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ABSTRACT

This paper presents an easy and fast algorithm to measure the gap between states
and observations in a model-free partially observable Markov Decision Process
(POMDP) with a stationary environment and a few state-missing conditions. We
invented a proposition that states and observations can be decomposed into di-
mension sets, and dimension melting experiments are designed based on Cliff
Walking. According to the experimental results, the algorithm can measure the
general gap between states and observations.

1 INTRODUCTION

1.1 BACKGROUND

Markov decision processes exist everywhere in the real world, but the current research trend is to
model the natural world through simulators. In other words, people try to abstract real world Markov
decision processes into simulators and then build reinforcement learning to train agents. Simulators
cannot fully model the reality because we cannot represent every detail of the natural environment.
Consequently, all simulators that model the reality naturally become partially observable Markov
decision processes (POMDP). Naturally, this problem becomes one of the challenges in landing
reinforcement learning in the industrial sessions. Building more accurate reinforcement learning
models is impossible unless if we can evaluate the simulator states validity in POMDP. When our
reinforcement learning algorithms are running with low accuracy, it may not be a problem with the
algorithm, but the gap between the simulator model and the real-world model is too large, but we
do not know that the gap exists. The study is motivated by the fact that if the observation and the
state differs significantly, it brings the bias to the relevant calculations, such as the calculation of
Q-values. We think that when a reinforcement learning model does not work well in practice, it may
not be a problem with the model but because the state of the simulator for training reinforcement
learning differs significantly from the state of the natural environment.

Most researches focus on how to solve the POMDP problems. (Chadès et al., 2021) introduces
three methods to solve the POMDP problem: belief MDP (Åström, 1965), solution representation
(Smallwood & Sondik, 1973) (Cassandra), and interpretation and visualisation (Chadès et al., 2008)
(Chadès et al., 2011). They are both model-based POMDP solutions. Model-based means that the
algorithm needs to know all the system states before solving the POMDP problem. We are the first
to propose and define the theorem that the gap between states and observations is measurable in the
model-free POMDP (it is not necessary to know all the states beforehand).

1.2 MAIN IDEAS

All the ideas in this paper are based on the following two conjectures:

Conjecture 1 Set sD is infinite, where s is a state from the real world, sD is the dimensions of a
state.

We all know that the objects and things in the real world consist of infinite dimensions, and every
element in the world may affect a thing that will happened. Thus, the dimensions of objects and
things are uncountable.
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Figure 1: The comparison state-dimension and observation-dimension. The left picture shows state
dimensions in the real world, the blue area represents the observed by simulator; the green area
represents the valid region for POMDP; the red area represents the states are infinite in the real world.
The right picture shows the observed region by simulators. The table shows the state dimension set
and the observation dimension set.

Conjecture 2 Set oD ⊂ sD, where o is a observation from simulator, oD is the dimensions of a
observation.

According to Conj. 1, in the real world, sD are uncountable and partially observable. Thus, humans
cannot build a full real world model in a simulator or an artificial environment. ∀oD from simulators
are a subset of ∀ŝD in the real world.

The difference in dimensions determines the difference between states and observations. As seen
in Fig. 1, the natural environment has all the environmental information, but the agent can only
observe part of it. Because the role of the state is used to distinguish the environmental information
at different time, the lack of dimensions of the observed values leads to the inability to obtain the en-
vironmental state accurately. Although in many applications, the representation of the environment
state is not composed of dimensions. For example, Super Mario Brothers can return a matrix of im-
age pixels as states. However, it does not prevent us from using the environmental state dimension
as a criterion to distinguish environmental information.

The dimensions have an order of the importance. Obviously, in Fig 1, it is crucial to obtain informa-
tion about the turtle’s location because this information can help Mario avoid death due to touching
the turtle. However, the information about the cloud’s location is unimportant because the cloud will
not determine Mario’s survival rate.

