
ZE [Hen,é - 9n,0||p|’gn—l]a pE {15274}

from Lemma|[C.TT]into the above expression, we finally obtain
K—1

1
E [Xn|Fn1] < — Z E [IVJ(On,0)[*|Fn-1] + O (log® [VIif®) + O (
vael
Substituting the above expression into Eq.[38] we finally obtain
E[(J" = J(bn+1,0)) = (J* = J(On0)) [Fn1]

K-1

< L S B (190071 P 1] + O (108 Viy?)
s=0
log |V 1
+0 <|G|l/4> n+ = (2TLlog\V| + L) E [[[6n41,0 = On.0l|*[Fn1]

E\@

KZE [V I (n5) [ Fn-1] + O (log” [VIn?) + <\/1G—|>77

s=0

K
1
+ 5 (2TLlog V| + L) ;E (16,5 = 6 0ll*[Fr—1]

Lemma K- 1

= V1G]

Taking expectation on both sides of the above inequality, we obtain
E[J" - J(9n+1 )] —E[J" = J(0n,0)]

g——ZE IV (0.5 11%] + O (log? [V )+0<

)

Summing the above 1nequa11ty over the index n from 1 to IV, we finally obtain

N K-1 1
77212@ VI (0n,6)]] = ( 77)+(9(1og |vn)+o<m>

Therefore, we conclude that when n = W, we achieve the optimal convergence rate:

With this, we complete the proof. O
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