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ABSTRACT

The crystal structure can be simplified as a periodic point set repeating across the
entire three-dimensional space along an underlying lattice. Traditionally, methods
for representing crystals rely on descriptors like lattice parameters, symmetry, and
space groups to characterize the structure. However, in reality, atoms in material
always vibrate above absolute zero, causing continuous fluctuations in their po-
sitions. This dynamic behavior disrupts the underlying periodicity of the lattice,
making crystal graphs based on static lattice parameters and conventional descrip-
tors discontinuous under even slight perturbations. To this end, chemists proposed
the Pairwise Distance Distribution (PDD) method, which has been used to distin-
guish all periodic structures in the world’s largest real materials collection, the
Cambridge Structural Database. However, achieving the completeness of PDD
requires defining a large number of neighboring atoms, resulting in high com-
putational costs. Moreover, it does not account for atomic information, making it
challenging to directly apply PDD to crystal material property prediction tasks. To
address these challenges, we propose the atom-Weighted Pairwise Distance Distri-
bution (WPDD) and Unit cell Pairwise Distance Distribution (UPDD) for the first
time, incorporating them into the construction of multi-edge crystal graphs. Based
on this, we further developed WPDDFormer and UPDDFormer, graph transformer
architecture constructed using WPDD and UPDD crystal graphs. We demonstrate
that this method maintains the continuity and completeness of crystal graphs even
under slight perturbations in atomic positions. Moreover, by modeling PDD as
global information and integrating it into matrix-based message passing, we sig-
nificantly reduced computational costs. Comprehensive evaluation results show
that WPDDFormer achieves state-of-the-art predictive accuracy across tasks on
benchmark datasets such as the Materials Project and JARVIS-DFT.

1 INTRODUCTION

Crystals are solids with a regular geometric shape formed by atoms, ions, or molecules arranged
periodically in space during the crystallization process. Their structure is typically described using
repeating unit cells and lattice vectors. However, this method of description brings a fundamental
challenge: the same crystal structure can be represented by different unit cells and lattice vectors,
as shown in Figure 1a. Additionally, in real-world scenarios, the experimental coordinates of unit
cells and atoms are inevitably affected by atomic vibrations and measurement noise. These subtle
disturbances can lead to discontinuous changes in any simplified unit cell (Kurlin, 2024), resulting in
numerous different unit cells for a given crystal structure, as shown in Figure 1b, thereby introducing
ambiguity in the representation of crystal data (Widdowson & Kurlin, 2022). Currently, many graph
neural networks (Batzner et al., 2022; Yan et al., 2022; 2024a;b) typically use unit cell parameters,
simplified cell parameters, symmetry, and space groups to represent the periodic structure of crystals.
However, these features are either non-invariant or discontinuous (Zwart et al., 2008) invariants,
leaving the issue of ambiguity in crystal data unresolved (Patterson, 1944; Widdowson et al., 2022;
Groom et al., 2016; Bartók et al., 2013; Wassermann et al., 2010; Ahmad et al., 2018).

The continuous and complete invariant—Pairwise Distance Distribution (PDD)—proposed by Wid-
dowson and Kurlin (2022) addresses the ambiguity in crystal data representation by distinguish-
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(a)

slight
 perturbation

(b)

Figure 1: Illustrations of different unit cell and lattice representations of the same crystal structure.
The blue area in the figure represents possible unit cell structures. Figure (a) shows several possible
choices among the infinitely many unit cells for the same crystal structure in the undisturbed case.
Figure (b) illustrates that for almost any perturbation, the symmetry group and any reduced unit cell
(with minimal volume) will undergo discontinuous changes.

ing all periodic structures in the world’s largest real material collection, the Cambridge Structural
Database. To achieve completeness, PDD requires a predetermined number of sufficient neighbors,
which is computationally expensive and difficult to directly apply for predicting crystal properties
(Balasingham et al., 2022). Balasingham et al. (2024) employed distance distribution graphs (DDGs)
based on PDD to predict the properties of crystal materials, but they did not achieve satisfactory per-
formance (only slightly better than CGCNN), and although this approach reduced computational
costs, it compromised the completeness of PDD. In contrast, crystal graph representations based on
multi-edge crystal graphs and unit cell parameters (Taniai et al., 2024; Yan et al., 2024a) achieve
completeness, more accurately characterizing crystal structures and achieving state-of-the-art per-
formance in crystal material property prediction tasks. However, the use of unit cell parameters
leads to discontinuities in the crystal graphs.

Since PDD does not account for atomic types, it is challenging to use it directly for effective crys-
tal property prediction. To better represent crystal structures, we first introduce atom-Weighted
PDD (WPDD) and intra-Unit cell PDD (UPDD). Furthermore, we integrate WPDD and UPDD
into the construction of multi-edge crystal graphs and propose the PDD Graph Transformer (includ-
ing WPDDFormer and UPDDFormer) based on the transformer architecture. We model WPDD
as global information and incorporate it into matrix-based message passing, significantly reduc-
ing computational costs (as shown in Table 3). Finally, we employ the Earth Mover’s Distance
(EMD) (Rubner et al., 2000) to assess the continuity of crystal graphs, demonstrating that WPDD
crystal graphs constructed using only Euclidean distances maintain continuity and general complete-
ness1 under slight atomic position perturbations, providing a more accurate depiction of real crystal
structures. Ablation experiments show the crucial role of (W/U)PDD in constructing crystal graphs.
Through comprehensive evaluations, our method achieves state-of-the-art predictive accuracy across
various tasks in the Materials Project (Chen et al., 2019) and JARVIS-DFT (Choudhary et al., 2020)
datasets. This advancement highlights the effectiveness of WPDDFormer in bridging the gap be-
tween traditional crystal descriptors and dynamic atomic behavior, leading to more accurate and
reliable predictions in materials science.

2 PRELIMINARIES

In this section, we introduce the definitions of crystal structures, PDD, isometric crystal graphs, and
the continuity and geometric completeness of crystal graphs. Additionally, we provide in Appendix
A.4 the definition and proof of the unique geometric constraints of crystals.

2.1 THE STRUCTURE OF CRYSTALS

By selecting an appropriate structural unit, the entire crystal structure can be viewed as the peri-
odic repetition of this unit in space. This property, where atoms within a crystal repeat in three-
dimensional space according to a specific pattern, is called periodicity, with the smallest repeat-
able structural unit being the unit cell. The unit cell can be defined as U = (X ,P), where X

1Except for chiral crystal structures and theoretically extremely large unit cells.
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and Z can be represented in matrix form. Typically, X = [x1, x2 · · ·xn−1, xn]
T ∈ Rn×1, where

n represents the number of atoms and xi ∈ R1 represents the atomic type of atom i in the unit
cell. P = [p1, p2 · · · pn−1, pn]

T ∈ Rn×3 is the atomic position matrix, where pi ∈ R3 rep-
resents the Cartesian coordinates of the atom i in the unit cell in 3D space. The lattice vectors
L = [l1, l2, l3]

T ∈ R3×3 can reflect the way the unit cell repeats in three directions to map the
periodic crystal structure. Therefore, in 3D space, the infinite crystal structure S can be represented
as (U ,L).

2.2 CONTINUITY AND GEOMETRIC COMPLETENESS OF CRYSTAL GRAPHS

Definition 1: Pointwise Distance Distribution. For the infinite crystal structure S = (U ,L)
mentioned in Section 2.1, fix a neighbor count k ≥ 1. For each point xi in the unit cell U , let
di1 ≤ · · · ≤ dik be the Euclidean distances from pi to its k nearest neighbors in the infinite crystal
structure. Consider an n × k matrix composed of n rows of distance vectors, where each point
xi ∈ U corresponds to one row. If the matrix contains m ≥ 1 identical rows, they are merged into
one row with a weight of m

n . The resulting matrix can be regarded as a weighted distribution of
rows, which is called the Pointwise Distance Distribution PDD(S; k) ∈ Rn×(k+1).

