
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

UNIFIED NEURAL NETWORK SCALING LAWS AND
SCALE-TIME EQUIVALENCE

Anonymous authors
Paper under double-blind review

ABSTRACT

As neural networks continue to grow in size but datasets might not, it is vital to
understand how much performance improvement can be expected: is it more im-
portant to scale network size or data volume? Thus, neural network scaling laws,
which characterize how test error varies with network size and data volume, have
become increasingly important. However, existing scaling laws are often appli-
cable only in limited regimes and often do not incorporate or predict well-known
phenomena such as double descent. Here, we present a novel theoretical charac-
terization of how three factors — model size, training time, and data volume —
interact to determine the performance of deep neural networks. We first establish
a theoretical and empirical equivalence between scaling the size of a neural net-
work and increasing its training time proportionally. Scale-time equivalence chal-
lenges the current practice, wherein large models are trained for small durations,
and suggests that smaller models trained over extended periods could match their
efficacy. It also leads to a novel method for predicting the performance of large-
scale networks from small-scale networks trained for extended epochs, and vice
versa. We next combine scale-time equivalence with a linear model analysis of
double descent to obtain a unified theoretical scaling law, which we confirm with
experiments across vision benchmarks and network architectures. These laws ex-
plain several previously unexplained phenomena: reduced data requirements for
generalization in larger models, heightened sensitivity to label noise in overparam-
eterized models, and instances where increasing model scale does not necessarily
enhance performance. Our findings hold significant implications for the practical
deployment of neural networks, offering a more accessible and efficient path to
training and fine-tuning large models.

1 INTRODUCTION

Progress in artificial intelligence (AI) has relied heavily on the dramatic growth in the size of models
and datasets. An active area of research focuses on understanding how test error decreases with
increases in model and data size. This work has led to the development of scaling laws which posit
that test error decreases as a power law with both. However, several theoretical aspects remain
unclear. One significant gap is understanding how test error and the existing scaling laws change as
the training time is varied (Kaplan et al., 2020; Bahri et al., 2021; Rosenfeld et al., 2020; Sharma &
Kaplan, 2022).

The practical relevance of this question is clear: under a fixed compute budget, what is the optimal
balance between scaling the model size and dataset volume, and what is the right amount of train-
ing for a given data volume? This is particularly relevant in the context of large language models
(LLMs), which are often trained for a single epoch, raising questions about the potential efficacy of
training smaller models for longer (more epochs).

Furthermore, current scaling laws do not account for other well-known phenomena in learning,
such as double descent (Belkin et al., 2019), in which model performance exhibits non-monotonic
changes with respect to training data volume, model size, and training time. In particular, double
descent theory predicts that test error should increase rapidly at the interpolation threshold, the point
at which the model interpolates the training set (Nakkiran et al., 2021; Advani & Saxe, 2017). Like
scaling laws, current theories of double descent leave several empirical phenomena unexplained:

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

past explanations of double descent require it to occur, but empirically double descent is often not
observed; it is unclear whether the interpolation threshold should grow or shrink with model size;
prior theory does not explain why models in the infinite-parameter limit sometimes perform worse
than their finite-parameter counterparts.

We seek the simplest possible unified framework in which to understand learning with respect to
model size, data volume, and training time. In doing so, we aim to capture the essential scaling
properties of learning in deep neural networks. Our results unify double descent with scaling laws
and help to understand when models are sufficiently large for effective performance, how double
descent is affected by varying training time and model size, and the variability and shape of loss
curves across different problems.

The contributions of this paper are multi-fold:

• We theoretically and empirically demonstrate that scaling the size of a neural network is
functionally equivalent to increasing its training time by a proportional factor.

• Leveraging this insight, we 1) predict the performance of large-scale networks using small-
scale networks trained for many epochs and 2) predict the performance of networks trained
for many epochs using the performance of large networks trained for one epoch.

• Using scale-time equivalence, we propose a unified scaling law for deep neural networks
that provides a new explanation for parameter-wise double descent: double descent occurs
when small models, which effectively train slower than larger models, acquire noisy data
features.

• Through experiments conducted on standard vision benchmarks across multiple network
architectures, we validate that our model explains several previously unexplained phenom-
ena, including 1) the reduced data requirement for generalization in larger models, 2) the
large impact of label noise on overparameterized models, 3) why error of overparameter-
ized models often increases with scale.

2 RELATED WORK

2.1 SCALING LAWS

Neural network scaling laws describe how generalization error scales with data and model size. A
number of works have observed power-law scaling with respect to data and model size (Kaplan et al.,
2020; Rosenfeld et al., 2020; Clark et al., 2022), which has been explained theoretically (Bahri et al.,
2021; Sharma & Kaplan, 2022; Hutter, 2021; Paquette et al., 2024).

However, other work demonstrates that model scale may not be sufficient to predict model perfor-
mance (Tay et al., 2022), and casts doubt on power laws as the best model of error rate scaling (Alab-
dulmohsin et al., 2022; Bansal et al., 2022; Mahmood et al., 2022). Moreover, scaling with respect to
training time, holding data volume fixed, remains poorly understood. These observations highlight
the need for a more general framework that can predict model performance under many settings.

2.2 DOUBLE DESCENT

Double descent is an empirically observed phenomenon in which generalization error of machine
learning models with respect to training data volume, model size, and training time exhibits an
initial decrease, followed by a brief, sharp increase followed by a final decrease (Belkin et al., 2019;
Nakkiran et al., 2021). Double descent with respect to model and data size has been theoretically
understood as occurring due to a high degree of overfitting at the interpolation threshold, the point
at which the model size is just sufficient to interpolate the training data (Adlam & Pennington, 2020;
D’Ascoli et al., 2020; Belkin et al., 2019; Advani & Saxe, 2017). Typically, this work uses tools
from random matrix theory to explain double descent for random feature models, in which linear
regression maps a random, fixed feature pool to the desired output (Simon et al., 2024; Atanasov
et al., 2024; Adlam et al., 2022; Bordelon et al., 2024; Maloney et al., 2022; Mei & Montanari, 2019;
Ali et al., 2019; Lin et al., 2024).

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

However, these models generally do not explain double descent behavior in terms of training time.
Originally, Nakkiran et al. (2019; 2021) hypothesized that training models for longer results in an
effective increase in model size, thus allowing time-wise double descent to be explained in the same
way as scale-wise double descent. Recent works have provided an alternate explanation: time-wise
double descent occurs due to data features being learned at varying scales (Pezeshki et al., 2022;
Heckel & Yilmaz, 2021; Stephenson & Lee, 2021). Error rises as models overfit to quickly-learned
noisy features, but then falls as models more slowly learn signal features. In this work, we unify this
explanation of time-wise double descent with the traditional account of double descent.

