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ABSTRACT

In-context learning, also referred to as few-shot learning, enables language mod-
els to adapt to tasks using a limited number of examples embedded in the prompt.
Traditional approaches typically present all examples in a single prompt, which
works well for pre-trained base models. However, the application of this method
to instruction-tuned chat models, such as ChatGPT, remains underexplored. In this
paper, we introduce a novel conversational few-shot prompting technique, which
structures few-shot examples as multi-turn conversation between the user and the
assistant, rather than a single input prompt. This conversational framing better
aligns with the interactive nature of chat models, enhancing their instruction-
following abilities and generalization across tasks. Through experiments on vari-
ous benchmarks, we demonstrate that this approach significantly improves per-
formance, particularly in low-shot scenarios, compared to traditional few-shot
prompting. Our results suggest that this method provides a more flexible and
robust way to leverage few-shot examples in instruction-tuned chat models, im-
proving task performance without the need for additional fine-tuning, reducing
prompt sensitivity, and offering potential for diverse applications.

1 INTRODUCTION

In-context learning, particularly in the realm of few-shot learning (Brown et al., 2020), marks a no-
table progression in language modeling (Kaplan et al., 2020). This method enables models to adjust
to specific tasks using only a small number of examples included directly in the input, contrasting
with traditional methods that necessitate explicit fine-tuning for each task (Devlin et al., 2019; Raf-
fel et al., 2020). This technique is prominently applied by advanced large language models such
as GPT (OpenAI, 2022; Achiam et al., 2023) and Claude (Anthropic, 2023a;b), which dynamically
generalize and execute tasks based on limited example encoded in the prompt. Utilizing these exam-
ples, the model identifies task patterns and extends them to novel, unseen data in the same context.
This approach provides a flexible and computationally efficient alternative to conventional training
methods, enabling a single model to handle diverse tasks without extensive labeled data or separate
fine-tuning stages.

In the structured arrangement of few-shot learning examples, each instance comprises input-output
pairs as depicted in Figure 1. Each example initiates with a constant symbol token, such as “Ques-
tion” or “Answer” (Brown et al., 2020) to categorize the subsequent content’s function. The col-
lection of few-shot examples, along with the user query, is concurrently processed by the language
model, which then generates predictions that emulate the provided examples. Employing these fixed
symbol tokens to illustrate the concepts of context and completion is effective for a pre-trained base
language model, which mainly referring to model without supervised instruction tuning (SFT) (Wei
et al., 2022a) or reinforcement learning from human feedback (RLHF) (Ouyang et al., 2022; Bai
et al., 2022). However, this approach may not be optimal for an instruction-based chat model con-
ducting SFT or RLHF. For chat models, we apply a chat template that employs specialized tokens
“<|user|>” and “<|assistant|>” to differentiate between context and completion (OpenAI,
2022) as shown in Figure 1. All the input information would be fed into the content of user message
“<|user|>” and chat model will fill the generation after the “<|assistant|>”. In practical
applications of few-shot prompting, all few-shot examples are incorporated into the user’s message
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Q: Circulation revenue has increased by 5% in Finland. A: Positive
Q: Panostaja did not disclose the purchase price. A: Neutral
Q: Paying off the national debt will be extremely painful. A: Negative

Q: The acquisition will have an immediate positive impact. A:

Positive.
Q: The company is not interested in a merger. A: Neutral
……

Few-shot examples

Test input

The acquisition will have an immediate

impact on the quality of the product and the 
quality of the service provided by the company

Test input

Few-shot prompt on base modelInteraction of base model: text completion

System: You are a helpful assistant.

User: Who are you?

Assistant: I am chatGPT, an AI 
assistant created by OpenAI. 

User: What can you do?

Assistant: I can help with a wide 
range of tasks, including…

System: You are a helpful assistant.

Assistant: A: Positive

Q: Circulation revenue has increased by 5% in Finland. A: Positive
Q: Panostaja did not disclose the purchase price. A: Neutral
Q: Paying off the national debt will be extremely painful. A: Negative

Q: The acquisition will have an immediate positive impact. A:

User:

Interaction of chat model: chat completion Few-shot prompt on chat model

Figure 1: Distinct paradigms of few-shot prompting applied to the base model and chat model.

such as Figure 1, facilitating only a single-turn interaction between the user and the assistant model.
Obviously, the task of generation becomes a single-response completion task rather than an ongoing
conversation, which may not fully capitalize on the potential of chat models.

In this paper, we investigate a new conversational few-shot prompting technique which adjusts the
few-shot prompt as a multi-turn conversation between user and assistant. Rather than incorporating
all few-shot examples in a single user message, we convert each input-output pair into a separate
turn within the conversation between the user and the assistant as shown in Figure 2. This approach
offers several advantages over traditional few-shot learning methods. Firstly, by structuring the
examples as a dialogue, has the potential to improve the performance and usability of few-shot
learning in chat models, making them more versatile and efficient in handling a wide range of tasks
with limited examples. Secondly, this technique aligns more naturally with the interactive nature
of chat models, allowing them to leverage their inherent conversational capabilities to better follow
user’s instruction. Finally, the approach is task-agnostic, and it be used across a variety of tasks
and models without requiring task-specific fine-tuning provided the model has been trained using
supervised instruction tuning.

To empirically validate these potential benefits, we propose a series of experiments comparing the
performance of traditional few-shot prompting with our conversational approach across various tasks
and models. These experiments will measure factors such as task accuracy, instruction following
ability, and chain of thought ability. The objective of this research is to augment the extant literature
on few-shot learning in language models by investigating this conversational method. This approach
holds the potential to substantially influence the advancement and utility of chat models across
diverse domains including customer service, educational support, and other sectors.

2 PRELIMINARIES

2.1 FEW-SHOT PROMPTING ON PRE-TRAINED BASE MODEL

Scaling up the size of language models has been shown to confer a range of benefits, such as im-
proved performance and advanced reasoning ability (Kaplan et al., 2020). Large language models
offer the exciting prospect of in-context few-shot learning via prompting (Brown et al., 2020). That
is, instead of finetuning a separate language model checkpoint for each new task, one can simply
“prompt” the model with a few input–output exemplars demonstrating the task. The traditional few-
shot prompting method used in recent works is designed for pretrained base model, as demonstrated
below.

2.1.1 DEFINITION

For pre-trained base language model Mbase:

2
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• X represent the input space, which is the set of all possible inputs.
• Y represent the output space, which is the set of all possible outputs.

The pre-trained language model Mbase generates the output y ∈ Y based on the input x ∈ X:
y = Mbase(x). (1)

2.1.2 APPLICATION ON FEW-SHOT PROMPTING

Given a task T , a set of k examples is provided in the form of input-output pairs:
{(x1, y1), (x2, y2), . . . , (xk, yk)} ⊂ X × Y . These examples are then combined into a prompt
p ∈ P , where P is the set of all possible prompts.

The structure of the prompt is defined as:
p = [(x1, y1), (x2, y2), . . . , (xk, yk)] . (2)

The pre-trained language model M generates the output ynew ∈ Y corresponding to the new input
xnew based on the provided prompt:

ynew = Mbase(xnew, p). (3)

2.2 FEW-SHOT PROMPTING ON CHAT MODEL

In a chat-based model, the conversation is modeled as a sequence of message exchanges between
different roles (OpenAI, 2022; Touvron et al., 2023; Dubey et al., 2024). Each message is repre-
sented as a tuple containing the role of the participant and the content of the message. The model
generates responses based on the conversation history.

