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Abstract

An intuitive way to detect out-of-distribution (OOD) data is via the density func-
tion of a fitted probabilistic generative model: points with low density may be
classed as OOD. But this approach has been found to fail, in deep learning set-
tings. In this paper, we list some falsehoods that machine learning researchers
believe about density-based OOD detection. Many recent works have proposed
likelihood-ratio-based methods to ‘fix’ the problem. We propose a framework, the
OOD proxy framework, to unify these methods, and we argue that likelihood ratio
is a principled method for OOD detection and not a mere ‘fix’. Finally, we discuss
the relationship between domain discrimination and semantics.

1 Introduction

We might expect that a neural network should produce reliable outputs when it is presented with
data similar to that used in training, and that its outputs might be prone to error when it is presented
with substantially different data. It is clearly desirable for a neural network to be able to detect the
latter case. This is called the out-of-distribution (OOD) detection problem [4].

A naive approach to OOD detection is as follows: First, train a density model p(x) to approximate
the true distribution from which the training dataset is assumed to be drawn. If p(x) is small at some
particular novel input x, it indicates that there is little training data in the region around x, and that
the model should therefore be unconfident.

This naive approach leads to a paradoxical result, as elegantly shown by Nalisnick et al. [9]. They
found that if they train a generative model to learn the density p(x) on CIFAR10, and then evaluate
this trained p(x) on two test sets, one from CIFAR10 and one from SVHN, then the test CIFAR10
scores are lower than those for SVHN. They found this paradoxical result in several other examples,
and it is easy to replicate.

In this paper, we will argue that this result is not in fact paradoxical: that in fact the naive approach
to OOD detection is based on several falsehoods, falsehoods which are readily demonstrated using
basic probability and statistics. These falsehoods are

• that p(x) should be lower on OOD data;
• that the paradoxical result arises from some deep-learning dark magic;
• that p(x) is suitable for comparing two distributions;
• that low p(x) indicates lack of samples.

We will also argue that some successful approaches to OOD detection in the literature (starting with
Bishop [1]) are based on the likelihood ratio between two datasets rather than the density for a single
dataset, and that the substantive differences are to do with how this second dataset is constructed.
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2 Falsehoods

Here is a simple example to illustrate the problems with using p(x) for OOD detection. Suppose
the training dataset is drawn from N(0, 1), and that the training procedure has correctly learned the
density p(x) = N (x; 0, 1). Now consider an OOD dataset drawn from N(0, ε2) for some small ε.
Then the expected log likelihoods are

E log p(X) =
1

2
log 2π −

{
1/2 for in-distribution i.e. X ∼ N(0, 1)

ε2/2 for OOD i.e. X ∼ N(0, ε2).

We see that log p(X) is larger for out-of-distribution data. This isn’t a paradox, it’s expected be-
haviour! And it arises from basic probability, not from mysterious properties of deep generative
modelling.

This phenomenon does not seem to be limited to toy examples. Nalisnick et al. [9] believe it can
hold in real-world datasets, and explains their finding that p(x) fitted to CIFAR-10 data is no good
for detecting OOD datapoints from SVHN: ‘Our conclusion is that SVHN simply “sits inside of”
CIFAR10—roughly same mean, smaller variance—resulting in its higher likelihood.’

Outlier detection v. OOD detection. It is entirely reasonable to use p(x) to test whether a dat-
apoint is an outlier. This is indeed the cornerstone of frequentist statistics—we reject the null hy-
pothesis when the test statistic shows that the observed data is unlikely. It’s a reasonable basis for
anomaly detection, to say ‘if p(x) is low then label x as an outlier.” [13]

But OOD detection isn’t the same thing as outlier detection. In the two examples above, we implic-
itly used the phrase ‘OOD detection’ to mean “drawn from a specified other distribution”, and this
other distribution happened to include non-outlier points.

In conclusion, p(x) is not suitable for comparing two distributions. In section 3, we will discuss
how to compare two distributions properly.

Lack of samples? Why was the result of Nalisnick et al. [9] surprising? The intuition is something
like this: the training dataset (CIFAR10) has no samples that look anything like the OOD dataset
(SVHN), therefore we expect p(x) to be low on those OOD datapoints.