Definition 2: Isometric Crystal Graphs. According to the definition from Widdowson & Kurlin
(2022) and Yan et al. (2024a), an isometric transformation is a mapping that preserves Euclidean
distances, denoted as f (x) = Rx + b. Any isometric transformation f can be decomposed into
translation, rotation, and reflection. Specifically, suppose there exists a rotation matrix R ∈ R3×3,
with a determinant of 1 (|R| = 1), and a translation vector b ∈ R3, then two crystal structures
S = (U ,L) and Q = (U ′,L′) are isometric, satisfying U ′ = RU + b, where RU + b denotes the
application of the rotation R and translation b to each element in the infinite set U .

If S and Q are isometric, then their crystal graph representations satisfy G (S) = G (Q), which
means that the graphical representation of the crystal structure produces no false positives; that is,
there are no isometric pairs where G (S) ̸= G (Q) but S ≃ Q. Conversely, if G (S) = G (Q), then
S and Q are isometric, meaning f produces no false negatives, i.e., there are no non-isometric pairs
where G (S) = G (Q) but S ̸≃ Q. That is, if the crystal graph representations of artificially con-
structed crystal structures are identical under isometric transformations, then they are geometrically
equivalent.

Definition 3: Geometrically Complete Crystal Graphs. According to Widdowson & Kurlin
(2022) and Yan et al. (2024a), if we construct crystal graphs G (S) = G (Q) =⇒ S ≃ Q, where ≃
denotes the isomorphism of two crystals as defined in Definition 2, then the crystal graph G is geo-
metrically complete. This means that if two crystal graphs G (S) and G (Q) are identical, the infinite
crystal structures represented by G (S) and G (Q) are also identical. If the constructed crystal graph
G can distinguish any subtle structural differences between different crystal materials, it is said to be
geometrically complete. According to Widdowson & Kurlin (2022), we present Definitions 4-6.

Definition 4: Metric. The metric d between crystal graphs G satisfies all the axioms: 1)
d (G (S) = G (Q)) = 0 if and only if G (S) = G (Q); 2) Symmetry: d (G (S) ,G (Q)) =
d (G (Q) ,G (S)); 3) Triangle inequality: d (G (S) ,G (Q)) + d (G (Q) ,G (K)) ≥ d (G (S) ,G (K)).

Definition 5: Lipschitz continuity of crystal graphs. If Q is obtained by moving each point
in the periodic crystal S ⊂ Rn by no more than ϵ, and the distance of the constructed crystal
graph structures satisfies d (G (S) ,G (Q)) ≤ Cϵ, where C is a constant, then the crystal graph is
continuous, and Q,S ⊂ Rn can be any periodic crystal structures.

Definition 6: EMD. Let G (S) and G (Q) be the crystal graph structures we construct for peri-
odic crystals S and Q ∈ Rn . The flow from G (S) to G (Q) is represented by an n (S) ×
n (Q) matrix, where the elements fij ∈ [0, 1] indicate the partial flow from Ri (S) to Rj (Q).
The Earth Mover’s Distance (EMD) is defined as the minimum cost: EMD (G (S) ,G (Q)) =∑n

i=1

∑n
j=1 fij |Ri (S)−Rj (Q)| where fij ∈ [0, 1] satisfies the following conditions:∑n

i=0 fij ≤ wi (S) ,
∑n

j=0 fij ≤ wj (Q) ,
∑n

i=1

∑n
j=1 fij = 1 (1)

The first condition
∑n

i=0 fij ≤ wi (S) means that not more than the weight wi (S) of the com-
ponent Ri (S) ‘flows’ into all components Rj (Q) via ‘flows’fij . Similarly, the second condition∑n

j=0 fij ≤ wj (Q) means that all ‘flows’ fij from Ri (S) ‘flow’ Into Rj (Q) up to the maximum
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weight wj (Q). The last condition
∑n

i=1

∑n
j=1 fij = 1 forces to ‘flow’ all rows Ri (S) to all rows

Rj (Q).

3 RELATED WORK

Finite crystal graph representation. CGCNN (Xie & Grossman, 2018) predicts material proper-
ties by learning the connections between atoms in crystals by representing crystal structures as finite
multi-edge crystal graphs. Building on the construction of multi-edge crystal graphs, MegNet (Chen
et al., 2019) introduced global state attributes into graph networks, while GATGNN (Louis et al.,
2020) utilized multiple graph attention layers (GAT) to learn the properties of local neighborhoods
and employed global attention layers to weight global atomic features. ALIGNN (Choudhary & De-
Cost, 2021) and M3GNet (Chen & Ong, 2022) incorporated angular information into the message-
passing process to generate richer and more discriminative representations. CrysMMNet (Das et al.,
2023) adopted a multimodal framework, integrating graph and text representations to produce joint
multimodal representations of crystalline materials. CrysDiff (Song et al., 2024) is a pretraining-
finetuning framework based on diffusion models. However, the aforementioned methods represent
crystals as finite graph structures, failing to capture the periodicity of infinite crystals effectively.

Periodic representation of crystals. Recently, Matformer (Yan et al., 2022) encoded periodic pat-
terns by adding self-connecting edges to atoms based on lattice parameters, directly using lattice pa-
rameters to encode periodic structures under ideal conditions. PotNet (Lin et al., 2023) considered
the infinite summation of interatomic interactions. Crystalformer (Taniai et al., 2024) performed
infinite summations of interatomic potentials through infinitely connected attention while also uti-
lizing lattice parameters. ComFormer (Yan et al., 2024a) constructed cell parameters by adding
self-connecting edges to atoms and their copies in three different directions to encode periodic pat-
terns, employing equivariant vector representations and invariant geometric descriptors of Euclidean
distances and angles to represent the geometric information of crystals. GMTNet (Yan et al., 2024b)
aims to predict the tensor properties of crystalline materials while satisfying O(3) group equivari-
ance and the symmetry of crystal space groups to ensure the accuracy and consistency of tensor
predictions. However, while these methods achieve complete crystal graph representations, the
crystal structures they represent rely on non-invariants or discontinuous invariants, such as lattice
parameters, symmetry, and space groups, failing to address the issue of crystal data fuzziness.

Continuity and complete representations for crystals. Addressing the continuity and complete-
ness of crystal representations is a critical issue. Recent advancements in AMD (Wang et al., 2022)
and PDD (Widdowson & Kurlin, 2022) have developed matrix forms that are both complete and
continuous. However, in practical applications, using these matrix representations as inputs for pre-
dicting crystal properties without compromising continuity and completeness is challenging. The
AMD and PDD representations are designed for stable crystal structures and do not account for
atomic types. Their completeness relies on the assumption that no two crystals with identical struc-
tures differ solely by atomic type, which is only feasible for stable structures. Additionally, to
achieve completeness, a sufficiently large number of neighbors k must be predetermined for any
test crystal. Typically, hundreds of neighbors are required to distinguish all periodic structures in
the Cambridge Structural Database. Directly modeling PDD as edge information is impractical and
costly in real-world applications (Balasingham et al., 2022).

4 PDDFORMER

In this section, we first propose two variants of PDD, namely WPDD and UPDD, and then incorpo-
rate them into crystal graph construction. We finally present the PDDformer framework.

4.1 WPDD

Since the PDD representation is designed for stable crystal structures and does not consider atomic
types, it is not suitable for predicting crystal material properties. To account for the influence of
atomic types, for a given crystal structure S = U + L, where each atom xi ∈ U is labeled with
the atomic mass t(xi) corresponding to it, the final weight for each row is W = [w1, . . . , wn]

T ,
where wi = t(xi)∑n

j=1 t(xj)
. By concatenating this with PDD∈ Rn×k, an atomic-mass-weighted
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(a) PDD (b) UPDD (c) EUPDD

Figure 2: Schematic diagram of the selected neighbors in PDD in 2D. The edges in Figure a show the
neighbor selection for atom i in WPDD, represented by the red lines d1, d2, d3. They are ordered
by Euclidean distance as d1 < d2 < d3. By comparing Figures (b) and (c), we can see that we
construct the unit cell centered around each atom and select neighbors, rather than being limited to
the unit cell where the atoms are located.