3 SCALE-TIME EQUIVALENCE IN NEURAL NETWORKS

In this section, we demonstrate that model size and training time may be traded off with each other.
This result is consistent with and generalizes prior results demonstrating that models learn functions
of increasing complexity over time (Nakkiran et al., 2019). We establish the result theoretically
in a simplified model and validate it empirically in neural networks across several datasets and
architectures.

3.1 RANDOM SUBSPACE MODEL

Following the lines of prior double descent analyses in random feature models, we construct a ran-
dom subspace model to demonstrate scale-time equivalence theoretically. Consider a large P dimen-
sional model with parameters β, such that the function represented by the model depends only on
a low-dimensional linear projection of β. This is reasonable for neural networks: it is well known
that neural networks trained by stochastic gradient descent tend towards flat minima of their loss
landscapes, thus revealing many redundant dimensions in the network (i.e. only a low-dimensional
subspace affects the network output). Specifically, we denote the low-dimensional projection as
α ∈ Rr where r < P which is constructed as:

α = Kβ (1)

where K ∈ Rr×P is a fixed projection matrix.

Assume that we can only control a random p-dimensional (P > p > r) linear subspace of the
large model. This may again be a reasonable assumption for model classes such as neural networks:
smaller neural networks can naturally be viewed as linear subspaces of larger neural networks that
contain them architecturally (i.e. have a larger width and depth) (Hall & Li, 1993). We denote the
parameters of our controllable p dimensional subspace model as θ ∈ Rp, where:

β = Rθ + β0 (2)

for a random matrix R ∈ RP×p with elements drawn iid from a unit Gaussian and with β0 ∈ RP

fixed. We will represent time t with subscript t (i.e. β0 denotes β at time 0). Observe that any p
dimensional affine subspace of RP may be represented in the form above for some choice of R and
β0.

Under these assumptions, we can show that under gradient descent, increasing the scale p of the
model is equivalent to increasing training time:
Theorem 1. We denote the loss as a function of α: L ∈ Rr → R. Suppose L has Lipschitz constant
l and its second derivative has Lipschitz constant h. Suppose that continuous time gradient flow is
applied to θ with learning rate η from initialization θ = 0. We denote αt = K(Rθt + β0) where θt
are the parameters at time t. Denote At ∈ Rr as the solution to:

Ȧt = −ηKKT∇L(At) (3)

with initial condition A0 = Kβ0. Note that At does not depend on p. Then, with probability 1− ϵ:

||αt −Apt|| ≤
l
√
||K||4F + ||KKT ||2F
h
√
pϵ||KKT ||

(eηpth||KKT || − 1) (4)

See Appendix A for a proof. The theorem implies closeness between the function implemented by
the network, represented by αt, and another quantity Apt which only depends on the product pt. In

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Figure 1: Proportional trade-off between model scale and training time: testing the prediction
on a linear model. Red lines indicate tradeoff curves between number of training iterations and
model size. Curves are computed by, for each model size, measuring the minimum amount of train-
ing time necessary to achieve different loss levels. Different curves indicate different performance
thresholds; darker lines indicate a smaller error threshold. Margins indicate standard errors over 5
trials. Grey dashed lines represent 1:1 proportionality between scale and training iterations.

other words, the learned model only depends on the product of the number of parameters p and time
t (up to some error). Thus, we may interpret the product pt as representing the distance of a model
along the training trajectory; larger pt implies more training progress. Increasing the number of
parameters by a scale factor is equivalent to increasing the training time by the same scale factor and
vice versa: scale is equivalent to time. Intuitively, this is because each parameter allows the function
to learn at a fixed rate; thus, adding more parameters linearly increases the effective learning rate.

The result also reveals when such a scale-time equivalence cannot be made. The error bound implies
that when training progress pt is fixed, as p grows, scale and time become increasingly equivalent
(the bound approaches zero). The equivalence breaks down for small p since here, the randomly cho-
sen subspace of the model may or may not align well with K; as p grows, the amount of alignment
becomes less stochastic. Moreover, as training progress pt grows, the bound grows exponentially
because small perturbations to the model early in the training trajectory lead to exponentially larger
changes later in the trajectory. Finally, we highlight that our result holds under standard neural net-
work parameterizations in which the gradient of the model output with respect to each parameter
does not scale with p; in other parameterizations such as Neural Tangent Kernel (Jacot et al., 2018),
we may expect a different form of scale-time equivalence.

We first validate our prediction in a simple linear model in which a varying fraction of the model
parameters are controllable. See Appendix C for details. In Figure 1, we find lines of 1:1 proportion-
ality between model scale and the number of iterations required to reach a fixed loss level, validating
our theory.

3.2 EMPIRICAL VALIDATION IN NEURAL NETWORKS

We next turn to examine whether scale-time equivalence is present empirically in neural net-
works. We conduct experiments on MNIST (Deng, 2012), CIFAR-10 (Krizhevsky, 2009), and
SVHN (Goodfellow et al., 2013) training a 7-layer convolutional neural network (CNN) and a 6-
layer multilayer perception (MLP) with stochastic gradient descent (SGD). To assess scale-time
equivalence, we measure the minimum amount of training time required to achieve non-zero gener-
alization under various network widths and by varying the dataset size by subsampling. Scale-time
equivalence predicts that wider networks will require less time to generalize in a systematically
predictable way. See Appendix C for further experimental details.

As observed in Figure 2, in all settings, we see a clear tradeoff curve between scale and training
time: increasing scale by a fixed factor is nearly equivalent to reducing training time by another
fixed factor. Importantly, the scale here is set as the effective number of network parameters, defined
as the maximum number of training points that can be fit by the network, not the absolute number

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

(a) MNIST, CNN (b) CIFAR-10, CNN (c) SVHN, CNN

(d) MNIST, MLP (e) CIFAR-10, MLP (f) SVHN, MLP

Figure 2: Proportional trade-off between model scale and training time: testing the prediction
on neural networks. Red lines indicate tradeoff curves between number of training epochs and
network scale for different datasets and architectures trained with SGD. Different curves indicate
different amounts of training data; darker lines indicate more data. Curves are computed by, for
each network scale, measuring the minimum amount of training time necessary to achieve non-
zero generalization. Margins indicate standard errors over 5 trials. Grey curves are lines of 1:1
proportionality between scale and training epochs.

of parameters. We set the effective parameter count as the cube root of the number of parameters.
Appendix B provides a heuristic argument for this scaling rate.

