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ABSTRACT

Large Language Models (LLMs) sometimes contradict themselves when answer-
ing factual questions, especially when asked to enumerate all entities that satisfy
the question. We formalize such self-contradiction as answer-set inconsistency:
Given two enumeration questions whose answers satisfy a set-theoretic relation
(equivalence, disjointness, containment, etc.), the LLM generates responses vio-
lating the relation. To diagnose this phenomenon, we create a benchmark dataset
comprising tuples of enumeration questions over which a variety of set-theoretic
relations hold, and propose related metrics to quantify answer-set inconsistency.
Our evaluation of several state-of-the-art LLMs reveal pervasive inconsistency
across models, even in cases where the LLM can identify the correct relation.
This leads us to further analyze potential causes and propose mitigation strategies
wherein the LLM is prompted to reason about such relations before answering,
which lead to improved answer-set consistency. This work thus provides both a
benchmark and a systematic approach for evaluating, explaining, and addressing
answer-set inconsistency in LLM question answering, towards deriving practical
insights to improve the reliability of LLMs.

1 INTRODUCTION

Large Language Models (LLMs) have demonstrated impressive capabilities not only in natural lan-
guage understanding and generation, but also in question answering and other tasks involving com-
plex reasoning (Tan et al.l 2023 |Ding et al., 2024; |Li et al.| |2024; [Saxena et al., [2024} Sui et al.,
2024). However, in the context of the latter tasks, they are prone to various types of contradic-
tion (Ghosh et al., 2025} |Calanzone et al., |2025) since they are not based on computational tech-
niques that guarantee formal notions of consistency, soundness, etc.

One type of inconsistency that LLMs exhibit relates to factual question answering. Specifically,
in the context of enumeration questions, which ask to list all entities that satisfy a question, the
responses across different questions may exhibit inconsistency with respect to evident set-theoretic
relations that hold between such questions. Take for example the four questions in Table [T} All
such questions are enumeration questions: they expect a set of entities as answers. Let [Q] denote
the expected set of answers for a question ). Among these four questions, we can see that certain
set-theoretic relations should be expected to hold, including equality ([Q1] = [Q2] = [Qs]U[Q4]),
containment ([Qs] C [@1], [Q4] C [@Q1], [@3] C [Q2], [@4] C [Q2], and such relations entailed
by equality), disjointmess ([Q3] N [Q4] = 0), etc. However, the answers returned by a particular
model may not satisfy these relations, even sometimes in cases where the model can recognize the
correct expected relation. Specifically, let [Q]as denote the set of answers enumerated by model
M. Then, for example, given ()1 and ()3, when asked what relation holds between their answers,
M may correctly recognize the containment of the latter in the former ([Q3] C [Q1]), but still
enumerate [Q1]as and [Qs]as such that [Qs]ar € [Q1]as, thus contradicting itself.

We formalize this issue as answer-set consistency, wherein the answers for a tuple of factual enu-
meration questions generated by a particular model does satisfy the set-theoretic relations that are
expected to hold for that tuple. We further consider an answer-set contradiction whereby the model
enumerates answers that do not satisfy the set-theoretic relation it itself predicts. Related topics have
been well-studied in database theory literature wherein the notions of query containment, equiva-
lence, etc., are textbook topics (Abiteboul et al.l[1995), with decades of theoretical and practical re-
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Table 1: Illustrative example with four enumeration questions

(1 What are the tributaries of the Madeira River?

()2 Which rivers and streams flow directly into the Madeira River?
Qs  What are the right-bank tributaries of the Madeira River?

(4 What are the left-bank tributaries of the Madeira River?

sults covering a variety of query languages, data models, and reasoning formalisms. Unlike database
systems, generative A.l. models are not designed to guarantee satisfaction of such formal relations
in the answers they provide. Perhaps for this reason, answer-set (in)consistency has not been well-
studied in the context of generative A.l. To the best of our knowledge, the closest work is that of
Elazar et al.|(2021), which evaluates consistency across paraphrased versions of cloze-style phrases,
but these permit only a single answer. [Hogan et al.|(2025)) briefly discuss this issue as “coherence”,
but do not investigate it further. Given that such models are increasingly used to answer users’
enumeration questions, we believe the topic merits more analysis.

Research questions In this paper, we address the following research questions (RQs):

RQ1 To what extent do LLMs produce (in)consistent answer sets for enumeration questions?
RQ2 Can LLMs recognize the set-theoretic relations that exist between enumeration questions?
RQ3 Which set-theoretic relations cause the most difficulty for LLMs?

RQ4 Which key factors cause answer-set inconsistency in LLMs?

RQS5 Can we mitigate answer-set inconsistency with prompting strategies?

Contributions. This paper develops four main contributions: (1) We highlight and formalize the
notion of answer-set consistency for enumeration questions. (2) To quantify answer-set consistency,
we develop and release a novel handcrafted benchmark of 600 question quadruples, with 2,400
questions in total, where fixed set-theoretic relations are expected to hold between the questions of
each tuple. We further propose measures to quantify answer-set consistency with respect to such a
dataset. (3) We present an empirical analysis of 18 state-of-the-art LLMs on the benchmark. (4) We
further present preliminary prompting strategies to mitigate answer-set inconsistency and evaluate
their effectiveness.

Our methodology allows for a systematic analysis of how model size, architecture, and prompting
strategy affect the logical coherence of LLM outputs, providing insights into both the strengths
and limitations of current models for generating consistent answers to enumeration questions. Our
findings reveal that LLMs exhibit significant answer-set inconsistency, the extent of which depends
on the particular model and the particular relation (interestingly, newer or bigger models do not
universally outperform older or smaller variants). Such inconsistency often occurs even when the
model is able to correctly recognize the relation expected to hold. The prompting strategies we
propose to mitigate this issue significantly improve consistency across all tested models.

The code, datasets and results of experiments are available on (anonymous) GitHub (authors| [2025).

2 RELATED WORK

We present an overview of related works on datasets for question answering, consistency of LLMs,
and query containment of databases.

Question answering datasets A wide range of datasets have been proposed for different flavors
of question answering tasks (e.g., Tan et al.|(2023)); Wang et al.|(2023)); Lee & Kim/(2024); |Singhal
et al.| (2024); Wang et al.| (2024)); [Zheng et al,| (2024); |[Zhou & Duan| (2024); Zhu et al.| (2024);
Allemang & Sequedal(2025); Ma et al.|(2025))). These datasets and evaluation frameworks focus on
accuracy with respect to a predefined ground truth. While such benchmarks are essential to verify
the correctness and completeness of answers, our focus is rather on the internal consistency of the
models, which we see as complementary to these existing datasets.
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Consistency of LLMs Various works have addressed different notions of consistency for LLMs.

Ghosh et al.|(2025)) study the logical consistency of LLMs in a boolean fact-checking setting. They
define the logical consistency of an LLM in terms of the boolean response L LM (p) for some propo-
sitional statement p representing a fact. Specifically, they test negation (LLM (—p) = ~LLM (p),
i.e., the response of the LLM to a negated fact should be the negation of the response to the
original fact), disjunction (LLM (p V q¢) = LLM (p) V LLM(q), i.e., the response to a con-
junction of facts is the same as the conjunction of the responses to each fact), and conjunction
(LLM(p A q) = LLM (p) A LLM (q), as before). The authors further construct complex state-
ments using the combinations of these three boolean operators {—, VV, A}. Their results showed that
consistency improved with an increase in the number of model parameters.