WPDD(S; k) ∈ Rn×(k+1) is formed, represented by the following equation:

WPDD = (W,PDD) =
⋃n

i=1

(
t(xi)∑n
j=1 t(xj)

,
⋃k

j=1

√
(pi − pj)

2

)
(2)

Here, n represents the number of atoms in the unit cell, and pi and pj denote the spatial coordinates
of an atom i and its neighbor j, respectively, and k is the number of nearest neighbors selected
when constructing the PDD, sorted in ascending order of Euclidean distance as di1 ≤ · · · ≤ dik,
as shown in Figure 2a. WPDD is equivalent to the PDD of crystal structure S, except that the rows
are not grouped as in the original version. This prevents the loss of atomic information when two
primitive points have the same k-nearest neighbor distances but correspond to different atomic types.
Therefore, WPDD∈ Rn×(k+1), where n is the number of atoms in the constructed graph.

4.2 UPDD

When ensuring the completeness of PDD, a large number of neighbors must be predefined, typically
requiring information on hundreds of neighbors, and in extreme cases, the number must exceed the
atom count in any unit cell within the dataset. The number of neighbors, k, is difficult to determine
across different datasets, and for unit cells with fewer atoms, which constitute a larger proportion of
the dataset, an excess of neighbor information may interfere with the speed of message aggregation,
leading to greater resource consumption.

To address this issue, we introduce Unit-cell PDD (UPDD). We achieve this by reconstructing the
unit cell around each atom and encoding the pairwise distances between the atom and other atoms
within the reconstructed unit cell. This means that when constructing PDD, we focus more on the
overall structure of the atoms within the reconstructed unit cell, thereby reducing interference from
excessive neighbor information. UPDD is defined by the following formula:

Di =

{⋃n
j=1

√
(pi − pj)

2 | i, j ∈ Z
}
, (pi − pj)

2
= (xi − xj)

2
+ (yi − yj)

2
+ (zi − zj)

2
,

UPDD =
{⋃n

i=1
1
Di

| i ∈ Z,Di ̸= 0
} (3)

where Di represents the union of feature vectors of distances between the atom i and other atoms
within the unit cell centered on the atom i, with Di ∈ Rn, and nrepresenting the number of atoms
in the unit cell. UPDD∈ Rn×n represents the union of distance features between all atoms. Since
the interaction energy between an atom and its neighboring atoms is usually inversely proportional
to the distance, we take the reciprocal of the distance feature after removing zeros.

As shown in Figure 2b, the selection is not based on Euclidean distances, but rather on choosing
atoms within the reconstructed unit cell for construction. The dimension of our UPDD is determined
by the atoms in the unit cell and does not require consideration of the neighbor count, k, across

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

different datasets, making it more generalizable. This UPDD covers unit cell structures with a larger
number of atoms while also ensuring that unit cell structures with fewer atoms are not disturbed
by excessive neighbor information. It also reduces resource consumption. Due to this crystal-
specific treatment, the UPDD dimensions of different crystal structures may not match, so dimension
alignment is required before feeding into the neural network.

4.3 CRYSTAL GRAPH CONSTRUCTION

By introducing PDD, we constructed a complete and continuous multi-edge crystal graph. In the
graph, each node represents an atom i and all its infinite duplicates in 3D space, with positions
{p̂i|p̂i = pi + k1l1 + k2l2 + k3l3, k1, k2, k3 ∈ Z}, and node features xi. An edge is established
from node j to node i when the Euclidean distance |ej′i|2 between a duplicate of j and i satisfies
|ej′i|2 = |pj + k′1l1 + k′2l2 + k′3l3 − pi|2 ≤ r, where r ∈ R is the cutoff radius. We select the
nearest t edges within the cutoff radius, each with a corresponding edge feature |ej′i|2. Since WPDD
requires a large number of neighbors to be predefined, representing this neighbor information as
edge features is neither practical nor cost-effective in real-world applications. Therefore, we retain
its matrix form and incorporate it into the construction of the multi-edge crystal graph as a way to
reflect the global information of the crystal structure. After passing through the Embedding Block
in Section 4.6, UPDD is aligned in dimensions and transformed into matrix form data. Formally, we
represent the constructed crystal graph as G = (X ,XI, E , PDD). Therein, xi ∈ X is the feature
vector of the atom i, ehij ∈ E is the feature vector of the h-th edge between nodes i and j, and we
denote XI as the indices of the nodes i and j that form the edge. Sections 4.4 and 4.5 are our proofs
of the continuity and geometric completeness of PDD crystal graphs.

4.4 CONTINUITY OF PROPOSED CRYSTAL GRAPHS

The continuity of the constructed crystal graph G (S) under perturbations of the crystal structure S
will be measured using the EMD (Rubner et al., 2000), which applies to crystal graphs of any size.
Definition 6 applies to any crystal graph G (S) = ([w1 (S) , R1 (S)] , . . . , [w1 (S) , R1 (S)]), where
[wi (S) , Ri (S)] represent the information extracted based on atom i in the unit cell. Ri (S) =
Ri (SX ,SXI ,SE ,SPDD) includes atomic information, neighbor information used in constructing
the multi-edge crystal graph, and the PDD invariants of the crystal structure S, with weights wi ∈
(0, 1] satisfying the normalization condition

∑n
i=1wi (S) = 1.

Subsequently, we only consider the case where the weighted vector [wi, Ri] corresponds to the i-th
row of PDD(S; k). Here, n denotes the number of rows in PDD(S; k). The size of each row Ri (S)
should be independent of S and depend solely on the number of neighbors k in PDD(S; k). For
any vectors Ri = (ri1, . . . , rik) and Rj = (rj1, . . . , rjk) of length k, we use the L∞- distance
|Ri −Rj |∞ = maxl=0,...k |ril − rjl|∞.

Proposition 1. The WPDD and UPDD multi-edge crystal graph is continuous.

Proof: For any k ≥ 1, if the periodic crystal S,Q ∈ Rn satisfy dB (S,Q) < r (S), then
we have:EMD (G (S) ,G (Q)) = EMD ((SX ,SXI ,SE ,SPDD) , (QX ,QXI ,QE ,QPDD)) =
EMD ((SX ,QX )) + EMD ((SXI ,QXI)) + EMD ((SE ,QE)) + EMD ((SPDD,QPDD)).
Since disturbances only change the positions of atoms and do not alter their types, therefore
EMD ((SX ,QX )) = 0 and EMD ((SXI ,QXI)) = 0. So, we obtain EMD (G (S) ,G (Q)) =
EMD ((SE ,QE)) + EMD ((SPDD,QPDD)) ≤ 2dB (S,Q).

The bottleneck distance dB (S,Q) < r (S) is defined as: dB (S,Q) = infg:S→Q supp∈S |p− g (p)|
and the envelope radius r (S) is the minimum half-distance between any two points in r (S). In other
words, r (S) is the maximum radius of non-overlapping open balls centered at all points in S. This
implies that any small perturbation in atomic positions under the dB (Carstens et al., 1999) will lead
to minor changes in the distribution of distances between points in the EMD.

Since the EMD between the constructed crystal graphs only relates to Euclidean distance. Euclidean
distance itself is continuous, Theorem 1 extends the following fact: for a unit cell structure with two
atoms, when the number of neighbors k = 1, if we perturb at most two points by ϵ, the change
in distance between the two points will be at most 2ϵ. Extending this to n atomic points with k
neighbors, if we perturb at most n points by ϵ, the change in distance between n points will be
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at most 2nkϵ. This aligns with Definition 5, hence the constructed WPDD and UPDD multi-edge
crystal graph is continuous.

4.5 GEOMETRIC COMPLETENESS OF PROPOSED CRYSTAL GRAPHS

Proposition 2. The WPDD multi-edge crystal graph is geometrically complete.

Inspired by Yan et al. (2024a). We prove this by mathematical induction. Suppose the number of
atoms (nodes) in the unit cell of a crystal is n.

Base Case: When n = 1, the infinite crystal structure represented by the WPDD multi-edge crystal
graph is unique.

Induction Hypothesis: When n ≤ m, the infinite crystal structure is unique.

Induction Step: Let n = m + 1. Without loss of generality, we safely assume that among the
existing mmm nodes, Nj is the set of nodes forming the local region for node j. Then, j is the
index of the (m + 1)-th node that is newly connected to these nodes. To prove that the infinite
crystal structure remains unique, we only need to demonstrate that the relative position of node j is
uniquely determined, given the WPDD multi-edge crystal graph. With this, the proposed WPDD
multi-edge crystal graph can define a unique infinite crystal structure.

Here, we prove that the relative position of the newly added node j is uniquely determined by the
proposed WPDD multi-edge crystal graph.

