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SKDCGN: Source-free Knowledge Distillation of
Counterfactual Generative Networks using cGANs

Anonymous ECCV submission

Abstract. With the usage of appropriate inductive biases, Counter-
factual Generative Networks (CGNs) can generate novel images from
random combinations of shape, texture, and background manifolds. These
images can be utilized to train an invariant classifier, avoiding the wide
spread problem of deep architectures learning spurious correlations rather
than meaningful ones. As a consequence, out-of-domain robustness is
improved. However, the CGN architecture comprises multiple over param-
eterized networks, namely BigGAN and U2-Net. Training these networks
requires appropriate background knowledge and extensive computation.
Since one does not always have access to the precise training details,
nor do they always possess the necessary knowledge of counterfactuals,
our work addresses the following question: Can we use the knowledge
embedded in pre-trained CGNs to train a lower-capacity model, assum-
ing black-box access (i.e., only access to the pretrained CGN model)
to the components of the architecture? In this direction, we propose a
novel work named SKDCGN that attempts knowledge transfer using
Knowledge Distillation (KD). In our proposed architecture, each inde-
pendent mechanism (shape, texture, background) is represented by a
student ’TinyGAN’ that learns from the pretrained teacher ’BigGAN’.
We demonstrate the efficacy of the proposed method using state-of-
the-art datasets such as ImageNet, and MNIST by using KD and ap-
propriate loss functions. Moreover, as an additional contribution, our
paper conducts a thorough study on the composition mechanism of the
CGNs, to gain a better understanding of how each mechanism influences
the classification accuracy of an invariant classifier. Code available at:
https://anonymous.4open.science/r/SKDCGN-E753/README.md

1 Introduction

Deep neural networks are prone to learning simple functions that fail to capture
intricacies of data in higher-dimensional manifolds [1], which causes networks
to struggle in generalizing to unseen data. In addition to spectral bias [1] and
shortcut learning, which are properties inherent to neural networks [2], spurious
learned correlations are also caused by biased datasets. To this end, Counterfactual
Generative Networks (CGNs), proposed by [3], have been shown to generate
novel images that mitigate this effect. The authors expose the causal structure of
image generation and split it into three Independent Mechanisms (IMs) (object
shape, texture, and background), to generate synthetic and counterfactual images
whereon an invariant classifier ensemble can be trained.

https://anonymous.4open.science/r/SKDCGN-E753/README.md
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The CGN architecture comprises multiple over-parameterized networks, namely
BigGANs [4] and U2-Nets [5], and its training procedure generally requires ap-
propriate domain-specific expertise. Moreover, one does not always have access
to the precise training details, nor do they necessarily possess the required knowl-
edge of counterfactuals. Motivated by these observations, we propose Source-free
Knowledge Distillation of Counterfactual Generative Networks (SKDCGN), which
aims to use the knowledge embedded in a pre-trained CGN to train a lower
capacity model, assuming black-box access (i.e., only inputs and outputs) to
the components of the source model. More specifically, we harness the idea of
Knowledge Distillation (KD) [6] to train a network comprising three (small) gen-
erative models, i.e. TinyGANs [7], each being responsible for a single independent
mechanism. SKDCGN carries both practical and theoretical implications, and it
is intended to:

1. Obtain a lightweight version of the CGN, reducing its computational cost
and memory footprint. This is meant to (i) ease the generation of counterfac-
tual datasets and hence encourage the development of robust and invariant
classifiers, as well as (ii) potentially allowing the deployment of the model on
resource-constrained devices.

2. Explore whether we can learn from a fully trained CGN and distill it to a less
parameterized network, assuming that we do not have access to the training
process of the model.

Along the lines of the original paper, we demonstrate the ability of our model
to generate counterfactual images on ImageNet-1k [8] and Double-Colored MNIST
[3]. Furthermore, we compare our outputs to [3] and a simple baseline in terms of
out-of-distribution robustness on the original classification task. As an additional
contribution, we conduct a study on the shape IM of the CGN.

