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Abstract

Best-of-N (BoN) sampling with a reward model
has been shown to be an effective strategy for
aligning Large Language Models (LLMs) to hu-
man preferences at the time of decoding. BoN
sampling is susceptible to a problem known as
reward hacking. Because the reward model is
an imperfect proxy for the true objective, over-
optimizing its value can compromise its perfor-
mance on the true objective. A common solution
to prevent reward hacking in preference learning
techniques is to optimize a reward using proxim-
ity regularization (e.g., KL regularization), which
ensures that the language model remains close to
the reference model. In this research, we propose
Regularized Best-of-N (RBoN), a variant of BoN
that aims to mitigate reward hacking by incorpo-
rating a proximity term in response selection, sim-
ilar to preference learning techniques. We eval-
uate RBoN on the AlpacaFarm and Anthropic’s
hh-rlhf datasets and find that it outperforms BoN.
As an application of RBoN, we use RBoN to gen-
erate a pairwise preference learning dataset. Ex-
perimental results show that a DPO model trained
on a dataset generated with RBoN outperforms
a DPO model generated with vanilla BoN. Our
code is available at https://github.com
/CyberAgentAILab/regularized-bon.

1. Introduction

While Large language models (LLMs) trained on massive
datasets have been shown remarkable ability at next-token
prediction, these models often produce misleading, harmful,
and unhelpful outputs (Bai et al., 2022; Lin et al., 2022;
Touvron et al., 2023; Casper et al., 2023; Guan et al., 2024).
The challenge for the field is thus to align the behavior
of the LLMs with human preferences, steering the models
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to generate informative, harmless, and helpful responses
(Ziegler et al., 2020; Stiennon et al., 2020; Ouyang et al.,
2022).

Alignment strategies can be divided into two categories:
preference learning and decoding time alignment. Rein-
forcement learning from human feedback (RLHF) and Di-
rect Preference Optimization (DPO) are popular strategies
for preference learning (Stiennon et al., 2020; Ouyang et al.,
2022; Rafailov et al., 2023). RLHF begins by training a re-
ward model that reflects human preferences for the model’s
responses. It then trains the model to optimize the responses
to maximize the score according to the reward model. DPO
trains the language model to align directly with human pref-
erence data about responses without training a reward model.
Best-of-N (BoN) sampling is widely used to align the LLM
at decoding time (Stiennon et al., 2020; Nakano et al., 2022).
BoN samples N responses from the language model and se-
lects the best response according to the proxy reward model
as the output of the system.

However, these alignment methods are known to suffer from
the reward hacking problem (Amodei et al., 2016; Ziegler
et al., 2020; Stiennon et al., 2020; Skalse et al., 2022; Gao
et al., 2023). The reward hacking problem occurs because
of reward misspecification (Pan et al., 2022; Lambert &
Calandra, 2024); the proxy reward trained from human pref-
erences does not perfectly reflect true human preferences.
As aresult, optimizing for the reward model does not always
optimize for the preference of the true intended objective.

A common approach to mitigate reward hacking in prefer-
ence learning (RLHF and DPO) is to use proximity regu-
larization, typically by a KL divergence term, to keep the
trained model close to the reference model. Previous work
in BoN has shown that reducing the number of samples N
mitigates the reward hacking (Nakano et al., 2022; Pan et al.,
2022; Lambert & Calandra, 2024). This approach success-
fully reduces the KL divergence from the reference policy
(Nakano et al., 2022; Beirami et al., 2024) but at the expense
of diminished improvement obtained by the method.

To this end, we propose Reguralized Best-of-N (RBoN),
a method that introduces proximity regularization into the
BoN to mitigate the reward hacking problem. Instead of
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optimizing the raw reward score, we optimize a sum of the
reward score and a regularization term. RBoN can tune the
regularization strength by the hyperparameter /3, similar to
the proximity regularization in RLHF and DPO. We propose
two variants of RBoN, RBoNgk; and RBoNwp. RBoNk;.
is simple to implement, but its improvement over BoN is
limited, while RBoNwp significantly improves over BoN.

We evaluate the performance of RBoN on the AlpacaFarm
(Dubois et al., 2023) and Anthropic’s hh-rlhf datasets (Bai
et al., 2022) and show that it outperforms the performance
of vanilla BoN in a wide range of settings. We also use
RBoON to generate a pairwise preference learning dataset
and show that a DPO model trained on a dataset generated
with RBoN outperforms a DPO model trained on a dataset
generated with vanilla BoN.

2. Background

First, we give an overview of preference learning algorithms
including RLHF and DPO. Then we introduce the decoding-
time alignment algorithm, BoN sampling.