Proof: We use proof by contradiction. First, assume that there exist two distinct relative positions j
and j′ that have the same WPDD multi-edge crystal graph, and we show that this assumption leads
to a contradiction.

Since UPDD is constructed based on the size of the unit cell, when the number of atoms in the
unit cell is relatively small, it could theoretically result in different crystal structures, where all
atoms have the same Euclidean distances and atom types but inconsistent atomic positions (which
do not exist in the real world), sharing the same crystal graph representation. According to the
WPDD multi-edge crystal graph construction process described in Section 4.3, if two distinct crystal
structures have the same WPDD crystal graph, their WPDD and the atomic types embedded by
CGCNN must be identical. Since the WPDD crystal graph, which includes atomic information, is
completely invariant, different crystal structures must have distinct WPDD crystal graphs, Relevant
details can be found in Appendix 5. This contradicts the assumption. Hence, the proof is complete.
Therefore, the proposed identical crystal graph can represent only the same infinite crystal structure.
Then, based on Definition 3, we complete the proof of Proposition 2.

Finally, we conclude that the UPDD crystal graph can only guarantee continuity, while the WPDD
crystal graph can ensure both continuity and completeness.

4.6 NETWORK ARCHITECTURE

Based on the graph in Section 4.3, we propose the information propagation scheme of PDDFormer.
The information propagation scheme of PDDFormer consists of four parts: the graph embedding
Block, node-wise transformer Block (inspired by Yan et al. (2024a)) for details, refer to Appendix
A.2, PDD message passing Block, and output Block. Figure 3 illustrates the overall framework
architecture of PDDFormer.

Feature embedding block. First, we introduce the construction of the graph embedding Block. We
use atomic encoding from CGCNN for embedding. For the edge information ehij , we employ radial
basis functions to encode the distance between two adjacent nodes in the graph, represented by
Equation 4, where γ and µ are hyperparameters. For UPDD, due to the varying feature dimensions
of UPDD for different crystals, we perform matrix multiplication on UPDD to align the structural
information of different crystals, obtaining information for the PDD message passing layer. Thus,
we obtain the graph embedding as:

A = CGCNN (X ), ehij = exp

(
−γ

(
∥pi − pj∥2

µ

))
, PDD = UPDD ⊗A (4)

where ⊗ denotes the Hadamard product.
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Figure 3: Architecture Overview. PDDFormer accepts an input crystal structure S. During the pre-
diction process, it first undergoes a graph construction step to generate a continuous and complete
crystal graph structure, followed by an embedding block, then multiple blocks of node-wise Trans-
former and PDD Message Passing, and finally, an output block.

Node-wise transformer block. Building upon the constructed graph, we aggregate the node in-
formation. Let ali represent the input feature vector of node i at layer l in PDDFormer. To better
capture the importance of different atoms, we added an attention mechanism at the atomic level,
vlij = v ⊙ sigmoid (LNorm (LNatt (v))). To enhance model convergence, we added residual con-
nections to capture shallow-layer information, mh

ij = qlij + sigmoid
(
BN

(
attl
))

⊙ LNV

(
vlij
)
.

LNorm denotes the layer normalization (Ba, 2016) operation. BN denotes the batch normaliza-
tion layer (Ioffe, 2015). To validate the effectiveness of our modifications, we conducted ablation
experiments in Appendix A.6.3.

Then, we obtain the message M l
i by aggregating the information from the neighborhood of node i

over multiple edges, and Al+1
i is realized as follows :

M l
i =

∑
j∈Ai

∑
h LNsum

(
mh

ij

)
, Al+1

i = softplus
(
ali +BN

(
M l

i

))
(5)

where LNmsg is the linear transformation used for updating the edge messages.

PDD message passing block. Al and PDDl represent the atomic features and 3D periodic pattern
encoding at layer l, respectively. Its message-passing mechanism is as follows:

PDDl+1 = PDDl +Al+1, A1, A2 = LNPDD

(
BN

(
PDDl+1

))
,

Al+1 = Al + LNA2 (LNA1 (A1)⊙Drop (GELU (A2)))
(6)

In this process, we update Al+1 using residual connections (He et al., 2016).

Finally, we use average pooling to aggregate the features of all nodes in the graph, followed by a
nonlinear layer, and then a linear layer to obtain the scalar output of the graph as described above.
A detailed description of the PDDFormer architecture can be found in Appendix A.2.

5 EXPERIMENTS

We conducted experiments on two material benchmark datasets, namely the Materials Project (Chen
et al., 2019) and Jarvis (Choudhary et al., 2020) datasets. Detailed descriptions of the datasets can
be found in Appendix A.1. More information about the experimental settings of PDDFormer can
be found in Appendix A.3. Baseline methods include CFID (Choudhary et al., 2018), CGCNN (Xie
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Table 1: Comparison between UPDDFormer, WPDDFormer, and other baselines in terms of test
MAE on the JARVIS dataset. The best results are shown in bold and the second best results are
shown with underlines.

Method Formation Energy Bandgap(OPT) Total Energy Ehull Bandgap(MBJ)

eV/atom eV eV/atom eV eV

CFID (2018) 14 0.30 240 220 0.53
CGCNN 63 0.20 78 170 0.41
SchNet 45 0.19 47 140 0.43
MEGNET 47 0.145 58 84 0.34
GATGNN 47 0.17 56 120 0.51
ALIGNN 33.1 0.142 37 76 0.31
M3GNet 39.0 0.145 41 95 0.36
Matformer 32.5 0.137 35 64 0.30
PotNet 29.4 0.127 32 55 0.27
CrysMMNet 28.0 0.128 34 – 0.278
CrysDiff (2024) 29.0 0.131 34 62 0.287
Crystalformer 30.6 0.128 32 46 0.274
eComFormer 28.4 0.124 32 44 0.28
iComFormer 27.2 0.122 28.8 47 0.26

UPDDFormer 27.6 0.127 29.4 35.6 0.269
WPDDFormer 26.9 0.120 28.2 32.6 0.251

& Grossman, 2018), SchNet (Schütt et al., 2017), MEGNET (Chen et al., 2019), GATGNN (Louis
et al., 2020), ALIGNN (Choudhary & DeCost, 2021), M3GNet (Chen & Ong, 2022), Matformer
(Yan et al., 2022), PotNet (Lin et al., 2023), CrysMMNet (Das et al., 2023), CrysDiff (Song et al.,
2024), Crystalformer (Taniai et al., 2024), and ComFormer (Yan et al., 2024a). For all baselines on
the material datasets, we report the results provided in the cited papers.

Table 2: Comparison of test MAE between UPDDFormer, WPDDFormer, and other baselines on
the Materials Project dataset.

Method Formation Energy Band Gap Bulk Moduli Shear Moduli

eV/atom eV log(GPa) log(GPa)

CGCNN (2018) 31 0.292 0.047 0.077
SchNet (2018) 33 0.345 0.066 0.099
MEGNET (2019) 30 0.307 0.060 0.099
GATGNN (2020) 33 0.280 0.045 0.075
ALIGNN (2021) 22 0.218 0.051 0.078
M3GNet (2022) 24 0.247 0.050 0.087
Matformer (2022) 21.0 0.211 0.043 0.073
PotNet (2023) 18.8 0.204 0.040 0.065
CrysMMNet (2023) 20.0 0.197 0.038 0.062
Crystalformer (2024) 18.6 0.198 0.0377 0.0689
eComFormer (2024) 18.16 0.202 0.0417 0.0729
iComFormer (2024) 18.26 0.193 0.0380 0.0637

UPDDFormer 18.31 0.196 0.0393 0.0686
WPDDFormer 16.61 0.189 0.0336 0.0617

5.1 EXPERIMENTAL RESULTS

JARVIS. The quantitative results for JARVIS (Choudhary et al., 2020) are shown in Table 1.
WPDDformer achieves the best performance across all tasks. Notably, WPDDFormer and UP-
DDFormer outperform eComFormer by 26% and 19% respectively in the Ehull task.

