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Abstract

Conditional image synthesis based on user-specified requirements is a key component in
creating complex visual content. In recent years, diffusion-based generative modeling has
become a highly effective way for conditional image synthesis, leading to exponential growth
in the literature. However, the complexity of diffusion-based modeling, the wide range of
image synthesis tasks, and the diversity of conditioning mechanisms present significant chal-
lenges for researchers to keep up with rapid developments and understand the core concepts
on this topic. In this survey, we categorize existing works based on how conditions are
integrated into the two fundamental components of diffusion-based modeling, i.e., the de-
noising network and the sampling process. We specifically highlight the underlying princi-
ples, advantages, and potential challenges of various conditioning approaches in the training,
re-purposing, and specialization stages to construct a desired denoising network. We also
summarize six mainstream conditioning mechanisms in the essential sampling process. All
discussions are centered around popular applications. Finally, we pinpoint some critical yet
still open problems to be solved in the future and suggest some possible solutions.

1 Introduction

Image synthesis is an essential generative AI task. It is more useful when incorporating user-provided
conditions to generate images that meet diverse user needs through precise control. Early works have made
significant breakthroughs in various conditional image synthesis tasks, such as text-to-image generation Reed
et al. (2016); Zhang et al. (2017); Ding et al. (2021); Ramesh et al. (2021), image restoration Ledig et al.
(2017); Wang et al. (2021); Maaløe et al. (2019); Lee et al. (2022), and image editing Brock et al. (2017); Ling
et al. (2021); Abdal et al. (2020). However, the performance of conditional image synthesis with early deep
learning-based generative models such as generative adversarial networks (GANs) Goodfellow et al. (2014);
Mirza & Osindero (2014), variational auto-encoders (VAEs) Kingma & Welling (2014); Sohn et al. (2015),
and auto-regressive models (ARMs) Van Den Oord et al. (2016); Van den Oord et al. (2016) is unsatisfactory
due to their intrinsic limitations: GANs are vulnerable to mode collapse and unstable training Goodfellow
et al. (2014); VAEs often generate blurry images Kingma & Welling (2014); and ARMs suffer from sequential
error accumulation and huge time consumption Van Den Oord et al. (2016).

In recent years, diffusion models (DMs) have emerged as state-of-the-art image generation models due to
their strong generative capabilities and versatility Sohl-Dickstein et al. (2015); Ho et al. (2020); Song et al.
(2021b); Karras et al. (2022); Chen et al. (2024a). In DMs, images are synthesized from Gaussian noise
through iterative denoising steps guided by the predictions of a denoising network. This distinctive multi-
step sampling process enables DMs to achieve remarkable generative performance characterized by stable
training, diverse outputs, and exceptional sample quality. It also gives DMs a unique advantage in facilitating
conditional integration compared to one-step generative models. These benefits have made DMs the tool of
choice for conditional image synthesis, leading to rapid growth in the research on Diffusion-based Conditional
Image Synthesis (DCIS) over the past few years Rombach et al. (2022); Saharia et al. (2022b); Lu et al.
(2023); Choi et al. (2021); Saharia et al. (2022c); Kawar et al. (2023); Hertz et al. (2023); Zhang et al.
(2023e); Gal et al. (2023a); Zhang et al. (2023b); Wang et al. (2024a). Fig. 1 illustrates seven popular DCIS
tasks with various input modalities.
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Figure 1: Seven representative conditional image synthesis tasks with their input/output. Figures are cited
from the following papers: (A) Stable Diffusion Rombach et al. (2022); (B) SR3 Saharia et al. (2022c); (C)
ControlNet Zhang et al. (2023b); (D) Imagic Kawar et al. (2023); (E) DreamBooth Ruiz et al. (2023); (F)
PbE Yang et al. (2023a); (G) InteractDiffusion Hoe et al. (2023).

The rapidly expanding body of works, the numerous variations in model architectures, training methods, and
sampling techniques, along with the broad scope of potential conditional synthesis tasks, make it challenging
for researchers to grasp the full landscape of DCIS. This complexity can be particularly overwhelming for
newcomers to the field. What is needed is a systematic survey that offers a comprehensive yet structured
overview of this growing research area.