2.1. Preference Learning

Let D be a dataset of comparisons D = {z("), yff), yl(i) bic1e
RLHF uses the learned reward function to train the lan-
guage model. Typically, the RL process is formulated as the

following optimization problem:
argmax [ E [R(z,y)]
™ ~D y~r(y|x)

— BDkL[r(:|2)][mrer (-|2)], M

where £ is a hyperparameter that controls the proximity to
the base reference model 7,¢¢. The regularization term Dk,
is important to prevent the model from deviating too far from
the base model. Since the objective is not differentiable,
reinforcement learning algorithms are used for optimization
(Schulman et al., 2017; Stiennon et al., 2020; Bai et al.,
2022; Ouyang et al., 2022; Zheng et al., 2023).

DPO trains the language model to align directly with the
human preference data over the responses, so it doesn’t need
a separate reward model (Rafailov et al., 2023). Although
DPO is based on supervised learning rather than reinforce-
ment learning, it uses essentially the same loss function
under the Bradley-Terry model (Bradley & Terry, 1952).
The objective function of the DPO is the following:

arg max E [log o (5 log ywlz)
™ (Z,Yw,y1)~D Tref (yw |$)
Blog WDy (g
7"'ref(yl |$)

where o is the sigmoid function. Several variants of DPO
also use KL divergence as proximity regularization (Azar

et al., 2023; Liu et al., 2024). (Wang et al., 2024) investi-
gate the use of f-divergence as a proximity regularization
instead of KL divergence to promote the diversity of the
resulting model. (Zhao et al., 2023) uses the cross-entropy
loss instead of the KL term because it does not require a
copy of the reference model to compute.

Thus, both lines of work in preference optimization have
proximity regularization in common, often as a form of KL
divergence, to keep the model 7 close to the reference model
Tref-

2.2. Best-of-N (BoN) Sampling

While many methods have been proposed for learning hu-
man preferences, a simple, popular, and well-performing
method for preference optimization remains Best-of-N
(BoN) sampling (Stiennon et al., 2020; Nakano et al., 2022).
Let = be an input prompt to the language model 7¢. Let
Yier be N responses drawn from 7ye¢(-|z). BoN sampling
selects the response with the highest reward score according
to the proxy reward model R:

yBoN(2) = argmax R(x,y). 3)
YEYret

The advantages of BoN over preference learning methods
are as follows. First, BoN is simple. It does not require any
additional training of the language model. While learning-
based alignment methods need to train the LLM, BoN can
be applied on the fly. Every time human preferences are
updated, learning-based methods must retrain the LLM to
adapt to them. On the other hand, BoN only requires an
update of the reward model and does not require the training
of the LLM, which is the most expensive process. Second,
BoN is an effective strategy in its own right. Several previ-
ous works have shown that BoN sampling can outperform
learning-based alignment methods (Gao et al., 2023; Eisen-
stein et al., 2023; Mudgal et al., 2024; Gui et al., 2024).
Third, BoN is applicable to a black-box model where fine-
tuning is not available. BoN does not require access to the
model itself and is applicable using the output sequences
from the black-box model. In summary, BoN is a practi-
cal and efficient alignment strategy that complements the
shortcomings of learning-based strategies and is worthy of
investigation.

3. Regularized Best-of-N (RBoN) Sampling

We propose Regularized Best-of-N (RBoN), a variant of
BoN with a proximity regularization to mitigate the reward
hacking. In particular, we present two instances of RBoN,
KL regularized BoN (RBoNk; ) and Wasserstein Distance
regularized BoN (RBoNyp).
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3.1. Kullback-Leibler divergence Regularized Best-of-N
(RBoNk1.)

We derive the objective function of RBoNky directly from
Eq. (1) as follows:

YRBoNk, (¥) =

argmaxR(x,y) - ﬂDKL[]lyHﬂ'ref('W)]a “)
YEYrer

where 1, is an indicator function with 1, (y’) = 1 fory’ =
yand 1,(y") = 0 for y # y. 1, represents the policy
of choosing y with a probability of 1, which is the policy
RBoN will end up with if it chooses y as the output. Thus,
Dxr,[1y]|7res (-|2)] represents the KL divergence between
the resulting policy and the reference policy. Intuitively,
RBoNk. optimizes the same objective as Eq. (1) but with
modifications to make it available at decoding time. Eq. (4)
is derived from Eq. (1) by computing the optimal response
for a given z instead of computing the optimal policy.

The tradeoff between the reward and the proximity to the
reference model is controlled by the hyperparameter /5. With
a small 3, the output is more aligned with the proxy reward
model. With 8 = 0, the vanilla BoN is restored. With larger
5, the output is closer to the behavior of the reference model
Tref, Where 5 = 400 selects the response with the highest
model probability, recovering the maximum a posteriori
(MAP) decoding (Stahlberg & Byrne, 2019; Eikema & Aziz,
2020; Holtzman et al., 2020).

Previous work in BoN has shown that the deviation from the
reference model can be reduced by using a smaller number
of samples NV (Nakano et al., 2022; Pan et al., 2022; Beirami
et al., 2024). However, reducing the number of samples
also reduces the alignment to the reward model. RBoNk;,
does not need to reduce the number of samples to enforce
proximity to the reference model, while using all generated
samples to find the best response according to the objective
function.