The Materials Project (MP). The experimental results on MP (Chen et al., 2019) are shown in
Table 2. WPDDformer performs significantly better than previous works across all tasks, with a
10.8% improvement over the second-best model in the bulk moduli task. Additionally, the excellent
prediction accuracy of WPDDFormer in the bulk modulus and shear modulus tasks, using only
4, 664 training samples, demonstrates the expressiveness and robustness of WPDD multi-edge
crystal graphs under limited training samples.
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Table 3: Efficiency comparison with ConFormer on the Jarvis Formation Energy task. We show the
training time per epoch, total training time, time complexity, GPU memory consumption, and total
number of parameters. The experiments were conducted using a 3090 RTX 24GB GPU.

Models Time/epoch Total GPU memory usage Complexity Model Para.

eConformer 120s 16.7h 18GB O(nk) 12.4M
iConformer 129s 25.0h 12GB O(nk) 5.0M

WPDDFormer 98s 10.9h 8.5GB O(nk) 6.76M

Method Num. Block Ehull Bulk

NO PDD Block 4,0 39.2 0.0410
without PDD 4,3 36.3 0.0400

UPDDFormer 3,2 37.4 0.0446
UPDDFormer 4,3 35.6 0.0392

WPDDFormer 3,2 34.0 0.0336
WPDDFormer 4,3 32.6 0.0341

Table 4: Num. Block represents the number of
Node-wise transformer blocks and PDD message
passing blocks.

Overall, our methods are compared with 14
existing methods across the two datasets.
Our WPDDFormer consistently outperforms
all methods in all tasks. Additionally,
WPDDFormer shows a significant improve-
ment in prediction accuracy compared to UP-
PDFormer. This improvement is not only be-
cause the WPDD graph structure is complete
and continuous, while UPPD can only ensure
continuity, but also because UPPD requires
dimensional alignment as mentioned in 4.6,
which results in some loss of the expression of
global information about the unit cell.

Efficiency This experiment reports the training and inference times for WPDDFormer and Con-
Former using the best model configurations. We also report the total number of parameters for each
model. As shown in Table 3, all these models have a time complexity of O(nk), where n represents
the number of atoms in the unit cell and k represents the average number of neighbors. The data in
the table is averaged over three experiments. Although WPDDFormer has a higher parameter count
compared to iConFormer, its training time overhead is significantly lower than that model, and it
uses less GPU memory. Its memory usage is only 70.8% of iConFormer and 47.2% of eConFormer.
This demonstrates that our WPDDFormer achieved significantly superior experimental results with
lower computational cost and faster computation speed. Additional four tasks from the JARVIS
dataset are documented in Appendix A.6.1.

5.2 ABLATION STUDIES

In this section, we demonstrate the impact of introducing (W/U)PDD on the representation learning
of crystal materials through ablation studies. Specifically, we conducted experiments on the MP and
JARVIS datasets, using testing mean absolute error (MAE) as the quantitative evaluation metric,
comparing the results for Bulk Moduli and Ehull tasks, as shown in Table 4.

By comparing (W/U)PDDFormer models with different numbers of Node-wise Transformer Blocks
and PDD Message Passing Blocks to models without (W/U)PDD information but retaining the
PDD message passing blocks, we validate the importance of (W/U)PDD. The results show that
compared to models without the PDD message passing blocks, WPDDForemer achieved improve-
ments of 18.0% and 16.8% in the Bulk Moduli and Ehull tasks, respectively. Compared to models
that retain only the PDD message passing blocks but lack (W/U)PDD information, we achieved
improvements of 16.0% and 10.2% in these two tasks, respectively.

6 CONCLUSION AND FUTURE WORK

In this study, we integrated WPDD and UPDD into the representation of crystal structures, achiev-
ing a complete and continuous construction of crystal graphs. This resolves the ambiguity in crystal
graph representations for predicting the properties of crystalline materials and bridges the gap be-
tween traditional crystal descriptors and dynamic atomic behavior. Experimental results demonstrate
the significant advantage of our WPDDFormer in various property prediction tasks. Ensuring the
completeness and continuity of crystal graphs after incorporating angular information is a problem
that will be further explored in the future.
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A APPENDIX

A.1 DATASET DESCRIPTIONS

In this section, we provide more detailed information about the JARVIS, and The Materials Project
datasets.

The Materials Project dataset. Materials Project (MP) is a collection of 69, 239 materials from
the Materials Project database retrieved byChen et al. (2019). We follow the experimental setup of
Matformer (Yan et al., 2022) using the same training, validation, and test sets. For the formation
energy and band gap tasks, the training, validation, and test sets contain crystals of 60, 000, 5, 000,
and 4, 239, respectively. Among these, there are 38,344 samples with at least 20 atoms per unit cell,
accounting for approximately 55.4%. There are 2, 047 samples with at least 100 atoms per unit cell,
accounting for about 3.0%. We evaluate our Matformer on four key crystal property tasks: formation
energy, band gap, bulk modulus, and shear modulus. For the bulk modulus and shear modulus tasks,
the training, validation, and test sets contain 4, 664, 393, and 393 crystals, respectively.

The JARVIS dataset. JARVIS is a database proposed by Choudhary et al. (Choudhary et al.,
2020). For the JARVIS dataset, we follow the approach of Matformer (Yan et al., 2022) and divide
the data into training, validation, and test sets in an 8 : 1 : 1 ratio. We evaluate our PDDFormer
model on nine crucial crystal property tasks, including formation energy, bandgap (OPT), bandgap
(MBJ), total energy, Ehull, bulk modulus (Kv), shear modulus (Gv), SLME (%), and Spillage. For
the formation energy, total energy, and bandgap (OPT) tasks, the training, validation, and test sets
contain 44, 578, 5, 572, and 5, 572 crystal samples, respectively. Among these, there are 8,089
samples with at least 20 atoms per unit cell, accounting for approximately 14.5%. Only 4 samples
have at least 100 atoms per unit cell. For the Ehull task, these numbers are 44, 296, 5, 537, and
5, 537 samples; for the bandgap (MBJ) task, they are 14, 537, 1, 817, and 1, 817 samples; for bulk
modulus (Kv) and shear modulus (Gv) tasks, they are 15, 744, 1, 968, and 1, 968 samples; for SLME
(%) task, they are 7, 254, 906, and 906 samples; and for the Spillage task, they are 9, 101, 1, 137,
and 1, 137 samples.

A.2 PDDFORMER CONFIGURATIONS

We trained on the Formation Energy and Band Gap tasks of the MP dataset using an RTX A100
40GB GPU, and on the shear and bulk tasks of the JARVIS dataset and the MP dataset using an
RTX 4090 24GB GPU.

Notations. A ∈ Rn×da is the atomic feature matrix obtained by embedding the atomic ma-
trix X ∈ Rn×1 in the unit cell, where n represents the number of atoms in the unit cell,
A = [a1, a2 · · · an−1, an]

T ∈ Rn×da, and ai represents the da-dimensional feature vector of atom
i in A. ehij ∈ E is the de-dimensional feature vector of the h-th edge connecting nodes i and j.
Typically, de is the same dimension as da. In constructing the PDD, we take the nearest neighbors
k = 92, resulting in its dimensional information where PDD ∈ Rn×92. The WPDD incorporates
an additional dimension for atomic weights, thus its dimension is WPDD∈ Rn×93. For the UPDD,
prior to alignment, its dimension is solely related to the number of atoms in the unit cell, expressed
as UPDD∈ Rn×n. After alignment, it matches the dimension of A to facilitate information aggre-
gation. XI ∈ Rtn×2 is the index of the points corresponding to the edge, where t is the number of
the nearest edges aggregated within our cutoff radius (Flor et al., 2016).

Graph embeddings. For the two datasets we use, we employ the CGCNN atomic embedding,
where the atomic number is mapped to a 92-dimensional embedding vector. Subsequently, we apply
a linear transformation to map it to a 256-dimensional vector, serving as the input ai passed to the
first PDDFormer message update block. For each edge, we employ 256 RBF kernels to map the
Euclidean distance to a 256-dimensional embedding vector, with kernel centers ranging from −4.0
to 0.0. It is then mapped to a 256-dimensional vector as the edge input eij , through a nonlinear layer
followed by a linear layer. For the UPDD, after performing matrix multiplication with the embedded
atomic information A, it is passed through a nonlinear layer and a linear layer to map it to the same
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dimension as A. For the PDD and WPDD, they are directly processed through a nonlinear layer and
a linear layer to map them to the same dimension as A and then passed to the message update layer.