The paper is organized as follows: firstly, we present a brief literature survey
in Section 2; next in Section 3 the SKDCGN is dissected; Section 4 presents
the experimental setup and the empirical results, which are finally discussed in
Section 5.

2 Related work

This section introduces the fundamental concepts and the related works that we
use as a base for our SKDCGN.

Counterfactual Generative Networks The main idea of CGNs [3] has
already been introduced in Section 1. Nonetheless, to aid the understanding
of our method to readers that are not familiar with the CGN architecture, we
summarize its salient components in this paragraph and also provide the network
diagram in Appendix Section A.1 Figure 1. The CGN consists of 4 backbones: (i)
the part of the network responsible for the shape mechanism, those responsible
for (ii) texture and (iii) background, and a (iv) composition mechanism that
combines the previous three using a deterministic function. Given a noise vector u
(sampled from a spherical Gaussian) and a label y (drawn uniformly from the set
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of possible labels y) as input, (i) the shape is obtained from a BigGAN-deep-256
[4], whose output is subsequently passed through a U2-Net [5] to obtain a binary
mask of the object shape. The (ii) texture and (iii) background are obtained
similarly, but the BigGAN’s output does not require to be segmented by the
U2-Net. Finally, the (iv) composition mechanism outputs the final counterfactual
image xgen using the following analytical function:

xgen = C(m, f ,b) = m⊙ f + (1−m)⊙ b, (1)

where m is the shape mask, f is the foreground (or texture), b is the background
and ⊙ denotes element-wise multiplication.

More recently, [9] devises an approach that learns a latent transformation that
generates visual CFs automatically by steering in the latent space of generative
models. Additionally, [10] uses a deep model inversion approach that provides
counterfactual explanations by examining the area of an image.

Knowledge Distillation. [11] firstly proposed to transfer the knowledge of a
pre-trained cumbersome network (referred to as the teacher) to a smaller model
(the student). This is possible because networks frequently learn low-frequency
functions among other things, indicating that the learning capacity of the big
network is not being utilized fully [1] [2]. Traditional KD approaches (often
referred to as black-box ) simply use the outputs of the large deep model as the
teacher knowledge, but other variants have made use of activation, neurons or
features of intermediate layers as the knowledge to guide the learning process
[12,13]. Existing methods like [7] are also making use of Knowledge distillation
for the task of image generation. Our work is similar to this, however, they
transfer the knowledge of BigGAN trained on ImageNet dataset to a TinyGAN.
In contrast, in our work, we transfer not just the knowledge of image generation
but also the task of counterfactual generation from a BigGAN to a TinyGAN.

Distilling GANs using KD. Given its high effectiveness for model compression,
KD has been widely used in different fields, including visual recognition and
classification, speech recognition, natural language processing (NLP), and rec-
ommendation systems [14]. However, it is less studied for image generation. [15]
firstly applied KD to GANs. However, our project differs from theirs as they use
unconditional image generation, less general (DCGAN [16]) architectures and
they do not assume a black-box generator. Our setting is much more similar to
that of [7], where a BigGAN is distilled to a network with 16× fewer parameters,
assuming no access to the teacher’s training procedure or parameters. Considering
its competitive performance, we use the proposed architecture (TinyGAN) as the
student model and use a modified version of their loss function (further details
in Section 3.1) to optimize our network.

Source-free: We term our method as Source-free since we do not have access
to the source data, source training details, procedure, and any knowledge about
the counterfactuals, etc, but only have access to trained source models. This
method is similar to methods such as [17] [18]. With large diffusion models like
Imagen [19] and DALL·E 2 [20] where the training process is usually extremely
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expensive in terms of computation, lack precise details about training them and
often not reproducible by academic groups, we often have access to pretrained
models. These can be used to transfer knowledge to a smaller network, and
perform the same task with model of lower capacity.

3 Approach

This section dives into the details of the SKDCGN architecture, focusing on the
training and inference phases separately for ImageNet-1k and MNIST. In addition,
we discuss the loss functions that were employed for Knowledge Distillation.