2.2.1 DEFINITION

For chat-based model Mchat:

• U represent the set of all possible user inputs.
• A represent the set of all possible assistant responses.
• S represent the set of all possible system messages.
• R represents the role of the speaker, where R = {system,user,assistant}.

The conversation can be viewed as a sequence of interactions between the user and the assistant.
Conversation context Ct at any given turn t is represented as:

Ct = [(r0, s), (r1, u1), (r2, a1), . . . , (r1, ut), (r2, at)], (4)
where ut ∈ U is the user input at turn t, at ∈ A is the model response at turn t and s ∈ S represent
a possible system message. Specifically, ri ∈ R represents different role of the speaker, where
r0 = system, r1 = user and r2 = assistant.

The assistant’s response at from a chat-based model Mchat is generated based on both the current
user input ut and the conversation context Ct−1:

at = Mchat(r1, ut, Ct−1). (5)

2.2.2 APPLICATION OF FEW-SHOT PROMPTING

For chat-based models, few-shot prompts should be included in the chat template as part of the user’s
message. They can be represented as:

p = [(r0, s), {r1, (x1, y1), (x2, y2), . . . , (xk, yk)}], (6)
where all the few-shot examples (x1, y1), (x2, y2), . . . , (xk, yk) serve as the message content of the
role r1 = user. It is important to note that all the few-shot examples are actually acting only a
one-turn interaction between the user and the assistant.

The chat-based model Mchat uses the provided few-shot prompt to generate the new assistant re-
sponse ynew for the input xnew. This is achieved by conditioning the model on the prompt examples:

ynew = Mchat(r1, xnew, p). (7)
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3 CONVERSATIONAL FEW-SHOT PROMPT

System: You are a helpful assistant.

Assistant:

Circulation revenue has increased by 5% in Finland.

The acquisition will have an immediate positive impact.

User:

Positive

Panostaja did not disclose the purchase price

Paying off the national debt will be extremely painful.

Positive

Neutral

User:

Assistant:

Negative

User:

Assistant:

User:

Assistant:

Conversational few-shot prompt

Figure 2: Our conversational few-shot
prompting approach.

The chat template-based few-shot prompting approach
combines the strengths of the traditional few-shot
prompting and multi-turn conversation structure of chat-
based model. This method organizes the examples as
a dialogue between a user and an assistant, mimicking
the natural flow of a conversation. By presenting the ex-
amples in this format, the model can better understand
the context and generate more coherent and relevant re-
sponses. This approach aligns more effectively with the
concept of ”few-shot” learning in the setting of chat-
based models.

3.1 DEFINITION

For a specific task T , a collection of k-shot examples
is supplied. The goal of the multi-turn conversation ap-
proach in few-shot prompting is to treat each shot as an
interactive turn between the user and the assistant.

The prompt is then structured as follows:

p = [(r0, s), {(r1, x1), (r2, y1)}, {(r1, x2), (r2, y2)}, . . . , {(r1, xk), (r2, yk)}] . (8)

Given the few-shot prompt p, the language model Mchat generates the assistant’s response anew ∈ Y
for the new user message in unew. The model does this by conditioning on the provided few-shot
examples as well as the conversation history:

anew = Mchat(r1, unew, p). (9)

Thus, the assistant’s response is generated by considering both the new user input and the patterns
demonstrated in the few-shot examples.

4 EVALUATION OF PROBABILITY RANKING

4.1 EXPERIMENTAL SETUP

Models We evaluate powerful open-source models from popular LLM families across various
sizes. The first is Llama series (Dubey et al., 2024): Llama-3.2-1B-Instruct, Llama-3.2-3B-Instruct,
Llama-3.1-8B-Instruct and Llama-3.1-70B-Instruct. The second is Qwen2 series (Yang et al., 2024),
for which we use Qwen2-0.5B-Instruct, Qwen2-7B-Instruct, and Qwen2-72B-Instruct. The third is
OLMo series: OLMo-7B-0724-SFT-hf, OLMo-7B-0724-Instruct-hf (Groeneveld et al., 2024). Due
to space limits, the results of the Qwen2 series and OLMo series are presented in the Appendix
Table 8.

Benchmark We conduct experiments on widely used in-context learning benchmarks for clas-
sification: SST2, MNLI and BoolQ (Wang, 2018; Wang et al., 2019), and multiple-choice tasks:
MMLU (Hendrycks et al., 2021a), MMLU-Pro (Wang et al., 2024). These benchmarks are selected
for their diversity in tasks and domains, providing comprehensive evaluation for LLM performance.

Evaluation Our evaluation protocol follows the mainstream LLM evaluation frameworks,
EleutherAI lm-eval-harness (Gao et al., 2024)1. Specifically, for classification and multiple-choices
tasks, we access the output probabilities of option tokens and use the maximal one as the model
prediction. We utilize an identical few-shot examples paired with instruction templates, adjusting
the number of shots from 1 to 5 to ensure the validity of our results.

1During the writing of this manuscript, the lm-eval-harness introduced support for conversational few-shot
prompting, which has been designated as fewshot as multiturn.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Table 1: Performance of different models in different shot settings (Probability ranking)
Model Shots MMLU-Pro MMLU SST2 MNLI Boolq

fewshot conv-fewshot fewshot conv-fewshot fewshot conv-fewshot fewshot conv-fewshot fewshot conv-fewshot

Llama-3.2-1B-Instruct

5 11.4 17.3 (+5.9) 23.5 44.3 (+20.8) 63.9 90.8 (+26.9) 33.7 33.4 (-0.3) 43.8 64.5 (+20.7)
4 11.3 16.9 (+5.6) 23.4 44.3 (+20.9) 63.4 90.2 (+26.8) 33.5 34.0 (+0.5) 43.2 65.0 (+21.8)
3 11.4 17.0 (+5.6) 23.5 44.1 (+20.6) 63.2 88.9 (+25.7) 33.3 33.9 (+0.6) 46.0 65.1 (+19.1)
2 11.4 16.7 (+5.3) 23.4 43.7 (+20.3) 64.3 88.3 (+24.0) 33.3 34.0 (+0.7) 50.1 65.3 (+15.2)
1 11.4 16.7 (+5.3) 27.5 41.8 (+14.3) 60.0 82.9 (+22.9) 33.7 33.8 (+0.1) 62.0 64.1 (+2.1)

Llama-3.2-3B-Instruct

5 11.5 27.2 (+15.7) 29.7 61.3 (+31.6) 84.1 91.4 (+7.3) 39.4 52.2 (+12.8) 71.5 81.2 (+9.7)
4 11.7 26.4 (+14.7) 29.6 61.7 (+32.1) 84.6 92.1 (+7.5) 40.0 52.0 (+12.0) 72.0 81.9 (+9.9)
3 11.7 28.1 (+16.4) 29.8 61.4 (+31.6) 84.5 92.2 (+7.7) 42.9 51.7 (+8.8) 72.9 81.9 (+9.0)
2 11.7 28.8 (+17.1) 30.9 61.4 (+30.5) 81.4 91.9 (+10.5) 42.9 50.3 (+7.4) 74.4 82.1 (+7.7)
1 12.2 29.0 (+16.8) 30.1 60.7 (+30.6) 78.3 88.8 (+10.5) 39.4 46.5 (+7.1) 72.6 81.4 (+8.8)