There exist several surveys on specific conditional image synthesis tasks, such as image restoration Li et al.
(2023g), text-to-image Zhang et al. (2023a), and image editing Huang et al. (2024), or classifying works in
computer vision according to their target conditional synthesis tasks Croitoru et al. (2023); Po et al. (2023).
While these task-oriented surveys provide valuable insights into approaches for their respective target tasks,
they do not include the commonalities in model frameworks across different conditional synthesis tasks in
terms of model architectures and conditioning mechanisms. Two recent surveys Shuai et al. (2024); Cao
et al. (2024) provide overview on DM-based works for a wide range of tasks in the field of conditional image
synthesis. However, their scope remains limited as they primarily focus on DCIS works built on T2I back-
bones, neglecting earlier works that integrate conditioning into unconditional denoising networks or involve
training task-specific conditional denoising networks from scratch. These earlier efforts are foundational for
the current advancements in DCIS using T2I backbones and are still widely applied in low-level tasks such as
image restoration. Besides, Shuai et al. (2024) focuses most of its attention on the DM-based image editing
framework and lacks systematic analysis on the unified framework for other tasks in this field while Cao et al.
(2024) does not delve deeper into the design choices in model architecture and detailed conditioning mecha-
nisms for sampling process. This leads to a lack of systematization in their taxonomies and the omission of
crucial related works in the field of DCIS.

In contrast, this survey aims to provide a comprehensive and structured framework that covers a wide range
of current DCIS works by offering a taxonomy based on the mainstream techniques for condition integration
in DCIS frameworks. We present a clear and systematic breakdown of the components and design choices
involved in constructing a DCIS framework with condition integration. Specifically, we review and summarize
existing DCIS methods by examining how conditions are integrated into the two fundamental components
of diffusion modeling: the denoising network and the sampling process. For the denoising network, we
break down the process of establishing a conditional denoising network into three stages. For the sampling
process, we categorize six mainstream in-sampling conditioning mechanisms, detailing how control signals
are integrated into various components of the sampling process. The objective is to give readers a high-level
and accessible overview of existing DCIS works across diverse tasks, equipping them to design conditional
synthesis frameworks for their own desired tasks, including novel tasks that have yet to be explored.

The remainder of this survey is organized as follows: we first introduce the background of diffusion models
and the conditional image synthesis task in Sec. 2. Next, we summarize methods for condition integration
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within the denoising network in Sec. 3, and for the sampling process in Sec. 4. Finally, we explore potential
future directions in Sec. 5.

2 Backgrounds

Diffusion-based generative modeling adopts a forward diffusion process of gradually adding noise into clean
data and learns a denoising network to predict the added noise. In the sampling process, data is synthesized
by reversing the forward process from Gaussian noise based on the prediction of a denoising network. We
first introduce the core concepts of discrete-time and continuous-time diffusion modeling in Sec. 2.1. Then,
we discuss the model architecture in Sec. 2.2 and highlight representative DCIS tasks in Sec. 2.3.

2.1 The Formulation of Diffusion Modeling

2.1.1 Discrete-Time Formulation

The discrete-time diffusion model was initially proposed in Sohl-Dickstein et al. (2015). It constructs a
forward Markov chain to transform clean data into noise by progressively adding small amounts of Gaussian
noise so that a parameterized denoising network can be learned to predict the added noise in each forward
step. Once the denoising network is trained, images can be generated from Gaussian noise by reversing the
diffusion process. This idea gained popularity through an important follow-up work known as denoising
diffusion probabilistic models (DDPMs) Ho et al. (2020). This work led to a substantial improvement in the
quality of synthesized images and increased resolutions, from 32×32 Sohl-Dickstein et al. (2015) to 256×256,
sparking a rapidly growing interest in diffusion models. Next, we adopt the notation from DDPM Ho et al.
(2020), which is widely used in the literature to describe discrete-time diffusion models Song et al. (2021a);
Rombach et al. (2022); Kawar et al. (2023).

The forward Markov chain is parameterized based on a pre-defined schedule β1, . . . , βT , where βt is the noise
variance in each step and the total number of steps T is usually large, e.g., 1,000. Given the clean data sam-
pled from the training dataset x0 ∼ pdata (x), the transition kernel is q (xt | xt−1) = N

(
xt;

√
1 − βtxt−1, βtI

)
,

or, q (xt | x0) = N
(
xt;

√
ᾱtx0, (1 − ᾱt) I

)
, where x1, . . . , xT are latent variables, αt = 1 − βt, ᾱt =

∏t
i=1 αi,

and ᾱT → 0. By progressively adding Gaussian noise to the clean data, this Markov chain transforms the
data distribution to an approximate normal distribution, i.e.,

∫
q(xT |x0)pdata(x0)dx0 ≈ N (0, I).

In the training phase, DDPM Ho et al. (2020) learns a denoising network with parameter θ by minimizing
the KL divergence between the transition kernel pθ(xt−1|xt) and the posterior distribution q (xt−1 | xt, x0).
In practice, DDPM Ho et al. (2020) is trained on the following re-parameterized loss function to improve
the training stability and sample quality:

Et,x0,ϵ

[∥∥ϵ − ϵθ

(√
ᾱtx0 +

√
1 − ᾱtϵ, t

)∥∥2
]

, (1)

where ϵθ(xt, t) is a noise-prediction network to estimate the added noise ϵ = xt−
√

ᾱtx0√
1−ᾱt

in each step. For
the conditional generation that performs denoising steps conditioned on control signal c, the conditional
denoising network ϵθ (xt, t, c) can be trained on a loss function similar to Eq. 1.