Settings of node-wise transformer block. LQ, LK, LV, LE, LNatt, and LNsum are linear trans-
formation layers that map 256-dimensional input features to 256-dimensional output features. LNatt

and LNorm are linear transformation layers that map 256×3 dimensional input features to 256×3 di-
mensional output features and layer normalization (Ba, 2016), respectively. LNK and LNV are non-
linear transformations for key and value, including one linear layer that maps the concatenated 256∗3
dimensional input features to 256-dimensional output features, one SiLU activation layer (Paul et al.,
2022), and one linear layer that maps the 256-dimensional input features to 256-dimensional output
features. Our Node-wise transformer module is inspired by the corresponding module in ConFormer
(Yan et al., 2024a). The message from node j to i is formed by the corresponding query qlij , key klij ,
and value features vlij as follows:

qlij = LQ
(
ali
)
, klij =

(
LK

(
ali
)
⊕ LK

(
alj
)
⊕ LE

(
ehij
))

,

v =
(
LV

(
ali
)
⊕ LV

(
alj
)
⊕ LE

(
ehij
))

, attl =
qlij⊙LNK(kl

ij)√
d
ql
ij

, (7)

We use ⊕ and ⊙ to denote concatenation and element-wise product. where LQ, LK, LV, and LE are
the linear transformations for query, key, value, and edge features. LNK , LNV are the nonlinear
transformations for key and value, including two linear layers and an activation layer in between,
and dqlij is the dimension of qlij

Settings of PDD message passing block. LNPDD is a linear transformation layer that maps 256
dimensional input features to 256-dimensional output features. Then, the first 128 dimensions are
assigned to A1, and the remaining dimensions are assigned to A2. Dropout (Srivastava et al., 2014)
is set to 0.1. After passing through LNA1, which is a linear transformation layer that maps 128
dimensional input features to 128 dimensional output features, the data then goes through LNA2,
another linear transformation layer that maps 128 dimensional input features to 256 dimensional
output features.

Settings of the output block. After the final layer of message passing, we aggregate the node
features in the graph through mean pooling. Then, we use a linear layer to map the 256-dimensional
graph-level features to 256-dimensional output features, followed by a SiLU activation layer. Then,
we map the output to a scalar value through a linear transformation layer to complete our task.

A.3 HYPERPARAMETER SETTINGS OF PDDFORMER

In this subsection, we present the detailed hyperparameter settings of WPDDFormer for different
tasks. We slightly tuned the parameters of our method for the material datasets, and further
adjustments are expected to yield higher performance in different tasks.

Table 5: Model settings of WPDDFormer for JARVIS dataset.

Parameter Learning rate Num. neighbors Epoch number Num. Node and PDD

formation energy 0.001 25 400 4,3
band gap (OPT) 0.0005 25 500 4,3
band gap (MBJ) 0.0005 18 300 4,3

total energy 0.001 25 500 4,3
Ehull 0.001 25 500 4,3

Bulk Moduli(Kv) 0.001 18 300 4,3
Shear Moduli(Gv) 0.001 18 300 4,3

SLME(%) 0.001 18 300 4,3
Spillage 0.0005 18 200 4,3

JARVIS. We show the model settings of WPDDFormer in Table 5. The evaluation metric for these
tasks is the test mean absolute error (MAE), batch size of 64, weight decay (Loshchilov & Hutter,
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2017) set to 1e-5. Specifically, the WPDDFormer was trained using the MAE loss function and the
Adam optimizer (Kingma & Ba, 2014). For the formation energy, total energy, and Ehull tasks, the
model was trained for 500 epochs with an initial learning rate set to 0.001; for the bulk modulus
(Kv) and shear modulus (Gv) tasks, it was trained for 300 epochs with an initial learning rate set to
0.001. The band gap (MBJ) and Spillage tasks were trained for 300 and 200 epochs, respectively,
with an initial learning rate set to 0.0005. For these eight tasks, the Onecycle scheduler (Smith &
Topin, 2019) was used, with a pct start of 0.3. For the band gap (OPT) task, a polynomial scheduler
was used for 500 epochs, with an initial learning rate of 0.0005 and a final learning rate of 0.00001.
The parameter settings for UPDDFormer are the same as those for WPDDFormer across different
tasks.

The Materials Project. We present the model settings for WPDDFormer in Table 6. For the
Materials Project dataset, all models are trained using the MAE loss function, with a batch size of
64 and weight decay (Loshchilov & Hutter, 2017) set to 1e-5. The Adam optimizer and Onecycle
scheduler are used, with a pct start of 0.3. Specifically, the formation energy model is trained for
500 epochs with an initial learning rate of 0.001, the band gap model for 400 epochs with an initial
learning rate of 0.001, and the bulk moduli and shear moduli models for 300 epochs each, with initial
learning rates of 0.001 and 0.0001, respectively. The model settings for WPDDFormer in Table 7

Table 6: Model settings of WPDDFormer for The Materials Project dataset.

Parameter Learning rate Num. neighbors Epoch number Num. Node and PDD

formation energy 0.001 25 500 4,3
band gap 0.0005 25 500 4,3

bulk moduli 0.001 25 300 3,2
shear moduli 0.0001 25 300 4,3

Table 7: Model settings of UPDDFormer for The Materials Project dataset.

Parameter Learning rate Num. neighbors Epoch number Num. Node and PDD

formation energy 0.001 25 500 4,3
band gap 0.001 25 400 4,3

bulk moduli 0.001 16 300 4,3
shear moduli 0.001 16 300 4,3

A.4 INVARIANCE PROPERTIES

A.4.1 DEFINITION

According to Yan et al. (2022), we represent a crystal structure with a triple (X, P, L), where
(X,P ) ∈ U , defined as follows: X = [x1, . . . , xN ] ∈ Rd×N represents the states of N atoms
in the unit cell, P = [p1, . . . , pN ] ∈ R3×N denotes the 3D Cartesian coordinates of these atoms,
L = [ℓ1, ℓ2, ℓ3] ∈ R3×3 is the lattice vector matrix. The infinite crystal structure is:

P̃ = {p̃i = pi + h1l1 + h2l2 + h3l3 | h1, h2, h3 ∈ Z, i ∈ Z, 1 ≤ i ≤ n} ,
X̃ = {x̃i = xi | i ∈ Z, 1 ≤ i ≤ n} (8)

The coordinates of the n points are defined within the unit cell U as determined by L, meaning their
fractional coordinates are L−1P ∈ [0, 1)3×N . When the overall network architecture is viewed as a
function f(X,P,L) → X , they satisfy the following invariance properties.

The unique geometric prior knowledge of crystals includes two distinct physical constraints and
symmetries: E(3) invariance within the unit cell and periodic invariance.

Definition 7: Unit Cell E(3) Invariance. Following Matformer Yan et al. (2022), A function
f : (X ,P,L) → Y ′ is unit cell E(3) invariant if, for all Q ∈ R3×3, where |Q| = 1, and b ∈ R3, we
have f (X ,P,L) = f (X , QP + b,QL).
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Table 8: Comparison between PDD and WPDD in terms of test MAE on JARVIS dataset. The best
results are shown in bold.

Formation Energy Bandgap(OPT) Total Energy Ehull Bandgap(MBJ)

Method eV/atom eV eV/atom eV eV

PDDFormer 26.5 0.124 28.7 32.3 0.244
WPDDFormer 26.9 0.120 28.2 32.6 0.251

In other words, the crystal structure remains unchanged when the position matrix P of the unit cell
structure undergoes rotation, translation, or reflection.

Moreover, different minimal repeatable structures can be used to represent the same crystal. These
different crystal structure representations (X,P,L) introduce a constraint known as periodic invari-
ance. Two periodic transformations can generate different minimal unit cell representations for the
same crystal structure, including shifting the periodic boundary and changing the periodic pattern
while maintaining the same unit cell volume.

Definition 8: Periodic Invariance. Following Matformer Yan et al. (2022), A function f :
(X ,P,L) → Y ′ is periodically invariant if, for any possible minimal unit cell representation M′ =
(X ′,P ′,L′) of a given infinite crystal structure

(
X̄ , P̄

)
, we have f (X ,P,L) = f (X ′,P ′,L′).