3.2. Wasserstein Distance Regularized Best-of-N
(RBoNwp)

Although RBoNky, is simple and straightforward, the perfor-
mance of RBoNgy is sensitive to the choice of 3 (Appendix
B). As such, the performance improvement of RBoNk;, over
BoN is limited. In addition, RBoNgy is not applicable to
black-box models as it requires access to the probability of
the sampled outputs.

To this end, we propose RBoNwp, a regularized BoN based
on Wasserstein Distance (WD) (Peyré & Cuturi, 2020; Vil-
lani, 2021) instead of KL divergence. WD is a distance
function defined between probability distributions. It is
also known as the earth mover’s distance because it is often
expressed as the amount of dirt moved times the distance

moved. Let ) be the set of all possible responses for any
input z. For a pair of probability distributions over ), WD
is defined as follows:

Yl 1Y

SN wiClunyy), )

i=1 j=1

WD(P,Q)= min
( ) {wisti €T

where C'is the cost function that represents the dissimilarity
of the inputs. 7 is a set of all couplings {y; ;}, ; (Villani,
2021):

T = {{mij}is:
[V V]
Zﬂi,j = Q(yj)7ZNi,j = P(y;),i,; > 0}.  (6)
i—1 =

RBoNwp uses WD instead of KL divergence as the proxim-
ity regularizer:

YRBoNwp (%) =
argmax R(z,y) — BWD(1,, me(-|2)), @)
YEYrer
where [ is a hyperparameter to adjust the strength of the reg-
ularization. The WD term serves as a proximity regularizer
to ensure that the resulting policy is close to the reference
policy Tryef.

Computing W D(1,, m¢(-|2)) exactly is intractable, since
it requires computing the cost C(y,y’) for every possible
response 4’ with e (y'|x) > 0. Thus, we approximate 7ef
with an empirical distribution using Yi..¢. Let 7 of be the
empirical distribution computed from a set of samples Y}¢:
Fret (U10) = £ ey, Iy = o). WD(Ly, frec (o)) s
computable because the support of 7 is less than or equal
to the number of samples |Y;q¢|. Then, RBoNwp using the
empirical distribution 7, is as follows:

YRBoNwp () =
argmaxR(z,y) — SWD(1,, Trer(-]x)).  (8)
yeyref

WD(1,, et (-|)) of Eq. 8 can be computed as follows:

1
WDy, freil(2) = > HCwy), O

Yy’ €Yrer
See Appendix A for the derivation of Eq. (9).

The advantage of RBoNyp is that the W D term is a useful
target for text generation on its own, in addition to being a
proximal regularizer. The W D term is used as an objective
function in Minimum Bayes Risk (MBR) decoding (Kumar
& Byrne, 2002; 2004; Eikema & Aziz, 2022), which gener-
ates a sequence with minimum Bayes risk (hence maximum
expected utility):

1
yMBR(Z) = arg max Z NU(y,y') (10)

YEYrer Y €Yot
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Minimizing Bayes risk is equivalent to minimizing
the expected cost (Eq. 9), and thus minimizing
WD(1y, et (-|2)). In fact, RBoNwp (Eq. 9) with 8 =
~+oo recovers the MBR decoding with U = —C as a utility
function:

YRBoNwop (L)
B2, argmax —WD(1y, e ()
YEYrer

= arg max
YEYrer

1 /
> ~vUwy)
Y €Yrer
=ymBr (). (11)

The MBR objective is shown to be effective and outperforms
MAP decoding in a variety of text generation tasks (Suzgun
et al., 2023; Bertsch et al., 2023; Li et al., 2024). As such,
RBoNwp (Eq. 7) is a combination of two effective objec-
tives. Therefore, we expect the performance of RBoNwp to
be less sensitive to the choice of 5.

We use a cosine distance between the sentence embeddings
of the sequences as the cost function of W D:

Cly,y") = 1 = cos(emb(y), emb(y")), (12)

where emb represents the embedding function (e.g. sen-
tence BERT (Reimers & Gurevych, 2019)). Using this cost
function, RBoNwp is computed as follows:

YRBoNwp (T) = arg max R(z, y)
YEYret

— % Z (1 — cos(emb(y),emb(y’))). (13)

Y €Yror

Similar to RBoNk; , the hyperparameter 3 controls the trade-
off between the reward and proximity to the reference model.
Using a small S makes the output more aligned to the proxy
reward, with § = 0 recovering the vanilla BoN. With a
larger f3, the output is closer to the behavior of the reference
model 7f, with 8 = 400 recovering the MBR decoding.

The computational overhead of RBoNwyp is marginal as the
computation of the WD (Eq. 9) for all y € Y. is com-
putable in O(N) time by reference aggregation (Vamvas &
Sennrich, 2024).