Similarly, (Calanzone et al.| (2025)) investigated whether a fine-tuning approach that integrates neuro-
symbolic reasoning can enforce logical consistency in language models. Here, the authors checked
also for negation consistency, but also included implication consistency, to check whether the LLM
can follow implication rules. Empirical results demonstrate that the approach outperforms conven-
tional fine-tuning and external solver-based methods in factual accuracy and logical consistency,
while also generalizing effectively to unseen but related knowledge.

While these works address statements in propositional logic, |[Liu et al.| (2024b) investigate logical
consistency in LLMs as a property of the relationships between sets of items, rather than isolated pre-
dictions. Instead of evaluating responses in isolation, the model is queried across sets of comparisons
to assess whether its preferences form a coherent structure. They define consistency through proper-
ties like transitivity, order-invariance, and semantic negation, applied across sets of judgments. Their
experiments reveal that popular LLMs frequently violate these properties, even on simple domains,
and that improving consistency correlates with better downstream task performance.

Jang et al|(2022) propose a behavioral definition of consistency, categorizing it into semantic, log-
ical, and factual types. They introduce BECEL, a benchmark designed to evaluate consistency
through controlled input changes across several NLP tasks. It tests logical consistency indirectly
by checking whether a model’s predicted labels remain logically coherent across natural language
sentence pairs that are logically related.

Addressing factual questions and statements with a single response, |[Elazar et al.[(2021) evaluate the
consistency of (L)LMs across paraphrased versions of cloze-style phrases (i.e., facts with entities
masked, such as “___ is the largest tributary of the Madeira River”). The authors found notable
inconsistency in the models tested at that time.

Cohen et al.|(2023)) propose having one LLM cross-examine another LLM asking it diverse follow-
up questions on the facts it states — for example, by rephrasing the fact and posing it as a question,
asking about logical implications of the stated fact, etc. — checking if the response of the latter model
remains consistent under cross-examination.

Although the consistency of LLMs with respect to boolean statements, facts, and cloze-style phrases
has been studied, the consistency of their responses with respect to questions that permit sets of
answers has, to the best of our knowledge, not been explored in depth.

Query containment Given a database D and a structured query @, let [Q] p denote the answers
for the query on that database. Given two queries ()7 and (2, query containment asks if, for any
database D (whose schema is compatbile with @), it holds that [Q1]p C [Q2]p, while query
equivalence asks whether or not [Q1]p = [Q2] p likewise holds for any database (Abiteboul et al.,
1995). These problems have been studied for a variety of query languages and database models.
While these problems are decidable for simple query formalisms like conjunctive queries under
set semantics (akin to queries that only allow relational-style joins), they are undecidable for more
expressive query languages (like the relational algebra, full SQL, etc.) (Abiteboul et al., [1995)).

3 ANSWER-SET CONSISTENCY

In this section, we define the notion of answer-set consistency, describe the dataset we create to
evaluate it, the metrics we use to quantify it, and the mitigation strategies we propose to address it.
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Table 2: Relations for questions in our evaluation quadruples (implied relations in parentheses)

Q1 Q2 Qs Qa
Q1 | =(C,2, T =2, 2(T) 2(T)
Q2 | =(C,2,T) =(5,2,M 2(T) 2(T)
Q3 c(m c(m =G, 2, 1
Qa cm [ Qp 1 =(G,2, T

3.1 DEFINITION

We provide a formal definition for answer-set consistency and contradictions.

Let E denote the universe of entities from an arbitrary domain (in practice, strings). Given a natural
language question @, and its expected answer set [Q], we say that @ is an enumeration question
if [Q] C E. Let M be a model (e.g., an LLM, potentially primed with a prompt), and again let
[Q]ar C E be the answer set generated by model M for question Q.

Given two sets A and B, let A | B denote disjointness, shorthand for AN B = 0, andlet A T B
denote overlap, shorthand for AN B # ) . Let x € {=, C, L, T} denote a binary set relation.

Given two enumeration questions ()1 and ()2, we define a model M as answer-set consistent with
respect to (Q1,Q2,%) if and only if it holds that [Q1] * [Q2] and [Q1]ar * [@2]as. Note that we
do not need to know the ground-truth answer sets for [Q] or [Q2] in order to diagnose answer-
set consistency: rather we simply need to know that [Q1] * [Q2], which we can determine from
static analysis of the questions (for example, a reader may be satisfied that [Q3] C [Q1] holds from
Table [T] without knowing any of the actual answers for either question). If this property does not
hold, we call the model answer-set inconsistent with respect to (Q1,Q2,%).

Given two enumeration questions (7 and Qs, let [Q1, Q2]m C {=,C, L, T} denote the model’s
prediction (primed with an appropriate prompt giving the possible relations as alternatives) for what
binary relations hold from Q)7 to Q2. We define (Q1,Q2,x) as an answer-set contradiction of M if
and only if it holds that [Q1]as * [Q2]as and * & [Q1, Q2] as. This is an internal contradiction. For
reasons of space, we delegate discussion of this issue to Appendix [F|

We also consider answer-set consistency and contradictions between sets constructed from multiple
base sets via union, intersection, difference, etc. (e.g., for Q1 = Q3 U Q4 in Table E])

3.2 DATASET

In order to evaluate the answer-set consistency of various LLMs, and to address our research ques-
tions, we require a collection of pairs of questions of the form (Q1, Q2) such that [Q] x [Q2] for
* € {=,C, L, T}. Given that, to the best of our knowledge, no such dataset exists, we design and
construct such a dataset.

Given the manual cost of constructing datasets, instead of defining tuples (Q1, Q2,*), we rather
define quadruples of the form (Q1, Q2, @3, Q4) wherein different fixed relations hold between the
different positions. Specifically, as illustrated in Table [T} we define this quadruple such that Q; =
Q2 = Q3 UQq and Q3 L Q4. This design is more efficient in terms of manual effort: per Table 2]
each question appears in more than one relation. Conceptually, for one such quadruple, we can
model 12 pairs of questions with a primary relation (and other implied relations).

We selected base questions (()1) that satisfied the following criteria: (i) the answers are drawn
from a finite set of elements; (ii) the answers to the questions are non-empty and upper-bounded
(2 < [@1] < 100), where we require at least two answers to ensure both 3 and Q4 are non-empty,
and we avoid questions with an excessive number of answers that LLMs may struggle to generate;
(iii) the questions and answers are objective. Example questions meeting these criteria are Which
countries are members of the European Union?, What are the tributaries of the Madeira River?, etc.

Rather than constructing the question quadruples from the ground up, we identified that existing
(open) knowledge graph question answering (KGQA) datasets provide us with a good starting point
since they consist mostly of enumeration questions, and referring to the aforementioned criteria:
(i) the answers are bounded to the domain of the knowledge graph; (ii) we can use the associated
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structured query to ensure that the number of results are within a fixed bound; (iii) the questions
and answers are mostly objective. Furthermore, some datasets provide paraphrases that cover (1
and ()2 (equivalence). Unfortunately, only one KGQA dataset, namely QAWIKI (Moya Loustaunau
& Hoganl [2025), provides containment relations, and only relatively few. No dataset provides the
precise relations for the quadruples we need.