2 RELATED WORKS

2.1 POMDP (*)

Definition 1 Formally, a POMDP is a 7-tuple G = ⟨S,A,P,R,Ω,O, γ⟩, where

• S: a finite set of states

• A: a set of actions

• P : S× A× S→ [0, 1] is a set of conditional transition probabilities between states

• R : S× A→ R is the reward function

• Ω: a set of observations
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• O: a set of conditional observation probabilities

• γ ∈ [0, 1): discount factor

Extended Parameters:

• T: a set of action-observation history

The process of MDP is: at a timestep, the environment is in a state s ∈ S. Then the agent takes an
action a ∈ A, and leads the environment to transition from s to s′ with probabilityP (s′ | s, a). After
that, the agent observed an observation o from s′ with probability O (o | s′, a). At the same time,
the agent gets the reward r by the reward function R (s, a). This process will repeat continuously.
During this process, all interactions ⟨ot, a, rt⟩ are recorded in T. The ultimate goal is to maximize
the expectation of the discounted rewards: E [

∑∞
t=0 γ

trt], where rt is the reward at time t and γ is
the discount factor.

2.2 VALUE DECOMPOSITION

The concept of decomposition was first used in the value decomposition, where (Sunehag et al.,
2017) decomposed the joint value into:

Qtot(τ,u) =

n∑
i=1

Qi

(
τ i, ui; θi

)
.

(Rashid et al., 2018) then introduced the QMIX for the value decomposition:

argmax
u

Qtot(τ,u) =

 argmaxu1 Q1

(
τ1, u1

)
...

argmaxun Qn (τ
n, un)

 .

In (Son et al., 2019), the two equations were defined as IGM (Individual-Global-Max), and a new
factorization equation was given based on IGM. (Rashid et al., 2020) and (Wang et al., 2020) also
brought in their own optimization for the above theory.

3 OBSERVATION DECOMPOSITION

3.1 INFORMATION THEORY(*)

In general, Shannon Entropy(Shannon, 1948) of a probability distribution P is defined as:

Entropie(P ) = −
n∑

i=1

pi × log (pi) . (1)

Where P = (p1, p2, . . . , pn) and
∑N

i=1 pi = 1 (Bromiley et al., 2004). The higher the entropy, the
more information can be transmitted; the lower the entropy, the less information is implied.

3.2 OBSERVATION DECOMPOSITION THEORY

Fig. 2 describes the process of an ⟨o, a, r⟩. When an observation generates multiple state possibil-
ities, the observation and the state are in a one-to-many relationship. The role of states is to record
changes in the environment, and a decrease in the dimension of states means that states will not
work correctly. Since the set of observation dimensions is a subset of the dimensions of the state,
the POMDP can be defined as a formula (see Def. 2).

A state or observation is made up of multiple dimensions and is regarded as a collection of dimen-
sions. Dimensions can be understood as objects or elements in a scene or environment. However,
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Figure 2: The relationship between states and observations in stationary environments. The left
picture shows ⟨o, a⟩ in POMDP; the right picture shows ⟨o, a⟩ in MDP.

there are scenes (Brockman et al., 2016) where pixels are used as states or observations, and pixels
are determined not to meet the definition of dimensions. One characteristic of the dimensions is that
their properties do not change over time. For examples, pixel location is not regarded as a dimension
as they changes over time.

Definition 2 Specifically, a POMDP is a 7-tuple G = ⟨S,A,P,R,Ω,O, γ⟩, where

• D: a state dimension set, where ŝD = {ωndn | ωn ≥ ωn+1, n→∞}, s ⊂ S

• ŝD: an estimate state dimension set, where ŝD = {ωmdm | ωm ≥ ωm+1,m ≥ n}, s ⊂ S

• oD: a observation dimension set, where ŝD = {ωndn | ωn ≥ ωn+1, n > 0}, s ⊂ S

Extended Parameters:

• d: a dimension, where d ⊂ D

• ω: a weight, where ω ∈ R

• D: a set of dimensions

According to Conj. 1, the state dimension space sD is infinite, it is impossible to realized. Thus, we
propose ŝD as the estimate of sD when D − ŝD < ϵ, where ϵ ∈ R. ω is the importance of dimension,
there is exist a zero Boundary ωz that {ωv = 0 | v > z} for a specific task.

Gap The gap between states and observations is defined as ∆ = ŝD−oD. ∆ determines how much
probabilities o = s in POMDP:

Proposition 1 Set ∆ = ŝD − oD, then ∀∆, p(s | o) ∝ 1/∆.

According to Fig. 2, the state s and observation o has one-to-many relationship, we define the
mapping as below:

Definition 3 If ŝD ∩ oD = oD, then fs2o : s→ o.