In the sampling process, DDPM gradually generates clean data from Gaussian noise by computing the reverse
transition kernel pθ with the learned network ϵθ, i.e.,

xt−1 = 1
√

αt

(
xt − 1 − αt√

1 − ᾱt
ϵθ

)
+ 1 − ᾱt−1

1 − ᾱt
βtϵt, (2)

where ϵt ∼ N (0, I) is the standard Gaussian noise independent of xt. The following work DDIM Song et al.
(2021a) proposed a family of sampling processes sharing the same marginal distribution p(xt) with the above
sampling process, which are written as

xt−1 =
√

ᾱt−1 · fθ (xt) +
√

1 − ᾱt−1 − σ2
t · ϵθ + σtϵt, (3)
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where fθ (xt) = xt−
√

1−ᾱtϵθ√
ᾱt

denotes the predicted x0 at time step t. For simplicity, we will refer to
fθ(xt) as the intermediate denoising output x0|t hereafter. Each choice of σt represents a specific sam-
pling process in DDIM Song et al. (2021a). It is identical to the DDPM generative process in Eq. 2 when
σt =

√
(1 − ᾱt−1) / (1 − ᾱt)

√
1 − ᾱt/ᾱt−1 and becomes a deterministic process when σt = 0.

2.1.2 Continuous-Time Formulation

Song et al. Song et al. (2021b) proposed to formulate a diffusion process {xt ∼ pt(x)}T
t=0 with the continuous

time variable t ∈ [0, T ] as the solution of an Itô stochastic differential equation (SDE) dx = f(x, t)dt+g(t)dwt,
where wt denotes the standard Wiener process, and f(x, t) and g(t) are drift and diffusion coefficients, re-
spectively Oksendal (2013); Chen et al. (2023). This diffusion process smoothly transforms a data dis-
tribution into an approximate noise distribution pn and its specific discretization recovers the forward
process of DDPM Ho et al. (2020). There exists a probability flow ordinary differential equation (PF-
ODE) dx =

[
f(x, t) − 1

2 g(t)2∇x log pt(x)
]

dt, sharing the same marginal distribution with the reverse
SDE dx =

[
f(x, t) − g(t)2∇x log pt(x)

]
dt + g(t)dŵ Song et al. (2021b); Karras et al. (2022); Zhang &

Chen (2023); Chen et al. (2024a). Therefore, we can learn a time-dependent score-based denoising network
sθ (xt, t) to estimate the score function ∇xt

log p (xt) with a sum of denoising score matching Vincent (2011);
Lyu (2009) objectives weighted by λ(t):

Et

[
λ(t)Ex0,xt

[
∥sθ (xt, t) − ∇x log p (xt | x0)∥2

2

]]
. (4)

When the score-based denoising network sθ (xt, t) is trained, we can employ general-purpose numerical
methods such as Euler-Maruyama and Runge-Kutta methods to solve the reverse SDE or PF-ODE and
recover clean data x0 from xT .

In the following sections, unless otherwise specified, we will use notation ϵθ to represent the denoising
network.

2.2 Architecture of the Denoising Network

Pioneering works adopted U-Net Ronneberger et al. (2015) as the denoising network architecture Ho et al.
(2020); Song et al. (2021a); Song & Ermon (2019; 2020). A U-Net typically consists of an U-shaped encoder-
decoder structure with skip connections. The encoder leverages a stack of residual layers and downsampling
convolutions to reduce the spatial data dimension and the decoder upsamples the compressed data back to the
original dimension. The U-Net architecture is advantageous for diffusion models due to its exceptional feature
extraction, contextual understanding, precise segmentation, and dimensionality preservation property, which
enables accurate modeling of complex data distributions for high-quality synthesis. Many followed-up works
improved the vanilla U-Net architecture by incorporating multi-head attention Song et al. (2021b); Dhariwal
& Nichol (2021); Nichol & Dhariwal (2021), normalization Ho et al. (2020); Dhariwal & Nichol (2021);
Nichol & Dhariwal (2021), or cross-attention layersRombach et al. (2022); Saharia et al. (2022b). Recently,
transformers emerged as an alternative for denoising networks because of its capability in capturing long-
range dependencies Dosovitskiy et al. (2020); Li et al. (2023d), and have achieved success in many tasks
including class-conditional generation Yang et al. (2022b), text-to-image generation Bao et al. (2023); Sheynin
et al. (2023); Tang et al. (2022); Gu et al. (2022); Li et al. (2023d), layout generation Chai et al. (2023), and
medical image generation Pan et al. (2023a).