We constructed our dataset, which we call the Answer-Set Consistency Benchmark (ASCB), from
three base KGQA datasets: LC-QUAD 2.0 (Dubey et al., 2019), QALD (Usbeck et al., [2024),
and QAWIKI (Moya Loustaunau & Hogan, [2025). From each dataset, we evaluated the structured
queries associated with questions to ensure that they are enumeration questions and to test that
they satisfy the cardinality bounds. This created a candidate list of base questions ((Q)1), which we
manually reviewed and filtered down to a smaller set of selected questions that best meet our criteria,
as well as additional desiderata prioritizing the “crispness’ diversity, fluency and objectiveness of
questions. We enriched this candidate set with available paraphrases (for (2), and in the case of
QAWIKI, with available containment relations (for (J3). Given the base questions, we further used
LLMs to generate candidate suggestions for (J3 and @4, satisfying the relations we require. These
candidate questions were manually revised, pruned, modified, etc., to ensure a high-quality dataset,
resulting in 150 question quadruples from each dataset. We further added an additional source,
which we call SYNTHETIC, of questions generated from scratch by LLMs. It is important to note that
in many cases, the questions extracted merely served as “inspiration” for the final quadruple, even
for the base query: the questions in many cases were heavily modified. Furthermore, suggestions by
LLMs for Q3 and @4, though useful, often did not satisfy the formal relations expected’| and needed
to be modified. As a final step, we used LLMs to revise the quadruples and suggest improvements
for phrasing, corrections, etc., which were revised manually and applied if deemed suitable. The
manual revision, curation and modification of questions was conducted by three of the authors.

The resulting ASCB dataset (available online (authors, [2025)) comprises 600 quadruples of hand-
crafted questions in English — 2,400 questions in total — satisfying the relations in Table [2]

3.3 EVALUATION TASKS AND MITIGATION STRATEGIES

To evaluate the answer-set consistency of LLMs using our ASCB, we perform three distinct tasks,
the latter two of which involve mitigation strategies to try to achieve better consistency. For all such
tasks, the LLMs under test are configured to use the lowest possible temperature. The full prompts
used for these tasks are provided in Appendix [Afor reference.

Task 1: Base evaluation Our first task evaluates the base answer-set consistency of the LLM
under test, and involves two subtasks.

In Task 1.1, Classification, the models are presented pairs of questions (Q;, Q;) projected from each
quadruple and asked to identify the first set-theoretic relation that holds, in the following order, from
the answer set of (J; to that of (2: equivalence (=), contained by (C), contains (2), disjointness (L)
and overlap (T). Although any pair of questions must satisfy at least one such relation, we further
add an unknown option in case the model cannot confidently determine the relation.

In Task 1.2, Enumeration, all 2,400 questions are posed to the models independently, each within
its own isolated context, requesting the LLM to enumerate all answers for the question. The prompt
further instructs the model to return an exhaustive list separated by ‘|’, to avoid additional text, to
return ’idk’ in case it cannot answer, to return ‘no answer’ if there is no answer, and to expand
acronyms and use full names whenever possible. The corresponding answers are then collected.

Task 2: Classification-then-Enumeration (CtE) Following preliminary experiments on Task 1,
we investigated a mitigation strategy that operates within a single conversational context. The model
is first asked to identify the set-theoretic relationship between the question pair (or triplet, in the case
of the difference relation), and is then prompted to provide answers to the individual questions. Our

!"This relates to the domain being a crisp set: some questions, such as “What are the jobs in finance?” in
LC-QuAD 2.0, do not clearly define a “crisp” base set for (Q1, and are excluded.

2Often the suggestions for Q3 and Q4 did not form a true dichotomy, for example: What counties of North
Dakota use the Mountain Time Zone? and What counties of North Dakota use a timezone other than the
Mountain Time Zone? is not a true dichotomy as some counties are in multiple time zones.
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hypothesis is that this will improve answer-set consistency by allowing the model to first reason
about the relation that the answer sets should satisfy before enumerating them.

Task 3: Oracle Here we first run Task 1.1, and if we detect an answer-set inconsistency with
respect to ((Q;, @, *), then we instruct the LLM to observe that the relation + holds from the answer
set of Q; to @), and request the answers to be enumerated again. This task is an ideal version of Task
2, as it assumes an oracle that knows what relation holds between the questions. This will give us
insights into what the model could achieve in Task 2 if it could always classify the relation correctly.

Question and relations considered Per Table 2] our quadruples provide a large number of poten-
tial binary relations to test. However, many such relations are redundant. Thus, we only consider
each pair of questions once (skipping symmetric or inverse relations), and only test for the primary
relation; specifically, we test for the following relations (R;) (Q1, Q2,=), (R2) (Q3,Q1,<C), (R3)
(Q4,Q1,2), (Ry) (Q3,Q4,L). We also test a relation for a constructed set: (R5) (Q4, Q1 \ Q3,=).
Finally, to establish a referential result for non-determinism of the model over time, we test (R.)
(Q1, @7, =), where Q7 is the question (1 run at a different time. We will use this as a control later.

3.4 EVALUATION MEASURES

We present various measures to evaluate the answer-set consistency of LLMs with respect to the
previous tasks. The first two address the performance for enumeration, while the second addresses
the performance for classification.

Classification accuracy We first quantify the ability of LLMs to correctly classify the set-
theoretic relation that holds between the answer-sets of the questions. For each relation Ry, ..., Rs,
the classification accuracy of a model M over n test instances is defined as «R;(M) =

# correct classifications by M e further denote by ocR(M) the average of {ocRy (M), ..., «Rs(M)}

n

(OI' equivalently, (XR(M) _ # total correct cl;ifiﬁcations by M )

Consistency rates For each pair of enumerated answer sets, we evaluate whether or not the six
expected relations Ry, ..., Rs, R, are satisfied. Each such relation R; is checked independently
over n test instances (n = 600 for ASCB) of the form T; = {(Qi1, @}y, %:), - - (Qin, Qln»*i) }-
For a given model M, and test instance t € T; we define pp;(t) = 0 if M is answer-set in-
consistent with respect to ¢, and pp(t) = 1 otherwise. The consistency rate of M for R; is

then defined as %R;(M) = >, . pu(t). We further denote by %R(M) the average of

{%R1 (M), ..., %Rs(M)} (or equivalently, %R(M) = == >, or, pu(t). Note that we
do not include R, in the average as it is intended as a control.

Jaccard similarity The consistency rates consider each (Q;, Q}, ;) as a discrete result (1 for
correct, or 0 for incorrect) — irrespective of how close the answer sets of the two questions are to
satisfying the relation. To complement the first measure, we consider a second continuous measure
that captures the degree to which an instance is satisfied. Specifically, we use the well-known Jac-

card similarity, defined for sets Sy and Sy as J(S1,.52) = Igiggz} . For a given model M, and test

instance t = (Q,Q’,x) € T;, we define o/ (t) = J([Q]ar, [Q]ar). The Jaccard similarity pf a
model M for a relation R; is then defined as ~R;(M) = 1 > ier, om(t). We apply this measure
for relations involving equivalence (R, R5, R.) and disjointness ([24), where a score close to 1 is
good in the former case, and poor in the latter case.

Hypotheses and significance testing We propose two hypotheses: (H;) The CtE and Oracle
strategies yield less answer-set inconsistency than Base. (H2) LLMs with better general perfor-
mance produce more consistent responses compared to older models.

To test statistical significance, we apply the one-sided McNemar test (Lachenbruch} 2014)), which is
suitable for paired nominal data. We adopt a significance level of o = 0.05. The null hypothesis of
no improvement is rejected if the one-sided p-value satisfies p < 0.05. In such cases, we conclude
that the alternative strategy or model yields a statistically significant improvement in consistency.
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Stochasticity control The causes of answer-set inconsistency in LLMs can be attributed to two
main factors. (1) Stochasticity in the generation process, such as during token sampling, or latent
variability, leading the model to produce different outputs for the same query across runs. (2) Seman-
tic misunderstanding, where the model misinterprets or overlooks the logical or semantic relations
among queries, resulting in violations of restrictions. We introduce R, precisely to estimate and
control for the effects of (1), which varies across models.