Def. 3 measures the error of partial observation, and states are disguised as an observation. This
defines the scientific illustration of the bias in POMDP with the representation dimension sets.

3.3 WEIGHTING

The weighting style determines the representation of dimension sets. We propose two weighting
types for measuring the gap, which are the real gap and the gap in the simulator between states and
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observations. The real gap is the gap defined by Def. 2. The gap in the simulator is the dimension of
the gap has different importance in different simulators. Thus we should quantify the gap in every
simulator.

Boolean Weighting This weighting style, which we call Boolean Weighting, is a general repre-
sentation:

w =

{
1 d ∈ D
0 d /∈ D

(2)

To ensure the general gap, we simply set the dimension set to be the index set (equation 2), which
means choosing which dimension exists in the dimension set. Because in a stationary environment,
the reward r in ⟨s, a, r⟩ must be the same as the one in the history T, but the reward in ⟨o, a, r⟩ may
be changed (as Fig. 2). Thus, we propose λ for Boolean Weighting. λ is the metric for measuring
the gap:

λ =

J∑
j=1

I∑
i=1

θji (3)

where θ is a reward class that always equals one here, J ∈ Z+ is the number of tuple ⟨o, a, r⟩ in the
history, and I ∈ Z+ is the number of different reward classes in a tuple ⟨o, a, r⟩.

Theorem 3 Let ω be the Boolean Weighting from equation 4, λ be a metric from equation 3. Set
∆ = ŝD − oD, then ∃α ≥ 0 such that λ = α | ∆ |.

Theorem 3 provides a guarantee that λ and ∆ are positively correlated. λ can measure the gap when
ω is the Boolean Weighting.

Continuous Weighting This weighting style, which we call Continuous Weighting, is a specific
representation:

w =

{
β d ∈ D
0 d /∈ D

(4)

Because Continuous Weighting is designed for the specific simulator, different simulators and tasks
bring in the gap variance. Thus, we use β ≥ 0 to represent the importance of the dimension differ-
ently in the specific simulator.

λ = −
J∑

j=1

I∑
i=1

pji × log2 (pji) (5)

where p is the the ratio of a reward class in the same tuple ⟨o, a, r⟩, J ∈ Z+ is the number of tuple
⟨o, a, r⟩ in the history T, and I ∈ R is the ratio of different reward classes in a tuple ⟨o, a, r⟩. Then,
we propose λ for Continuous Weighting.

Theorem 4 Let ω be the Continuous Weighting from equation 4, λ to be a metric from equation 5.
Set ∆ = ŝD − oD, then ∃α ≥ 0 such that λ = α | ∆ |.

Theorem 4 shows λ and ∆ have positive correlations, and λ can measure the gap under Continuous
Weighting.

Proposition 2 When λ > 0, it will lead to a biased Q-value.
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Algorithm 1 λ-list Generate Function
Input: T, oselect, aselect
Output: a λ-table
Process: Function λ-ListGenerate

Initialisation : Set a empty list λ-list
1: begin
2: set H is the length of T
3: for h := 1 to . . . H do
4: if oh == oselect and ah == aselect then
5: insert rh into λ-list
6: end if
7: end for

Algorithm 2 λ Calculation Algorithm
Input: T
Output: λ
Process: λ-Function

1: begin
2: set U ← empty list.
3: set H is the length of T
4: for h := 1 to . . . H do
5: if {oh, ah} not in U then
6: U append {oh, ah}
7: end if
8: end for
9: set K is the length of U

10: set λ = 0
11: for k := 1 to . . .K do
12: Set λsub = 0
13: λ-list←− λ-ListGenerate⟨ok, ak⟩
14: calculate λsub using λ-list (by equation 3 λ for Boolean Weighting, by equation 5 (λ for

Continuous Weighting)
15: λ←− λ+ λsub

16: end for

3.4 ALGORITHM

Algorithm 1 introduces the process of generating the λ-list. The input is the selected tuple
⟨oselect, aselect⟩ which be extracted from the history T, and the output is the λ-list. During the pro-
cess, the algorithm searches through all histories for records which are to the tuple ⟨oselect, aselect⟩.
When a match is fetched, the reward of the record is inserted into the λ-list.