3.1 SKDCGN

Transferring the knowledge of an entire CGN into a single generative model could
drastically reduce the number of parameters, however this strategy compromises
the whole purpose of CGNs, i.e. disentangling the three mechanisms and having
control over each of them. Therefore, we opt to train a generative model for each
individual component. As shown in the architecture diagram (Figure 1), we treat
each IM backbone as a black-box teacher and aim to mimic its output by training
a corresponding TinyGAN student. Note that this implies that in the case of the
shape mechanism, a single generative model learns to mimic both the BigGAN
and the U2-Net. We believe a TinyGAN should be capable of learning binary
masks directly, removing the need for the U2-Net and reducing the model size
even further. During inference, the outputs of the three students are combined
into a final counterfactual image using the composition function of Equation 1.

Training: Distilling the knowledge of IMs To train SKDCGN, we utilize each
IM backbone from the CGN architecture as a black-box teacher for the student
network, as visualized in the training section of Figure 1 (the backbones are
BigGAN + U2-Net for shape, BigGAN for texture, and BigGAN for background).
Refer to Appendix Section A.2 Figure 2 for details about the training data
generation. As introduced in the Related work section, [7] proposed an effective
KD framework for compressing BigGANs. As the IMs in CGNs rely on BigGANs,
we utilize their proposed student architecture. For completeness, the student
architecture details are reported in Appendix Section A.2 Figure 2a.

We base our training objective on the loss function proposed by [7]. Our
full objective comprises multiple terms: (i) a pixel-wise distillation loss, (ii)
an adversarial distillation loss, (iii) a feature-level distillation loss, and (iv)
KL Divergence. In addition to introducing KL Divergence, we deviate from
the original TinyGAN training objective by omitting the term that allows the
model to learn from real images of the ImageNet dataset. This would inevitably
compromise the quality of the generated counterfactuals. KL Divergence leads to
entropy minimization between the teacher and student, which is why we propose
its usage.

The individual loss terms are dissected below as from [7]:
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Shape Black Box

Shape TinyGAN Gen.

Shape TinyGAN Dis.

,

BG Black Box

BG TinyGAN Gen.

BG TinyGAN Dis.

,

Texture Black Box

Texture TinyGAN Gen.

Texture TinyGAN Dis.

,

Shape KD
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Texture KD
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Composition
Mechanism

Training Inference

Trainable

Components

Fixed

Shape

IMs

Background

Texture

Legend

Fig. 1: Architecture of the SKDCGN. During training, each independent mecha-
nism serves as a black-box teacher model to train a corresponding student model.
During inference, the outputs of the three trained TinyGANs are combined using
a Composition Mechanism that returns the final counterfactual image.

1. Pixel-wise Distillation Loss: To imitate the functionality of BigGAN for
scaling generation to high-resolution, high-fidelity images, we minimize the
pixel-level distance (L1) between the images generated by BigGAN and
TinyGAN given the same input:

LKD_pix = Ez∼p(z),y∼q(y)[∥T (z, y)− S(z, y)∥1] (2)

where T represents the Teacher network, S represents the Student network,
z is a latent variable drawn from the truncated normal distribution p(z), and
y is the class label sampled from some categorical distribution q(y).

2. Adversarial Distillation Loss: To promote sharper outputs, an adversarial
loss is incorporated to make the outputs of S indistinguishable from those of
T . It includes a loss for the generator (Eq. 3) and one for the discriminator
(Eq. 4):

LKD_S =− Ez,y[D(S(z, y), y)] (3)
LKD_D =− Ez,y [max(0, 1−D(T (z, y), y)) +max(0, 1−D(S(z, y), y))] ,

(4)

where z is the noise vector, y is the class label, T (z, y) is the image gener-
ated by the Teacher T , while S and D respectively are the generator and
discriminator of the Student S.
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3. Feature Level Distillation Loss: To further overcome the blurriness in the
images produced by the Student network, the training objective also includes a
feature-level distillation loss. More specifically, we take the features computed
at each convolutional layer in the Teacher discriminator, and with a loss
function stimulate S to generate images similar to T :

LKD_feat = Ez,y

[∑
i

αi ∥Di(T (z, y), y)−Di(S(z, y), y)∥1

]
(5)

where Di represents the feature vector extracted from the ith layer of the
discriminator and the corresponding weights are given by αi.