4. Experiments

We evaluate the performance of RBoN for two use cases.
First, we evaluate the performance of RBoN for decoding
time alignment (Section 4.1). Then, we evaluate RBoN as a
sampling strategy to generate a preference learning dataset
to be used for DPO (Section 4.2).

Table 1: Average Spearman’s rank correlation coefficient
of the proxy reward models to the gold reference reward
model (Eurus). For each instruction in the AlpacaFarm,
128 responses are generated using Mistral. Spearman’s
rank correlation for each instruction is computed and then
averaged over the set of instructions.

Proxy reward Correlation Coefficient

SHP-Large 0.32
SHP-XL 0.39
OASST 0.40

4.1. RBoN for Decoding-Time Alignment

Setup. The evaluation is conducted using the Al-
pacaFarm (Dubois et al., 2023) and Anthropic’s hh-
rlhf datasets (Bai et al.,, 2022). For the Al-
pacaFarm dataset, we use the first 1000 entries
of the train split (alpaca_human_preference) as
the development set and the whole evaluation split
(alpaca_farm_evaluation) (805 instructions) as a
test dataset. For Anthropic’s datasets, we conduct ex-
periments on the helpful-base (Helpfulness) and
harmless-base (Harmlessness) subsets separately. For
each subset, we use the first 1000 entries of the train split
as the development set and the first 1000 entries of the test
split as a test dataset. We use mistral-7b—-sft-beta
(Mistral) and do11y-v2-3Db (Dolly) as the language mod-
els (Jiang et al., 2023a; Tunstall et al., 2023; Conover et al.,
2023).

To evaluate RBoN under various conditions, we use SHP-
Large, SHP-XL (Ethayarajh et al., 2022), and OASST (Ko6pf
et al., 2023) as proxy reward models. We use Eurus as a gold
reference reward model as it is one of the most accurate re-
ward models according to the RewardBench (Lambert et al.,
2024) and is open-source which makes the experiments re-
producible. The results using other reward models as a gold
reference are reported in Appendix B. The average Spear-
man’s rank correlation coefficient p (Spearman, 1904) to
the gold reference reward (Eurus) is reported in Table 1.

We compare the performance of BoN, RBoNgp, and
RBoNwp. We sample up to N = 128 responses per in-
struction using nucleus sampling and select the output using
the algorithms. We set the top-p to be p = 0.9 and the tem-
perature to be 7' = 1.0 for the nucleus sampling (Holtzman
et al., 2020). For a fair comparison, we use the same set
of N responses for all algorithms. We use the Sentence
BERT model (Reimers & Gurevych, 2019) based on MPNet
(Song et al., 2020) to compute the sentence embedding for
RBONWD.

RBoNkr. and RBoNywp use the development set to select
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the optimal . For each pair of a proxy reward and a gold
reference reward, we run RBoNg;, and RBoNwp with 8 €
{1076,2-107%,5-107%,1075, ..., 2-10'} and pick the best
performing 8. We pick the 5 with N = 128 and use the
same [ for all N in evaluation. See Appendix B for the
ablation study on the regularization strength (.

Results. Figures 1 and 3 show the performance of BoN,
RBoNk1,, and RBoNywp on the AlpacaFarm dataset using
Mistral and Dolly as a language model, evaluated by Eu-
rus score. RBoNwp outperforms BoN on all the settings.
RBoNky significantly outperforms BoN using Dolly and
SHP reward models, but is on par with BoN in other settings.
Figures 2 and 4 show the performance of RBoNwp with
N = 128 and with varying regularization strength (5. The
vertical line shows the 3 selected using the development set.
Overall, RBoNyp outperforms BoN in a wide range of 3
and is relatively robust to the choice of the f3.

Figures 5 and 6 show the results on the Helpfulness and
Harmlessness subsets of the Anthropic’s hh-rlhf dataset.

gold reference reward is Eurus. The number of samples is

RBoNwp consistently outperforms BoN in both datasets,
showing that the method is competitive in a wide range of
tasks.

As expected, we observe that RBoNwp and RBoNk;, have
lower proxy reward scores than BoN (See Appendix B). The
regularization term effectively mitigates the reward hacking
of the BoN, resulting in a higher score in the gold reference
score (Eurus).

Choice of Regularization strength. Table 2 summarizes
the regularization strength /3 picked using the development
set. The optimal value of 5 depends on the choice of the
language model, dataset, and proxy reward model, which
requires the use of the development set to tune the hyper-
parameter 5. Note that the computational cost of tuning
the hyperparameter for RBoN is marginal compared to that
of RLHF or DPO as it does not involve any training of the
language model or reward model. Running RBoN with dif-
ferent 5 only requires the computation of a multiplication
of a matrix of size N x N and a vector of size N (Eq. 4
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and 13).