Llama-3.1-8B-Instruct

5 22.3 38.1 (+15.8) 56.7 68.4 (+11.7) 92.2 94.6 (+2.4) 68.9 73.5 (+4.6) 86.2 85.8 (-0.4)
4 22.5 37.8 (+15.3) 55.0 68.3 (+13.3) 91.2 94.7 (+3.5) 68.8 73.4 (+4.6) 86.3 86.2 (-0.1)
3 22.5 37.9 (+15.4) 54.9 67.8 (+12.9) 91.2 94.4 (+3.2) 67.4 72.1 (+4.7) 86.5 86.5 (+0.0)
2 20.8 37.2 (+16.4) 51.6 67.9 (+16.3) 88.9 94.0 (+5.1) 65.6 70.5 (+4.9) 85.7 86.0 (+0.3)
1 15.9 35.9 (+20.0) 51.2 67.3 (+16.1) 88.6 92.3 (+3.7) 59.6 65.9 (+6.3) 83.3 84.9 (+1.6)

Llama-3.1-70B-Instruct

5 36.9 38.8 (+1.9) 78.1 82.1 (+4.0) 94.2 94.5 (+0.3) 56.6 59.7 (+3.1) 62.3 62.2 (-0.1)
4 36.0 38.9 (+2.9) 77.8 82.1 (+4.3) 94.0 94.3 (+0.3) 56.4 59.8 (+3.4) 62.3 62.2 (-0.1)
3 35.3 39.4 (+4.1) 76.7 82.1 (+5.4) 93.6 94.5 (+0.9) 54.6 59.2 (+4.6) 62.4 62.2 (-0.2)
2 34.2 40.9 (+6.7) 76.5 81.9 (+5.4) 92.5 94.4 (+1.9) 52.2 58.0 (+5.8) 62.2 62.2 (+0.0)
1 29.8 42.9 (+13.1) 70.4 81.6 (+11.2) 91.7 93.9 (+2.2) 51.7 54.8 (+3.1) 62.2 62.2 (+0.0)

4.2 RESULTS

Conversational few-shot prompting achieves significant improvement across various tasks and
varies with model families and sizes. This improvement is consistent across various benchmarks,
such as MMLU-Pro, MMLU, SST2, MNLI, and Boolq across on classification and multiple-choices
tasks. For instance, in the case of the Llama-3.2-1B-Instruct model, conversational few-shot prompt-
ing yields an improvement of 20.8 points on MMLU with five shots, compared to the standard few-
shot setting. Similar patterns can be observed in SST2, where the performance increases by 26.9
points, and in Boolq, where the improvement reaches 20.7 points. These gains highlight the effec-
tiveness of conversational few-shot prompting in capturing contextual information more efficiently,
which is particularly beneficial in complex reasoning tasks.

Performance improvement is task-dependent. While the results consistently indicate that con-
versational prompting leads to an improvement across different tasks, the magnitude of these gains
varies. For example, in the MMLU-Pro and MMLU tasks, which involve complex reasoning across
multiple subjects, conversational prompting shows large performance jumps for smaller models. In
contrast, tasks such as MNLI and SST2, which involve natural language inference and sentiment
analysis, show more moderate gains. The smallest improvement is observed in the Boolq task for
the Llama-3.2-1B-Instruct model with only 2.1 points in the one-shot setting. This suggests that
tasks requiring nuanced understanding or reasoning may benefit more from conversational context,
whereas simpler classification tasks may see less drastic improvements.

Scaling trends in model sizes with conversational prompting. Another important observation
from Table 1 is the trend of scaling in model sizes. As the model size increases, the impact of con-
versational prompting becomes more stable, and improvements tend to plateau. For example, in the
Llama-3.1-70B-Instruct model, improvements on tasks like MMLU and SST2 are relatively small,
indicating that larger models may have already internalized much of the knowledge that conversa-
tional few-shot prompting helps smaller models to acquire.

Conversational prompting accelerates model learning with fewer examples. It reduces the
model’s reliance on large numbers of examples to achieve optimal performance. In traditional few-
shot prompting, models often require a higher number of examples (5-shot or more) to reach their
best performance. However, with conversational prompting, even fewer examples (1 or 2 shots) can
provide sufficient context for the model to perform well.

Smaller models benefit less but still show consistent improvements. While the largest models
exhibit the most substantial gains from conversational prompt, smaller models like Llama-3.2-1B-
Instruct, Qwen2-0.5B-Instruct shown in Table 8 also benefit, though to a lesser extent. For instance,
Qwen2-0.5B-Instruct sees an increase from 15.2% to 15.7% in 1-shot MMLU-Pro, and from 40.9%
to 42.4% in MMLU with conversational few-shot. The smaller capacity of models like Qwen2-0.5B-
Instruct may limit their ability to fully utilize the additional context provided by the conversational
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format, but even these smaller models show consistent performance improvements across bench-
marks and shot settings.

Table 2: Performance of different models in different shot settings on MMLU and MMLU-Pro.

Model Shots
MMLU-Pro MMLU

Strict-Match Flexible-Match Strict-Match Flexible-Match

fewshot conv-fewshot fewshot conv-fewshot fewshot conv-fewshot fewshot conv-fewshot

Llama-3.2-1B-Instruct

5 0.0 18.4 (+18.4) 8.6 18.7 (+10.1) 0.0 39.0 (+39.0) 0.5 39.6 (+39.1)
4 0.0 18.2 (+18.2) 8.6 18.4 (+9.8) 0.0 38.4 (+38.4) 0.5 39.3 (+38.8)
3 0.0 16.3 (+16.3) 8.7 16.5 (+7.8) 0.0 36.3 (+36.3) 0.2 38.0 (+37.8)
2 0.0 14.4 (+14.4) 8.5 14.8 (+6.3) 0.0 35.5 (+35.5) 0.3 37.4 (+37.1)
1 0.0 11.1 (+11.1) 4.4 11.8 (+7.4) 0.0 29.4 (+29.4) 0.5 34.4 (+33.9)

Llama-3.2-3B-Instruct

5 0.0 31.3 (+31.3) 0.1 31.5 (+31.4) 0.0 55.6 (+55.6) 0.1 57.0 (+56.9)
4 0.0 30.8 (+30.8) 0.0 31.1 (+31.1) 0.0 55.5 (+55.5) 0.1 57.1 (+57.0)
3 0.0 31.2 (+31.2) 0.0 31.9 (+31.9) 0.0 54.4 (+54.4) 0.1 56.6 (+56.5)
2 0.0 30.0 (+30.0) 0.0 31.2 (+31.2) 0.0 53.1 (+53.1) 0.2 56.9 (+56.7)
1 0.0 24.6 (+24.6) 0.0 27.6 (+27.6) 0.0 43.1 (+43.1) 0.3 53.8 (+53.5)

Llama-3.1-8B-Instruct

5 0.0 34.0 (+34.0) 5.5 38.5 (+33.0) 0.0 67.8 (+67.8) 7.9 68.6 (+60.7)
4 0.0 31.1 (+31.1) 3.8 38.1 (+34.3) 0.0 67.2 (+67.2) 6.3 64.8 (+58.5)
3 0.0 24.7 (+24.7) 2.6 37.3 (+34.7) 0.0 64.9 (+64.9) 5.6 64.2 (+58.6)
2 0.0 12.8 (+12.8) 1.3 34.7 (+33.4) 0.0 56.6 (+56.6) 3.4 64.5 (+61.1)
1 0.0 0.8 (+0.8) 0.4 30.9 (+30.5) 0.0 21.9 (+21.9) 3.3 65.4 (+62.1)

Llama-3.1-70B-Instruct

5 6.7 52.8 (+46.1) 22.5 53.1 (+30.6) 19.8 79.2 (+59.4) 51.7 80.5 (+28.8)
4 5.8 52.4 (+46.6) 19.0 52.8 (+33.8) 16.2 78.7 (+62.5) 47.1 80.7 (+33.6)
3 3.4 51.1 (+47.7) 14.0 51.8 (+37.8) 14.5 77.0 (+62.5) 43.4 80.3 (+36.9)
2 2.5 47.6 (+45.1) 10.6 49.7 (+39.1) 11.4 74.0 (+62.6) 41.9 80.2 (+38.3)
1 1.1 34.4 (+33.3) 5.0 46.5 (+41.5) 9.6 55.9 (+46.3) 40.0 79.9 (+39.9)

5 EVALUATION OF GENERATION

Another notable advantage of the conversational few-shot prompting method is its ability to signif-
icantly enhance the instruction-following capabilities of chat models. To further assess this obser-
vation, we investigate more practical scenarios, specifically focusing on the model’s performance
in generating responses for multiple-choice question-answering tasks rather accessing the output
probabilities.

