
Symmetric Dot-Product Attention for Efficient Training of BERT
Language Models

Anonymous ACL submission

Abstract

Initially introduced as a machine translation001
model, the Transformer architecture has now002
become the foundation for modern deep learn-003
ing architecture, with applications in a wide004
range of fields, from computer vision to natu-005
ral language processing. Nowadays, to tackle006
increasingly more complex tasks, Transformer-007
based models are stretched to enormous sizes,008
requiring increasingly larger training datasets,009
and unsustainable amount of compute re-010
sources. The ubiquitous nature of the Trans-011
former and its core component, the attention012
mechanism, are thus prime targets for effi-013
ciency research.014

In this work, we propose an alternative com-015
patibility function for the self-attention mech-016
anism introduced by the Transformer architec-017
ture. This compatibility function exploits an018
overlap in the learned representation of the tra-019
ditional scaled dot-product attention, leading020
to a symmetric with pairwise coefficient dot-021
product attention. When applied to the pre-022
training of BERT-like models, this new sym-023
metric attention mechanism reaches a score of024
79.36 on the GLUE benchmark against 78.74025
for the traditional implementation, leads to a026
reduction of 6% in the number of trainable pa-027
rameters, and reduces the number of training028
steps required before convergence by half.029

1 Introduction030

Since its introduction in 2017, the Transformer ar-031

chitecture powered by its scaled dot-product atten-032

tion mechanism (Vaswani et al., 2017) has become033

the core component of modern deep-learning ar-034

chitectures and has enabled researchers to achieve035

breakthroughs in both natural language processing036

(NLP) and computer vision tasks such as language037

modelling (Brown et al., 2020), machine transla-038

tion (Raffel et al., 2019), speech processing (Rad-039

ford et al., 2022), and image recognition (Dosovit-040

skiy et al., 2020). One of the many successes of041

the Transformer lies in its ability to operate and 042

learn in an unsupervised setting from unstructured 043

textual data, as well as its ability to handle com- 044

plex and varied structures such as graphs, images, 045

and sentences by increasing the model’s number 046

of layers. However, this trend has led to the emer- 047

gence of machine learning models so enormous 048

that the gap between the amount of compute re- 049

sources available to many research groups and the 050

amount needed to stay competitive is increasing 051

year after year (Togelius and Yannakakis, 2023), 052

and by training larger and larger models, brought 053

deep-learning’s energy consumption to unsustain- 054

able amounts (Thompson et al., 2021). 055

Efficient Transformer implementations are a pop- 056

ular area of research with many recent contribu- 057

tions on encoding and dense representation of to- 058

kens (Su et al., 2021), hardware-optimized imple- 059

mentation of attention (Dao et al., 2022), or Trans- 060

former implementations for long document pro- 061

cessing (Beltagy et al., 2020). While the attention 062

mechanism itself has been studied extensively (Niu 063

et al., 2021), and several improvements to its com- 064

putational complexity have been achieved (Kitaev 065

et al., 2020; Zhou et al., 2021), it is still primarily 066

computed via the dot-product between a query and 067

a key (see Figure 1). Vaswani et al. (2017) highlight 068

the difficulty of determining a proper compatibil- 069

ity function, and suggest that a more sophisticated 070

compatibility function than dot product may be 071

beneficial. 072

In this work, we propose alternative compatibil- 073

ity functions for the attention mechanism, i. e., the 074

scaled dot-product attention mechanism. With this 075

approach, we aim to improve the training efficiency 076

of Transformer-based models and to reduce their 077

resource consumption. We especially focus on the 078

self-attention mechanism of BERT (Devlin et al., 079

2018), a Transformer-based encoder model. 080

Our contributions can be summarized as follows: 081

1



Figure 1: Scaled Dot-Product Attention (Vaswani et al.,
2017)