Algorithm 2 describes the process of computing the λ. The de-duplicated tuple ⟨o, o′, a⟩ is firstly
extracted from the history, after which the de-duplicated elements are looped into Alg. 1 to calculate
λ-list. Finally, the entropy corresponding to each de-duplicated tuple is calculated by Equ. 1, and
these entropies are summed to output λ.

4 EXPERIMENT

4.1 PREPARATION

We chose Cliff Walking Environment from Gym OpenAI (Brockman et al., 2016) as our experiment.
This is the grid-world example mainly for comparing the Sarsa (Sutton et al., 1998) (on-policy) and
Q-learning (Watkins & Dayan, 1992) (off-policy) methods.

Fig. 3 shows the environment map composed of 4 × 12 grids (Sutton & Barto, 1999), where the
entire fourth row of columns are cliffs, [3, 0] is the starting point, and [3, 11] is the goal point. Action
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Figure 3: The cliff walking environment and three examples of experimental designs for the dimen-
sion melting. A panel shows the base environment of cliff walking and the optimal choice of route
for Q Learning and Sarsa; B panel shows global random melting; C panel figure shows row traversal
melting with two-part.

space S consists of four discrete actions, which are up, down, left and right. If the agent steps onto
the cliff, it will incur a −100 reward; immediately terminate the episode and send the agent back
to the starting point. Each step will incur a −1 reward. The goal of cliff-walking is to obtain the
smallest cumulative reward during the episode.

Because Cliff Walking is an artificial environment, we regard that the states of the environment
are fully observable and finite. Hence, the total number of states is 3 × 12 + 1 (excluding them
from the state because [3, 1 . . . 10] are cliffs), and we decompose the state and full observation into
ŝD = {ω1d1, ω2d2, . . . , ω37d37} and oD = {ω1d1, ω2d2, . . . , ω37d37}.
Stationary Environment

Both Q-Learning and Sarsa are ε−greedy algorithms, and both follow the Bellman equation. But
the action used by Sarsa to update the Q value and the action chosen in the next step must be the
same:

Q∗ ( st, at) = Q (st, at) + α [rt + γQ(st+1, at+1)−Q(st, at)] (6)

On the other hand, Q-Learning selects the next action using the ε−greedy algorithm and updates the
Q value using the action with the maximum Q value:

Q∗ ( st, at) = Q (st, at) + α
[
rt + γmax

a′
(Q (st+1, a

′))−Q(st, at)
]

(7)

4.2 DIMENSION MELTING

In order to better explore the difference between states and observations, we design a new exper-
imental approach called Dimension Melting. The meaning of Dimension Melting is to simulate
the result of λ when systematically eliminating the dimension of states. The gap between state and
observation is measured by continuously melting dimensions.

For the cliff-walking task, we design two melting schemes for observations. In Fig. 3, the B panel
is to pick 16 grids in the entire grid map and randomly melt their corresponding dimensions. The C
panel is the dimensions of each row are melted gradually and independently.

The experiment is set up with 2000 episodes for every observation melting, and the maximum num-
ber of steps per episode is 50. At each observation melting, we record (s, a, r) and later use Alg.
2 to calculate the λ and the sum of rewards. Each melting experiment is run for ten times, and the
results of the ten runs are averaged.

We design a state replacement mechanism according to Fig. 2. One state has and only corresponds
to one observation, so we simulate this feature with the observation substitution mechanism. When
a dimension corresponds to a state that is melted, this state is replaced by the upper, lower, left, or
right states. If neither the upper nor the lower left state is available, one of the available states will
be randomly selected for replacement.
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Figure 4: The result of B panel of Fig. 3. BL is the λ for Boolean Weighting, CL is the λ for
Continuous Weighting.

5 RESULT

Fig. 4, the overall trend of λ based on Q Learning and Sarsa goes up as the dimension melts more.
all the λ for Boolean Weighting are almost overlap, that proof Boolean Weighting is for the real state
instead of the specific state.
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Figure 5: The result of C panel of Fig. 3. BL is the λ for Boolean Weighting, CL is the λ for
Continuous Weighting.

The first graph of Fig. 5 comes from A panel of Fig. 3. All λ is equal to zero because the entire row
1 will be replaced by row 2, so both of their rewards are -1. Theorem 3 and 4 do not apply to the
situation that the distribution of rewards is too concentrated because I in equation 3 and equation 5
represents different reward classes should have different value. Sarsa does not detect this change
because it chooses a shorter path than the original.