Under this choice of scale, we find a systematic and predictable relationship between scale and train-
ing time, demonstrating that scale-time equivalence can be empirically observed. We also note that
this phenomenon has been observed in prior literature (although not quantitatively characterized);
for instance, Nakkiran et al. (2019) find that patterns of double descent are similar with respect to
training epochs and network size. We emphasize that these results are limited to gradient descent
(the setting of our theory). With Adam optimization (Kingma & Ba, 2015), the number of epochs
for generalization first decreases with scale, then increases (see Appendix D Figure 7). We hypoth-
esize that since Adam has an adaptive learning rate, it is using a smaller effective learning rate for
very large networks. As learning rate shrinks, more epochs are needed to generalize, leading to the
observed results.

4 PREDICTING OPTIMAL NETWORK SCALE AND TRAINING TIME

Scale-time equivalence suggests it should be possible to predict the performance of large models by
training small models for many epochs and vice versa. This allows us to predict the optimal network
scale and training time for a given dataset and base architecture.

On benchmark datasets and architectures, we conduct two experiments: 1) predict performance
under varying model scales from a small network trained for long training times, 2) predict perfor-
mance over long training times by using larger networks trained for just 1 epoch. See Appendix C
for experimental details and Figures 10 and 11 for full results.

Figure 3 illustrates that scale-time equivalence can indeed be used to extrapolate performance on
large scales and training times. Predictions of test and train performance under large model scales
are particularly close to the true performance; notably, we can closely predict the scale at which
generalization starts to occur. However, there is a small discrepancy between predicted and actual

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Figure 3: By scale-time equivalence, small models trained for long times predict performance
of large models trained for small times and vice versa: test of prediction. Predicted and true test
and train error of a CNN (top row) and MLP (bottom row) trained on MNIST. Column 1: predicting
the performance of larger models over a few epochs by training smaller models for up to 100 epochs.
Column 2: predicting performance of smaller models over many epochs by training larger models
for 1 epoch. We use scale-time equivalence to predict the equivalent scale or number of epochs for
each prediction. Margins indicate standard errors over 5 trials.

performance; we believe this can be corrected with dataset and model-specific tuning of the scale-
time trade-off curve. Nevertheless, our findings reveal that scale-time equivalence can be used to
predict optimal network scale and training time.

5 A UNIFIED VIEW OF DOUBLE DESCENT W.R.T. TRAINING TIME, MODEL
SCALE AND TRAINING SET SIZE

We next leverage scale-time equivalence to obtain a more-unified understanding of the phenomenon
of double descent, with respect to training time, parameter count and training set size.

5.1 ERROR SCALING OVER TIME IN A LINEAR MODEL

Following the approach of Pezeshki et al. (2022); Heckel & Yilmaz (2021); Stephenson & Lee
(2021); Schaeffer et al. (2023), we first present a simple linear model that explains double descent
with respect to time.

Consider a linear student-teacher setting in which training set outputs Y ∈ Rn are constructed as:
Y = Xw + ε (5)

where training data X ∈ Rn×m, noise ε ∈ Rn, w ∈ Rm is the unknown true model, n is the number
of training points and m is the model dimensionality. We assume w is drawn independently from
ε. Then, the parameters θt of a linear model learned after t time of gradient flow on mean squared
error (with learning rate η) can be expressed as:

θt = X†(I − e−ηXXT t)Y (6)
The resulting prediction error xT θt − xTw on a test point x can be expressed as:

xT [X†(I − e−ηXXT t)X − I]w + xTX†(I − e−ηXXT t)ε (7)

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

(a) Loss trajectories (b) Parameter space

Figure 4: Predicted variations in double-descent behavior, depending on training noise profile.
Schematic loss trajectories (a) and corresponding parameter space trajectories (b) of linear regres-
sion under various noise settings (different color curves). Depending on the noise profile, parameters
may experience a temporary increase in error resembling an interpolation threshold.

We then use the singular value decomposition UΣV T of X to express the prediction error:

xTV [Σ†(I − e−ηΣΣT t)Σ− I]V Tw + xTV Σ†(I − e−ηΣΣT t)V T ε

=

m∑
i=1

−(xTV)i(V
Tw)ie

−ησ2
i t + (xTV)i(V

T ε)i
1− e−ησ2

i t

σi
(8)

where σi are the singular values of X , and we denote σi = 0 for i > n when n < m (in this

case, 1−e−ησ2
i t

σi
denotes 0). Using the independence of w and ε, we finally may simply express the

expected squared prediction error as:

E[(xTw − xT θt)
2] = E[(

m∑
i=1

Sie
−ησ2

i t)2] + E[(
m∑
i=1

Ni
1− e−ησ2

i t

σi
)2] (9)

where Si = −(xTV)i(V
Tw)i, Ni = (xTV)i(V

T ε)i. The first, signal term captures how well
w can be learned in the absence of noise. In the underparameterized regime (n > m), this term
approaches 0 as t → ∞: without noise, the model can be learned perfectly. Observe that in general,
the prediction error is not predicted to decay directly as a power law with t: instead, it decays or
grows following a combination of exponential curves (though a combination of exponential decays
at different rates can mimic a power law (Reed & Hughes, 2002)).

The second, noise term initially starts at 0 and grows over time. Notably, the size of the noise term
is largest near the interpolation threshold (when m ≈ n) since the smallest singular values σi will
take small, non-zero values. As n or m grows larger than the other (distance from the interpolation
threshold increases), the size of the noise term decreases. However, the noise term’s magnitude
monotonically increases with t.

For any given singular component of X , if the noise components are large relative to signal compo-
nents (i.e. |Ni| > |Si|), we expect that error will increase at the corresponding timescale, around
t = 1

ησ2
i

and vice versa. Thus, if the small singular value components are noisy, error will increase
later during training, while if large singular value components are noisy, error will increase early
during training. Double-descent occurs when noisy components are acquired first (increase in error)
followed by signal components (decrease in error). Figure 4(a) illustrates how different acquisition
rates of noise vs. signal components may yield different loss trajectories, with some corresponding
to double descent. We may also view these trends geometrically in the parameter space; Figure 4(b)
shows that if signal and noise correspond to orthogonal parameter dimensions, then double descent
(orange curve) corresponds to a setting in which noise dimensions are learned rapidly before signal
dimensions. The optimal training time depends on which point in the parameter trajectory is closest
to the true optimum and may occur either at the end of training or at an intermediate point.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Figure 5: Larger models require less data to interpolate: test of prediction. Test and train mean
squared error of CNN models trained on MNIST under varying levels of data. Different curves
indicate different model scales; darker colors indicate larger models. Margins indicate standard
errors over 5 trials.

5.2 EARLY NOISE ACQUISITION CAN EXPLAIN PARAMETER-WISE DOUBLE DESCENT

Next, we hypothesize that due to scale-time equivalence, parameter-wise double descent occurs due
to the same mechanism as time-wise double descent. Namely, in settings where noise is acquired
before signal, smaller scale models (which require effectively larger training time by scale-time
equivalence) fail to acquire signal.