4.2. RBoN for Generating Pairwise Preference Learning
Dataset

Previous work has shown that BoN sampling is an effective
strategy for generating an efficient preference dataset (Xu
et al., 2023; Yuan et al., 2024b; Pace et al., 2024). They
show that the efficiency of pairwise preference learning is
improved by using the best and worst responses according
to the reward model.

We evaluate the performance of RBoNwp compared
to BoN in generating a preference dataset for DPO
(Rafailov et al., 2023). We use the instructions from the
alpaca_human_preference subset of the AlpacaFarm
dataset as the training dataset. We sample 128 responses for
each instruction and use the response selected by RBoNwp
or BoN as the chosen response and the response with the
lowest reward as the rejected response. We use Mistral
as the language model to generate the pairwise preference

dataset and train it using the generated dataset (Jiang et al.,
2023a; Tunstall et al., 2023).

OASST is used as the proxy reward model and Eurus is
used for evaluation (Kopf et al., 2023; Yuan et al., 2024a).
We train a model with DPO using Low-Rank Adaptation
(LoRA) (Hu et al., 2022; Sidahmed et al., 2024). The trained
models are evaluated using the evaluation split of the Al-
pacaFarm dataset. For the evaluation, we generate a re-
sponse from the trained model by a nucleus sampling with
p = 0.9 (Holtzman et al., 2020). Other hyperparameters are
described in Appendix D.

Figure 7 shows the performance of models trained us-
ing RBoNwp and BoN to generate a pairwise preference
dataset. The models trained with RBoNwp outperform a
model trained with BoN. The result shows the potential
of RBoNywyp as a tool for generating pairwise preference
datasets for preference learning.
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5. Related Work

Using proximity regularization is not the only way to mit-
igate the reward hacking problem. Several studies have
explored the use of multiple rewards. (Coste et al., 2024;
Ramé et al., 2024) propose to ensemble multiple reward
functions to mitigate reward hacking. Several studies have
investigated training models by the reward functions and
combining by interpolating the parameters (Ramé et al.,
2023; Jang et al., 2023) or ensembling the model (Mitchell
et al., 2024). Our approach is applicable to any proxy reward
model, so it can be combined with these methods.

The proximity term of RBoNyyp is closely related to the
objective function of the Minimum Bayes Risk (MBR) de-
coding (Kumar & Byrne, 2002; 2004). MBR decoding is a
decoding strategy that selects the sequence with the high-
est similarity to the sequences generated by the probability
model. It has been shown to produce high-quality outputs in
many text generation tasks, including machine translation,
text summarization, and image captioning (Freitag et al.,
2023; Jinnai et al., 2024; Suzgun et al., 2023; Bertsch et al.,

2023). Li et al. (2024) show that the MBR strategy out-
performs sophisticated methods such as chain-of-thought
(Wei et al., 2022; Wang et al., 2023).! The novelty of our
work is to introduce the MBR objective to BoN sampling
for language model alignment.

6. Conclusions

We propose RBoN sampling, a variant of BoN sampling
with proximity regularization, to mitigate the reward hack-
ing problem. We propose two instances of RBoN, RBoNg,
and RBoNyp, and evaluate their performance using the
AlpacaFarm and Anthropic’s hh-rlhf dataset.

RBoNky, simply introduces the KL regularization commonly
used in the RLHF and DPO families to the BoN sampling.
However, its improvement over BoN is limited, showing
that simply introducing the widely used KL term to the
decoding-time objective is not sufficient to improve the
BoN sampling.

'MBR is named Sampling-and-voting in Li et al. (2024).
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Table 2: The value of the regularization strength 5 used by RBoNg; and RBoNwp. Note that 5 = 0 indicates that it does

not improve over BoN, thus recovers BoN.

SHP-Large

SHP-XL OASST

Model Dataset KL

WD KL WD KL WD

Mistral
Dolly
Mistral
Mistral

AlpacaFarm 10-6

AlpacaFarm 21076

Helpfulness 0
Harmlessness ~ 107°

0.5 05 5-107% 20.0
0.5 1.0 1074 5.0
0.05 0.1 0 20.0
2.0 20 5-107% 20.0
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Figure 7: Evaluation of the DPO using RBoNwp to generate
the preference dataset. OASST is used as the proxy reward
model to generate the preference dataset, and Eurus is used
as the gold reference reward. The point represents the av-
erage over three runs and the error bar shows the standard
error of the mean.

RBoNywp uses Wasserstein distance as proximity regulariza-
tion. Since Wasserstein distance is an effective optimization
objective on its own, it is relatively robust to the choice of
B, resulting in significant improvement over BoN in a wide
range of settings.

As an application of the decoding strategies, we evaluate
the performance of RBoNwyp for generating a pairwise pref-
erence dataset for preference learning. We generate a pref-
erence dataset using RBoNwp and train a DPO model using
the generated dataset. The experimental result shows that
DPO models trained using a preference dataset generated
by RBoNwp outperform a DPO model trained on a dataset
generated by BoN.