5.1 EXPERIMENTAL SETUP

Benchmark In addition to above benchmarks, we have included a challenging math word problem
benchmark named Math Hard (Hendrycks et al., 2021b; Gao et al., 2024). This dataset evaluates not
only the model’s mathematical reasoning skills but also its capacity to follow instructions, requiring
the model to generate answers in a specific format. We follow the same setting as lm-eval-harness
which math hard utilizes a maximum of 4 shots. In the context of multi-choice question answering,
model generates the final output directly without relying on the output probabilities of the option ID
tokens. To more effectively evaluate the model’s ability to follow instructions, we put only option
IDs in the answer part of few-shot examples and we employ two evaluation metrics: flexible-match
and strict-match.

The strict-match metric requires the answer fragment to consist solely of the answer token and
uses an exact match criterion for evaluation. In contrast, the flexible-match metric is more lenient,
allowing the evaluation to succeed as long as gold answer is included. strict-match considers more
on the model’s ability on instruction following, and flexible-match represents the upper limit of
model overall performance.

5.2 RESULTS

5.2.1 ANALYSIS ON MMLU AND MMLU-PRO

In both strict-match and flexible-match evaluations, the conversation few-shot prompting method
demonstrates a marked improvement over the standard few-shot approach from Table 2. All models
show a dramatic improvement when moving from fewshot to conv-fewshot under either strict-match
or flexible-match evaluation, especially at higher shot counts. This suggests that the conversational
format significantly enhances its instruction-following capabilities.
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Table 3: Examples generated by Llama-3.1-70B on MMLU and MMLU-Pro for error analysis.
True Answer False Answer

E. D.
B. Satisficing
C. The correct answer is C.
D. D. to identify and cultivate talented leaders.
C. To find the... Therefore, the correct answer is: C
D. D. Explanation: ...

Comparison of strict-match and flexible-match results: The strict-match results in Table 2 gen-
erally show lower performance compared to the flexible-match results in Table 2 across all models
and shot settings. This indicates again that while models often include the correct answer in their
responses, they don’t always follow the exact formatting instructions. This difference highlights the
importance of instruction-following capabilities in language models.

The effect of model size Generally, larger models (e.g., Llama3.1-70B-Instruct and Qwen2-72B-
Instruct) outperform their smaller counterparts. This aligns with the common observation that in-
creasing model size often leads to improved performance on complex tasks. Interestingly, the per-
formance gap between model sizes is more pronounced in the conv-fewshot setting, suggesting that
larger models are better able to leverage the additional context provided by conversational prompts,
thereby exhibiting superior instruction-following capabilities.

The effect of shot number In general, performance improves with more shots, but the rate of
improvement varies across models and tasks. Conv-fewshot often shows the most significant gains
in low-shot scenarios (1-2 shots), suggesting it can bring valuable insight on model performance and
instruction-following capabilities, even example data is limited.

Error Analysis In the error analysis of model outputs, we observed several common patterns that
contribute to performance differences between strict-match and flexible-match evaluations. One
recurring issue, as demonstrated in Table 3, is that models frequently provide the correct answer
but include additional explanatory text, which penalizes them under strict-match evaluation criteria.
For example, responses such as ”The correct answer is C” or ”Explanation:...” are perfectly valid in
content but fail to meet the format expectations of exact-match evaluation.

Table 4: Performance of different models in different shot settings on Math Hard.

Model Shots Math-hard (strict) Math-hard (flexible)

fewshot conv-fewshot fewshot conv-fewshot

Llama-3.2-1B-Instruct

4 0.53 6.19 (+5.66) 0.60 6.19 (+5.59)
3 0.60 6.12 (+5.52) 0.98 6.12 (+5.14)
2 0.53 5.36 (+4.83) 2.95 5.74 (+2.79)
1 0.0 1.44 (+1.44) 0.38 1.66 (+1.28)

Llama-3.2-3B-Instruct

4 2.19 15.86 (+13.67) 5.44 16.01 (+10.57)
3 4.23 16.16 (+11.93) 6.34 16.24 (+9.90)
2 3.1 15.03 (+11.93) 5.89 17.60 (+11.71)
1 0.0 0.98 (+0.98) 0.53 3.85 (+3.32)

Llama-3.1-8B-Instruct

4 10.57 17.37 (+6.80) 12.24 17.52 (+5.28)
3 12.99 18.20 (+5.21) 13.97 18.66 (+4.69)
2 8.91 18.96 (+10.05) 9.37 20.02 (+10.65)
1 0.83 1.81 (+0.98) 2.27 14.35 (+12.08)

Llama-3.1-70B-Instruct

4 1.28 27.19 (+25.91) 29.98 33.16 (+3.18)
3 0.91 25.15 (+24.24) 33.38 33.31 (-0.07)
2 0.60 14.80 (+14.20) 32.33 33.76 (+1.43)
1 0.60 4.68 (+4.08) 22.58 32.33 (+9.75)
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Table 5: Examples generated by Llama-3.1-70B-Instruct on Math Hard for error analysis.
True Answer False Answer

Final Answer: The final answer is 968. I hope it is correct. Final Answer: The final answer is 958. I hope it is correct.

Final Answer: The final answer is 968. I hope it is correct. Final Answer: The final answer is 968.

Final Answer: The final answer is 968. I hope it is correct. The final answer is 968.

Final Answer: The final answer is 16. I hope it is correct. Therefore, the number 46,656 has 16 perfect square factors.

Final Answer: The final answer is 4
√
13. Final Answer: The final answer is 4sqrt(13).

Final Answer: The final answer is ≤ ( 4
3
,− 1

3
). I hope it is correct. we see that (t, u) = (−4

3
,−1

3
.

5.2.2 ANALYSIS ON MATH HARD

Focusing first on the Math-hard benchmark Table 4, from the perspective of evaluation, a correct
result indicates not only the accuracy of the final answer but also the proper formatting of the entire
response. We firstly observe an approximate 29.7 points increase from strict match to flexible match
in few-shot prompting. This suggests that most incorrect responses are not due to faulty reasoning,
but rather to the incorrect response format. Meanwhile, the Llama3.1-70B-Instruct sees gains of up
to 25.9 points under strict evaluation, and 3.2 points under flexible evaluation when moving from
few-shot to conversational few-shot prompting in the 4-shot setting. The substantial difference in the
strict-match metric suggests that conversational few-shot prompting greatly enhances the model’s
ability to follow instructions. Moreover, when considering both metrics concurrently, it also has the
great potential to enhance the model’s intrinsic reasoning capabilities.