• We introduce an alternative formula to replace082

the scaled dot-product attention (Section 2)083

that takes advantage of the underlying sym-084

metric structure of attention, in order to re-085

duce the number of parameters and improve086

the computational efficiency of the model.087

• We benchmark our approach by training sev-088

eral BERT models on three attention mech-089

anism setups as well as two different model090

sizes (Section 3).091

We demonstrate that our new attention formula re-092

duces the number of parameters of the model by093

6%, and achieves a reduction of the number of train-094

ing steps required for model convergence by 50%095

without sacrificing accuracy (Section 4). Finally,096

we discuss the effects of our proposed compatibil-097

ity function on training efficiency, and situate our098

approach within the context of research on efficient099

Transformer-based models (Section 5).100

2 Improving the Attention Mechanism101

Modern Transformer-based models are neural net-102

works that rely on the scaled dot-product attention103

mechanism introduced by Vaswani et al. (2017).104

We propose two variations of this mechanism: a105

symmetric dot-product and a symmetric with pair-106

wise factors dot-product, that lead to a reduction107

in the number of parameters of the self-attention108

layer.109

2.1 Scaled Dot-Product Attention110

The scaled dot-product attention given by the fol-111

lowing equation (Equation 1) is an operator on112

three input matrices, queries Q, keys K and values113

V . We focus on the dot product QKT between114

queries Q and keys K, which is responsible for 115

measuring the compatibility between tokens. The 116

compatibility A is an operator on two input tokens 117

(x, y ∈ Rh), that computes the dot-product of the 118

projections of x and y respectively through the op- 119

erators Q and K: 120

Attn(Q,K, V ) = Softmax

(
QKT

√
d

)
V (1) 121

Given two linear operators Q : Rh → Rd and 122

K : Rh → Rd, we define a compatibility operator 123

A : Rh × Rh → R, such that: 124

A(x, y) = Q(x) ·K(y)T (2) 125

We challenge the necessity of using two differ- 126

ent operators to compute the affinity of the self- 127

attention encoder layer of the Transformer block. 128

Since both Q and K are operators on the same 129

token space, it is reasonable to assume that the 130

representations they learn share some features. In 131

that case, since the original expression (Equation 1) 132

does not enforce any feature sharing, it may possess 133

redundant parameters that will need to be learned 134

twice. 135

We attempt to make this feature sharing property 136

explicit in the compatibility operator expression, 137

in order to remove redundant parameters, reduce 138

overall model size, and improve convergence rate. 139

2.2 Symmetric Dot-Product attention 140

A simple way to make the feature sharing property 141

explicit, is to enforce the following relation Q = K 142

between the two operators. This ensures that Q 143

and K share features and results in the symmetric 144

compatibility operator: 145

Asym(x, y) = Q(x) ·Q(y)T (3) 146

2.3 Pairwise Dot-Product Attention 147

One aspect that needs to be considered is the 148

amount of features shared between the two opera- 149

tors. Complete overlap in terms of features may be 150

detrimental to the overall performance of the atten- 151

tion mechanism, e. g., it could prevent the model 152

to learn asymmetric relationships. Thus, we sug- 153

gest the following compatibility operator where the 154

amount of feature sharing is learned during training. 155

To achieve this, we start with an operator L that 156

will be shared, and we define operators Q and K as 157

2



Function Expression Parameters

original Q(x)K(y)T O(3h2)
symmetric Q(x)Q(y)T O(2h2)
pairwise Q(x)SQ(y)T O(2h2 + h/n)

Table 1: Parameter count of the attention layer per com-
patibility function.

a composition of L with a base change, resulting in158

the following compatibility operator (Equation 5):159

Given a linear operator L : Rh → Rd and two160

square matrices Wq,Wk ∈ Rd×d, we define two161

linear operators Q : Rh → Rd and K : Rh → Rd,162

such that:163

Q(x) = L(x) ·Wq

K(x) = L(x) ·Wk

(4)164

Let S ∈ Rd×d be the product S = Wq ·W T
k , we165

define a compatibility operator A : Rh ×Rh → R,166

such that:167

A(x, y) = Q(x) ·K(y)T

A(x, y) = L(x) ·Wq ·W T
k · L(y)T

A(x, y) = L(x) · S · L(y)T
(5)168

This operator can be interpreted as a weighted dot-169

product whose weights are stored in S, a matrix170

of pairwise factors. To make the expression con-171

sistent with the previously established expressions172

(Equation 2 and Equation 3), we relabel the L op-173

erator with the letter Q, resulting in the following174

pairwise compatibility operator (Equation 6).175

Apair(x, y) = Q(x) · S ·Q(y)T (6)176

2.4 Parameter Count177

For a Transformer block of n heads, with input178

size h and attention size d, we give the parame-179

ter count formula for a complete block (with pa-180

rameters from Q, K and V ). We note that most181

Transformer implementations impose d = h/n.182

As shown in Table 1, the symmetric compatibil-183

ity operator uses two thirds of the original number184

of parameters. For the pairwise compatibility op-185

erator, the parameter count also depends on the186

number of attention heads, it converges towards187

2/3 of the original number of parameters as the188

number of attention heads increases.189

Config Operator Parameters

BERTsmall

original 28,795,194
symmetric 27,744,570 (3.65%)
pairwise 27,875,642 (3.19%)

BERTbase

original 109,514,298
symmetric 102,427,194 (6.47%)
pairwise 103,017,018 (5.93%)

Table 2: Parameter count per model configuration and
compatibility function (relative amount of parameters
saved compared to the original). Bertsmall: nlayers: 4,
nheads: 8, hidden size: 512, intermediate size: 2048.
Bertbase: nlayers: 12, nheads: 12, hidden size: 768,
intermediate size: 3072.