The impact specifically of the two factors on the answer-set inconsistency of model M for R;
can be assessed by comparing %Ry (M) with %R, (M) and ~Ry (M) with ~R,(M): a large gap
indicates (2) plays a smaller role, and a small gap indicates (1) plays a larger role. On the other hand,
we can compare the difference of consistency for equivalence-based relations like R,, R; with other
relations like Re, R3, R4 where (assuming stocasticity plays a similar role for all such relations),
where a large gap indicates (2) plays a larger role, and a small gap indicates (2) plays a smaller role.

4 RESULTS

We now present the results of our experiments on 18 LLMs from the DeepSeek, Gemini, Grok, GPT,
Llama and Mistral families. For all models, the temperature was set to the lowest possible value
(zero, if possible). The results will be reported considering the overall dataset, that is, the dataset
obtained by merging the four sources presented in Section[3.2] Results for individual datasets are
available (anonymously) on GitHub (authors| [2025). For reasons of space, we provide additional
visualizations that help to identify trends in these results in Appendix [C|

4.1 CLASSIFICATION TASK

Appendix [D] reports the accuracy of different LLMs on the relation classification task across the
relation restrictions R1-RS5. The highest accuracy score in each column is indicated in bold. All
evaluated LLMs are ranked in ascending order based on their Global Average scores reported by
White et al|(2025) from A (worst) to R (best). Some open-source models are not included in this
ranking; therefore, we loosely position them alongside models of similar parameter size.

The results reveal substantial variability among the evaluated models. Smaller-scale models such as
Llama-3.1-8b exhibit poor performance across all relations, with accuracy often below 20%. Sim-
ilarly, GPT-0ss-20b, GPT-4.1-nano and Mistral-small:24b perform inconsistently, though notably
the relations they struggle on sometimes differ. In contrast, larger models such as Gemini-2.5-pro,
GPT-5-nano, GPT-5, GPT-03, and Grok-3-mini achieve accuracies consistently above (or close to)
90% across all relations. Among the evaluated relations, R and Ry are the least challenging overall
(though not for all models), while R3 emerges as the most challenging, revealing the limitations of
current models in reliably capturing the containment relationE] GPT-5 demonstrates the best perfor-
mance over all relations, followed closely by Gemini-2.5-pro.

4.2 ANSWER-SET CONSISTENCY

Table |3| lists the results for answer-set consistency, considering the control relation, all five test
relations, and the measures of consistency rate and Jaccard similarity. Please note that exceptionally
for ~ Ry, a score lower to 0 for Jaccard similarity is better as the answer sets should be disjoint. We
also show the percentage of questions that return idk or an empty answer.

In the base case, we see high rates of answer-set inconsistency for all relations, including even the
control relation. The small gap between R, and R; suggests that stochasticity plays an important
role in answer-set inconsistency for equivalence across all models, even though temperature was
lowered as much as possible in all such cases. However, the gap between R., R; and containment
/ ternary relations suggests that semantic misunderstanding is also a key cause of inconsistency for
these latter relations in particular. The most inconsistent relation is the ternary relation of Rs, with
the most consistent relation overall being the disjointness relation R4. The best models again tend to
be the large GPT models. There are notable improvements for the mitigation strategy Classify-then-

3Regarding why R3 is more challenging than R, Ry is based on Q3, and R3 is based on Qu4, where Qq
questions tend to negate the restriction that ()3 adds over ()1, and this negation appears more challenging.
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Enumerate (CtE), which (surprisingly) even outperforms the Oracle in many cases, perhaps due to
forcing the LLM itself to reason about the questions when classifying the relation between them.

Table 3: Per-relation consistency (0-100 scale) for each model and strategy (Str).

ID Model Str %R. ~R, %R, %R %R3 %Ry %Rs %R ~R; ~Ry ~Rs; %idk
A Llama-31-8b Base 291  21.52 1.67 3.83 2.17 8433 0.00 1840 16.77 319 11.63 1.96
CtE - - 16.33 100.00 33.83 68.17 5.00 44.67 56.03 9.74 50.18  25.08
Ora. = - 12,67 1550 12.33  61.83 1.83 20.83 4549 1126 33.16 0.21
B GPT-0ss-20b  Base 21.92 43.78 21.83 38.83 33.83 8350 10.17 37.63 4341 752 39.22 13.75
CtE == > 67.17 £ 100.00 73.17 84.67 38.00 72.60 79.39 10.73 76.77 37.04
Ora. = > 58.33 80.67 9233 9533 62.00 77.73 76.50 397 8443 13.33
C GPT-41-nano Base 58.43 68.06 28.00 4733 37.83 63.33 3.83 36.06 5083 17.90 39.07 12.71
CtE - - 97.33 71.67 56.67 38.17 0.00 5277 9757 6149 7272 80.87
Ora. = > 54.67 59.17 60.17 61.83 21.50 51.47 6237 2257 5043 19.37
D Mistral-small:24b  Base 43.00 63.98 44.33 50.67 45.00 51.00 1.50 3850 6442 3441 5191 2942
CtE - —"—  84.50 100.00 80.67 79.83 4233 7747 9257 17.74 81.10 33.58
Ora. - ” 72.00 74.67 90.00 95.83 50.17 76.53 82.96 148 75.63 15.54
E Llama-31-70b Base 20.33 @ 48.82 20.50 29.17 2433 71.67 3.17 29.77 4721 9.55 3540 3.58
CtE = -’— 80.33  100.00 86.33 93.50 56.17 83.27 90.71 295 86.21 26.91
Ora. = - 61.00 72.67 82.17 9350 50.67 72.00 7529 337 79.57 5.04
F Gemini-2.0-flash Base 4856 70.09 33.33 43.33  36.50 64.00 5.67 36.57 59.78 1221 4547 1.83
CtE = = 88.17  100.00 94.50 64.67 54.00 80.27 93.84 27.65 9257 40.66
Ora. - - = 79.00 84.17 92.00 96.67 73.83 85.13 82.33 1.37  90.66 2.96
G GPT-41-mini Base 28.00 53.78 33.83 48.33  38.67 56.33 5.17 3647 6275 1574 49.84 4.96
CtE = - 89.83 64.00 94.83 77.17 64.00 7797 9573 21.83 94.82 23.25
Ora. - - 77.50 87.67 9633 89.67 68.83 84.00 88.81 6.10 88.35 8.75
H GPT-40 Base 37.83 60.70 45.67 53.50 47.17 63.50 6.17 4320 6570 2648 5393 29.83
CtE - = 97.33 99.33  98.67 38.00 3250 73.17 58.67 6127 9791 66.46
Ora. = > 85.31 91.82 9482 8648 6795 8528 7338 12.11 7390 3393
1 GPT-41 Base 28.75 59.62 39.67 50.50 39.00 64.17 10.17 40.70 67.74 1096 54.27 3.96
CtE = - 91.83 7033 97.50 87.00 74.83 8430 97.54 11.74 97.11 13.75
Ora. - ” 82.50 91.83 9450 9533 7483 87.80 92.07 3.09 9252 6.62
J Grok-3-mini  Base 37.67 63.09 34.33 52.50 4433 87.83 23.17 4843 63.30 550 57.31 8.21
CtE = —"— 90.83  100.00 90.00 86.67 66.83 86.87 9639 12.77 93.66 35.08
Ora. - > 88.17 92.67 98.50 9550 81.00 91.17 93.63 4.00 94.48 13.46
K DeepSeek-V31 Base 38.92 @ 6144 32.50 4550 39.83 55.83 7.17 36.17 5696 @ 16.65 46.37 11.33
CtE = "= 95.00 9333 92.00 69.83 56.33 81.30 97.34 2844 94.61 30.21
Ora. - - 81.67 88.83 95.00 94.67 71.00 86.23 91.17 396 91.64 10.00
L Gemini-2.5-flash Base 38.00 @ 64.54 33.67 50.83 43.17 86.17 23.17 47.40 59.72 2.88 53.20 7.37
CtE = > 89.83  100.00 96.83 90.67 84.83 9243 93.83 8.82 96.07 31.96
Ora. == - 89.17 90.17 9533 9567 8550 91.17 92.56 4.08 91.72 8.00
M GPT-5-nano  Base 33.59 49.39 59.33 6433 6333 67.67 1733 5440 7262 29.88 6345 41.96
CtE = =, 77.83  100.00 76.83 19.50 0.50 5493 78.16 80.39 76.08 31.00
Ora. - - 84.17 83.17 97.17 77.83 5333 79.13 89.65 2140 8536 41.25
N DeepSeek-reasoner Base 27.64 4939 17.83 40.00 30.33 81.67 10.50 36.07 45.58 3.96 41.09 4.21
CtE = > 71.50 9333 8733 6833 53.17 7473 76.87 30.82 8853  29.00
Ora. == - 68.33 75.67 86.33 93.00 58.33 7633 82.21 537 83.57 6.25
o Gemini-2.5-pro  Base 36.75 @ 66.34 30.83 44.00 3933 81.50 19.50 43.03 6291 3.10 56.57 3.71
CtE == = 8533 100.00 88.00 93.00 7133 87.53 89.78 6.22 86.16 33.00
Ora. - > 77.33 80.17 92.17 97.83 74.83 8447 8197 2.06 85.79 10.62
P GPT-5-mini Base 63.17 76.14 6533 63.67 68.17 61.50 14.50 54.63 77.02 3593 67.13 47.08
CtE - > 88.00 100.00 75.00 67.33 34.00 72.87 9258 32.67 76.67 55.08
Ora. - > 86.83 91.67 95.00 73.67 5450 8033 91.04 26.17 8730 50.04
Q GPT-03 Base 31.25 58.88 34.33 50.83 38.50 86.50 19.33 4590 62.68 547 5442 8.83
CtE - - 82.00 88.33 91.33 9250 74.67 8577 93.24 6.74 9124  26.58
Ora. - = 73.67 92.00 94.50 9733 77.17 8693 82.18 244  85.65 13.88
R GPT-5 Base 5850 76.93 60.67 63.83 65.00 73.83 21.50 56.97 7833 22.05 67.92 32.04
CtE - - 82.52 9335 83.89 71.65 4824 7593 87.60 2562 59.50 37.06
Ora. = - 73.50 80.36 87.05 87.83 60.70 77.89 8221 8.66 69.69 16.33