4. KL Divergence: L1 alone cannot reduce the entropy between the teacher and
target. To improve the existing method, we use KL Divergence in a similar
fashion to [21] for the task of Knowledge Distillation between real images
drawn from source P (x) and target images Q(x).

DKL(P∥Q) =
∑
x∈X

P (x) log

(
P (x)

Q(x)

)
(6)

To sum up, the student generator (S) and discriminator (D) are respectively
optimized using the following objectives:

LS =LKD_feat + λ1LKD_pix + λ2LKD_S (7)
LD =LKD_D (8)

where λ1 and λ2 are the regularization terms mentioned in [7].
Finally, note that the original CGN architecture (Appendix Section A.1 Figure

1) comprises another BigGAN trained on ImageNet-1k, which is unrelated to
the three Independent Mechanisms and provides primary training supervision
via reconstruction loss. We discard this component of the architecture for two
main reasons: we do not have a dataset of counterfactuals whereon a GAN can
be trained; we argue that this additional knowledge is already embedded in the
backbones of a pre-trained CGN.

Inference: generating counterfactuals Once the three student networks
are trained, their outputs are combined during inference akin to [3] using the
analytical function 1. Since the composition function is deterministic, we devise
inference as a separate task to training.

4 Experiments and results

In this section, we first define our experimental setup, then present our results.
We test SKDCGN on ImageNet-1k (Section 4.3), and based on the observed
findings we make some changes to the proposed architecture to improve the
quality of the results (Section 4.4). Due to the computational constraints, we test
these improvements on MNIST [22]. Finally, we present the results of our study
of the shape IM (Section 4.5).
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4.1 Datasets

ImageNet-1k. The ImageNet-1k ILSVRC dataset [8] contains 1,000 classes, with
each class consisting of 1.2 million training images, 50,000 validation and 100,000
test images. Images were resized to 256× 256 to maintain consistent experiments
and to allow direct comparisons with the original results of [3].

Double-colored MNIST. We use the double-colored MNIST dataset proposed by
Sauer and Geiger in the original CGN paper [3]. This is a variant of the MNIST
dataset where both the digits and the background are independently colored. It
consists of 60,000 28× 28 images of the 10 digits, along with a test set of 10,000
images.

4.2 Baseline Model: CGN with generator replaced by TinyGAN
generator

The SKDCGN is compared with a modified version of the original CGN archi-
tecture, where each BigGAN has been replaced by the generator model of a
TinyGAN. Training this baseline using the procedure described by [7], omitting
KD, allows for rigorous comparisons that emphasize the effectiveness of the
knowledge distillation process. Further training details are provided in Appendix
Section C.1.

4.3 Results of SKDCGN

During training, we found that the TinyGANs could closely approximate the
output in each IM. However, we observed that the trained TinyGANs could
not generalize when given random noise to the generator to produce results
beyond the test set. This may be due to the reduced network capacity of the
TinyGAN model. Furthermore, each TinyGAN was trained on all 1000 classes
in ImageNet-1K, as opposed to just 397 classes [7] used. We generate the test
samples using the test and do not make use of random noise to generate the data.
Since we believe that the student (our architecture) has only learned the specifics
manifolds as that of the teacher (CGN). Therefore, when we use random noise
we are not entirely sure if that is being generated from the same manifold as the
teacher.

In Figure 2 we compare the outputs of the CGN backbone responsible for
different independent mechanisms and those of the corresponding TinyGAN,
given the same input.

We also make use of the Double-colored MNIST dataset to validate our
method similar to ImageNet. Similarly, we make use of 3 IMs to train using
our architecture as described in Figure 1. We obtain results as shown Appendix
Section B.3 in Figures 4a, 4b, and 4c. We observe that our architecture is able to
generate the corresponding IMs.
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(a) A comparison of images generated by the CGN shape backbone (top row) and
those generated by the corresponding SKDCGN given the same input (bottom row).