In this section, we introduced two alternative 190

compatibility functions for the attention mecha- 191

nism, a symmetric dot-product operator and a sym- 192

metric with pairwise factors dot-product operator. 193

In the following sections we will refer to them re- 194

spectively as the symmetric operator and the pair- 195

wise operator, we will refer to the traditional scaled 196

dot-product operator as the original operator. 197

3 Experiments 198

To evaluate the symmetric and pairwise operators 199

against the original operator, we train and eval- 200

uate several Transformer-based encoder models, 201

each using a different compatibility operator as 202

part of the self-attention mechanism. The models 203

are trained under the same conditions. First, we 204

pre-train the models, because we want to measure 205

the evaluation loss during training to see if our mod- 206

ifications have an impact on the training efficiency 207

and the accuracy of the model. Then, we evaluate 208

each model on the GLUE benchmark (Wang et al., 209

2019b) to evaluate the model’s accuracy on rele- 210

vant downstream tasks, such as, sentence accept- 211

ability (Warstadt et al., 2018), sentiment analysis 212

(Socher et al., 2013), sentence similarity (Cer et al., 213

2017), and natural language inference (Williams 214

et al., 2018; Rajpurkar et al., 2016). Finally, we se- 215

lect model checkpoints during training and evaluate 216

those checkpoints on GLUE to measure the models’ 217

accuracy on downstream tasks during training. 218

3.1 Pre-Training Dataset 219

To pre-train our models, we select a subset of 30 220

million English documents from the OSCAR cor- 221

pus (Abadji et al., 2022; Jansen et al., 2022) by 222

applying content quality filters (See Appendix A). 223

3



Using OSCAR data instead of the BookCorpus224

(Zhu et al., 2015) and Wikipedia dumps is recom-225

mended for training BERT models (Geiping and226

Goldstein, 2023) and ensures that the amount of227

documents is large enough for single epoch train-228

ing.229

This training dataset is tokenized using the pre-230

trained bert-base-uncased tokenizer (Devlin et al.,231

2018) and sentences are aggregated into groups232

of 512 tokens. After tokenization, the resulting233

dataset contains 137 million training samples, 70234

billion tokens and 10,000 test samples.235

3.2 Model Architectures236

We prepare three variations of the BERT model237

(Devlin et al., 2018) using the original, the sym-238

metric and the pairwise operators. We also train on239

two model sizes, bert-small and bert-base.240

As shown in Table 2, the symmetric and pair-241

wise operators lead to significant reduction in the242

number of parameters, 3.65% and 3.19% for the243

bert-small model, 6.47% and 5.93% for the bert-244

base model.245

In the following sections, we refer to a bert-base246

model as BERTbase when it uses the original op-247

erator, BERTbase,sym or BERTbase,pair when it248

uses the symmetric or pairwise operator respec-249

tively.250

3.3 Pre-Training Setup251

We follow the pre-training setup described by De-252

vlin et al. (2018). The models are trained on a pure253

masked language modeling task with masking prob-254

ability of 0.15 and batch size of 256 samples per255

training steps. Models are trained on 200,000 steps256

with a linear learning rate of 10−4 and learning rate257

warm-up during the first 10,000 steps. For the opti-258

mizer, we use Adam (Kingma and Ba, 2014) with259

weight decay, β1 = 0.9, β2 = 0.999, ϵ = 10−12,260

resulting in models pre-trained on 26 billion to-261

kens. We measure evaluation cross-entropy loss262

during training to assess the training efficiency of263

our models.264

3.4 Benchmark Fine-Tuning Setup265

After pre-training, the models are fine-tuned and266

benchmarked on the GLUE dataset (Wang et al.,267

2019b) to assess their natural language understand-268

ing (NLU) capabilities. Each model is fine-tuned269

on the provided downstream task training dataset270

for 5 epochs, with a batch size of 16 and a linear271

learning rate of 1 · 10−5. This benchmarking step272

is repeated on 5 downstream trials with different 273

seeds. We measure individual task’s scores, bench- 274

mark average and standard deviation across all tri- 275

als. For each model, we measure: the combined 276

F1 and accuracy on the Microsoft Research Para- 277

phrase Corpus mrcp (Dolan and Brockett, 2005), 278

Matthews correlation on the Corpus of Linguistic 279

Acceptability cola (Warstadt et al., 2018), matched 280

and mis-matched accuracy on the Multi-Genre Nat- 281

ural Language Inference Corpus mnli (Williams 282

et al., 2018), accuracy on the Quora Question Pairs 283

qqp1, accuracy on the Recognizing Textual Entail- 284

ment dataset rte (Dagan et al., 2006; Bar Haim 285

et al., 2006; Giampiccolo et al., 2007; Bentivogli 286

et al., 2009), the combined Pearson and Spear- 287

man correlation on the Semantic Textual Similarity 288

Benchmark stsb (Cer et al., 2017), accuracy on 289

the Stanford Question Answering Dataset qnli (Ra- 290

jpurkar et al., 2016), and accuracy on the Stanford 291

Sentiment Treebank sst2 (Socher et al., 2013). The 292

Winograd schema challenge wnli task has been 293

excluded from the evaluation following the recom- 294

mendation of Devlin et al. (2018). 295

Compared to the original BERT setup or more 296

recent compute optimized fine-tuning setups (Geip- 297

ing and Goldstein, 2023), we choose to fine-tune 298

for a longer time (5 epochs instead of 3) and with 299

a lower learning rate (1 · 10−5 instead of 4 · 10−5), 300

to have a more stable fine-tuning experience and 301

reduce the risk of lucky seeding. With this choice, 302

we aim to have a fairer evaluation of the models. 303

3.5 Checkpoint Benchmarking 304

We want to evaluate how downstream accuracy 305

evolves during pre-training. We extract check- 306

points during training and evaluate them on the 307

GLUE benchmark. Each checkpoint is fine-tuned 308

and evaluated on GLUE using the previously estab- 309

lished fine-tuning setup. 310

4 Results 311

In this section, we present the results of our experi- 312

ments, the pre-training of our three variants (Fig- 313

ure 2), the scores they reach on the GLUE bench- 314

mark (Table 3) once fully trained and the evolution 315

of the GLUE score during training (Figure 3). 316

4.1 Pre-Training Experiment 317

Figure 2b shows that the symmetric and pairwise 318

variant converge much faster than the original vari- 319

1https://data.quora.com/
First-Quora-Dataset-Release-Question-Pairs

4

https://data.quora.com/First-Quora-Dataset-Release-Question-Pairs
https://data.quora.com/First-Quora-Dataset-Release-Question-Pairs


(a) BERTsmall (b) BERTbase

Figure 2: BERT pre-training evaluation loss. Models are trained for 200,000 steps, the evaluation loss is the
cross-entropy loss. We observe that the models using the symmetric and pairwise operators converge faster than the
original model.