More precisely, by combining Equation 9 and scale-time equivalence, we propose the following
scaling law in terms of the number of parameters p and time t by substituting t with pt:

error2 = E[(
∞∑
i=1

Sie
−ησ2

i pt)2] + E[(
∞∑
i=1

Ni
1− e−ησ2

i pt

σi
)2] (10)

where σi depends on the number of training points n and Si and Ni are random variables determin-
ing the strength of signal and noise respectively. This scaling law simultaneously explains double
descent in terms of both p and t. Moreover, it can explain double descent in terms of data volume n
as well: if n is set such that there are several small non-zero values of σi, the noise term becomes
amplified. This explanation for double descent in n follows prior literature (Advani & Saxe, 2017).

The explanation for parameter-wise double descent differs from conventional wisdom in which dou-
ble descent occurs due to the same reason as double descent in n: namely, when the number of
model parameters is close to n, the model is highly sensitive to noisy directions in the training data
(corresponding to small σi in a linear model), thus severely overfitting. How can we distinguish this
hypothesis from ours? We propose three tests to separate the two hypotheses.

5.3 LESS DATA REQUIRED FOR GENERALIZATION WITH MODEL SCALE

The interpolation threshold can be defined as the point when the number of data points equals the
effective complexity of a model (Nakkiran et al., 2019). Thus, for any model, the location of the
interpolation threshold with respect to data volume is the model’s effective capacity: higher capacity
models have a rightward-shifted interpolation threshold with respect to data volume. Conventional
double descent theory argues that this point corresponds to a sharp decrease in the test set error as
the amount of data grows. Starting from zero data, we would therefore expect that larger models
(which have a larger effective capacity), would experience a sharp decrease in test set error at higher
data volumes: larger models require more data to generalize. By contrast, under our explanation, as
model size grows, the amount of data needed to generalize decreases: since model size corresponds
to training time, generalization occurs more easily with larger models (equivalently, more training
time).

To test this, we conduct experiments on benchmark datasets and architectures. Figure 5 reveals
that larger models indeed require less data to generalize, thus supporting our hypothesis. (See Ap-
pendix C for experimental details and Figure 8 for full results.) Indeed, the training set errors
decrease with data volume which is at odds with conventional double descent theory in which more

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

(a) MNIST, MLP (b) MNIST, MLP (c) MNIST, MLP

(d) CIFAR-10, CNN (e) CIFAR-10, CNN (f) CIFAR-10, CNN

(g) SVHN, MLP (h) SVHN, MLP (i) SVHN, MLP

Figure 6: Noise induces a persistent or growing error with training time and model scale, but
not with dataset size. Test mean squared error vs. number of epochs, model scale and training
data under noisy and noise-free labels. Each row indicates a different combination of dataset and
architecture. Margins indicate standard errors over 5 trials.

data is always harder to interpolate. Fundamentally, this is because conventional double descent
theory typically assumes complete training convergence, which does not explain phenomena under
the practically relevant setting of a fixed training budget. In summary, the increased ease of general-
ization with model scale does not neatly fit into standard theories of double descent, but readily fits
in our explanation.

5.4 PERSISTENT VS LOCAL EFFECTS OF NOISE ON ERROR CURVES

Another key distinction is how the two explanations behave under varying levels of noise. Under
the conventional explanation, as the noise (|Ni|) increases, the error increases mostly locally around
p ≈ n, near the interpolation threshold. This is because in Equation 9, the noise coefficients Ni

multiply terms that are largest near the interpolation threshold and decrease as either data volume or
model scale grow larger than the other (Schaeffer et al., 2023). In contrast, under our hypothesis, as
the noise increases, the error monotonically grows with both model scale and time (see Equation 10).
In other words, when the noise level changes, our hypothesis predicts a global performance change
with respect to model scale while the conventional explanation predicts a primarily local change.

We conduct experiments on benchmark datasets and architectures to validate this. We add label
noise to the training set and evaluate performance as a function of epochs, model scale and data size.
Appendix C includes experimental details. Noise leads to an increase in error in all cases, Figure 6
(See Appendix D for additional plots), with a persistent or growing error with training time (epochs)

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

and model scale. However, it leads to only localized increases in error in terms of the dataset size:
in the case of MNIST and SVHN, for instance, there is nearly no change in error at the highest data
volume.

5.5 SHAPE OF LOSS CURVE: UPTURN WITH MODEL SIZE

A final key distinction between the two explanations is their prediction of the shape of the loss curve.
Under the conventional explanation of double descent, past the interpolation threshold, increasing
model size always improves performance. However, under our hypothesis, increasing model size
may in certain cases worsen performance, if signal features are learned before noisy features. In
Figure 6, we find that CIFAR-10 and SVHN indeed exhibit a U-shaped error curve with respect to
model scale such that larger models do worse. This departure from a conventional double descent
curve is consistent with our model.

6 DISCUSSION

In this work, we demonstrate that model scale and training time can be traded off with each other.
This enables us to re-frame parameter-wise double descent as occurring due to the same mechanism
as epoch-wise double descent, which occurs due to the early acquisition of noise features during
training. This framing of parameter-wise double descent has a number of surprising implications
unexplained by standard explanations of double descent: 1) generalization requires less data with a
larger model, 2) label noise significantly increases test error even for highly overparameterized mod-
els, 3) increasing model scale for overparameterized models need not always improve performance.

How can we reconcile our findings with conventional theory and experimental findings on double de-
scent and scaling laws? Note that in past work, the presence of double descent with respect to model
scale is often dependent on the choice of dataset, model, and whether label noise is added (Nakki-
ran et al., 2021). While past explanations of parameter-wise double descent necessitate that it must
occur, our explanation is more flexible: double descent need not occur if noisy features are acquired
later in training than signal features. Indeed, our theory explains why local increases in test error in
terms of model scale are often relatively modest in contrast to the sharp spike predicted by conven-
tional theory (Belkin et al., 2019). Thus, our explanation is more consistent with the variability of
double descent observed in the literature.

Regarding scaling laws, our predicted scaling law in Equation 10 is more flexible than the power law
scalings predicted in prior literature; indeed, with the proper settings of signal and noise parameters
Si and Ni, we may recover power-law scalings of error with respect to time, model scale and data
volume. However, our approach retains the flexibility to explain error scalings in settings where a
power law does not explain empirical error trends, as we see in our experimental results.