(b) A comparison of images generated by the CGN texture backbone (top row) and
those generated by the corresponding SKDCGN given the same input (bottom row).

(c) A comparison of images generated by the background backbone (top row) and
those generated by the corresponding SKDCGN given the same input (bottom row).

Fig. 2: A comparison of images generated by the CGN backbones and those
generated by the corresponding SKDCGN (given the same input) for each
independent mechanism.

4.4 Improving the SKDCGN

We realize that the student is as good as the teacher. We observe that the
outputs are noisy and ambiguous in nature when generated using weights given
by the authors of CGN [3]. Therefore, we observe several artifacts in the outputs
generated by our architecture as well. Interestingly, while investigating the
influence of Shape IM for MNIST, we observed that when the mask component
was made smoother/transparent by using 3/4th of the mask, we observed an
increase in the accuracy of CGN’s invariant classifier than what was reported
in the CGN paper. This suggests that we mask component of MNIST is noisy
in nature which leads to ambiguities in the classification decision boundaries of
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several digits.
As shown in 3 we make use of KL divergence to improve the outputs. Since KL
leads to entropy minimization between teacher and student we propose to use it.
In Appendix Section D specifically D.2 we illustrate the process of improving
it through usage of KL between the teacher and student outputs. We observe
better results for several IMs for ImageNet-1k dataset and Double-colored MNIST
dataset. In addition, we also present techniques that didn’t work as expected
such as usage of L2 loss, cross entropy for the GAN network, usage of KL and L1
loss for every activation layer of generator etc.

Fig. 3: Images generated with modified CGNs where, respectively, unit Gaussian
noise, random rotation in a 180 degree range, and 0.75 mask transparency were
introduced
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4.5 Additional results: study of the shape IM

To evaluate the effects of the IMs, we trained several modified CGN models and
used images generated by them to train classifiers. We primarily focused on the
shape IM. We added Gaussian noise, introduced transparency and randomly
rotated the shape mask, after which data was generated to train a classifier
that distinguishes real images from counterfactual ones. This analysis was done
using the Double-colored MNIST dataset. Sample shape masks generated from
this process are displayed in Figure 3, and the test accuracies in Table 1. It
is apparent that the test accuracy on the noise and rotation adjustments are
very low, which is most likely the result of overfitting on the training set, as
the train accuracies for these adjustments are quite high. The test accuracy for
transparency is considerably higher. The shape masks of this adjustment are
more akin to the masks achieved using regular CGNs. The other mask shapes are
very different, and they could potentially be used to make classifiers more robust
when mixed with regular data during training. Because this is an extensive topic,
we believe it warrants further research.

Noise Rotation Transparency

Train Accuracy 99.9 99.1 94.7
Test Accuracy 14.96 13.51 58.86

Table 1: Classifier test results for shape IM analysis. The classifier predicts which
images are generated by CGNs and which are real.

5 Discussion and conclusion

Through our experiments we show that the process of Knowledge Distillation is
not limited to the task of transferring classification or image generation knowledge
to a less parameterized (low model capacity) network, but can also be used for the
task of sampling from different manifolds that are possibly synthetic manifolds
but not true manifolds such as shape, texture and background through a simple
and effective approach. Interestingly, we only need access to the pretrained source
model to transfer the knowledge while ignoring factors like details about the
training process and background knowledge about counterfactuals and causality,
etc. With the prevalence of heavily parameterized models such as BigGAN
and DALL·E 2, it is often hard to even load the model in inference stage on
some devices. By introducing new terms such as KL divergence in the existing
knowledge distillation we are able to generate better results for some IMs for both
Imagenet-1k and Double-colored MNIST datasets. With the usage of Knowledge
distillation one can transfer the same capacity/ability to a low capacity network
and still be able to obtain similar results while running it on a standard low
configuration single GPUs.
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6 Future work

Given ample time we wish to work on the following sections: improve the image
generation process using high order activation functions since our data consists of
rich image data, improving the teacher-student architecture process by introducing
additional loss functions, usage of a neural network based composition function
instead of it being analytical in its design.
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