But this intuition breaks down in high dimensions. A well-known result says that, with high proba-
bility, samples drawn a from high-dimensional Gaussian lie in a thin annulus — “Gaussian distribu-
tions are soap bubbles” [2]. The pdf is always highest at the origin, and yet we are very unlikely to
see any sample points in a ball around the origin! [10]

In other words, “lack of samples” should not be confused with “low pdf”.

3 Likelihood ratio

Bishop [1] pointed out that OOD detection can be thought of as model selection between the in-
distribution pin and an out-of-distribution pout.

In frequentist terminology, given an observation x, consider the null hypothesis H0 that x was drawn
from pin, and the alternative hypothesis H1 that x was drawn from pout. By the Neyman-Pearson
lemma [11], when fixing type-I error P (reject H0|H0 is true), the test with the smallest type-II error
P (accept H0|H0 is false) is the likelihood ratio test. This implies that using likelihood ratio as a test
score will optimise the area under the receiver operating characteristic (AUROC), which is a popular
OOD detection baseline suggested by Hendrycks and Gimpel [4].

A similar result holds under the Bayesian perspective. Let C ∼ Bin(1, α), and let X ∼ pin if C = 0
and X ∼ pout if C = 1. Given an observed value x,

P(C = 1|x) = p(x|C = 1)P(C = 1)

p(x|C = 1)P(C = 1) + p(x|C = 0)P(C = 0)
=

1

1 + (1− α)/(α LR)

where LR = pout(x)/pin(x) is the likelihood ratio. Since P(C = 1|x) is an increasing function of
LR, we might set a threshold θ and decide C = 1 if LR > θ.
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We have shown that the likelihood ratio is an optimal choice from both frequentist and Bayesian
perspectives. However, it is hard to obtain pout. In the next section, we introduce some practical
works that propose proxies for pout.

4 OOD proxies

In practice, we typically do not have an explicit pout distribution. Several recent works on OOD
detection can however be thought of as using a likelihood ratio test based on a proxy distribution for
pout. Formally, we can propose an OOD proxy pproxy

out , and use the likelihood ratio pin/p
proxy
out as our

OOD criterion.

Constant. Bishop [1] suggested we take pproxy
out to be a constant. This expresses the intuitive idea

that pout should spread out widely in a large area. Given x, the likelihood ratio between pin(x) and
a constant is proportional to pin(x), which is identical to the criterion p(x) used by Nalisnick et al.
[9] if we ignore the scale of the threshold. They reported that this choice of pproxy

out leads to poor
performance, as measured by AUROC, in deep learning examples.

Auxiliary OOD datasets. It is natural to construct pproxy
out by some real out-of-distribution data.

Hendrycks et al. [5] suggested that introducing an auxiliary OOD data1 (e.g. 80 Million Tiny Im-
ages [3]) will increase the anomaly detection performance. Here, the auxiliary OOD datasets play
a role of the pproxy

out . Hendrycks et al. [5] did not use the likelihood ratio as the criterion for OOD
detection, they proposed to fine-tune the generative model by the loss

max{0, C − log p(xin) + log p(xout)}

where C is a the number of the pixels of the image, xin is the in-distribution data and xout is the out-
of-distribution data. Then they keep using the likelihood p(x) to detect OOD. Following their OOD
proxy, Schirrmeister et al. [15] proposed a criterion using likelihood ratio between in-distribution pin
and general image distribution pg, where pg is trained by the aforementioned auxiliary OOD dataset,
i.e. the pproxy

out . Furthermore, Zhang et al. [19] suggested that the likelihood ratio could be estimated
by a binary classifier.

Background statistics. Ren et al. [12] observed that “the background of images confounds the
likelihood of the generative models”, and propose a method for OOD detection based on elimi-
nating the effect of background. Assume that background and semantic components are generated
independently, i.e. p(x) = p(xS) p(xB) where xS stands for semantics and xB stands for back-
ground. Suppose we know this factorization for the in-distribution data, as well as for proxy OOD
data which has been obtained by perturbing the in-distribution data in such a way as to preserve the
background and lose the semantics. They propose using the likelihood ratio pin(xS)/p

proxy
out (xS) for

OOD detection.

In practice, it’s hard to see how we can learn this factorization into semantics and background.
They propose instead that pin(xB) ≈ pproxy

out (xB), since we perturbed the data so as to preserve the
background. Then their likelihood ratio becomes

LR(x) =
pin(xS)

pproxy
out (xS)

≈ pin(xS) pin(xB)

pproxy
out (xS) p

proxy
out (xB)

=
pin(x)

pproxy
out (x)

which is exactly our general-purpose likelihood ratio criterion.