ant for the BERTbase model. The evaluation loss320

of the original variant remains on the initial plateau321

until step 25,000, when it sharply decreases. The322

symmetric variant remains on the initial plateau323

until step 13,500 and the pairwise variant until step324

12,000. We also note that the original and pairwise325

variants will eventually reach the same evaluation326

loss plateau, while the symmetric variant remains327

above the two other variants with an additional328

absolute error of 0.1.329

Comparing Figures 2a and 2b, we observe the330

impact of model size on training efficiency. When331

the model size increases, the original variant’s ini-332

tial plateau is expanded from step 12,000 to step333

25,000, while the symmetric and pairwise variant334

were almost unaffected.335

4.2 GLUE Benchmark Fine-Tuning336

Table 3 shows that the pairwise variant performs337

better than the original variant with an increase338

of 0.6 points on the average GLUE score for both339

model sizes. The symmetric variant, however, is340

outperformed by the original variant in both cases,341

with a drop of 4 points on the average GLUE score.342

We also observe that both proposed variants have a343

lower standard deviation on the bert-base model.344

4.3 GLUE Benchmarking Along Training345

Steps346

Figure 3 shows that the improved training effi-347

ciency observed during pre-training translates to a348

faster convergence rate on the GLUE benchmark349

as well. The pairwise and original variants both350

reach a final average GLUE score of approximately351

Figure 3: Average GLUE score over training steps.
Checkpoints are sampled during training and evaluated
on the GLUE benchmark. The red dashed line corre-
spond to 95% of the final GLUE average score.

79. The pairwise variant achieves 95% (a score of 352

75) of its final value after 30,000 steps, the original 353

variant reaches the same score after 65,000 steps. 354

We also observe a smoother evolution of the 355

accuracy for the pairwise variant compared to the 356

original variant. The experiment also highlights the 357

performance drop of the symmetric variant when 358

compared to the original variant. 359

5 Discussion 360

5.1 Pre-training Efficiency 361

During the pre-training experiment, we ob- 362

served that both variants BERTbase,sym and 363

BERTbase,pair outperformed the original variant 364

BERTbase in terms of convergence rate (they 365

5



Model GLUE Score mrpc cola mnli(m/mm) qqp rte stsb qnli sst2

BERTsmall 72.72 (0.07) 81.04 21.39 77.16/77.76 86.08 54.87 82.20 85.45 88.49
BERTsmall,sym 69.61 (0.32) 76.81 10.29 75.25/75.72 85.13 55.74 77.83 82.79 86.90
BERTsmall,pair 73.38 (0.37) 82.34 24.21 76.37/76.89 86.67 56.25 84.13 84.97 88.60

BERTbase 78.74 (0.63) 85.30 44.35 81.66/82.07 88.86 59.42 87.30 88.76 90.92
BERTbase,sym 74.82 (0.36) 78.36 35.22 78.66/79.05 87.70 53.43 84.47 86.90 89.56
BERTbase,pair 79.36 (0.37) 87.83 46.91 81.60/82.02 88.89 60.58 86.88 88.78 90.78

Table 3: Average GLUE scores Average score over the GLUE benchmark per model with individual task breakdown.
BERTbase,pair achieves the best GLUE Score of 79.36 with a standard deviation of 0.37, in comparison to
BERTbase,pair which achieve a GLUE Score of 78.74 with a standard deviation of 0.63.