4.3 HYPOTHESIS TESTING

In Appendix [E] we present an analysis of the statistical significance of our results. Regarding hy-
pothesis H;, that “The CtE and Oracle strategies yield less answer-set inconsistency than Base”,
this is confirmed by a p-value < 0.001 for almost all models for both strategies. Regarding hypoth-
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esis Ho, the analysis reveals that prompting strategy significantly affects both absolute consistency
and relative model rankings.

Table ] shows significant positive correlations between %Ry, % Rs, and ~R4 and the average score
of the models on the external benchmark (White et al., 2025). Models not in this benchmark are
excluded. In particular, Ry exhibits strong positive correlations across both measures. Since Rj
is the most challenging relation to identify, this finding supports H2, suggesting that consistency is
more pronounced in the more complex answer-set tasks.

Table 4: Pearson correlations between external model scores and reasoning performance metrics.
Asterisks indicate statistical significance: * p < 0.05, ** p < 0.001.

%R1 %R, %Rs  %Ra %Rs %R ~Ry  ~Ry ~Rs

r 0310 0368 0.400 0.623* 0.800** 0.659* 0.418 -0.201 0.847*%*
p 0281 0.195 0.156 0.017 0.001 0.010 0.137 0.492 <0.001

5 DISCUSSION

We have highlighted and formalized the phenomenon of answer-set inconsistency in LLMs, pro-
posed a dataset to evaluate it, defined various measures to quantify it, and presented the results for
18 contemporary LLMs.

Research questions We address the RQs presented in the introduction:

RQ1 LLMs exhibit high degrees of answer-set inconsistency for enumeration questions, with the
particular degree depending on the model and relation (see Table[3).

RQ2 Contemporary large LLMs can recognize the set-theoretic relations that hold between enu-
meration questions with accuracy often about 90%, though smaller/older models struggle
with many types of relations (see Appendix D).

RQ3 Binary equivalence relations appear to be the easiest relations for the LLMs to reason about,
where they struggle most with containment relations and n-ary relations (see Appendix [D]
and Table [3).

RQ4 Based on our control (R,), much of answer-set inconsistency for equivalence relations is
due to the stochastic nature of LLMs, whereas semantic misunderstanding plays a more
dominant role for containment, disjointness and n-ary relations (Table E[)

RQS5 Answer-set inconsistency can be mitigated (i.e., improved by a wide margin, with statistical
significance) by prompting strategies that ask the LLM to reason about the set-theoretic
relations that holds between enumeration questions and their answer sets (Table [3).

The performance of LLMs for enumeration questions is remarkable considering that the technology
was not designed for this sort of workload (unlike, say, databases). But their performance is far
from perfect. Users should exercise caution when using contemporary LLMs to answer enumeration
questions, and should not expect consistent responses (even for the same query at different times).
Further research is required to understand and address this issue, potentially combining LLMs with
other technologies that provide consistency guarantees.

Future Work The notion of answer-set (in)consistency could be extended further, for example, to
include set cardinality (counts). More work is needed on how to improve the consistency of LLMs in
this regard, which may include prompting strategies that instruct the LLM to reason about relations
such as containment, disjointness, etc., inherent to such questions. Overall, one cannot expect an
LLM by itself to provide consistency guarantees, so it is of interest to conduct further research on
combining LLMs with technologies that provide such guarantees by design.
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A PROMPTS USED WITH LLMS

This section presents the three prompting strategies employed to evaluate the LLMs. The place-
holder question denotes the text segment that is replaced with a question from the dataset.

A.1  Zero-shot

{question}

If you can’t answer, return ’'idk’.

If the question has no answer, return ’'no answer’.

In the response, do not use abbreviations or acronyms, but spell out the
full terms, i.e. "United States of America" instead of "USA".

If the response contains numbers or digits, use Arabic numerals. For
example, if the answer contains Star Wars V, indicate it with Star
Wars 5. Do not use Roman numerals (such as V) or text (such as five).

Please, Return me an exhaustive list separated by the symbol ' |’ don’t
add any other text.

A.2 Classification & Question

You are given two questions, gl and g2.

Your task is to determine the logical relationship between their
respective sets of correct answers

Choose only one of the following relations:

— Equivalence: The answer sets of gl and g2 are exactly the same.

— Contains: All answers to g2 are also answers to gl, but gl includes
additional answers.

- ContainedBy: All answers to gl are also answers to g2, but g2 includes
additional answers.