The empirical result shows that RBoN is an effective decod-
ing time alignment method and is also useful for generating
a dataset for a preference learning method. We believe that
RBoN will be a practical choice for future decoding-time
alignment methods because of its applicability and perfor-
mance improvements.

7. Limitations

The drawback of the proposed method is that it requires
a development set to tune the hyperparameter. Given that
there is no clear strategy to pick the [ parameter even for
RLHF and DPO, we speculate that it would be challenging
to develop a strategy to find an effective 5 automatically.
Still, the hyperparameter tuning of RBoNwp is much more
computation efficient than that of RLHF and DPO as it does
not involve any training procedures.

We use automated evaluation metrics to evaluate the models.
Although we use one of the most accurate publicly available
reward models (Eurus) to evaluate the performance of the
models (Yuan et al., 2024a; Lambert et al., 2024), it would
be desirable to perform a human evaluation.

Our experiments on preference learning are limited to the
evaluation of DPO. Evaluation of RBoNyyp for other pref-
erence optimization algorithms is future work (Azar et al.,
2023; Liu et al., 2024; Ethayarajh et al., 2024; Xu et al.,
2024; Morimura et al., 2024; Hong et al., 2024; Meng et al.,
2024; Park et al., 2024).
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A. Derivation of Equation 9

We show the derivation of Eq. (9). From the definition of
Wasserstein distance with p = 1 (Peyré & Cuturi, 2020;
Villani, 2021), we get the following:

Y11

S wiiClyisyy),

i=1 j=1

min
{nijtii€T

WD(Ly, rret(-|2)) =
(14)
where J is a set of all couplings {; ;}4,; (Villani, 2021):
J = {{ni}is:
% (Y|
D hig = et (ysl2), > pag = Ty (yi), pay > 0}
i=1 j=1
15)

Because 1,(y;) = 0 for all y; # y and p; ; > 0, we get
i = 0 for all y; # y. Thus,

vl
(14) =min } _11y;C(y, ;)

j=1

(16)

Using p;; = 0 for all ¢ # y and Zgll Wij = Tret (Y5]2),
we get (i, i = Tref(y;|). Thus,
|V
(16) = H}}n Z 7érref(yj |$>C(y7 y])

j=1
)

= Frer (y512)C(y, y5)-
j=1

(a7

(18)

Because 7o (y;|2) is an empirical distribution from the set
of samples Yrer, 7ref (|7) = 2, v, 7 Ly(y). Thus,

1
1= > Cu.y). (19)

Y €Yer

Thus, we get Eq. (9).

B. Effect of the Regularization Strength

To understand the effect of the regularization strength on the
performance of RBoN under different pairs of proxy and
gold reward models, we evaluate RBoN using SHP-Large,
SHP-XL, OASST, and PairRM (Jiang et al., 2023b) as gold
reward models. Figure 16 reports the average Spearman’s
rank correlation coefficient p of a pair of reward models
(Spearman, 1904). Note that SHP-Large and SHP-XL re-
ward models are highly correlated as they are trained on the
same training procedure.

We perform the sampling using one of the reward models as
the proxy reward model and evaluate the selected responses

14

using the remaining reward models as the gold reference
rewards. We do not use PairRM as a proxy reward model
because it is a pairwise reward model that estimates the
preference for a pair of responses rather than computing an
absolute preference for a response. The use of a pairwise
reward model as a proxy reward model for RBoN is future
work.

Figure 8 shows the performance of BoN, RBoNk;, with the
best 3, and RBoNyp with varying 5 with N = 128 using
Mistral on the AlpacaFarm dataset. See Appendix C for
results using other N. RBoNwp outperforms BoN in all
settings except when the proxy reward model is highly corre-
lated with the gold reward model (SHP-Large and SHP-XL).
Reward hacking isn’t a problem when the proxy reward
model is a highly accurate representation of the true reward,
so BoN (5 = 0) achieves the best performance. RBoNkp
also outperforms BoN when the proxy reward has a low
correlation to the gold reference reward. Figure 9 shows
the performance of RBoNg; with varying 5. RBoNg, with
correctly chosen 3 outperforms BoN. However, the perfor-
mance of RBoNy significantly drops when choosing 3 too
large and is sensitive to the choice of 3.

Figure 10 shows the result using Dolly on the AlpacaFarm
dataset. Overall, we observe qualitatively the same result
as on Mistral. RBoNywp outperforms BoN in a wide range
of 8 when the proxy and gold rewards are not a pair of
SHP-Large and SHP-XL.

Figures 12, 13, 14, and 15 show the performance of
RBoNwp and RBoN;. on the hh-rlhf dataset. We observe
RBoNyyp to improve upon BoN in both Helpfulness and
Harmlessness subsets. RBoNky successfully improves upon
BoN in the Harmless dataset, but is less effective in the Help-
fulness dataset. The result suggests that the KL-divergence
term is useful for mitigating harmful behavior but not effec-
tive in being helpful.