Given the parametric flexibility of our scaling law, how can we use it to predict performance as model
scale or training time increases? We demonstrate that by scale-time equivalence, performance under
varying training times can be used to predict performance under varying model scales and vice versa.
Our approach eliminates the need for strong parametric assumptions in the form of scaling law to
make extrapolation predictions. This is particularly useful in cases where error increases with scale
for overparameterized models since our approach can be used to predict an optimal model size.
On the other hand, we require empirically evaluating the performance of models (under either a
smaller scale or lower training time). We believe our approach can be valuable to practitioners who
have the flexibility to run some limited empirical small-scale experiments before full-scale training.
Finally, our results suggest that smaller models trained for a longer time may behave as well as larger
models, which we empirically observe on vision benchmarks. This is particularly important in the
age of LLMs, where very large models are trained for a small number of epochs (often just one).

We also highlight some important limitations of our work. Our experiments are all conducted on
standard vision benchmarks; we believe testing our theory on the language domain is a critical future
direction. Another limitation is that we do not yet have a fundamental understanding of what sets
the appropriate model scale of a neural network. Experimentally, we found that the cube root of
the number of model parameters is appropriate, but without a strong theoretical basis; this deserves
further study. Overall, we believe our contributions not only shed light on neural scaling laws, but
also present exciting directions for future work.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Ben Adlam and Jeffrey Pennington. Understanding double descent requires a fine-grained bias-
variance decomposition. In NeurIPS, 2020. https://arxiv.org/abs/2011.03321.

Ben Adlam, Jake Levinson, and Jeffrey Pennington. A random matrix perspective on mixtures of
nonlinearities for deep learning. AISTATS, 2022.

Madhu S Advani and Andrew M Saxe. High-dimensional dynamics of generalization error in neural
networks. arXiv preprint, 2017.

Ibrahim Alabdulmohsin, Behnam Neyshabur, and Xiaohua Zhai. Revisiting neural scaling laws in
language and vision. In NeurIPS, 2022.

Alnur Ali, J Zico Kolter, and Ryan J Tibshirani. A continuous-time view of early stopping for least
squares regression. In AISTATS, 2019.

Alexander Atanasov, Blake Bordelon, Sabarish Sainathan, and Cengiz Pehlevan. The onset of
variance-limited behavior for networks in the lazy and rich regimes. ICLR, 2024.

Yasaman Bahri, Ethan Dyer, Jared Kaplan, Jaehoon Lee, and Utkarsh Sharma. Explaining neural
scaling laws. arXiv preprint, 2021.

Yamini Bansal, Behrooz Ghorbani, Ankush Garg, Biao Zhang, Colin Cherry, Behnam Neyshabur,
and Orhan Firat. Data scaling laws in nmt: The effect of noise and architecture. In ICML, pp.
1466–1482. PMLR, 2022.

Mikhail Belkin, Daniel Hsu, Siyuan Ma, and Soumik Mandal. Reconciling modern machine-
learning practice and the classical bias–variance trade-off. Proceedings of the National Academy
of Sciences, 116(32):15849–15854, 2019.

Blake Bordelon, Alexander Atanasov, and Cengiz Pehlevan. A dynamical model of neural scaling
laws. ICML, 2024.

Aidan Clark, Diego de Las Casas, Aurelia Guy, Arthur Mensch, Michela Paganini, Jordan Hoff-
mann, Bogdan Damoc, Blake Hechtman, Trevor Cai, Sebastian Borgeaud, et al. Unified scaling
laws for routed language models. In International Conference on Machine Learning, pp. 4057–
4086. PMLR, 2022.

Stéphane D’Ascoli, Maria Refinetti, Giulio Biroli, and Florent Krzakala. Double trouble in double
descent: Bias and variance(s) in the lazy regime. In ICML, 2020.

Li Deng. The mnist database of handwritten digit images for machine learning research. IEEE
Signal Processing Magazine, 29(6):141–142, 2012.

Ian J Goodfellow, Yaroslav Bulatov, Julian Ibarz, Sacha Arnoud, and Vinay Shet. Multi-digit number
recognition from street view imagery using deep convolutional neural networks. arXiv preprint,
2013.

Peter Hall and Ker-Chau Li. On almost Linearity of Low Dimensional Projections from High Di-
mensional Data. The Annals of Statistics, 21(2):867 – 889, 1993. doi: 10.1214/aos/1176349155.
URL https://doi.org/10.1214/aos/1176349155.

Reinhard Heckel and Fatih Furkan Yilmaz. Early stopping in deep networks: Double descent
and how to eliminate it. In ICLR, 2021. URL https://openreview.net/forum?id=
tlV90jvZbw.

Marcus Hutter. Learning curve theory. arXiv preprint, 2021.

Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Convergence and gen-
eralization in neural networks. NeurIPS, 31, 2018.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child,
Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language
models. arXiv preprint, 2020.

11

https://doi.org/10.1214/aos/1176349155
https://openreview.net/forum?id=tlV90jvZbw
https://openreview.net/forum?id=tlV90jvZbw

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. ICLR, 2015.

Alex Krizhevsky. Learning multiple layers of features from tiny images. 2009.

Licong Lin, Jingfeng Wu, Sham M Kakade, Peter L Bartlett, and Jason D Lee. Scaling laws in linear
regression: Compute, parameters, and data. NeurIPS, 2024.

Rafid Mahmood, James Lucas, David Acuna, Daiqing Li, Jonah Philion, Jose M Alvarez, Zhiding
Yu, Sanja Fidler, and Marc T Law. How much more data do i need? estimating requirements for
downstream tasks. In CVPR, pp. 275–284, 2022.

Alexander Maloney, Daniel A Roberts, and James Sully. A solvable model of neural scaling laws.
arXiv preprint, 2022.

Song Mei and Andrea Montanari. The generalization error of random features regression: Precise
asymptotics and double descent curve. arXiv preprint, 2019.

Preetum Nakkiran, Gal Kaplun, Dimitris Kalimeris, Tristan Yang, Benjamin L Edelman, Fred
Zhang, and Boaz Barak. Sgd on neural networks learns functions of increasing complexity.
NeurIPS, 2019.

Preetum Nakkiran, Gal Kaplun, Yamini Bansal, Tristan Yang, Boaz Barak, and Ilya Sutskever. Deep
double descent: Where bigger models and more data hurt. Journal of Statistical Mechanics:
Theory and Experiment, 2021(12):124003, 2021.

Elliot Paquette, Courtney Paquette, Lechao Xiao, and Jeffrey Pennington. 4+ 3 phases of compute-
optimal neural scaling laws. NeurIPS, 2024.

Mohammad Pezeshki, Amartya Mitra, Yoshua Bengio, and Guillaume Lajoie. Multi-scale fea-
ture learning dynamics: Insights for double descent. In Kamalika Chaudhuri, Stefanie Jegelka,
Le Song, Csaba Szepesvari, Gang Niu, and Sivan Sabato (eds.), Proceedings of the 39th Inter-
national Conference on Machine Learning, volume 162 of Proceedings of Machine Learning
Research, pp. 17669–17690. PMLR, 17–23 Jul 2022. URL https://proceedings.mlr.
press/v162/pezeshki22a.html.