In the second and third graphs of Fig. 5, all λ steadily increases with the dimension melting. The
reason is that rows 1 and 2 are the critical paths for Sarsa, so λ for Sarsa goes up. For Q Learning,
no doubt, row 2 is the optimal route. However, λ of Q Learning increases because according to state
replacement principle in Sec. 4.2, when states in row 1 are deleted, they will be replaced with their
lower states which are located in row 1.
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Overall, λ performs consistently and can determine the gap between states and observations as the
dimension melts. However, the weakness exists in the high algorithm dependence (all ⟨o, a, r⟩ need
to be explored by algorithms) and the random state replacement principle, they may lead to the
malfunction of λ.

CONCLUSION

The first time we propose for the first time that states and observations can be decomposed into sets
of dimensions and use λ to measure the gap between them. Experiments prove that λ can be effective
in general. The future work is to solve the high algorithm depend, non-stationary environment, and
the distribution of rewards is too concentrated problems.

REPRODUCIBILITY STATEMENT

Although the theorem and algorithms presented in this paper are originally designed for gap assess-
ment between natural and artificial environments, they can also experiment in any scenario with
Markov properties. However, the volume of data required varies depending on the environment.
Only ⟨o, a, r⟩ needs to be stored to calculate both Boolean Weighting and Continuous Weighting
styles of λ.
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A APPENDIX

A.1 PROOF OF PROP. 1

Set ∆ = ŝD − oD. Define f is the function which mapping: f : ŝD → s and f : oD → o. Then we
have:

p(ŝD | oD) = p(ŝD | ŝD −∆) ∝ 1/∆

⇒ p(f(ŝD) | f(oD)) = p(f(ŝD) | f(ŝD −∆)) ∝ 1/∆

⇒ p(s | o) ∝ 1/∆

(8)

A.2 PROOF OF THEOREM 3 AND THEOREM 4

Assume o1, o2 ∈ Ω, s1, s2 ∈ S. Define

ŝbD :=
{
ωb
n | n ∈ R, b ∈ R

}
, where n→∞ (according to Def. 2) is the number of dimensions, b is the index of states. Moreover,
ŝ1D = ŝ2D.

obD :=
{
ωb
m | m ∈ {m1,m2, ...,mb} , b ∈ R

}
where m is the observation dimension set consist with finite numbers (according to Def. 2), b is the
index of observations. Set obD ⊂ ŝbD.

Thus, we have the expression of dimension sets for s1, s2, o1, o2:

ŝ1D :=
{
ω1
1d

1
1, ω

1
2d

1
2, ω

1
3d

1
3, · · · , ω1

nd
1
n

}
ŝ2D :=

{
ω2
1d

2
1, ω

2
2d

2
2, ω

2
3d

2
3, · · · , ω2

nd
2
n

}
o1D :=

{
ω1
1d

1
1, ω

1
2d

1
2, ω

1
3d

1
3, · · · , ω1

xd
1
x

}
o2D :=

{
ω2
1d

2
1, ω

2
2d

2
2, ω

2
3d

2
3, · · · , ω2

yd
2
y

}
10
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Define the gap between the observation and the state is ∆, formulas are:

∆1 := ŝ1D − o1D =
{
ω1
m+1d

1
m+1, ω

1
m+2d

1
m+2, · · · , ω1

nd
1
n

}
where m ∈ R and m ̸= 0.

∆2 := ŝ2D − o2D =
{
ω2
k+1d

2
k+1, ω

2
k+2d

2
k+2, · · · , ω2

nd
2
n

}
where k ∈ R and K ̸= 0.

After z iterations, we extract ⟨s1, a, r⟩, ⟨s2, a, r⟩, ⟨o1, a, r⟩ and ⟨o2, a, r⟩ from T. Then we get:

 s1
...
su

× a =

 r1
...
ru

 = B1
s

 s1
...
su

× a =

 r1
...
ru

 = B2
s

 o1
...
ov

× a =

 r1
...
rv

 = B1
o

 o1
...
ow

× a =

 r1
...
rw

 = B2
o

According to Def. 3,

Thus, in equation 3 and equation 5, J = z. After that, we collect the unique reward separately into
sets

W1
s := {a, b | a ̸= b,∀a ∈ B1

s,∀b ∈ B1
s}

W2
s := {a, b | a ̸= b,∀a ∈ B2

s,∀b ∈ B2
s}

W1
o := {a, b | a ̸= b,∀a ∈ B1

o,∀b ∈ B1
o}

W2
o := {a, b | a ̸= b,∀a ∈ B1

o,∀b ∈ B2
o}

Because the reward r is unchanged for (s,a,r) in stationary POMDP after z iterations. Thus, |W1
s |=|

W2
s |.