The experiment shows that the optimal 5 depends on various
factors, but the strength of the correlation between the proxy
reward model and the gold reference reward seems to be the
key factor. For example, SHP-Large is strongly correlated
with SHP-XL (p = 0.66), so the optimal [ is close to 0. In
this case, RBoN has little to no advantage over BoN. On
the other hand, SHP-Large is only weakly correlated with
OASST and PairRM (p = 0.29, 0.20), where the optimal
(B for SHP-Large — OASST and PairRM is large (6 =
0.1 —1.0).

C. Additional Figures

Figures 17 and 18 show the performance of BoN (3 = 0),
RBoNyp, and MBR decoding (5 = +o00) with different
number of samples N using Mistral and Dolly. We observe
qualitatively similar results with smaller NV to the result of
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Figure 8: The gold reward score and the proxy reward score of the RBoNwp with different regularization strengths and
reward models. The captions of the subfigures show the proxy and the gold reward model (Proxy — Gold). The performance
of RBoNg; with the best 5 hyperparameter and BoN is shown in the horizontal lines. The responses are generated by

Mistral. The number of samples NV is 128.

N = 128 in Figures 8 and 10.

Figure 11 is the result of the RBoNg; with varying (3 using
Dolly. Overall, we observe qualitatively the same results
as in Mistral. RBoNk;, outperforms BoN except when the
proxy reward model is highly correlated with the gold ref-
erence reward. The performance of RBoNk, is sensitive to
the choice of 5.

D. Hyperparameters

Table 3 describes the hyperparameters used to generate re-
sponses from the 7. The parameters are used for both
Sections 4.1 and 4.2. Table 4 summarizes the hyperparame-
ters used for training the DPO model in Section 4.2.
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Table 3: Generation hyperparameters used in Section 4.1
and 4.2

Parameter Value
Max instruction length | 256
Max new tokens 256
Temperature 1.0
Top-p 0.9




Regularized Best-of-N Sampling to Mitigate Reward Hacking for Language Model Alignment

....................... -24 =098 - 60
—_ _ D098 N 4 _ © 0.98 ——.—.—*% S ST S .
G 0.98 05D B 5 s
s < © -22 © 4
3 d 2 3 -55=
] - I o 096- _ o 0.96-
o 0.9 -094% I 200 T o
& g 0 188 @ - 50 g
el - f= el
T o094- -092 5 5 094- g 094~ X 5
H ko) H -162 H —455
& —+— RBoNy (Proxy) -0.90 & 4 —+— RBoN, (Proxy) ['4 0.92 —+— RBoNg_ (Proxy) 4
> 092- __ oo 0% o092~ _ oy -145 2O —-~ BoN 3
g S 8 S -408
& —— RBoNg (Gold) c0ss® & —— RBoNy (Gold) -129 & —— RBoN_ (Gold)
0.90 - - 0.90 - 0.90 -
10° 10° 10" 10° 10° 10° 107" 10° 10° 10° 10 107
B B B
(a) SHP-Large — SHP-XL (b) SHP-Large — OASST (c) SHP-Large — PairRM
0.8 = —pmmmp i o ettt -0098 — 0.98 - -24 0.98 - ————— ="
R = T 0 - —
—_ - - - - E
3 e g 22 3 ) 60 2
* 0.96 - 3 " 0.96 - ® g 096 x
a -09; 4 o0t & s
5 I % e B -5
5 0.94- e 5094~ 188 p09- g
2 094 g g 5 g N -50 &
3 0.02- g Bo92- -168  Boe- \ 2
< -+— RBoNg_ (Proxy) _002% > -+— RBoNg_ (Proxy) x > RBONy. (Proxy) -450
x -
S 0.90- —= BoN So0g90- — = BoN 1432 Sggp- —= BoN 3
= —— RBoNy_(Gold) —0908 o —— RBoNg (Gold) 129 % —— RBoNy_ (Gold) -400
10° 107° 107 107 107° 107° 107 107 10° 10° 10" 107
B B B
(f) SHP-XL — PairRM
42- -
_ s 09500 7755
= 5 = -7
®40- -0960 5 @4 E 7 %
< L g -0945 & -750 0
S 5 S [ by
3.8- -0.955 >~ - 3 B 2
g 8 3 -0.940 § g -725 ¢
é 36- 8 E s @ 7008
X _ . o -700 ©
~ —«— RBoNg (Proxy) 09502 & —+— RBoN_ (Proxy) -0ms o —+— RBONgq (Proxy) S
x ['4 x kel
S 54- —= BoN 5 Q 45, —= BoN = S 34- — = BoN -6750
23, T g3 _ s & 8
—— RBoNg, (Gold) -0.945 3 —— RBoNg, (Gold) 0.930 ® —— RBoN (Gold)
-65.0
10° 107° 107 10° 107° 107° 10" 107° 107° 107° 10 10°
B B B
(g) OASST — SHP-Large (h) OASST — SHP-XL (i) OASST — PairRM

Figure 9: Evaluation of the RBoNgy. The gold reward score and the proxy reward score of the RBoNwp with different
regularization strengths and reward models are shown. The captions of the subfigures show the proxy and the gold reward
model (Proxy — Gold). The responses are generated by Mistral. The number of samples N is 128.