William J. Reed and Barry D. Hughes. Power-law distributions from exponential processes : An
explanation for the occurrence of long-tailed distributions in biology and elsewhere. Physical
Review E, 66:4, 2002.

Jonathan S Rosenfeld, Amir Rosenfeld, Yonatan Belinkov, and Nir Shavit. A constructive prediction
of the generalization error across scales. In ICLR, 2020.

Rylan Schaeffer, Mikail Khona, Zachary Robertson, Akhilan Boopathy, Kateryna Pistunova, Ja-
son W Rocks, Ila Rani Fiete, and Oluwasanmi Koyejo. Double descent demystified: Identifying,
interpreting & ablating the sources of a deep learning puzzle. arXiv preprint, 2023.

Utkarsh Sharma and Jared Kaplan. Scaling laws from the data manifold dimension. JMLR, 23:9–1,
2022.

James B Simon, Dhruva Karkada, Nikhil Ghosh, and Mikhail Belkin. More is better in modern
machine learning: when infinite overparameterization is optimal and overfitting is obligatory.
ICLR, 2024.

Cory Stephenson and Tyler Lee. When and how epochwise double descent happens. arXiv preprint,
2021.

Yi Tay, Mostafa Dehghani, Jinfeng Rao, William Fedus, Samira Abnar, Hyung Won Chung, Sharan
Narang, Dani Yogatama, Ashish Vaswani, and Donald Metzler. Scale efficiently: Insights from
pre-training and fine-tuning transformers. In ICLR, 2022.

12

https://proceedings.mlr.press/v162/pezeshki22a.html
https://proceedings.mlr.press/v162/pezeshki22a.html

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

A PROOF OF THEOREM 1

First, observe that gradient descent applied to θ corresponds to:

θ̇ = −ηRTKT∇L(α) (11)

This yields a change in α of:
α̇ = −ηKRRTKT∇L(α) (12)

Properties of KRRTKT First, we investigate the properties of the r × r random matrix
KRRTKT . Since the elements of R are drawn iid from a unit Gaussian, E[RRT] = pI . Thus,

E[KRRTKT] = pKKT (13)

Next, consider the element at the ith row and jth column of KRRTKT . This may be expressed as:

Ki,:RRTKT
:,j =

∑
l

Ki,:R:,lR
T
l,:K

T
:,j =

∑
l

(Ki,:R:,l)(Kj,:R:,l) (14)

where we express different columns of R as R:,l. Note that each term in the summand is independent
from one another since R has iid elements. Observe that Ki,:R:,l =

∑
k Ki,kRk,l and each term

Ki,kRk,l is an independent mean zero Gaussian with variance K2
i,k. Thus, Ki,:R:,l is a mean zero

Gaussian with variance Ki,:K
T
:,i. Moreover, since the expectation of Ki,:RRTKT

:,j is pKi,:K
T
:,j ,

Ki,:R:,l and Kj,:R:,l are jointly Gaussian with covariance Ki,:K
T
:,j .

Now, consider the expectation of (Ki,:RRTKT
:,j)

2:

E[(Ki,:RRTKT
:,j)

2] = E[
∑
l

(Ki,:R:,l)(Kj,:R:,l)
∑
l′

(Ki,:R:,l′)(Kj,:R:,l′)] (15)

since (Ki,:R:,l)(Kj,:R:,l) and (Ki,:R:,l′)(Kj,:R:,l′) are independent for l ̸= l′:

E[(Ki,:RRTKT
:,j)

2] = E[
∑
l

(Ki,:R:,l)
2(Kj,:R:,l)

2] + p(p− 1)E[(Ki,:R:,l)(Kj,:R:,l)]
2 (16)

E[(Ki,:R:,l)(Kj,:R:,l)] is simply Ki,:K
T
:,j . Since Ki,:R:,l and Kj,:R:,l are jointly Gaussian, we may

reparameterize them as:
Ki,:R:,l = azi (17)

Kj,:R:,l = bzi + czj (18)

where zi and zj are independent unit Gaussians, a =
√

Ki,:KT
:,i, b =

Ki,:K
T
:,j

a , c =
√
Kj,:KT

:,j − b2.

Then, (Ki,:R:,l)
2(Kj,:R:,l)

2 may be expressed as:

(Ki,:R:,l)
2(Kj,:R:,l)

2 = (azi)
2(bzi+czj)

2 = a2z2i (bzi+czj)
2 = a2b2z4i +2a2bcz3i zj +a2c2z2i z

2
j

(19)
Taking the expectation:

E
[
a2b2z4i + 2a2bcz3i zj + a2c2z2i z

2
j

]
= a2b2E[z4i] + 2a2bcE[z3i zj] + a2c2E[z2i z2j] (20)

Using the moments of unit Gaussians, we have E[z4i] = 3, E[z3i zj] = 0, E[z2i z2j] = 1. Thus, we
have

E[(Ki,:R:,l)
2(Kj,:R:,l)

2] = 3a2b2 + a2c2 = a2(3b2 + c2)

= a2(Kj,:K
T
:,j + 2

(Ki,:K
T
:,j)

2

a2
) = Ki,:K

T
:,iKj,:K

T
:,j + 2(Ki,:K

T
:,j)

2 (21)

Finally, we may express the expectation of (Ki,:RRTKT
:,j)

2 as:

E[(Ki,:RRTKT
:,j)

2] = p(Ki,:K
T
:,iKj,:K

T
:,j + 2(Ki,:K

T
:,j)

2) + p(p− 1)(Ki,:K
T
:,j)

2 (22)

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Decomposition into expectation and noise We now decompose KRRTKT into an expectation
term and a mean-zero noise term:

KRRTKT = pKKT +N (23)

where N ∈ Rr×r is a mean-zero matrix. Note that each element of N has variance:

E[N2
i,j] = E[(Ki,:RRTKT

:,j)
2]− p2(Ki,:K

T
:,j)

2 = p(Ki,:K
T
:,iKj,:K

T
:,j + (Ki,:K

T
:,j)

2) (24)

Thus, the squared Frobenius norm of N has expectation:

E[||N ||2F] =
∑
i,j

E[N2
i,j] = p

∑
i,j

Ki,:K
T
:,iKj,:K

T
:,j + (Ki,:K

T
:,j)

2 = p(||K||4F + ||KKT ||2F) (25)

We express the dynamics of α as:

α̇ = −ηpKKT∇L(α)− ηN∇L(α) (26)

Now suppose we have two copies of α: one copy (α(1)) with noise-free dynamics, and a second
copy with noise:

α̇(1) = −ηpKKT∇L(α(1)) (27)

α̇(2) = −ηpKKT∇L(α(2))− ηN∇L(α(2)) (28)

We define the discrepancy between them as δ = α(2) − α(1), which has dynamics:

δ̇ = −ηpKKT [∇L(α(2))−∇L(α(1))]− ηN∇L(α(2)) (29)

Consider the rate of change of the ℓ2 norm of δ:

d

dt
||δ|| ≤ ||δ̇|| ≤ ηp||KKT [∇L(α(2))−∇L(α(1))]||+ η||N∇L(α(2))|| (30)

Using the Lipschitz bounds on ∇L and L:

d

dt
||δ|| ≤ ηph||KKT ||||δ||+ η||N ||l (31)

where the matrix norms in the expression denote ℓ2 operator norm.