For the proof of the Boolean Weighting, we set ω = 0 or ω = 1, and according to equation 3, we
get:

Whereas if | ∆1 |>| ∆2 |, then according to Prop. 1

p(s1 | o1) < p(s2 | o2)

This means if the ∆

According to equation 3, we know ∆ has no affect to mapping from ŝD to oD:

ŝD ∩ oD ⇒ (oD ∪∆) ∩ oD = oD

⇒ (oD ∩ oD) ∪ (∆ ∩ oD)

⇒ oD ∪∅ = oD

(9)
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Thus, C1
µ|∆| , where µ is the classes of ω, is the maximum combination of ∆, and this is the error

range. Because C1
µ|∆| = C1

µ|ŝD−oD| represent potential s when o is fixed, and this is equal to classes
of rewards because s is mapping a r in ⟨s, a, r⟩.
For Boolean Weighting:

Set j = z, i ∈W, µ = 0 or µ = 1, c1∆(1) = C1
µ|∆1|, c

2
∆(1) = C1

µ|∆2|, x > 0 and x ∈ R.

Whereas if | ∆1 |=| ∆2 |, then Σz
i=1Σ

c1∆
i=1θji = Σz

i=1Σ
c2∆
i=1θji, so λ1

o = λ2
o.

Whereas if | ∆1 |>| ∆2 |, then Σz
i=1Σ

c1∆
i=1θji > Σz

i=1Σ
c2∆
i=1θji, so λ1

o > λ2
o.

Whereas if | ∆1 |<| ∆2 |, then Σz
i=1Σ

c1∆
i=1θji < Σz

i=1Σ
c2∆
i=1θji, so λ1

o < λ2
o.

For Continuous Weighting:

Set j = z, i ∈W, µ = α ∈ R, c1∆(1) = C1
µ|∆1|, c

2
∆(1) = C1

µ|∆2|, x > 0 and x ∈ R.

Whereas if | W1
o |=| W2

o |, then λ1
o = λ2

o ⇒ Σ
c1∆
i=1pji × log2(pji) = Σ

c2∆
i=1pji × log2(pji), so

∆1 = ∆2.

Whereas if | W1
o |>| W2

o |, then λ1
o > λ2

o ⇒ Σ
c1∆
i=1pji × log2(pji) > Σ

c2∆
i=1pji × log2(pji), so

∆1 > ∆2.

Whereas if | W1
o |<| W2

o |, then λ1
o < λ2

o ⇒ Σ
c1∆
i=1pji × log2(pji) < Σ

c2∆
i=1pji × log2(pji), so

∆1 < ∆2.

A.3 PROOF OF PROP. 2

Bellman Equation is:

V (s) = R(s) + γ
∑
s′∈S

p (s′ | s)V (s′) (10)

The analytic solution of the Bellman Equation is:

V = (I − γP )−1R (11)

Because according to Prop. 3 and 4, the larger λ, the larger ∆. Let ∆ > 0. Since here both
states and observations are sets, s = s′ = {ω1d1, ω2d2, ω3d3, · · · , ωndn, · · · } and o = o′ =
{ω1d1, ω2d2, ω3d3, · · · , ωndn}. Since s = o ∪ ∆ and o ∩ ∆ = ∅. Therefore, the size of V has
changed from infinite to finite. Because the association between the state value function and the Q
function is:

Qπ(s, a) = R(s, a) + γ
∑
s′∈S

p (s′ | s, a)Vπ (s
′) (12)

Both parts R(s, a) and γ
∑

s′∈S p (s′ | s, a)Vπ (s
′) change from infinite to finite, so Qπ(s, a) also

changes from infinite to finite. Therefore, lambda causes a compression of the Q-value space, which
leads to a possible Q-value collection impact.

The reason is that the observation cannot serve to distinguish between environments, resulting in
reward updates for different environmental states in the same state and directly leading to a biased
Q-value.
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