- Overlap: gl and g2 share some, but not all, answers. Neither fully
contains the other.

- Disjoint: gl and g2 have no answers in common.

— Unknown: The relation between the answer sets cannot be confidently
determined based on the given questions.

Here are the two questions:

ql: {ql}

qz2: {q2}

3 Return **onlyxx the name of the most appropriate relation from the list

above.
Do **notxx provide any explanation or commentary.

A.3 Oracle

Below is the oracle prompt used for the logical equivalence relation. For the other two other log-
ical relations tested, the prompt is adapted by replacing the true_logical relation placeholder and
modifying certain parts of the sentence to ensure coherence.

Pay attention, the questions I asked you before are {
true_logical_relation}, but you returned me different values.

In the response, do not use abbreviations or acronyms, but spell out the
full terms, i.e. "United States of America" instead of "USA".

If the response contains numbers or digits, use Arabic numerals. For
example, if the answer contains Star Wars V, indicate it with Star
Wars 5. Do not use Roman numerals (such as V) or text (such as five).

Please, Return me an exhaustive list separated by the symbol ’ |’ don’t
add any other text.

A.4 QUESTION PIPELINE

The multi-agent process consists of four steps:

13
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* Agent 1 (Validate Q1): checks whether the input question Q1 is well-formed and suitable;
aborts if invalid.

« Agent 2 (Generate Q2): produces a companion question ()2 consistent with the intent and
constraints of (1.

» Agent 3 (Generate Q3 & Q4): creates Q3 and (4 such that the set (Q1,Q2, @3, Q4)
satisfies the desired logical relations (e.g., equivalence, containment, or disjointness).

* Agent 4 (Validate All): verifies that ()1—Q4 jointly meet the required logical and format-
ting rules, corrects minor issues, and outputs the final validated set.

Overall, the workflow follows: validate (; — generate ()2 — generate (03, ()4 — final validation.
The process aborts if any step fails.

Agentl:

1 Evaluate whether the following question meets all of the following
criteria for acceptable answer types:

Returns a limited number of distinct answers (between 2 to 50).
Does **notxx return a binary answer (e.g., "yes" or "no").

Does *#*notxx return a single specific value (e.g., a date, name,

r number) .

. Does *#*notxx require multiple answer dimensions (e.g., combining "
what" and "where" in the same question).

J
=0 wN -

8 Question: "{question}"
10 Answer only with "Yes" or "No".

Agent2:

You are a rephrasing expert. Generate question Q2 which means exactly
the same thing as the original question but uses different syntax

wording.
3 Original Question: "{question}"
; Format your response as:
6 Q2:
Agent3:

Given the original question below, generate Q3 and Q4 to ensure:
2 - Q03 and Q4 are objective,
3 — answer set of Ql equal to union of answer set of Q3 and 04,
4 — answer set of Q3 disjoint from Q4,
5 — answer set of Q3 and Q4 subset of Q1 (more restrictive).

Original Question: "{question}"
9 Format your response as:

10 Q3:

11 Q4:

Agent4:

1 You are reviewing four related questions.

3 Ql: {qgl}
4 Q2: {g2}
5 03: {93}
6 Q4: {gd}
8 Tasks:

9 1. Check if Q2 is equivalent to Q1.

14
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2. Check if Q3 is a more restrictive version of Ql.
3. Check if the union of Q3 and Q4 covers Q1 (Q1 = Q3 + 0Q4).
4. Check all Q1704 are objective questions.

If everything is correct, answer only:
"Yes"

If not, return a corrected version in this format:
Corrected Ql:
Corrected Q2:
Corrected Q3:
Corrected Q4:

B DATASET CONSTRUCTION

To construct the question sets, we relied on four data sources: QALD (Usbeck et all 2024), a
handcrafted question-answering dataset for Wikidata and DBpedia; LC-QuAD 2.0, a large-scale
question-answering dataset providing SPARQL queries with corresponding answers from both Wiki-
data and DBpedieﬁ ; and a Synthetic dataset, generated entirely through LLMs.

QALD and LC—QuAD 2.0. To extract questions from QALD (Liu et al.| 2024aj [Usbeck et al.,
2024) and LC-QuAD 2.0 (Dubey et al.,2019) datasets that conformed to our criteria, we employed
a filtering step using an LLM-based pipeline. The model was instructed to assess each question for
compliance with the inclusion conditions and, if satisfied, to generate the corresponding )2, ()3, and
@4 questions. The LLM model used for this task was GPT-41-2025-04-14 and the initial datasets
contained 320 for QALD and 30,000 for LC-QuAD 2.0. All generated sets were subsequently
reviewed by three researchers to ensure adherence to the defined logical relationships and criteria.
The final filtered QALD dataset contains 150 distinct question types per logical relation, for a total
of 600 questions.

QAWiki. For the QAWiki dataset, many (1, (Q2, and Q3 pairs were directly retrieved via
SPARQL queries. However, only 54 ()1—Q3 pairs and 951 Q1—Q)> pairs were available. There-
fore, for the 54 Q1—Q3 pairs, the corresponding ()2 and ()4 questions were manually constructed.
Conversely, for the 951 (Q1—Q2 pairs, Q5 and ()4 were manually derived. As with the other sources,
this dataset was curated to include 150 distinct question types per logical relation, totaling 600 ques-
tions.

Synthetic. The Synthetic dataset was generated using gpt-4.1-2025-04-14, designed to
produce 500 complete sets of @1, @2, @3, and Q4 questions. Each set was then manually reviewed
by three researchers to ensure correctness, adherence to the inclusion criteria, and to eliminate du-
plicates. Also, this dataset was curated to include 150 distinct question types per logical relation,
totaling 600 questions.

The overall dataset contains 600 question types per logical relation (Q); to Q)4), yielding a total of
2,400 questions.

C VISUALIZATIONS

In this section, we present visualizations of the main results for answer-set inconsistency across the
models.

Figure |1| presents the Jaccard similarity ~R;, ~R4 and ~R5. Figure illustrates that for ~R;
there is high consistency across models, particularly for CtE and Oracle, with Jaccard similarity val-
ues frequently exceeding 0.8. In contrast, Figure [Tb]demonstrates very low consistency, indicating
that this is the most challenging relation for LLMs. Even when adjusting the prompting strategy, the
improvement remains limited and not comparable to the performance observed for ~R; and ~Rs.

4DBpedia:https://www.dbpedia.org/
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Figure 1: Visualization of answer-set (in)consistency across models

Finally, similar to ~R;, Figure [Ic|shows higher consistency for ~Rj, with scores improving pro-
gressively from Base to Oracle. Moreover, for some models (such as GPT-4.1 and DeepSeek-V3.1),
the CtE strategy proves more effective than Oracle.

Figure [2] shows an alternative view to the bar chart, using a line chart and adding the consistency
rate. It is interesting to see how the Base strategy (blue dot) is almost always below CtE and Ora.
Furthermore, the sorting of the models follows the benchmark White et al.| (2025), but there is no
linear increase in performance as the model performance scales (for all strategies), as we would
expected. What happen instead is that models such as GPT-41-nano is better than DeepSeek-V3.1
for the % R4.
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Figure 2: Per-relation consistency for each LLM and strategy. LLMs are represented by ID from
Table 5]

Table 5: Accuracy (%) of different LLMs on the relation classification task across relations. In bold,
the model that achieves the highest accuracy for the relation(s). <R indicates mean accuracy.