The data from smaller models like Qwen2-0.5B-Instruct shows modest improvements in both strict
and flexible match metrics, with occasional performance drops during conversational few-shot
prompting. This suggests smaller models may have limited capacity to fully leverage complexity
structured prompts.

Additionally, when evaluating model performance under the 1-shot and 2-shot settings, we observe a
substantial disparity between strict and flexible match results. This highlights that many of the errors
are related to instruction-following rather than mathematical reasoning. These findings highlight the
importance of effective conversation prompt design for chat model.

Upon closer examination of model outputs on the Math-hard benchmark in Table 5, several im-
portant patterns emerge regarding the types of errors made: Many mistakes arise from formatting
issues rather than incorrect reasoning. For example, responses like ”I hope it is correct” or redun-
dant phrases such as ”Final Answer:” result in mismatches under strict evaluation, even though the
mathematical solution is accurate. This explains the notable improvement in flexible match scores,
which are less stringent about response format While reasoning errors are relatively infrequent, is-
sues related to formatting, excessive phrasing, are common, especially under strict evaluation. So
when strict and flexible match are simultaneously considered, we observe substantial improvements
in performance when using the conversational few-shot prompting compared to standard few-shot
prompting, particularly for larger models.
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Figure 3: Performance of different models in different shots settings on MMLU-Pro with cot.
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Figure 4: Average response length in different shots settings on MMLU-Pro with cot.

6 EVALUATION OF CHAIN OF THOUGHT

The chain of thought prompting method is a popular technique and serves as an essential component
in few-shot example composition. Often, it yields superior results and addresses problems that
direct answering methods fail to resolve. In this section, we also try to evaluate the efficacy of
conversational few-shot prompts in the context of chain of thought variants.

6.1 EXPERIMENTAL SETUP

We use the official chain of thought demonstrations of MMLU-Pro benchmark (Wang et al., 2024),
and apply strict-match for evaluating the final output. We evaluate five models under this chain of
thought setting, specifically the Llama-3 series and GPT-4o, selected for their demonstrated profi-
ciency in cots.

6.2 RESULTS

The results presented in Table 3 provide several interesting insights into the performance of different
language models using chain-of-thought prompting with varying numbers of shots and comparing
traditional few-shot to conversational few-shot approaches. For the majority of models tested, con-
versational few-shot prompting yields better results than traditional few-shot methods, especially
as the number of shots decreases. This trend is especially pronounced both in the Llama series
and GPT-4o, which consistently improves in performance with conversational few-shot prompting,
particularly in larger models. These findings highlight a model-specific interaction between conver-
sational prompt formats and performance in chain-of-thought prompting.

6.3 LENGTH BIAS

Furthermore, we evaluate the average length of the model’s responses under the conditions of both
true and false for conv-fewshot and few-shot method. As demonstrated in Figure 4, response length
inversely correlates with the number of shots, indicating that with fewer shots, the model tends to
produce more longer and detailed outputs. However, the accuracy with fewer shots is generally
lower than with a higher number of shots, implying that the longer and more detailed outputs are not
always correct. Additionally, it is observed that the length of False response is consistently longer
than True response, suggesting that in most cases, longer responses may have wrong decision.

Furthermore, we find that conversational few-shot settings consistently result in shorter responses in
false result and longer responses in true result. This suggests that conversational few-shot techniques
can help the model produce more concise and accurate chain of thought decisions.

7 RELATED WORK

7.1 FEW-SHOT PROMPTING

Few-shot prompting has become a key method in NLP with the rise of large pre-trained language
models. The approach gained traction with GPT-3, as demonstrated by Brown et al. (2020), which
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showed that models could perform various tasks using minimal task-specific data by leveraging
context from prompts. This process, called in-context learning, enables models to adapt to new
tasks without retraining, simply by modifying input prompts. Subsequent research has focused on
improving few-shot prompting. Schick & Schütze (2021) introduced Pattern-Exploiting Training
(PET), which combines cloze-style prompts with labeled examples to boost performance. Another
key advancement is Chain-of-Thought prompting, introduced by Wei et al. (2022b), which enhances
reasoning in complex tasks by guiding models to generate intermediate steps alongside final an-
swers. Building on this, Kojima et al. (2022) introduced Zero-shot-CoT, showing that models can
generate reasoning chains even without examples. Simply appending ”Let’s think step by step” to a
prompt encourages models to reason effectively, even in zero-shot scenarios, with minimal prompt
engineering.

7.2 INSTRUCTION TUNING

Few-shot prompting focuses on task-specific prompts with minimal examples, while instruction-
tuning allows models to generalize across a wider range of tasks using natural language instructions.
The goal of instruction-tuning is to fine-tune pre-trained models to follow task-specific instructions,
making them more versatile. Sanh et al. (2022) introduced instruction-tuning by fine-tuning models
on a large, diverse set of NLP tasks using task descriptions rather than examples. This shift enabled
better generalization to unseen tasks. Wei et al. (2022a) further developed this with FLAN, demon-
strating that models fine-tuned on hundreds of tasks with diverse instructions outperform few-shot
and zero-shot models on unseen tasks. Their work emphasized task diversity as key to improv-
ing generalization and reducing reliance on task-specific prompts. Ouyang et al. (2022) extended
instruction-tuning by incorporating reinforcement learning from human feedback (RLHF), leading
to InstructGPT. This model was fine-tuned to align more closely with human values, showcasing the
potential of feedback-driven instruction-tuning in real-world applications where human oversight is
important.

8 CONCLUSION

We introduce conversational few-shot prompting, a novel technique that organizes few-shot exam-
ples as multi-turn dialogues, specifically designed for instruction-tuned chat models. This approach
better aligns with the interactive nature of these models, offering marked improvements over tradi-
tional prompting methods, particularly in low-data scenarios. Our method demonstrates enhanced
performance across a range of benchmarks, improving instruction-following, reducing prompt sen-
sitivity, and requiring fewer examples. Notably, it increases model generalization and usability
without necessitating further fine-tuning, presenting a scalable solution for larger datasets and di-
verse domains.
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A APPENDIX: PROMPT TEMPLATE

We use prompts from the lm-eval-harness Gao et al. (2024) for all benchmarks in our evaluation.
For classification and multiple-choice tasks, we adopt a prompt format similar to the one shown in
Table 7. The questions and answers follow a straightforward structure: Question: {{question}}?
Answer: {{answer}}. To minimize the influence of the system message on instruction following,
we employ a simple system prompt for multiple-choices tasks:

The following are multiple-choice questions (with answers) about {subject}.

Our goal is for the model to learn the answer format solely from few-shot examples. Additionally,
we include a more complex prompt template that guides the model to follow the instructions in the
system message, where the results of this setting are provided in the Appendix B.

For classification tasks, we do not provide additional system prompt consistent with the method-
ology employed in the lm-eval-harness. For math-hard, a maximum of four examples (shots) are
utilized, without incorporating any additional system prompt, akin to the procedure followed in the
lm-eval-harness.

Table 6: few-shot exemplars for Math Hard.

Problem: Find the domain of the expression
√
x−2√
5−x

.
Solution: The expressions inside each square root must be non-negative. Therefore, x − 2 ≥ 0, so x ≥ 2,
and 5 − x ≥ 0, so x ≤ 5. Also, the denominator cannot be equal to zero, so 5 − x > 0, which gives x < 5.
Therefore, the domain of the expression is [2, 5) .
Final Answer: The final answer is [2, 5). I hope it is correct.

Problem: If detA = 2 and detB = 12, then find det(AB).

Solution: We have that det(AB) = (detA)(detB) = (2)(12) = 24 .
Final Answer: The final answer is 24. I hope it is correct.