initiated the learning and reached their respec-366

tive plateau faster), for a bert-base model the367

convergence rate seems to be two times faster.368

However, BERTbase and BERTbase,pair ulti-369

mately met around the same evaluation loss, while370

BERTbase,sym performed a little worse.371

One obvious explanation for the improved con-372

vergence rate can be found in the reuse of the Q373

operator, this can impact convergence rate in three374

way:375

• The accumulation of two loss gradients per376

forward/backward pass instead of a single one,377

resulting in an effect similar (but not exactly378

equivalent) to doubling the learning rate for379

the parameters of the Q operator.380

• The reduction in the number of parameters.381

• Sharing representation for both Q and K op-382

erators. If they do learn a subset of the same383

features, then enforcing a shared representa-384

tion for both of them will reduce the amount385

of learning required.386

These effects explain why both BERTbase,sym387

and BERTbase,pair converge much faster than388

BERTbase.389

While converging faster than BERTbase,390

BERTbase,sym did not reach the same evaluation391

loss. It is fair to assume that this is a modelling392

issue and not a size issue since BERTbase,pair out-393

performed BERTbase,sym with a similar number394

of parameters. Thus, we can conclude that symme-395

try is not a desired property of the compatibility396

function of the attention mechanism.397

5.2 GLUE Benchmark398

The evaluation of the three variants on the GLUE399

benchmark shows that BERTbase,pair is more ac-400

curate than BERTbase, reaching an average score401

of 79.39 against 78.74 respectively. The evalua- 402

tion also shows that the standard deviation of the 403

average score across five trials is lower for both 404

BERTbase,pair and BERTbase,sym, with a stan- 405

dard deviation of 0.37 and 0.36 against 0.63 for 406

BERTbase. 407

This confirms that the training efficiency im- 408

provement observed on the pre-training task trans- 409

lates to the fine-tuning task and leads to improve- 410

ment on the downstream task’s accuracy. With the 411

added benefit of making the fine-tuning task more 412

stable, as shown by the lower standard deviation. 413

We also note that the fairly small 0.1 dif- 414

ference in evaluation loss during training for 415

BERTbase,sym has translated to a 4 points accu- 416

racy drop on the evaluation benchmark, echoing 417

our remark on the need to model asymmetric rela- 418

tionships. 419

With these results, we experimentally prove that 420

our pairwise operator improves the training effi- 421

ciency of Transformer-based models, leading to 422

a faster convergence rate and overall lower train- 423

ing loss. These improvements also translate to 424

downstream task benchmarks. Models using the 425

pairwise compatibility operator are indeed more 426

accurate than the ones using the original compati- 427

bility operator. 428

5.3 GLUE Evaluation During Pre-Training 429

Running the benchmark evaluation on our three 430

models at several steps of the pre-training exper- 431

iment shows that the training efficiency we ob- 432

served translates well into downstream accuracy. 433

Our BERTbase,sym and BERTbase,pair converge 434

faster towards their respective final values, sim- 435

ilarly to the training loss observed on the pre- 436

training task. BERTbase reaches 95% of its fi- 437

nal value after 65,000 steps and BERTbase,pair 438

after 30,000 steps. While BERTbase eventu- 439

6



ally catches up and improves on BERTbase,sym,440

BERTbase,pair is consistently the better model.441

This final experiment highlights the improved442

training efficiency induced by the pairwise com-443

patibility operator. The faster convergence rate ob-444

served during pre-training is also observed on the445

downstream task evaluation, confirming the conver-446

gence rate improvement by a factor of two for the447

BERTbase,pair model.448

6 Related Work449

While the Transformer architecture (Vaswani et al.,450

2017) popularized the use of the attention mecha-451

nism, and contributed to its adoption in the field of452

NLP, the attention mechanism was first introduced453

to NLP with recurrent neural networks applied to454

machine translation (Bahdanau et al., 2016). In455

this setting, the compatibility operator is a simple456

multi-layer perceptron with non-linear activation457

operating on the concatenation of inputs encoded458

by the recurrent neural network. This definition459

of the attention mechanism was then extended to460

other compatibility operator: Luong et al. (2015)461

mention the use of the dot-product between the re-462

current neural network’s hidden state, propose to463

explicitly integrate token positions into the com-464

patibility operator, and even suggest the use of465

a general dot-product operator score(ht, hs) =466

hTt Whs. Those initial influences have also been467

documented by Galassi et al. (2020) and Niu et al.468

(2021), where the general dot-product appears as469

a weighted dot-product between query and keys470

f(q,K) = qTWK. Thus the pairwise compati-471

bility operator we introduce is an evolution of the472

general dot-product, where we constrain it to a sin-473

gle and shared linear operator Q before applying474

the bilinear form of matrix S, resulting in the fol-475

lowing operator A(x, y) = Q(x)SQ(y)T .476

To the best of our knowledge, our work is the477

first application of the general dot-product with en-478

forced symmetry to the self-attention mechanism of479

the Transformer architecture. While we focused on480

the compatibility operator, recent improvements481

have been made on other parts of the attention482

mechanism. Namely, He and Hofmann (2023) pro-483

posed to simplify the entire Transformer block by484

carefully removing components and achieved an485

impressive 15% weight reduction, while still rely-486

ing on the traditional scaled dot-product.487

7 Conclusion 488

In this work, we revisited the traditional scaled 489

dot-product used in the Transformer self-attention 490

mechanism. We challenged the use of two dis- 491

tinct operators to compute the dot-product between 492

queries and keys, in favor of single shared opera- 493

tor and a weighted dot-product with pairwise fac- 494

tors. By doing so, we enforced a symmetric struc- 495

ture to the compatibility operator of the attention 496

mechanism, reducing the number of parameters 497

used in the Transformer layer by a third. As a re- 498

sult, when applied to BERT models, our pairwise 499

compatibility operator reduces the overall num- 500

ber of parameters of the model by 6%, reduces 501

the number of pre-training steps required by half 502

and improves accuracy on the GLUE benchmark, 503

making Transformer-based encoders more efficient, 504

faster to train and lowering their resource require- 505

ments. We believe our work can be applied to 506

other Transformer architectures like decoder and 507

encoder-decoder models, as well as to other NLP 508

tasks like machine translation and language model- 509

ing. And, more generally, to the concept of atten- 510

tion as a whole, where it would bring improvement 511

in other fields such as computer vision. 512

For future work, we plan to evaluate the pairwise 513