ID Model xRq xRo xR3 xRy xRs5 xR
A Llama-31-8b 5.83 11.50 11.17 19.67 3.00 10.63
B GPT-0ss-20b 92.89 4.00 1.78 0.89  94.22 38.76
C GPT-41-nano 68.67 41.11 4267  66.00 0.00 = 4329
D Mistral-small:24b 91.33 0.22 1.10  99.56 13.33 41.91
E Llama-31-70b 97.78 8.00 2733 9933  98.44 66.98
F Gemini-2.0-flash 89.56 8222 2044 9533 8022 73.15
G GPT-41-mini 91.33  34.89 19.56  99.33  96.44 68.31
H GPT-40 94.00 3378 11.11 99.56  65.33 60.76
1 GPT-41 9393 9883 6776 99.53  99.30  91.87
J Grok-3-mini 90.44  95.11 96.67 97.78  97.56 95.11
K DeepSeek-V31 9733 3644  20.67 99.56 91.33 69.87
L Gemini-2.5-flash 85.56  96.00 9444 9756  95.56 93.82
M GPT-5-nano 91.11 8578 91.56  88.00  90.67 89.82
N DeepSeek-reasoner 87.76 96.83 96.60 96.60 95.92 94.74
(o) Gemini-2.5-pro 90.22  97.11 9378 9822  96.67 95.20
P GPT-5-mini 89.33  97.78  98.00 94.89  96.00 9520
Q GPT-03 9133 9733 9733 9467 93.56 94.84
R GPT-5 89.33  98.00 98.44 96.44 9444 = 9533
Average 8543 6194 5502 8572 77.89 73.31

D CLASSIFICATION TASK RESULT

Table[3reports in detail the accuracy of the different models in identifying the different relationship.
GPT-5 proves to be the strongest model, consistently detecting different relationships. The most
difficult relationship to recognize for all models war R3.
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E STATISTICAL SIGNIFICANCE

In this section, we present the statistical significance of the results. Table [6] presents the McNemar
p-value which shows the statistically significant improvements over the Base prompting with the
Classification-then-Enumerate (CtE) strategy and Oracle (Orac.) on the overall dataset. Asterisks
denote statistical significance: *** for p < 0.001, ** for p < 0.01, and * for p < 0.05. The empty
cell indicates a p-value > 0.05.

The table shows that the two proposed strategies are statistically effective in improving consistency
on almost all tested models. The improvement does not occur in almost all cases for the R4 relation-
ship for the CtE strategy, partuculary for models LLama-31-8b, GPT-0ss-20b, Gemini-2.0-flash,
GPT-40, Grok-3-mini, GPT-5-nano, DeepSeek-reasoner and GPT-5.

The Oracle strategy, on the other hand, does not show a statistically significant improvement only
for R4 and onl on LLama-3.1-8b and GPT-4.1-nano.

Table 6: McNemar p-value which shows the statistically significant improvements over the zero-shot
prompting with the Classification-then-Enumerate (CtE) strategy and Oracle (Orac.) on the overall
dataset. Asterisks denote statistical significance: *** for p < 0.001, ** for p < 0.01, and * for
p < 0.05. The empty cell indicates a p-value > 0.05

CtE Ora.
LLM Rl R2 R3 R4 R5 | Rl R2 R3 R4 RS
Llama-3.1-8b
GPT-o0ss-20b

GPT-4.1-nano
Mistral-small:24b
Llama-3.1-70b
Gemini-2.0-flash
GPT-4.1-mini
GPT-40

GPT-4.1
Grok-3-mini
DeepSeek-V3.1
Gemini-2.5-flash
GPT-5-nano
DeepSeek-reasoner
Gemini-2.5-pro
GPT-5-mini
GPT-03

GPT-5

F ANWSER-SET CONTRADICTIONS

In the body of the paper, we have looked at answer-set inconsistencies with respect to gold-standard
relations between questions. We further define answer-set contradictions as the case where — ir-
respective of the gold standard — the relation x predicted by a model M for questions 1 and Q)2
does not hold for the answer sets that M itself generates for ()1 and (2. In these cases, the model
contradicts itself. We describe here some measures and results that we extracted to analyze this
issue.

F.1 MEASURES

We consider the following measures to quantify the self-contradictions of the LLMs in this setting.

Contradiction-free rates To complement classification accuracy and answer-set consistency, we
measure whether a model is internally consistent with respect to the logical relation it predicts.
Given two questions );,Q;, We say the case is contradiction-free iff the predicted relation is

18



Under review as a conference paper at ICLR 2026

R3

R2

R1

1
0.8
0.6
0.4
0.2
0

<PAOARROE——MASZ ORI
(1) PPOIN

POCOVE O > MEADEOR 0K

POV OO > WeADTOROR-

<MOARROT =S Z 0RO
(1) 1PPOIN

Model (j)

Model (j)

Figure 3: p-value heatmap of LLMs in overall datasets with zero-shot action.
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satisfied by the model’s own answers; otherwise a self-contradiction occurs. We define the self-
contradiction rate as the percentage of cases where a model’s predicted relation is not satisfied
by its own answers. This measure distinguishes between models that are internally consistent but
wrong, and those that are internally inconsistent, thereby offering a finer-grained perspective on
model reliability. We denote such rates as ¢(R).

Consistency by relation correctness R(+/—). To further analyze model behaviour, we distin-
guish consistency depending on whether the logical relation between two questions is correctly
identified with respect to the gold standard. We denote this by R(-+/—): the (+) condition refers to
cases where the predicted relation matches the gold relation, while (—) refers to cases where it does
not. For each relation, we report both the percentage of consistent cases (or the average Jaccard
score) under R(+) and under R(—). This breakdown reveals how much consistency stems from
correctly recognizing the relation versus how much persists even when the relation is misclassified.

F.2 RESULTS

In Table [7] we present the results of the contradiction-free rates for five relations, while Table 9]
presents the results for consistency across these five relations. Overall, we see that the models do
tend to contradict themselves, i.e., the answers they return for questions do not respect the relation

between the questions that they themselves predict. A lot of variance is seen across the models, with
large models showing more consistency.

G GENAI USAGE DISCLOSURE

GenAl is used for text refinement, assist code debugging, dataset creation.
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Table 7: Per-relation contradiction-free rates c(R;) (0-100 scale).

LLM  Act c¢(R1) c¢(R2) ¢(Rs) ¢(Rs) c(Rs)

Llama-31-8b CtE 81.00 13.83 82.67
Base 93.83 86.00 87.00 28.67 97.00

GPT-0s5-20b CtE 66.50 89.33 40.33
Base 26.17 41.00 33.50 80.50 16.17

GPT-41-nano CtE 69.33 36.50 100.00
Base 45.83 48.83 52.50 49.50 96.17

Mistral-small:24b CtE 88.50 0.17 56.50
Base 49.17 49.17 54.83 50.83 87.33

Llama-31-70b CtE 82.33 9.00 53.67
Base 22.67 68.50 61.83 71.83 4.67

Gemini-2.0-flash CtE 88.50 46.83 46.27
Base 37.33 44.33 60.67 64.17 22.17

GPT-41-mini CtE 89.33 44.83 62.50
Base 38.67 46.17 58.67 56.33 8.17

GPT-40 CtE 96.50 37.09 77.67

Base 46.00 49.33 53.33 63.83 38.17

GPT-41 CtE 92.33 69.67 74.67

Base 42.56 50.52 50.69 64.71 10.73

Grok-3-mini CtE 91.83 95.17 69.33
Base 39.17 52.50 4433 87.67 25.83

DeepSeek-V31 CtE 89.33 10.00 52.00
Base 34.67 50.83 54.50 55.83 14.67

Gemini-2.5-flash CtE 87.50 94.99 85.33
Base 41.50 51.17 42.67 85.00 26.17

GPT-5-nano CtE 77.67 89.33 8.83
Base 58.33 61.33 62.67 66.00 24.67
DeepSeek-reasoner CtE 65.33 92.00 54.00
Base 27.24 41.62 31.13 79.19 15.74

Gemini-2.5-pro CtE 90.67 95.83 74.67
Base 38.33 44.00 39.83 81.67 22.83

GPT-5-mini CtE 84.67 96.17 38.00

Base 63.50 63.00 68.50 63.33 19.00

GPT-03 CtE 84.33 85.67 77.50

Base 39.17 49.67 39.50 85.00 25.67

GPT-5 CtE 91.33 98.17 63.00

Base 60.67 63.17 64.67 76.00 26.50
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Table 8: Per-relation consistency for R(+) (0-100 scale).