Problem: Terrell usually lifts two 20-pound weights 12 times. If he uses two 15-pound weights instead, how
many times must Terrell lift them in order to lift the same total weight?
Solution: If Terrell lifts two 20-pound weights 12 times, he lifts a total of 2 · 12 · 20 = 480 pounds of weight.
If he lifts two 15-pound weights instead for n times, he will lift a total of 2 · 15 · n = 30n pounds of weight.
Equating this to 480 pounds, we can solve for n: 30n = 480 ⇒ n = 480

30
= 16

Final Answer: The final answer is 16. I hope it is correct.

Problem: If the system of equations 6x− 4y = a, 6y − 9x = b.has a solution (x, y) where x and y are both
nonzero,find a

b
, assuming b is nonzero.

Solution: If we multiply the first equation by − 3
2

, we obtain 6y − 9x = − 3
2
a.Since we also know that

6y − 9x = b, we have− 3
2
a = b ⇒ a

b
= −2

3
.

Final Answer: The final answer is − 2
3

. I hope it is correct.

B APPENDIX: ADDITIONAL ANALYSIS FOR DIFFERENT PROMPT TEMPLATE

we include a more complex prompt template that guides the model to follow the instructions in the
system message:

The following are multiple-choice questions (with answers) about {subject}. You should di-
rectly answer the question by choosing the correct option.

The related results are shown in Table 11.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Table 7: few-shot exemplars for MMLU (select from medical genetics).
QUESTION: Large triplet repeat expansions can be detected by:
A. polymerase chain reaction.
B. single strand conformational polymorphism analysis.
C. Southern blotting.
D. Western blotting.
ANSWER: C

QUESTION: A gene showing codominance:
A. has both alleles independently expressed in the heterozygote
B. has one allele dominant to the other
C. has alleles tightly linked on the same chromosome
D. has alleles expressed at the same time in development
ANSWER: A

QUESTION: DNA ligase is:
A. an enzyme that joins fragments in normal DNA replication
B. an enzyme of bacterial origin which cuts DNA at defined base sequences
C. an enzyme that facilitates transcription of specific genes
D. an enzyme which limits the level to which a particular nutrient reaches
ANSWER: A

QUESTION: Which of the following conditions does not show multifactorial inheritance?
A. Pyloric stenosis
B. Schizophrenia
C. Spina bifida (neural tube defects)
D. Marfan syndrome
ANSWER: D

QUESTION: The stage of meiosis in which chromosomes pair and cross over is:
A. prophase I
B. metaphase I
C. prophase II
D. metaphase II
ANSWER: A
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Model Shots MMLU-Pro MMLU SST2 MNLI Boolq

fewshot conv-fewshot fewshot conv-fewshot fewshot conv-fewshot fewshot conv-fewshot fewshot conv-fewshot

OLMo-7B-0724-Instruct-hf

5 23.1 23.0 (-0.1) 53.9 54.6 (+0.7) 94.3 93.1 (-1.2) 57.7 58.5 (+0.8) 85.1 84.2 (-0.9)
4 23.2 23.7 (+0.5) 53.5 54.4 (+0.9) 93.5 94.2 (+0.7) 57.0 57.0 (+0.0) 84.4 84.1 (-0.3)
3 23.3 23.5 (+0.2) 53.4 54.2 (+0.8) 93.8 93.7 (-0.1) 55.2 56.4 (+1.2) 84.8 84.4 (-0.4)
2 22.5 23.7 (+1.2) 52.8 53.6 (+0.8) 93.8 94.0 (+0.2) 53.3 53.9 (+0.6) 84.2 84.3 (+0.1)
1 20.9 22.1 (+1.2) 51.6 53.3 (+1.7) 90.5 93.5 (+3.0) 49.2 50.3 (+1.1) 83.8 83.5 (-0.3)

OLMo-7B-0724-SFT-hf

5 22.9 22.3 (-0.6) 53.6 54.9 (+1.3) 91.6 93.6 (+2.0) 64.1 62.8 (-1.3) 82.5 81.1 (-1.4)
4 22.6 22.3 (-0.3) 53.9 55.3 (+1.4) 91.2 93.0 (+1.8) 63.4 61.6 (-1.8) 81.5 81.0 (-0.5)
3 22.6 22.2 (-0.4) 53.9 54.4 (+0.5) 90.9 93.1 (+2.2) 62.3 62.5 (+0.2) 80.5 80.1 (-0.4)
2 21.9 22.3 (+0.4) 54.0 54.5 (+0.5) 90.2 93.9 (+3.7) 61.0 61.4 (+0.4) 78.8 79.1 (+0.3)
1 20.2 22.1 (+1.9) 52.2 53.6 (+1.4) 87.6 93.2 (+5.6) 56.4 61.4 (+5.0) 75.3 79.3 (+4.0)

Qwen2-0.5B-Instruct

5 16.7 16.7 (+0.0) 41.9 43.5 (+1.6) 85.3 88.0 (+2.7) 40.7 41.2 (+0.5) 62.7 63.7 (+1.0)
4 16.6 17.1 (+0.5) 42.2 43.7 (+1.5) 85.9 87.8 (+1.9) 41.3 40.6 (-0.7) 62.2 62.8 (+0.6)
3 16.3 16.9 (+0.6) 42.1 43.3 (+1.2) 87.4 89.2 (+1.8) 41.4 39.7 (-1.7) 61.1 63.2 (+2.1)
2 15.7 15.8 (+0.1) 41.3 42.9 (+1.6) 86.6 89.1 (+2.5) 42.2 38.7 (-3.5) 60.3 63.3 (+3.0)
1 15.2 15.7 (+0.5) 40.9 42.4 (+1.5) 70.5 86.7 (+16.2) 39.3 38.4 (-0.9) 59.7 62.2 (+2.5)

Qwen2-7B-Instruct

5 40.9 42.4 (+1.5) 69.3 70.2 (+0.9) 94.7 95.0 (+0.3) 66.1 71.0 (+4.9) 86.1 86.5 (+0.4)
4 40.4 41.7 (+1.3) 69.3 69.9 (+0.6) 95.0 95.4 (+0.4) 66.1 69.8 (+3.7) 86.2 86.6 (+0.4)
3 41.1 42.8 (+1.7) 69.3 69.8 (+0.5) 93.9 95.0 (+1.1) 65.8 69.2 (+3.4) 85.7 86.5 (+0.8)
2 41.0 42.2 (+1.2) 68.9 69.8 (+0.9) 94.3 95.2 (+0.9) 65.5 68.0 (+2.5) 86.2 86.7 (+0.5)
1 40.6 42.3 (+1.7) 68.6 69.5 (+0.9) 93.9 95.6 (+1.7) 58.1 63.5 (+5.4) 85.7 86.0 (+0.3)

Qwen2-72B-Instruct

5 55.9 57.0 (+1.1) 82.7 83.5 (+0.8) 95.1 95.5 (+0.4) 81.3 83.8 (+2.5) 90.4 90.2 (-0.2)
4 55.7 57.1 (+1.4) 82.5 83.3 (+0.8) 94.8 95.1 (+0.3) 80.1 83.3 (+3.2) 90.7 90.1 (-0.6)
3 55.6 56.9 (+1.3) 82.6 83.2 (+0.6) 94.5 95.1 (+0.6) 78.8 82.8 (+4.0) 90.6 90.7 (+0.1)
2 54.5 56.2 (+1.7) 82.3 82.9 (+0.6) 94.6 94.8 (+0.2) 76.9 81.4 (+4.5) 90.6 90.3 (-0.3)
1 54.6 55.4 (+0.8) 82.1 82.7 (+0.6) 93.0 94.2 (+1.2) 73.0 77.3 (+4.3) 90.1 90.4 (+0.3)

Table 8: Performance of different models in different shot settings (Probability ranking).