A.4.2 PROOFS OF INVARIANCE

Proof of Unit Cell E(3) Invariance and Periodic Invariance. If the PDD multi-edge graph we
construct exhibits E(3) invariance and periodic invariance, then every step in the crystal graph con-
struction process must conform to the crystal constraints. Therefore, we analyze the construction
process of the crystal graph to progressively demonstrate E(3) invariance and periodic invariance.

First, we construct a crystal graph with n nodes using a minimal unit cell structure containing n
atoms. This step has been handled by the JARVIS and MP datasets. Since all minimal unit cell
structures for a given crystal share the same number of atoms and corresponding atomic features,
this step is E(3) invariant and periodically invariant.

After determining the selection of atoms, we begin to establish edge information connecting neigh-
boring nodes for each atom. An edge is established from node j to node i when the Euclidean dis-
tance |ej′i|2 between a duplicate of j and i satisfies |ej′i|2 = |pj + k′1l1 + k′2l2 + k′3l3 − pi|2 ≤ r,
where r ∈ R is the cutoff radius. We select the nearest t edges within the cutoff radius, each with
a corresponding edge feature |ej′i|2. The Euclidean distance |ej′i|2 between duplicates j and i re-
mains invariant under E(3) transformations and different representations of the unit cell structure.
Thus, the neighborhood information for node i is E(3) invariant and periodically invariant.

Finally, we establish the crystal structure representations for WPDD and UPDD. For WPDD, we
select k nearest neighbors based on Euclidean distance to create the corresponding WPDD row for
each node i. For UPDD, we center around node i and select atoms from the reconstructed unit cell
to create the corresponding UPDD row for each node i based on Euclidean distance. The Euclidean
distance remains invariant under E(3) transformations and different unit cell structures. Thus, the
PDD row of node i is both E(3) invariant and periodic invariant.

By combining these three steps in the construction process of crystal graphs, we complete the proof
that the proposed PDD crystal graph representation is E(3) invariant and periodic invariant.

A.5 PDD AND WPDD

In this chapter, we investigate the impact of atomic weight distribution (W) in WPDD =
(W,PDD) on the experimental results of crystal property prediction. We conduct experiments
on the JARVIS and MP datasets, comparing the effects of WPDD with those of PDD without atomic
weight distribution.

By comparing the data in Tables 8 and 9, it is evident that using WPDD or PDD for experiments
yields mixed results, indicating that the atomic weight distribution (W) in WPDD does not have a
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Table 9: Comparison of test MAE between PDD and WPDD on the Materials Project dataset.

Formation Energy Band Gap Bulk Moduli Shear Moduli

Method eV/atom eV log(GPa) log(GPa)

PDDFormer 16.96 0.187 0.0337 0.0628
WPDDFormer 16.61 0.189 0.0336 0.0617

significant impact on the experimental outcomes. The reason is that when the model transmits infor-
mation through the PDD message passing module, we sum the atomic information A with PDD and
assign it to PDD. This means that PDD implicitly contains atomic information, so the introduction
of atomic weight distribution as atomic information has a minimal effect on the experimental results.

A.6 MORE EXPERIMENTAL

A.6.1 JARVIS.

As shown in Table 10, WPDDFormer also outperforms all other baseline models in these four tasks,
achieving the best results in three out of four tasks and second-best in one. For the Bulk Moduli
(Kv) and Shear Moduli (Gv) tasks, 19, 680 training samples were used, and for the SLME (%)
and Spillage tasks, 9, 066 and 11, 375 training samples were used, respectively. WPDDFormer
demonstrates its adaptability to tasks with varying data scales.

Method Bulk Moduli(Kv) Shear Moduli(Gv) SLME(%) Spillage
GPa GPa No unit No unit

CGCNN 14.47 11.75 8.022 0.454
SchNet 14.33 10.67 – –
MEGNET 15.11 13.09 – –
GATGNN 14.32 12.48 7.504 0.431
ALIGNN 10.40 9.481 5.145 0.389
Matformer 11.21 10.76 5.260 0.398
CrysMMNet 9.625 8.471 – –
PotNet 10.06 8.883 – –
CrysDiff 9.875 9.193 5.030 0.358
eComFormer 10.79 9.826 4.610 0.373
iComFormer 9.617 9.098 4.583 0.360

UPDDFormer 10.13 9.143 4.566 0.377
WPDDFormer 9.546 8.808 4.300 0.358

Table 10: Comparison between WPDDFormer, UPDDFormer, and other baselines in terms of test
MAE on the JARVIS dataset. The best results are shown in bold and the second best results are
shown with underlines. The results reported for PotNet and Conformer in the table are those obtained
from training using their published code.

A.6.2 THE NUMBER OF NEIGHBORS ( K ) OF WPDD

In this section, we investigate the effect of the number of neighbors with different cutoff radii on the
WPDD experiment. In the main text, we set the number of neighbors k = 92, which matches the
dimensionality of the atomic feature embeddings used by CGCNN. However, in practical applica-
tions, it is necessary to determine a sufficiently large k in advance to ensure completeness for any
test crystal, especially in extreme cases where k must be greater than the number of atoms in any
test crystal (Yan et al., 2024a). Therefore, to ensure completeness on the JARVIS and MP datasets,
we calculated the maximum number of atoms in each dataset, which is 140 for JARVIS, 152 for
MP’s bulk and shear, and 296 for the rest. As a result, in the experiments, the maximum number of
neighbors for the JARVIS and MP datasets with different cutoff radii were selected as 150, 160, and
300, respectively.
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Table 11: Comparison of test set MAE for WPDD with different numbers of neighbors k on the
JARVIS dataset. The best results are shown in bold.

Formation Energy Bandgap(OPT) Total Energy Ehull Bandgap(MBJ)

Method k eV/atom eV eV/atom eV eV

WPDDFormer 60 26.5 0.122 27.9 33.3 0.266
WPDDFormer 92 26.9 0.120 28.2 32.6 0.251
WPDDFormer 150 27.2 0.121 29.0 34.0 0.254

Table 12: Comparison of test set MAE for WPDD with different numbers of neighbors k on the
Materials Project dataset.

Formation Energy Band Gap Bulk Moduli Shear Moduli

Method k eV/atom eV k log(GPa) log(GPa)

WPDDFormer 92 16.61 0.189 92 0.0336 0.0617
WPDDFormer – – – 120 0.0295 0.0647
WPDDFormer 300 16.83 0.186 160 0.0303 0.0652

From the experimental results in Tables 11 and 12, it can be seen that the choice of neighbors with
different cutoff radii causes fluctuations in the model’s performance. However, its performance still
shows the best results compared to the other models presented in the main text.

efficency We report the training time per epoch, total training time, inference time, time com-
plexity, GPU memory consumption, and total number of parameters for WPDDFormer and UP-
DDFormer using the best model configurations, comparing their efficiency on the JARVIS forma-
tion energy task. As shown in Table 13, all these models have a time complexity of O(nk), where
n represents the number of atoms in the unit cell and k represents the average number of neighbors.
The data in the table is averaged over three experiments. Since WPDD and UPDD use the same
model for experiments, with only the crystal graph construction differing, they have the same time
complexity, nearly identical GPU memory consumption, total parameters, training time per epoch,
and total training time. However, there is a significant difference in inference speed, with UPDD
being 3.4 times faster than WPDD. The reason for this is in the data preprocessing stage, where
WPDD requires more neighbor information, resulting in longer extraction times and slower infer-
ence speed. As the number of neighbors chosen with the increasing cutoff radius grows, the time for
data preprocessing also increases, leading to a slowdown in inference speed.

Table 13: Efficiency comparison between UPDDFormer and WPDDFormer with different numbers
of neighbors on the JARVIS formation energy task. The experiments were conducted using a 3090
RTX 24GB GPU.

Models k Time/epoch Total GPU memory Complexity Model Para. inference

WPDDFormer 60 97s 10.8h 8.5GB O(nk) 6.75M 1014.2s
WPDDFormer 92 98s 10.9h 8.5GB O(nk) 6.76M 1191.7s
WPDDFormer 150 100s 11.1h 8.5GB O(nk) 6.78M 1504.7s

UPDDFormer – 95s 10.6h 8.5GB O(nk) 6.76M 351.3s

A.6.3 MORE ABLATION

To verify the effectiveness of incorporating PDD descriptors into crystal graph construction, we
present in Table 14 the impact on experimental results on the JARVIS dataset. Without changing the
parameters of the WPDDFormer model, we investigated the effect of removing WPDD information
on the experiments.
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Table 14: Whether to include a comparison of WPDD’s test MAE on the JARVIS dataset. The best
results are shown in bold.