LLM  Act %Ri(+) %Ra(+) %Rs(+) %Ra(+) %Rs(+) ~Ri(+) ~Ra(+) ~Rs(+)

Llama-3.1-8b  CtE 19.23 100.00 10.26 73.28 50.77
Base 11.43 5.80 1.49 83.05 0.00 27.31 3.60 15.88
GPT-0ss-20b CtE 67.84 100.00 48.26 79.69 76.58
Base 22.34 39.10 33.04 84.91 15.78 43.99 6.34 39.82
GPT-4.1-nano CtE 96.51 66.23 96.72

Base 31.08 45.11 38.40 60.27 54.44 20.40
Mistral-small:24b  CtE 89.82 100.00 51.16 95.08 81.67
Base 46.46 0.00 42.86 50.92 29.58 66.11 34.42 56.45
Llama-3.1-70b  CtE 82.30 100.00 57.27 92.09 86.26
Base 20.85 34.78 24.54 71.93 6.77 47.74 9.49 35.21
Gemini-2.0-flash CtE 89.25 100.00 84.51 94.75 93.55
Base 33.88 42.26 43.41 64.80 11.59 60.34 12.09 45.48
GPT-4.1-mini CtE 93.42 65.32 87.39 97.17 95.15
Base 34.92 42.11 43.65 56.40 13.02 63.97 15.52 49.89
GPT-40 CtE 98.28 100.00 96.88 59.12 98.83
Base 45.60 54.59 52.05 63.76 24.23 66.28 26.16 55.12
GPT-4.1 CtE 94.53 70.34 87.14 98.65 97.24
Base 40.59 50.53 42.68 64.52 16.35 68.99 10.81 54.18
Grok-3-mini  CtE 95.42 100.00 79.52 98.67 93.89
Base 35.57 52.63 44.14 88.59 26.88 64.69 5.06 58.07
DeepSeek-V3.1  CtE 92.81 100.00 85.71 95.98 96.43
Base 32.93 44.81 36.29 55.87 15.65 57.50 16.67 46.40
Gemini-2.5-flash CtE 94.79 100.00 94.57 95.60 96.53
Base 35.65 51.04 42.66 86.62 25.69 61.50 2.68 53.96
GPT-5-nano  CtE 80.55 100.00 72.00 80.81 78.26
Base 59.60 65.04 64.18 68.98 43.59 72.99 28.51 63.11
DeepSeek-reasoner CtE 65.47 100.00 60.56 67.65 75.33
Base 19.01 40.59 30.02 81.44 14.08 47.70 3.98 4231
Gemini-2.5-pro  CtE 92.70 100.00 79.50 93.07 88.22
Base 33.15 43.86 38.98 82.06 22.93 64.78 2.79 57.21
GPT-5-mini CtE 89.35 100.00 64.34 93.71 76.66
Base 65.93 63.70 68.71 63.05 47.64 77.59 34.29 66.87
GPT-03 CtE 85.54 88.41 83.01 94.99 92.23
Base 35.73 50.26 38.74 87.57 24.02 64.18 4.92 55.43
GPT-5 CtE 95.47 100.00 89.49 98.21 93.82
Base 61.76 63.78 65.03 75.73 42.43 79.14 20.32 68.03
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Table 9: Per-relation consistency for R(—) (0-100 scale).

LLM Act %Ri(—) %R2(—) %R3(—) %Rs(—) %Rs(—) ~Ri(—) ~Rs(—) ~Rs(—)

Llama-3.1-8b CtE 16.20 100.00 8.05 55.25 50.09
Base 1.06 3.58 2.25 84.65 0.17 16.12 3.09 11.50

GPT-0ss-20b  CtE 55.88 100.00 50.00 74.50 80.90
Base 13.89 35.56 54.55 68.00 8.33 3431 20.51 29.83

GPT-4.1-nano  CtE 99.41 73.50 56.50 99.71 72.72
Base 21.08 48.71 3743 68.44 11.50 42.72 13.73 39.07
Mistral-small:24b  CtE 26.00 100.00 56.91 64.90 81.06
Base 20.41 50.75 45.03 66.67 23.25 45.42 33.33 51.31

Llama-3.1-70b  CtE 16.67 100.00 57.52 46.07 86.09
Base 6.67 28.70 24.26 40.00 22.22 26.59 17.00 47.39
Gemini-2.0-flash  CtE 42.86 100.00 85.11 55.66 91.69
Base 27.78 47.54 34.61 48.28 16.24 54.11 14.63 45.43

GPT-4.1-mini CtE 52.83 63.47 75.47 80.86 91.40
Base 22.64 51.66 37.34 50.00 29.17 50.16 37.72 48.44

GPT-40 CtE 64.71 100.00 96.45 43.37 98.65

Base 46.88 53.01 46.49 25.00 28.30 55.42 75.00 51.75

GPT-4.1 CtE 45.45 70.00 82.35 78.50 92.73

Base 22.58 50.00 30.86 0.00 33.33 44.15 68.06 39.79

Grok-3-mini  CtE 44.44 100.00 57.89 73.36 86.46
Base 20.41 50.00 50.00 53.85 6.25 47.69 25.50 29.63

DeepSeek-V3.1  CtE 54.55 100.00 83.92 74.09 91.83
Base 21.74 45.88 40.76 50.00 22.81 43.39 14.06 46.07
Gemini-2.5-flash CtE 58.54 100.00 62.07 82.66 86.86
Base 20.99 45.83 57.14 70.59 16.67 48.31 9.86 34.92

GPT-5-nano  CtE 50.91 100.00 36.00 51.92 52.07
Base 56.25 60.23 54.00 57.35 46.30 68.30 40.60 66.91
DeepSeek-reasoner CtE 36.36 100.00 37.50 55.45 73.20
Base 6.15 23.53 33.33 85.00 0.00 28.64 3.95 21.45

Gemini-2.5-pro  CtE 25.76 100.00 38.64 63.17 60.09
Base 5.88 50.00 45.45 44.44 0.00 42.85 23.57 37.92

GPT-5-mini CtE 71.74 100.00 60.71 78.90 77.00
Base 59.65 62.50 41.67 31.03 55.56 71.61 68.10 72.75

GPT-03 CtE 32.50 86.36 41.38 68.66 71.69

Base 16.28 70.59 28.57 65.52 7.89 43.24 16.28 39.50

GPT-5 CtE 56.25 100.00 62.07 78.48 84.04

Base 50.00 66.67 62.50 15.79 53.12 70.50 74.82 66.04
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