Table 9: Performance of different models in different shot settings on MMLU and MMLU-Pro.

Model Shots
MMLU-Pro MMLU

Strict-Match Flexible-Match Strict-Match Flexible-Match

fewshot conv-fewshot fewshot conv-fewshot fewshot conv-fewshot fewshot conv-fewshot

Qwen2-0.5B-Instruct

5 9.2 16.7 (+7.5) 15.9 16.7 (+0.8) 37.0 43.3 (+6.3) 39.1 43.4 (+4.3)
4 7.9 17.2 (+9.3) 15.5 17.2 (+1.7) 37.3 43.4 (+6.1) 38.8 43.4 (+4.6)
3 5.1 17.1 (+12.0) 13.7 17.2 (+3.5) 37.1 43.4 (+6.3) 38.6 43.5 (+4.9)
2 3.8 15.9 (+12.1) 13.4 16.2 (+2.8) 35.3 42.3 (+7.0) 37.3 42.7 (+5.4)
1 3.5 13.8 (+10.3) 12.9 16.2 (+3.3) 33.2 41.0 (+7.8) 36.2 42.4 (+6.2)

Qwen2-7B-Instruct

1 8.4 19.9 (+11.5) 39.4 39.9 (+0.5) 6.6 30.9 (+24.3) 67.4 68.8 (+1.4)
2 7.5 35.0 (+27.5) 38.4 41.1 (+2.7) 5.9 59.5 (+53.6) 67.5 69.7 (+2.2)
3 6.1 39.2 (+33.1) 38.4 41.9 (+3.5) 6.0 64.7 (+58.7) 68.0 69.7 (+1.7)
4 7.5 39.9 (+32.4) 37.9 41.4 (+3.5) 6.3 66.1 (+59.8) 67.2 70.0 (+2.8)
5 7.5 40.9 (+33.4) 38.6 41.7 (+3.1) 6.3 67.6 (+61.3) 67.0 70.0 (+3.0)

Qwen2-72B-Instruct

1 0.1 7.0 (+6.9) 43.9 50.7 (+6.8) 0.0 18.2 (+18.2) 79.0 81.9 (+2.9)
2 0.1 33.9 (+33.8) 45.5 53.6 (+8.1) 0.1 63.3 (+63.2) 79.9 82.7 (+2.8)
3 0.3 44.5 (+44.2) 48.5 55.6 (+7.1) 0.2 75.0 (+74.8) 80.9 83.1 (+2.2)
4 0.3 49.4 (+49.1) 49.6 56.7 (+7.1) 0.3 78.8 (+78.5) 80.8 83.2 (+2.4)
5 0.5 51.5 (+51.0) 52.0 0.0 (+–52.0) 0.6 79.9 (+79.3) 81.4 83.4 (+2.0)

OLMo-7B-SFT

5 8.7 23.1 (+14.4) 21.6 24.3 (+2.7) 42.9 46.6 (+3.7) 49.5 51.1 (+1.6)
4 7.8 22.9 (+15.1) 21.6 24.3 (+2.7) 42.5 46.4 (+3.9) 49.4 51.4 (+2.0)
3 8.0 22.1 (+14.1) 22.1 24.1 (+2.0) 42.1 44.3 (+2.2) 49.7 50.9 (+1.2)
2 7.5 19.5 (+12.0) 21.6 23.5 (+1.9) 37.7 39.6 (+1.9) 49.5 50.4 (+0.9)
1 4.9 13.1 (+8.2) 17.2 22.9 (+5.7) 24.9 27.3 (+2.4) 45.5 48.7 (+3.2)

OLMo-7B-0724-Instruct-hf

5 0.0 0.0 (+0.0) 21.7 23.5 (+1.8) 0.0 0.3 (+0.3) 52.4 53.8 (+1.4)
4 0.0 0.0 (+0.0) 21.8 24.2 (+2.4) 0.0 0.2 (+0.2) 52.5 53.9 (+1.4)
3 0.0 0.0 (+0.0) 21.6 23.8 (+2.2) 0.0 0.0 (+0.0) 52.1 53.6 (+1.5)
2 0.0 0.0 (+0.0) 21.1 23.7 (+2.6) 0.0 0.0 (+0.0) 51.6 52.6 (+1.0)
1 0.0 0.0 (+0.0) 18.9 21.8 (+2.9) 0.0 0.0 (+0.0) 49.8 51.7 (+1.9)

GPT-4o

5 0.8 30.0 (+29.2) 55.7 59.3 (+3.6) 0.6 50.7 (+50.1) 84.5 87.5 (+3.0)
4 0.6 19.1 (+18.5) 55.2 59.4 (+4.2) 0.5 35.1 (+34.6) 84.5 87.3 (+2.8)
3 0.3 7.7 (+7.4) 55.3 59.1 (+3.8) 0.0 18.8 (+18.8) 84.6 87.0 (+2.4)
2 0.1 1.7 (+1.6) 55.5 58.7 (+3.2) 0.0 5.4 (+5.4) 84.0 87.0 (+3.0)
1 0.0 0.0 (+0.0) 56.4 58.0 (+1.6) 0.0 0.0 (+0.0) 84.5 86.7 (+2.2)
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Table 10: Performance of different models in different shot settings on Math Hard (strict-match and
flexible-match).

Model Shots Math-hard (strict) Math-hard (flexible)

fewshot conv-fewshot fewshot conv-fewshot

Qwen2-0.5B-Instruct

4 1.9 1.8 (-0.1) 1.9 1.8 (-0.2)
3 1.6 1.4 (-0.2) 1.6 1.4 (-0.2)
2 1.5 1.6 (+0.1) 1.5 1.6 (+0.1)
1 0.6 0.7 (+0.1) 0.6 0.7 (+0.1)

Qwen2-7B-Instruct

4 0.1 8.7 (+8.6) 0.1 8.8 (+8.7)
3 0.0 9.1 (+9.1) 0.0 9.1 (+9.1)
2 0.2 14.9 (+14.7) 0.2 15.0 (+14.7)
1 0.1 9.2 (+9.1) 0.1 9.2 (+9.1)

Qwen2-72B-Instruct

4 22.0 32.2 (+10.2) 22.1 32.3 (+10.2)
3 11.7 33.4 (+21.7) 11.7 33.4 (+21.7)
2 15.3 32.0 (+16.7) 15.4 32.0 (+16.5)
1 1.1 29.7 (+28.6) 6.0 29.8 (+23.7)

OLMo-7B-0724-SFT-hf

4 0.5 0.8 (+0.3) 0.6 0.8 (+0.2)
3 1.2 1.2 (+0.0) 1.2 1.2 (+0.0)
2 0.8 1.7 (+0.9) 0.8 1.8 (+1.0)
1 0.0 0.1 (+0.1) 0.4 0.8 (+0.4)

OLMo-7B-0724-Instruct-hf

4 0.8 0.8 (+0.0) 0.9 0.8 (-0.1)
3 0.9 1.4 (+0.5) 1.0 1.4 (+0.4)
2 1.0 1.0 (+0.0) 1.1 1.1 (+0.0)
1 0.0 0.0 (+0.0) 0.3 0.2 (-0.1)
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Table 11: Performance of different models in different shots settings on MMLU and MMLU-Pro
(Generation, instruction prompt)