dot-product attention mechanism on larger models 514

reaching into the billion parameters, and to evaluate 515

our attention mechanism on other benchmarks, like 516

SuperGLUE (Wang et al., 2019a) and SQuAD2.0 517

(Rajpurkar et al., 2018). We plan on implementing 518

the pairwise compatibility operator for the cross- 519

attention mechanism, and evaluating it on decoder 520

and encoder-decoder tasks like language modeling 521

and machine translation. Finally, we want to eval- 522

uate our pairwise dot-product attention not only 523

on natural language processing tasks, but also on 524

tasks from other fields, computer vision, time series 525

forecasting and reinforcement learning. 526

Limitations 527

Our work focuses only on the application and eval- 528

uation of alternative compatibility functions for the 529

self-attention mechanism of Transformer-based en- 530

coder models, benchmarked on NLU tasks. While 531

our work has shown positive results on this specific 532

use case, we cannot draw any conclusion on its 533

application to decoder models and pure language 534

modeling tasks, or encoder-decoder model and ma- 535

chine translation tasks. Those use cases rely on the 536

cross-attention mechanism for which the shared 537

7



representation we exploit with our pairwise com-538

patibility operator may not be appropriate.539

While we suggest that the Q and K operators540

learn a shared representation, we did not perform541

any analysis of the original scaled-dot product at-542

tention or of our pairwise dot-product attention.543

The parameter redundancy of multi-head attention544

models has been covered in Bian et al. (2021).545

However, to our knowledge the parameter redun-546

dancy between the query and the key operator of a547

single head has not been studied.548

While our work showed positive improvements549

on the training efficiency of BERT-like models of550

fairly small sizes (100 million parameters), it is not551

enough to draw conclusions on its efficiency on552

very large models (e.g., 10 billion parameters).553

We decided to benchmark our models on GLUE,554

as it is the most popular benchmark for NLU evalu-555

ation. However, this benchmark as been largely556

surpassed by modern machine learning models.557

For that reason, new benchmarks have been in-558

troduced, such as SuperGLUE (Wang et al., 2019a)559

or SQuAD2.0 (Rajpurkar et al., 2018).560

Reproducibility Statement561

All software related to our experiments with the at-562

tention mechanism is available at anonymizedurl.563

It uses the PyTorch (Paszke et al., 2017) and Hug-564

gingFace Transformer (Wolf et al., 2020) frame-565

works. The necessary steps to recreate the train-566

ing dataset are documented at anonymizedurl,567

the dataset used for training is available at568

anonymizedurl.569

References570

Julien Abadji, Pedro Ortiz Suarez, Laurent Romary, and571
Benoît Sagot. 2022. Towards a cleaner document-572
oriented multilingual crawled corpus. In Proceedings573
of the Thirteenth Language Resources and Evalua-574
tion Conference, pages 4344–4355, Marseille, France.575
European Language Resources Association.576

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-577
gio. 2016. Neural machine translation by jointly578
learning to align and translate.579

Roy Bar Haim, Ido Dagan, Bill Dolan, Lisa Ferro,580
Danilo Giampiccolo, Bernardo Magnini, and Idan581
Szpektor. 2006. The second PASCAL recognising582
textual entailment challenge.583

Iz Beltagy, Matthew E. Peters, and Arman Cohan. 2020.584
Longformer: The long-document transformer. CoRR,585
abs/2004.05150.586

Luisa Bentivogli, Ido Dagan, Hoa Trang Dang, Danilo 587
Giampiccolo, and Bernardo Magnini. 2009. The fifth 588
PASCAL recognizing textual entailment challenge. 589

Yuchen Bian, Jiaji Huang, Xingyu Cai, Jiahong Yuan, 590
and Kenneth Church. 2021. On attention redundancy: 591
A comprehensive study. In Proceedings of the 2021 592
Conference of the North American Chapter of the 593
Association for Computational Linguistics: Human 594
Language Technologies, pages 930–945, Online. As- 595
sociation for Computational Linguistics. 596

Tom Brown, Benjamin Mann, Nick Ryder, Melanie 597
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind 598
Neelakantan, Pranav Shyam, Girish Sastry, Amanda 599
Askell, Sandhini Agarwal, Ariel Herbert-Voss, 600
Gretchen Krueger, Tom Henighan, Rewon Child, 601
Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens 602
Winter, Chris Hesse, Mark Chen, Eric Sigler, Ma- 603
teusz Litwin, Scott Gray, Benjamin Chess, Jack 604
Clark, Christopher Berner, Sam McCandlish, Alec 605
Radford, Ilya Sutskever, and Dario Amodei. 2020. 606
Language models are few-shot learners. In Ad- 607
vances in Neural Information Processing Systems, 608
volume 33, pages 1877–1901. Curran Associates, 609
Inc. 610

Daniel Cer, Mona Diab, Eneko Agirre, Iñigo Lopez- 611
Gazpio, and Lucia Specia. 2017. SemEval-2017 612
task 1: Semantic textual similarity multilingual and 613
crosslingual focused evaluation. In Proceedings 614
of the 11th International Workshop on Semantic 615
Evaluation (SemEval-2017), pages 1–14, Vancouver, 616
Canada. Association for Computational Linguistics. 617

Ido Dagan, Oren Glickman, and Bernardo Magnini. 618
2006. The PASCAL recognising textual entailment 619
challenge. In Machine learning challenges. evaluat- 620
ing predictive uncertainty, visual object classification, 621
and recognising tectual entailment, pages 177–190. 622
Springer. 623

Tri Dao, Daniel Y. Fu, Stefano Ermon, Atri Rudra, 624
and Christopher Ré. 2022. Flashattention: Fast and 625
memory-efficient exact attention with io-awareness. 626

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and 627
Kristina Toutanova. 2018. Bert: Pre-training of deep 628
bidirectional transformers for language understand- 629
ing. arXiv preprint arXiv:1810.04805. 630

William B Dolan and Chris Brockett. 2005. Automati- 631
cally constructing a corpus of sentential paraphrases. 632
In Proceedings of the International Workshop on 633
Paraphrasing. 634

Alexey Dosovitskiy, Lucas Beyer, Alexander 635
Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, 636
Thomas Unterthiner, Mostafa Dehghani, Matthias 637
Minderer, Georg Heigold, Sylvain Gelly, Jakob 638
Uszkoreit, and Neil Houlsby. 2020. An image 639
is worth 16x16 words: Transformers for image 640
recognition at scale. CoRR, abs/2010.11929. 641

8

anonymizedurl
anonymizedurl
anonymizedurl
https://aclanthology.org/2022.lrec-1.463
https://aclanthology.org/2022.lrec-1.463
https://aclanthology.org/2022.lrec-1.463
http://arxiv.org/abs/1409.0473
http://arxiv.org/abs/1409.0473
http://arxiv.org/abs/1409.0473
http://arxiv.org/abs/2004.05150
https://doi.org/10.18653/v1/2021.naacl-main.72
https://doi.org/10.18653/v1/2021.naacl-main.72
https://doi.org/10.18653/v1/2021.naacl-main.72
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://doi.org/10.18653/v1/S17-2001
https://doi.org/10.18653/v1/S17-2001
https://doi.org/10.18653/v1/S17-2001
https://doi.org/10.18653/v1/S17-2001
https://doi.org/10.18653/v1/S17-2001
http://arxiv.org/abs/2205.14135
http://arxiv.org/abs/2205.14135
http://arxiv.org/abs/2205.14135
http://arxiv.org/abs/2010.11929
http://arxiv.org/abs/2010.11929
http://arxiv.org/abs/2010.11929
http://arxiv.org/abs/2010.11929
http://arxiv.org/abs/2010.11929