Now, returning to ||N ||2F , note that by Markov’s inequality, with probability 1− ϵ:

||N ||2F ≤ p

ϵ
(||K||4F + ||KKT ||2F) (32)

Using the fact that ||N || ≤ ||N ||F , with probability 1− ϵ:

d

dt
||δ|| ≤ ηph||KKT ||||δ||+ η

√
p

√
ϵ

√
||K||4F + ||KKT ||2F l (33)

This is a differential inequality in ||δ||. Observe that ||δ|| takes its maximum possible trajectory at
equality. Assuming ||δ|| = 0 at time t = 0, this differential inequality may be solved by simply
solving the equality case and setting the solution as the upper bound on δt (with subscript denoting
time t):

||δt|| ≤
η
√
p√
ϵ

√
||K||4F + ||KKT ||2F l
ηph||KKT ||

(eηph||KKT ||t−1) =

√
||K||4F + ||KKT ||2F l√

pϵh||KKT ||
(eηpth||KKT ||−1)

(34)

Solving the noise-free dynamics Now, we consider the noise-free dynamics:

α̇(1) = −ηpKKT∇L(α(1)) (35)

Note that Apt solves the dynamical equation for α(1) by the chain rule:

d

dt
Apt = p(−ηKKT∇L(Apt)) = −ηpKKT∇L(Apt) (36)

Thus, we may simply express α(1)
t as Apt.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Final result Combining and reexpressing our previous results, we may write that with probability
1− ϵ:

||α(2)
t −Apt|| = ||α(2)

t − α
(1)
t || = ||δt|| ≤

l
√
||K||4F + ||KKT ||2F
h
√
pϵ||KKT ||

(eηpth||KKT || − 1) (37)

Thus, the true dynamics deviate from Apt by a bounded amount.

B MEASURING EFFECTIVE PARAMETER COUNT

In this section, we aim to provide a justification for why the cube root of the absolute number of
parameters of a network is a good proxy for the effective number of parameters. Finding the effective
number of parameters requires defining the parameter count at which the interpolation threshold
occurs; this number is the effective parameter count. Unfortunately, in most models, training data
is not perfectly interpolated by the model; thus defining the interpolation threshold location exactly
is nontrivial. Instead, we identify a property of the interpolation threshold in the training error of
linear models, then identify at which parameter count this property also holds in nonlinear models.

Training error in linear models Suppose we are provided a training set X ∈ Rn×p and corre-
sponding training labels Y ∈ Rn where n is the number of data points. Assume that X has elements
drawn uniformly from a unit Gaussian. We aim to find a parameter θ ∈ Rp such that:

Y ≈ Xθ (38)

The minimum norm solution minimizing the mean squared error is:

θ = X†Y (39)

where † denotes pseudoinverse. Denoting the predicted training labels as Ŷ , the mean squared error
is then:

1

n
||Y − Ŷ ||22 =

1

n
||Y −XX†Y ||22 =

1

n
Y T (I −XX†)Y (40)

Finally, assuming that Y 2
i = 1 for all i, we may write the mean training error as:

1

n
||Y − Ŷ ||22 = max(1− p

n
, 0) (41)

Thus, for a linear model, the training error decreases linearly at rate − 1
n with respect to p before

the interpolation threshold (p = n), and then is zero after the interpolation threshold. We extract
a key property around the interpolation threshold from the linear model: the training error is 1

n at
p = n− 1 = O(n). Note that for any α < 1, the training error is 1

nα before O(n).

Power law training rate decay Next, we consider power-law decays of training rate error and
characterize which power laws are consistent with the interpolation threshold properties outlined
above. Consider a power law decay of the mean training error of nα

pβ . Note that in order to satisfy
condition (2), we must have:

1

n
= O(

nα

nβ
) (42)

where we set p = O(n). Thus, β − α = 1. Power-law decays of the form nα

pα+1 are consistent with
the interpolation threshold property.

Error scaling in neural networks Next, we turn to model training error scaling in neural net-
works. We make the following heuristic argument: to fit n training points, a network of width m
needs to encode O(mn) numbers corresponding to m + 1 numbers for each training point (to rep-
resent the features and labels of each training point). On the other hand, the network has O(m2)
parameters since its intermediate layer weights have m2 parameters. We expect that scaling both the
network’s capacity of O(m2) and the required capacity of O(mn) at the same rate will not change
the training error. Thus, we expect the training error to be a function of mn

m2 = n
m .

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

To find which function of n
m models the training error, we introduce another argument. We assume

that the network can be approximated as an ensemble of O(m2) submodels, each with O(1) param-
eters. Suppose the model output is the average of the outputs of the submodels. Then, assuming that
the distribution of the submodel outputs on any given training point has variance O(1) over different
model initializations, the variance of the ensemble output is O(1

m2). Thus, over model initialization,
the model output at any given training point will center around a mean value with deviations on the
order of O(1

m). Assuming that as the network capacity goes to ∞, the training error goes to 0, the
mean value of the predicted output on a training point must be the true value; thus, the predicted
output differs from the true output by O(1

m). This corresponds to a mean squared error on the train-
ing points scaling as O(1

m2). Finally, to get the dependence on n, we use the observation that the
error must depend on only the fraction n

m . Thus, the mean squared training error scales as O(n2

m2).

Finally, we know by the argument above that power law error rate scaling of the form nα

pα+1 are
consistent with the interpolation threshold property, where p is the effective number of parameters.
Equating this with the neural network scaling result of O(n2

m3), we must have that α = 2, yielding:

O(
n2

p3
) = O(

n2

m2
) (43)

Equating the denominators, we have p3 = m2, or p = m2/3. In other words, the effective number
of parameters is m2/3. Since the absolute number of parameters in the network is m2, the effective
number of parameters is the cube root of the absolute parameter count.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

C EXPERIMENTAL DETAILS

C.1 MODEL TRAINING

We used three benchmark datasets: CIFAR-10, MNIST, and SVHN. Each dataset was subject to
preprocessing involving standard normalization. For CIFAR-10 and SVHN, the normalization was
performed using means and standard deviations of (0.5, 0.5, 0.5). For MNIST, the normalization
used a mean and standard deviation of 0.5.