Formation Energy Bandgap(OPT) Total Energy Ehull Bandgap(MBJ)

Method eV/atom eV eV/atom eV eV

No PDD 28.3 0.121 29.8 35.6 0.265
WPDDFormer 26.9 0.120 28.2 32.6 0.251

Table 15: The experimental results obtained on the JARVIS dataset. The best results are shown in
bold.

Formation Energy Bandgap(OPT) Total Energy Ehull Bandgap(MBJ)

Method eV/atom eV eV/atom eV eV

Matformer 32.5 0.137 35 64 0.30
Matformer+WPDD 31.1 0.131 32 56 0.27

Additionally, we applied PDD to other models. Table 15 shows the results of incorporating the
pairwise distance distribution (PDD) into the Matformer architecture.

Overall, the results in Figures 14 and 15 effectively demonstrate the generalization capability of
PDD, indicating that incorporating it into different model architectures can significantly improve
the prediction accuracy of the original models.

In our model, the Node-wise Transformer Block is inspired by the Node-wise Transformer module
of ConFormer. We made improvements to this design, and to demonstrate the generalization ability
of our enhanced Transformer module, we conducted the following two experiments.

Experiment 1: We replaced our model’s Node-wise Transformer Block (PT) with the node-wise
transformer module from ConFormer (CT). As shown in the table 16, the WPDD model using our
improved transformer module exhibited significant performance improvement

Experiment 2: We applied the improvements made to the transformer to ConFormer and conducted
experiments on the JARVIS dataset. The results, as shown in the figure 17, indicate that the perfor-
mance achieved significant improvements across all property prediction tasks.

Overall, the results of Experiments 1 and 2 demonstrate that the modifications we made are simple
yet highly effective.

A.7 CONTINUOUS TOLERANCE T

Given that the experimentally measured unit cell and atomic coordinates are inevitably affected by
atomic vibrations and measurement noise, slight perturbations in the atomic coordinates may occur.
Therefore, during the construction of the multi-edge crystal graph, when selecting the t nearest edges
within a cutoff radius, the chosen neighboring nodes may change, as shown in Figure 4 (a) and (b).
This variation in neighboring nodes j leads to changes in the atomic information of the neighboring
nodes, resulting in discontinuities in the construction of the multi-edge crystal graph. To eliminate
the influence of atomic perturbations on the neighbor selection and ensure the continuity of the

Table 16: The experimental results obtained on the JARVIS dataset. The best results are shown in
bold.

Formation Energy Bandgap(OPT) Total Energy Ehull Bandgap(MBJ)

Method eV/atom eV eV/atom eV eV

WPDDFormer+CT 28.1 0.122 30.4 34.7 0.253
WPDDFormer 26.9 0.120 28.2 32.6 0.251
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Table 17: The experimental results obtained on the JARVIS dataset. The best results are shown in
bold.

Formation Energy Bandgap(OPT) Total Energy Ehull Bandgap(MBJ)

Method eV/atom eV eV/atom eV eV

iConformer 28.1 0.122 30.4 34.7 0.253
iConFormer+PT 26.5 0.120 28.0 38 0.258

slight perturbation
�� ��+1 ��+1

(a) (b) (c) (d)
Figure 4: The different neighbor selection under slight perturbations.

crystal graph under perturbations, we define the concept of continuous tolerance T to guarantee the
continuity of the constructed crystal graph.

Since the distances of atomic perturbations are typically on the order of sub-angstrom (Å), specif-
ically, in common atomic structures or crystals, slight perturbations are generally less than T <
10−2. For larger perturbations (e.g., > T = 10−2), the continuity issue may no longer be effective.
Therefore, when selecting neighbors, we can set a continuous tolerance value T in advance. When
we select the t nearest edges within the cutoff radius if the distance of the (t+1)-th edge from node
i minus the distance of the t-th edge is less than the continuous tolerance, i.e., dk+1 − dk < T , we
include this neighbor in the graph construction as well. This process continues until the distance of
the (n+1)-th edge from node i minus the distance of the n-th edge exceeds the continuous tolerance
cutoff, i.e., dn+1 − dn > T . The n neighbors at this point are the selected nodes for construct-
ing the crystal graph, as shown in Figure 4 (d), resulting in the final neighbor selection shown in
Figure 4 (c). This approach ensures that the neighbor selection in the crystal graph construction
does not change under atomic perturbations, and by using Lemma 1, we prove the continuity of the
(W/U)PDD crystal graph we have constructed.

A.8 PROOF OF INTEGRITY FOR WPDD CRYSTAL GRAPHS.

In this section, we provide a simple demonstration to showcase the integrity of our WPDD crystal
graphs for any crystalline material. As shown in Figure 5, (a), (b), and (c) represent unstable crystal
structures with identical crystal configurations but different atomic types. We present a straight-
forward example by setting the number of neighbors in PDD to k = 4 for the demonstration. We
assume that the black atoms are carbon (Si) and the green atoms are oxygen (O).

(a) (b) (c)

2
2

2
2

2
2

2
2

2
2

2
2

Figure 5: Unstable crystal structures with different element types but the same crystal structure.
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Crystal structures can be classified into stable and unstable types and further divided into the fol-
lowing three categories: 1. Stable Crystal Structures(i.e., where no two crystals can have the same
structure with only a difference in atomic types). 2. Unstable Crystal Structures with Differences
in Atomic Coordinates. 3. Unstable Crystal Structures with Identical Structures but Differences in
Atomic Types. We define completeness as follows: if the constructed crystal graph representation
can differentiate between any two crystal structures that are not the same, we consider the represen-
tation to be complete. We will demonstrate the integrity of these three types of crystals to prove that
our constructed WPDD crystal graph is complete.

The integrity of stable crystal structures and unstable crystal structures with differences in atomic
coordinates can be ensured by the PDD (Periodic Crystal Descriptor), which is specifically designed
to distinguish between different crystal structures. However, for unstable crystal structures with
identical crystal structures (i.e., completely identical coordinates) but differences in atomic types,
it cannot distinguish them(That is, the third category of crystal structures.). Therefore, PDD is
not absolutely complete. This is because PDD was originally designed to describe stable crystal
structures and cannot distinguish crystal structures with identical atomic coordinates but different
atomic types (i.e., unstable crystal structures). As shown in Figure 5, it produces identical PDD
matrices, PDD = (1, 2, 2, 2, 2), for the structures depicted in (a), (b), and (c), which have different
atomic compositions. This limitation arises because the construction of PDD does not consider
atomic types.

To address this issue, we construct WPDD multi-edge graphs that capture differences in atomic
types, resolving this limitation. Details are provided below.

We address the representation of atomic types from the following two aspects, effectively resolving
the aforementioned issue. First, we improved PDD by incorporating atomic information weights
W = [w1, . . . , wn]

T , where wi =
t(xi)∑n

j=1 t(xj)
. This allows us to construct WPDD = (W, PDD).

In addition, we do not use WPDD alone for predicting the properties of crystalline materials. Instead,
we incorporate it as global information into the construction of a multi-edge crystal graph to better
encode atomic information, such that the WPDD crystal graph G is represented as G = (X ,XI, E)+
WPDD, where X represents atomic information embedded through CGCNN, E represents edge
information, and XI represents the information of the starting and ending nodes of the edges. This
indicates that for any atom in the unit cell, we need to construct a WPDD row vector and perform the
corresponding atomic information embedding. This ensures that for any two crystal structures with
identical crystal structures but differing atomic types at corresponding coordinates, the (X ,XI, E)
in their WPDD crystal graphs will differ. On the contrary, if two crystals have the same WPDD
crystal graph representation, it means they share the same WPDD and multigraph representations.
This indicates that their crystal structures and the atomic information at corresponding coordinates
are identical, thus confirming that they are the same crystal. This contradicts our premise. For
example, as shown in Figures 5 (a), (b), and (c).

Therefore, we can conclude that our WPDD crystal graph can identify all crystal structures.
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