Andrea Galassi, Marco Lippi, and Paolo Torroni. 2020.642
Attention in natural language processing. IEEE trans-643
actions on neural networks and learning systems,644
32(10):4291–4308.645

Jonas Geiping and Tom Goldstein. 2023. Cramming:646
Training a language model on a single gpu in one day.647
In International Conference on Machine Learning,648
pages 11117–11143. PMLR.649

Danilo Giampiccolo, Bernardo Magnini, Ido Dagan, and650
Bill Dolan. 2007. The third PASCAL recognizing651
textual entailment challenge. In Proceedings of the652
ACL-PASCAL workshop on textual entailment and653
paraphrasing, pages 1–9. Association for Computa-654
tional Linguistics.655

Bobby He and Thomas Hofmann. 2023. Sim-656
plifying transformer blocks. arXiv preprint657
arXiv:2311.01906.658

Tim Jansen, Yangling Tong, Victoria Zevallos, and Pe-659
dro Ortiz Suarez. 2022. Perplexed by Quality: A660
Perplexity-based Method for Adult and Harmful Con-661
tent Detection in Multilingual Heterogeneous Web662
Data. arXiv e-prints, page arXiv:2212.10440.663

Diederik P Kingma and Jimmy Ba. 2014. Adam: A664
method for stochastic optimization. arXiv preprint665
arXiv:1412.6980.666

Nikita Kitaev, Łukasz Kaiser, and Anselm Levskaya.667
2020. Reformer: The efficient transformer. arXiv668
preprint arXiv:2001.04451.669

Minh-Thang Luong, Hieu Pham, and Christo-670
pher D. Manning. 2015. Effective approaches to671
attention-based neural machine translation. CoRR,672
abs/1508.04025.673

Zhaoyang Niu, Guoqiang Zhong, and Hui Yu. 2021. A674
review on the attention mechanism of deep learning.675
Neurocomputing, 452:48–62.676

Adam Paszke, Sam Gross, Soumith Chintala, Gregory677
Chanan, Edward Yang, Zachary DeVito, Zeming Lin,678
Alban Desmaison, Luca Antiga, and Adam Lerer.679
2017. Automatic differentiation in pytorch.680

Alec Radford, Jong Wook Kim, Tao Xu, Greg Brock-681
man, Christine McLeavey, and Ilya Sutskever. 2022.682
Robust speech recognition via large-scale weak su-683
pervision.684

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine685
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,686
Wei Li, and Peter J. Liu. 2019. Exploring the limits687
of transfer learning with a unified text-to-text trans-688
former. CoRR, abs/1910.10683.689

Pranav Rajpurkar, Robin Jia, and Percy Liang. 2018.690
Know what you don’t know: Unanswerable questions691
for squad. CoRR, abs/1806.03822.692

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and 693
Percy Liang. 2016. SQuAD: 100,000+ questions for 694
machine comprehension of text. In Proceedings of 695
the 2016 Conference on Empirical Methods in Natu- 696
ral Language Processing, pages 2383–2392, Austin, 697
Texas. Association for Computational Linguistics. 698

Richard Socher, Alex Perelygin, Jean Wu, Jason 699
Chuang, Christopher D. Manning, Andrew Ng, and 700
Christopher Potts. 2013. Recursive deep models for 701
semantic compositionality over a sentiment treebank. 702
In Proceedings of the 2013 Conference on Empiri- 703
cal Methods in Natural Language Processing, pages 704
1631–1642, Seattle, Washington, USA. Association 705
for Computational Linguistics. 706

Jianlin Su, Yu Lu, Shengfeng Pan, Bo Wen, and Yunfeng 707
Liu. 2021. Roformer: Enhanced transformer with 708
rotary position embedding. CoRR, abs/2104.09864. 709

Neil C. Thompson, Kristjan Greenewald, Keeheon Lee, 710
and Gabriel F. Manso. 2021. Deep learning’s dimin- 711
ishing returns: The cost of improvement is becoming 712
unsustainable. IEEE Spectrum, 58(10):50–55. 713

Julian Togelius and Georgios N. Yannakakis. 2023. 714
Choose your weapon: Survival strategies for de- 715
pressed ai academics. 716

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob 717
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz 718
Kaiser, and Illia Polosukhin. 2017. Attention is all 719
you need. Advances in neural information processing 720
systems, 30. 721

Alex Wang, Yada Pruksachatkun, Nikita Nangia, Aman- 722
preet Singh, Julian Michael, Felix Hill, Omer Levy, 723
and Samuel R. Bowman. 2019a. Superglue: A stick- 724
ier benchmark for general-purpose language under- 725
standing systems. CoRR, abs/1905.00537. 726

Alex Wang, Amanpreet Singh, Julian Michael, Felix 727
Hill, Omer Levy, and Samuel R. Bowman. 2019b. 728
GLUE: A multi-task benchmark and analysis plat- 729
form for natural language understanding. In Interna- 730
tional Conference on Learning Representations. 731

Alex Warstadt, Amanpreet Singh, and Samuel R. Bow- 732
man. 2018. Neural network acceptability judgments. 733
CoRR, abs/1805.12471. 734