E. Reproducibility Statement

All datasets and models used in the experiments are open
source (Table 5). Our code is available at https://gith
ub.com/CyberAgentAILab/regularized-bon.

Table 4: DPO hyperparameters used in Section 4.2.

Parameter Value
Epochs 3
Learning rate le-5
Optimizer AdamW
Batch size 4
Regularization factor (3) 0.1
LoRA r 128
LoRA «a 32
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Figure 10: Evaluation using Dolly on AlpacaFarm. The gold reward score and the proxy reward score of the RBoNwp with
different regularization strengths and reward models. The number of samples N is 128.
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Figure 11: Evaluation of the RBoNky.. The gold reward score and the proxy reward score of the RBoNg; with different
regularization strengths and reward models. The captions of the subfigures show the proxy and the gold reward model
(Proxy — Gold). The responses are generated by Dolly. The number of samples /V is 128.
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Figure 12: Evaluation on the Anthropic’s Helpfulness dataset. The gold reward score and the proxy reward score of the
RBoNwp with different regularization strengths and reward models. The captions of the subfigures show the proxy and the
gold reward model (Proxy — Gold). The performance of RBoNk; with the best 5 hyperparameter and BoN is shown in the
horizontal lines. The responses are generated by Mistral. The number of samples N is 128.
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Figure 13: Evaluation of the RBoNk; on the Anthropic’s Helpfulness dataset. The gold reward score and the proxy reward
score of the RBoNwp with different regularization strengths and reward models are shown. The captions of the subfigures
show the proxy and the gold reward model (Proxy — Gold). The responses are generated by Mistral. The number of samples
N is 128.
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Figure 14: Evaluation on the Anthropic’s Harmlessness dataset. The gold reward score and the proxy reward score of the
RBoNwp with different regularization strengths and reward models. The captions of the subfigures show the proxy and the
gold reward model (Proxy — Gold). The performance of RBoNg; with the best 5 hyperparameter and BoN is shown in the
horizontal lines. The responses are generated by Mistral. The number of samples N is 128.
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Figure 15: Evaluation of the RBoNk; on the Anthropic’s Harmlessness dataset. The gold reward score and the proxy reward
score of the RBoNwp with different regularization strengths and reward models are shown. The captions of the subfigures
show the proxy and the gold reward model (Proxy — Gold). The responses are generated by Mistral. The number of samples
N is 128.
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Table 5: List of datasets and models used in the experiments.

Name

Reference

AlpacaFarm

(Dubois et al., 2023) https://huggingface.co/datasets/tatsu-lab/a
lpaca_farm

Anthropic’s hh-rlhf

(Bai et al., 2022) https://huggingface.co/datasets/Anthropic/hh-r
1hf

mistral-7b-sft-beta (Mistral)

(Jiang et al., 2023a; Tunstall et al., 2023) https://huggingface.co/Hugging
FaceH4/mistral-T7b-sft-beta

dolly-v2-3b (Dolly)

(Conover et al., 2023) https://huggingface.co/databricks/dolly-v
2-3Db

SHP-Large (Ethayarajh et al., 2022) https://huggingface.co/stanfordnlp/SteamSH

P-flan-t5-large

SHP-XL (Ethayarajh et al., 2022) https://huggingface.co/stanfordnlp/SteamSH
P-flan-t5-x1

OASST (Kopfetal., 2023) https://huggingface.co/OpenAssistant/reward-m
odel-deberta-v3-large-v2

PairRM (Jiang et al., 2023b) https://huggingface.co/llm-blender/PairRM

Eurus (Yuan et al., 2024a) https://huggingface.co/openbmb/Eurus—RM-7b
MPNet (Song et al.,, 2020) https://huggingface.co/sentence-transformers/

all-mpnet-base-v2
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Figure 16: Average Spearman’s rank correlation coefficient
of the reward models in the evaluation split of the Alpaca-
Farm dataset for the responses generated by Mistral. 128
responses are used to compute Spearman’s rank correlation
for each instruction, averaged over the 805 instructions.
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Figure 17: Evaluation of RBoN using Mistral on AlpacaFarm. The gold reward score and the proxy reward score of the
RBoNwp with different regularization strengths and reward models. The captions of the subfigures show the proxy and the

gold reward model (Proxy — Gold).
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Figure 18: Evaluation of RBoN using Dolly on AlpacaFarm. The gold reward score and the proxy reward score of the
RBoNwp with different regularization strengths and reward models. The captions of the subfigures show the proxy and the

gold reward model (Proxy — Gold).
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