Input complexity. Serrà et al. [17] observed that realistic in-distribution images typically have
higher complexity, and that higher-complexity images typically have low p(x), and suggest this is
why using p(x) is not good for OOD detection. They propose compensating for this by using a score
S(x) = log2 pin(x) + L(x) where L is a measure of image complexity: the number of bits when
x is compressed by a universal compressor. They point out that this is effectively a likelihood ratio
test, using an OOD proxy distribution pproxy

out (x) ∝ 2−L(x). Similar to Ren et al., they interpret pproxy
out

as describing the background without specific semantics.

1To have a fair comparison in the benchmark introduced by Hendrycks and Gimpel [4], the auxiliary OOD
dataset does not have any intersection with the test OOD dataset.
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Local features. Zhang et al. [18] proposed detecting OOD by using local models, i.e. models
constrained to capture only limited perceptual fields of the image. They observed that the local
models and full models assign similar likelihoods to OOD data, and infer that the local features are
shared between in-distribution and OOD datasets while non-local features are not. They assume
that the full model admits a decomposition pin(x) ∝ plocal

in (x) pnonlocal
in (x), and propose that pnonlocal

in
should be used for detecting OOD data. This can be written as

pnonlocal
in (x) ∝ pin(x)

plocal
in (x)

which is our general-purpose likelihood ratio criterion, using the local model trained on in-
distribution data as the proxy OOD distribution.

Label-based. Suppose we’re trying to detect OOD inputs to a classifier which we’ve trained on
an dataset of (x,label) pairs. Hendrycks and Gimpel [4] suggested using the predicted labels for
OOD detection: for example, if y(x) is the vector of class probabilities predicted for input x, they
suggest labelling x as OOD if the entropy H

(
y(x)

)
is above a threshold. This idea has been taken

on by others [6–8, 14, 16]. We can interpret the entropy-based detector as a likelihood ratio test,
comparing pin to pproxy

out defined by

pproxy
out (x) ∝ eH(y(x)) pin(x).

It’s interesting to speculate what this proxy distribution might look like; we are not aware of any
work on this.

5 Discussion

Semantics v. domain distinction. The works we have discussed [12, 15, 17–19] include interpre-
tations in the language of semantics. Indeed, the benchmark proposed by Hendrycks and Gimpel
[4] is semantic: “We can see that SVHN is semantically different to CIFAR10, so SVHN should
be considered OOD.” But it’s hard to define ‘semantics’ rigorously, and so semantic-based OOD
detection can seem ad hoc. In our opinion, it’s simpler to treat OOD detection as just a problem of
detecting domains (pin versus pproxy

out ), and this leads directly to the very clean answer “use likelihood
ratio” discussed in section 3. In effect, what we propose can be thought of as defining semantics in
terms of domains: the semantics of pin are those features that are absent in pproxy

out .

One case where there is a somewhat clearer understanding of semantics is with labelled training
data: the labels surely capture some sort of useful semantics. Label-based semantics can be linked
to domain distinction, as shown by our label-based OOD proxy described above.

Likelihood-ratio is not a hack. Most of the works introduced in section 4 use ‘failure’ or some
similar words to describe the phenomenon reported by Nalisnick et al. [9]. They proposed solutions
or patches based on background statistics, local features, or data complexity to “fix the issue”; and
all of them have a final form in likelihood ratio. According to Bishop [1], and as we discussed
in section 3, density-based OOD detection is a special case of likelihood-ratio-based OOD detec-
tion. Hence, we emphasise that likelihood ratio is not a hack to fix density-based detection, it is a
principled way to detect OOD.

Generalisation of OOD proxies. According to section 4, it is important to design a proper OOD
proxy such that the model is able to distinguish the in-distribution test set Dtest

in from many different
OOD test sets Dtest

out1,Dtest
out2, . . . In other words, we want an OOD proxy that can distinguish the in-

distribution domain from other domains. We call this the generalisation of OOD proxy. Hendrycks
et al. [5] indicated that using real auxiliary data (e.g. 80 Million Tiny Images [3]) as the OOD proxy
has a better performance than using the augmented in-distribution data. We believe this is because
the real auxiliary data is more similar to the OOD data or has a large intersection with the domains of
the OOD test datasets. Investigating the generalisation of OOD proxies is an open question, which
we leave to future work.
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