Adina Williams, Nikita Nangia, and Samuel Bowman. 735
2018. A broad-coverage challenge corpus for sen- 736
tence understanding through inference. In Proceed- 737
ings of the 2018 Conference of the North American 738
Chapter of the Association for Computational Lin- 739
guistics: Human Language Technologies, Volume 740
1 (Long Papers), pages 1112–1122, New Orleans, 741
Louisiana. Association for Computational Linguis- 742
tics. 743

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien 744
Chaumond, Clement Delangue, Anthony Moi, Pier- 745
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, 746
Joe Davison, Sam Shleifer, Patrick von Platen, Clara 747
Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le 748

9

https://doi.org/10.48550/arXiv.2212.10440
https://doi.org/10.48550/arXiv.2212.10440
https://doi.org/10.48550/arXiv.2212.10440
https://doi.org/10.48550/arXiv.2212.10440
https://doi.org/10.48550/arXiv.2212.10440
https://doi.org/10.48550/arXiv.2212.10440
https://doi.org/10.48550/arXiv.2212.10440
http://arxiv.org/abs/1508.04025
http://arxiv.org/abs/1508.04025
http://arxiv.org/abs/1508.04025
http://arxiv.org/abs/2212.04356
http://arxiv.org/abs/2212.04356
http://arxiv.org/abs/2212.04356
http://arxiv.org/abs/1910.10683
http://arxiv.org/abs/1910.10683
http://arxiv.org/abs/1910.10683
http://arxiv.org/abs/1910.10683
http://arxiv.org/abs/1910.10683
http://arxiv.org/abs/1806.03822
http://arxiv.org/abs/1806.03822
http://arxiv.org/abs/1806.03822
https://doi.org/10.18653/v1/D16-1264
https://doi.org/10.18653/v1/D16-1264
https://doi.org/10.18653/v1/D16-1264
https://aclanthology.org/D13-1170
https://aclanthology.org/D13-1170
https://aclanthology.org/D13-1170
http://arxiv.org/abs/2104.09864
http://arxiv.org/abs/2104.09864
http://arxiv.org/abs/2104.09864
https://doi.org/10.1109/MSPEC.2021.9563954
https://doi.org/10.1109/MSPEC.2021.9563954
https://doi.org/10.1109/MSPEC.2021.9563954
https://doi.org/10.1109/MSPEC.2021.9563954
https://doi.org/10.1109/MSPEC.2021.9563954
http://arxiv.org/abs/2304.06035
http://arxiv.org/abs/2304.06035
http://arxiv.org/abs/2304.06035
http://arxiv.org/abs/1905.00537
http://arxiv.org/abs/1905.00537
http://arxiv.org/abs/1905.00537
http://arxiv.org/abs/1905.00537
http://arxiv.org/abs/1905.00537
https://openreview.net/forum?id=rJ4km2R5t7
https://openreview.net/forum?id=rJ4km2R5t7
https://openreview.net/forum?id=rJ4km2R5t7
http://arxiv.org/abs/1805.12471
https://doi.org/10.18653/v1/N18-1101
https://doi.org/10.18653/v1/N18-1101
https://doi.org/10.18653/v1/N18-1101


Scao, Sylvain Gugger, Mariama Drame, Quentin749
Lhoest, and Alexander M. Rush. 2020. Transform-750
ers: State-of-the-art natural language processing. In751
Proceedings of the 2020 Conference on Empirical752
Methods in Natural Language Processing: System753
Demonstrations, pages 38–45, Online. Association754
for Computational Linguistics.755

Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai756
Zhang, Jianxin Li, Hui Xiong, and Wancai Zhang.757
2021. Informer: Beyond efficient transformer for758
long sequence time-series forecasting. In Proceed-759
ings of the AAAI conference on artificial intelligence,760
volume 35, pages 11106–11115.761

Yukun Zhu, Ryan Kiros, Rich Zemel, Ruslan Salakhut-762
dinov, Raquel Urtasun, Antonio Torralba, and Sanja763
Fidler. 2015. Aligning books and movies: Towards764
story-like visual explanations by watching movies765
and reading books. In The IEEE International Con-766
ference on Computer Vision (ICCV).767

A OSCAR Filters 768

To ensure good quality of our training dataset, we 769

filter OSCAR dumps with the following rules: 770

• From the UT1 Blocklists project2, we exclude 771

the following categories: 772

– "agressif" 773

– "adult" 774

– "cryptojacking" 775

– "dangerous_material" 776

– "phishing" 777

– "warez" 778

– "ddos" 779

– "hacking" 780

– "malware" 781

– "mixed_adult" 782

– "sect" 783

• We exclude documents whose harmful per- 784

plexity score is below 5.0 and above 100,000. 785

• Following recommendation from (Abadji 786

et al., 2022), we exclude documents which 787

have been flagged with quality warnings. 788

2http://dsi.ut-capitole.fr/blacklists/index_
en.php

10

https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://www.aclweb.org/anthology/2020.emnlp-demos.6
http://dsi.ut-capitole.fr/blacklists/index_en.php
http://dsi.ut-capitole.fr/blacklists/index_en.php

	Introduction
	Improving the Attention Mechanism
	Scaled Dot-Product Attention
	Symmetric Dot-Product attention
	Pairwise Dot-Product Attention
	Parameter Count

	Experiments
	Pre-Training Dataset
	Model Architectures
	Pre-Training Setup
	Benchmark Fine-Tuning Setup
	Checkpoint Benchmarking

	Results
	Pre-Training Experiment
	GLUE Benchmark Fine-Tuning
	GLUE Benchmarking Along Training Steps

	Discussion
	Pre-training Efficiency
	GLUE Benchmark
	GLUE Evaluation During Pre-Training

	Related Work
	Conclusion
	OSCAR Filters