Model Shots
MMLU-Pro MMLU

Strict-Match Flexible-Match Strict-Match Flexible-Match

fewshot conv-fewshot fewshot conv-fewshot fewshot conv-fewshot fewshot conv-fewshot

Meta-Llama-3.2-1B-Instruct

5 0.0 18.4 (+18.4) 8.6 18.7 (+10.1) 0.0 39.1 (+39.1) 0.5 39.8 (+39.3)
4 0.0 18.2 (+18.2) 8.6 18.4 (+9.8) 0.0 38.6 (+38.6) 0.2 39.5 (+39.3)
3 0.0 16.3 (+16.3) 8.7 16.5 (+7.8) 0.0 37.5 (+37.5) 0.3 38.7 (+38.4)
2 0.0 14.4 (+14.4) 8.5 14.8 (+6.3) 0.0 36.7 (+36.7) 0.8 38.4 (+37.6)
1 0.0 11.1 (+11.1) 4.4 11.8 (+7.4) 0.0 31.3 (+31.3) 1.3 35.0 (+33.7)

Meta-Llama-3.2-3B-Instruct

5 0.0 31.3 (+31.3) 0.1 31.5 (+31.4) 0.0 56.5 (+56.5) 0.4 57.2 (+56.8)
4 0.0 30.8 (+30.8) 0.0 31.1 (+31.1) 0.0 56.9 (+56.9) 0.3 57.5 (+57.2)
3 0.0 31.2 (+31.2) 0.0 31.9 (+31.9) 0.0 56.5 (+56.5) 0.4 57.4 (+57.0)
2 0.0 30.0 (+30.0) 0.0 31.2 (+31.2) 0.0 55.6 (+55.6) 0.5 57.2 (+56.7)
1 0.0 24.6 (+24.6) 0.0 27.6 (+27.6) 0.0 51.2 (+51.2) 1.0 55.4 (+54.4)

Meta-Llama-3.1-8B-Instruct

5 0.0 37.6 (+37.6) 14.8 39.2 (+24.4) 0.6 64.4 (+63.8) 30.6 65.6 (+35.0)
4 0.0 36.8 (+36.8) 13.9 39.0 (+25.1) 0.3 63.9 (+63.6) 29.3 65.5 (+36.2)
3 0.0 34.3 (+34.3) 12.8 38.9 (+26.1) 0.4 62.3 (+61.9) 28.7 65.1 (+36.4)
2 0.0 25.1 (+25.1) 9.2 37.9 (+28.7) 0.2 58.9 (+58.7) 26.3 65.5 (+39.2)
1 0.0 9.0 (+9.0) 7.5 35.5 (+28.0) 0.1 40.4 (+40.3) 28.4 64.7 (+36.3)

Meta-Llama-3.1-70B-Instruct

5 37.7 54.1 (+16.4) 46.9 54.2 (+7.3) 56.0 80.5 (+24.5) 77.0 80.8 (+3.8)
4 36.5 53.9 (+17.4) 46.1 54.0 (+7.9) 55.3 80.3 (+25.0) 77.3 80.7 (+3.4)
3 34.7 54.0 (+19.3) 46.7 54.2 (+7.5) 53.9 80.4 (+26.5) 77.3 80.9 (+3.6)
2 32.5 53.5 (+21.0) 47.7 53.7 (+6.0) 50.0 79.8 (+29.8) 78.0 80.5 (+2.5)
1 31.2 50.8 (+19.6) 47.4 53.1 (+5.7) 50.6 76.8 (+26.2) 77.8 80.8 (+3.0)

Qwen2-0.5B-Instruct

5 10.9 17.0 (+6.1) 16.4 17.0 (+0.6) 29.5 40.9 (+11.4) 35.5 41.3 (+5.8)
4 10.1 17.3 (+7.2) 16.5 17.3 (+0.8) 27.1 39.8 (+12.7) 34.8 40.1 (+5.3)
3 7.8 17.2 (+9.4) 15.8 17.3 (+1.5) 24.1 40.2 (+16.1) 34.6 40.6 (+6.0)
2 6.0 16.1 (+10.1) 15.1 16.2 (+1.1) 19.1 39.3 (+20.2) 33.9 39.7 (+5.8)
1 6.4 15.4 (+9.0) 14.2 15.8 (+1.6) 16.2 38.4 (+22.2) 32.9 39.8 (+6.9)

Qwen2-7B-Instruct

5 12.4 41.8 (+29.4) 39.6 42.0 (+2.4) 17.3 68.8 (+51.5) 67.4 69.2 (+1.8)
4 11.6 41.2 (+29.6) 39.2 41.6 (+2.4) 16.9 67.9 (+51.0) 67.2 68.5 (+1.3)
3 10.1 41.0 (+30.9) 39.6 42.2 (+2.6) 17.9 67.7 (+49.8) 67.9 68.6 (+0.7)
2 11.3 38.7 (+27.4) 39.9 41.6 (+1.7) 17.7 66.4 (+48.7) 67.5 68.8 (+1.3)
1 12.0 28.9 (+16.9) 40.9 40.8 (-0.1) 18.5 50.3 (+31.8) 67.8 68.4 (+0.6)

Qwen2-72B-Instruct

5 3.6 56.1 (+52.5) 56.2 57.6 (+1.4) 6.3 82.7 (+76.4) 82.1 83.1 (+1.0)
4 2.3 55.8 (+53.5) 55.2 57.9 (+2.7) 6.2 82.5 (+76.3) 81.9 82.9 (+1.0)
3 2.7 54.6 (+51.9) 55.0 57.4 (+2.4) 5.8 82.8 (+77.0) 82.1 83.3 (+1.2)
2 2.2 52.2 (+50.0) 53.3 56.9 (+3.6) 5.4 81.6 (+76.2) 81.8 82.8 (+1.0)
1 2.3 39.8 (+37.5) 53.4 56.4 (+3.0) 6.6 71.6 (+65.0) 81.7 82.7 (+1.0)

OLMo-7B-0724-Instruct-hf

5 0.0 0.0 (+0.0) 21.7 23.5 (+1.8) 0.0 0.2 (+0.2) 52.4 53.9 (+1.5)
4 0.0 0.0 (+0.0) 21.8 24.2 (+2.4) 0.0 0.1 (+0.1) 52.5 53.7 (+1.2)
3 0.0 0.0 (+0.0) 21.6 23.8 (+2.2) 0.0 0.1 (+0.1) 52.3 53.8 (+1.5)
2 0.0 0.0 (+0.0) 21.1 23.7 (+2.6) 0.0 0.0 (+0.0) 51.5 52.8 (+1.3)
1 0.0 0.0 (+0.0) 18.9 21.8 (+2.9) 0.0 0.0 (+0.0) 49.6 51.5 (+1.9)

OLMo-7B-0724-SFT-hf

5 8.7 23.1 (+14.4) 21.6 24.3 (+2.7) 42.9 46.6 (+3.7) 49.5 51.1 (+1.6)
4 7.8 22.9 (+15.1) 21.6 24.3 (+2.7) 42.5 46.4 (+3.9) 49.4 51.4 (+2.0)
3 8.0 22.1 (+14.1) 22.1 24.1 (+2.0) 42.1 44.3 (+2.2) 49.7 50.9 (+1.2)
2 7.5 19.5 (+12.0) 21.6 23.5 (+1.9) 37.7 39.6 (+1.9) 49.5 50.4 (+0.9)
1 4.9 13.1 (+8.2) 17.2 22.9 (+5.7) 24.9 27.3 (+2.4) 45.5 48.7 (+3.2)
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