Two types of neural network architectures were evaluated:

• Convolutional Neural Network (CNN): Our CNN architecture consisted of six ReLU acti-
vated convolutional layers, with kernel sizes (3, 3, 3, 3, 3, 2 for CIFAR-10/SVHN or 1 for
MNIST), strides (2, 1, 2, 1, 1, 1), and number of filters (5s, 10s, 20s, 40s, 80s) where s is a
width parameter. This was followed by a fully connected layer.

• Multilayer Perceptron (MLP): The MLP architecture comprised six fully connected layers
with hidden layer width 10s where s is a scale parameter.

The width parameter was set to values of 1, 2, 5, 10, 20, 50, and 100. When we refer to ”model
scale”, we quantify this as the cube root of the number of network parameters rather than the value
of the width parameter. We tested two learning rates (0.001 and 0.01) in combination with two
optimizers (Adam and SGD respectively). Label noise was introduced at levels of 0.0 (no noise)
and 0.2 (20% noise) to evaluate the robustness of the models. The number of training samples
was varied among 100, 200, 500, 1000, 2000, 5000, 10000, 20000, and 50000. The samples were
randomly selected from their respective base training sets. A constant batch size of 32 and 100
training epochs were used across all experiments. Mean Squared Error (MSE) was used as the loss
function. Model performance was assessed using Mean Squared Error (MSE) on both training and
test sets. For reproducibility, we set a manual seed for the PyTorch random number generator. Five
different seeds (101, 102, 103, 104, 105) were used to assess the variance in results due to random
initialization.

C.2 SCALE-TIME TRADEOFF VALIDATION

Linear model We construct a loss function as:

L(θ) = ||K(Rθ + β0)− α∗||2 (44)

where α∗ is a target value of α. K, R, β0 and α∗ are all independently sampled from unit Gaussians,
and θ is initialized from a unit Gaussian. We set P = 1000 and r = 3. We train θ via gradient
descent with learning rate 10−6 and evaluate the number of iterations required to reach various
values of the loss for varying values of p. This setup corresponds to a linear classifier trained with
gradient descent on mean squared error using a training batch of k = 3 points where only p of the
P = 1000 parameters are controllable.

Neural networks To evaluate the scale time tradeoff, for each model, we compute the minimum
number of epochs necessary to achieve a test set MSE below 0.09.

C.3 SHIFTING INTERPOLATION THRESHOLD

Experimental results are shown for networks trained with SGD.

C.4 IMPACT OF NOISE AND SHAPE OF LOSS CURVE

Experimental results are shown for networks trained with Adam; since Adam trains faster, this
allows us to examine training trends at later points in training.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

C.5 OPTIMAL SCALE PREDICTIONS

To predict error over scale using error over time or vice versa, we treat the quantity pt as a predictor
of performance, where p is the effective number of network parameters. Thus, if we wish to know
the error of a network at (p1, t1) and we know the error of the network for all p0, then we may
predict the error at (p1, t1) as the error at (p0, (p1

p0
)t1).

C.6 COMPUTING INFRASTRUCTURE

Experiments were run on a computing cluster with GPUs ranging in memory size from 11 GB to 80
GB.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

D ADDITIONAL EXPERIMENTS

(a) MNIST, CNN (b) CIFAR-10, CNN (c) SVHN, CNN

(d) MNIST, MLP (e) CIFAR-10, MLP (f) SVHN, MLP

Figure 7: Red lines indicate tradeoff curves between number of training epochs and network scale for
different datasets and architectures trained with Adam. Different curves indicate different amounts
of training data darker lines indicate more data. Curves are computed by, for each network scale,
measuring the minimum amount of training time necessary to achieve non-zero generalization. Mar-
gins indicate standard errors over 5 trials. Grey curves are lines of 1:1 proportionality between scale
and training epochs.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

(a) MNIST, CNN (b) CIFAR-10, CNN (c) SVHN, CNN

(d) MNIST, MLP (e) CIFAR-10, MLP (f) SVHN, MLP

Figure 8: Test and train mean squared error of MLP and CNN models trained on benchmark datasets
under varying levels of data. Different curves indicate different model scales; darker colors indicate
larger models. Margins indicate standard errors over 5 trials.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

(a) MNIST, CNN (b) MNIST, CNN (c) MNIST, CNN

(d) MNIST, MLP (e) MNIST, MLP (f) MNIST, MLP

(g) CIFAR-10, CNN (h) CIFAR-10, CNN (i) CIFAR-10, CNN

(j) CIFAR-10, MLP (k) CIFAR-10, MLP (l) CIFAR-10, MLP

(m) SVHN, CNN (n) SVHN, CNN (o) SVHN, CNN

(p) SVHN, MLP (q) SVHN, MLP (r) SVHN, MLP

Figure 9: Test mean squared error vs. number of epochs, model scale and training data under
noisy and noise-free labels. Each row indicates a different combination of dataset and architecture.
Margins indicate standard errors over 5 trials.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

(a) MNIST, CNN (b) CIFAR-10, CNN (c) SVHN, CNN

(d) MNIST, MLP (e) CIFAR-10, MLP (f) SVHN, MLP

Figure 10: Predicted and true test and train mean squared error of MLP and CNN models trained
on benchmark datasets under varying model widths for 10 epochs. Margins indicate standard errors
over 5 trials. Predictions are generated by training a small model for 100 epochs and using scale-
time equivalence to predict the equivalent scale.

(a) MNIST, CNN (b) CIFAR-10, CNN (c) SVHN, CNN

(d) MNIST, MLP (e) CIFAR-10, MLP (f) SVHN, MLP

Figure 11: Predicted and true test and train mean squared error of MLP and CNN models trained on
benchmark datasets under over training time for a medium-sized model. Margins indicate standard
errors over 5 trials. Predictions are generated by training models of varying sizes for 1 epoch and
using scale-time equivalence to predict the equivalent number of training epochs.

22

	Introduction
	Related work
	Scaling laws
	Double descent

	Scale-time equivalence in neural networks
	Random subspace model
	Empirical validation in neural networks

	Predicting optimal network scale and training time
	A unified view of double descent w.r.t. training time, model scale and training set size
	Error scaling over time in a linear model
	Early noise acquisition can explain parameter-wise double descent
	Less data required for generalization with model scale
	Persistent vs local effects of noise on error curves
	Shape of loss curve: upturn with model size

	Discussion
	Proof of Theorem 1
	Measuring Effective Parameter Count
	Experimental Details
	Model training
	Scale-time tradeoff validation
	Shifting interpolation threshold
	Impact of noise and shape of loss curve
	Optimal scale predictions
	Computing Infrastructure

	Additional Experiments