In the following sections, unless otherwise specified, we assume the architecture of the denoising network
adopts a U-Net structure.

2.3 Conditional Image Synthesis Tasks

A conditional image synthesis task T generates target image x by sampling from a conditional distribution:

x ∼ pT (x|c), c ∈ DT , (5)

where DT is the domain of conditional input c, and pT is the conditional distribution defined by the task T .
Based on the form of conditional inputs and the correlation between the conditional input and the target
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Table 1: Stack of conditioning mechanisms of mainstream synthesis tasks applied to denoising network and
sampling process, respectively. Conditioning encoder indicates the module to convert conditional inputs into
task-related feature embedding, where * indicates that the encoder is determined by the specific restoration
task. ♠, ♡, ♣, ♢ denote the four re-purposing stage condition injection methods described in Sec. 3.2.2.
Due to page width limitations, we have placed the DCIS works performing condition integration via the
presented stacks of conditioning mechanisms in the row identified by corresponding serial numbers in Tab. 2
in appendix.

Stack of conditioning mechanisms for denoising network

Task Training
(backbone)

Conditional
encoder

Condition
Injection

Backbone
fine-tuning Specialization Serial Number

Text-to-image ✓ CLIP, BERT, LLMs ♡ ✗ ✗ DN1

Image restoration
✓ Non. ♠ ✗ ✗ DN2
✓ * ♠, ♡ ✗ ✗ DN3

Image editing
✗ (T2I DM) LLMs-based ♡ ✓ ✗ DN4
✗ (T2I DM) Non. ♠ ✓ ✗ DN5
✗ (T2I DM) Non./BLIP ♡ ✗ ✓ DN6

Customization
✗ (T2I DM) ViT (CLIP)-based ♡, ♢ ✗ Optional DN7
✗ (T2I DM) Non. ♡ ✗ ✓ DN8

Visual to image
✗ (T2I DM) Convolution-based ♣ ✗ ✗ DN9
✗ (T2I DM) ViT-based ♡ ✗ ✗ DN10

Image composition
✗ (T2I DM) Convolution-based ♡ ✓ ✗ DN11
✗ (T2I DM) ViT (CLIP)-based ♡, ♢ ✓ ✗ DN12

Layout control ✗ (T2I DM) ViT (CLIP)-based ♢ ✗ ✗ DN13

Stack of conditioning mechanisms for sampling process

Task Backbone model Conditioning mechanism Serial Number

Text-to-image Uncond DM Guidance SP1

Image restoration

Conditional restoration DM Revising Diffusion Process SP2
Uncond DM Revising Diffusion Process SP3
Uncond DM Guidance SP4
Uncond DM Conditional Correction SP5

Image editing

Uncond DM / T2I DM Inversion SP6
T2I DM Inversion, Conditional Correction SP7
T2I DM Inversion, Attention Manipulation SP8
T2I DM Inversion, Attention Manipulation, Guidance SP9

Visual to image T2I DM Guidance SP10
Image composition Uncond DM Noise Blending SP11

Layout control
T2I DM Attention Manipulation SP12
T2I DM Attention Manipulation, Guidance SP13

General purpose
Unspecified Noise Composition SP14
Unspecified Classifier-free Guidance SP15
Unspecified Universal Guidance Framework SP16

image formulated as conditional distribution pT (x|c), we classify representative conditional image synthesis
tasks into seven categories as shown in Fig. 1: (a) Text-to-image synthesizes images in accordance with text
prompts, (b) Image restoration recovers clean images from their degraded counterparts, (c) visual signal
to image converts given visual signals such as sketch, depth and human pose into corresponding images,
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Training

Un-trained Backbone

Re-purposing

Specialization

                                                                           SamplingText-to-image Visual signal to image

T2I Diffusion Model

Visual signal/image pairs 

Visual signal to image Diffusion Model

“A zombie in the 
style of Picasso”

Text/image pairs 

“Suit Case”“Kitten”

Customization

Specialization

Customization

“In the Acropolis”
Object imagesObject images

“Steel Screw”

Figure 2: An example of the workflow to build denoising network via training, re-purposing and specialization
stages for target conditional synthesis tasks. In this framework, a text-to-image (T2I) denoising network
is firstly obtained via supervised learning on text/image pairs in training stage. Subsequently, this T2I
denoising network is fine-tuned on visual signal/image pairs for visual signal to image task in re-purposing
stage. Next, both T2I and visual signal to image denoising networks can be further fine-tuned on given
object image in specialization stage to perform customization on the user-specified personal object. Figures
are cited from Rombach et al. (2022); Zhang et al. (2023b); Ruiz et al. (2023); Li et al. (2023a).

(d) Image editing edits the given source images with provided semantic, structure or style information, (e)
Customization creates different editing renditions for personal object specified by given images, (f) Image
composition composes the objects and background specified in different images into a single image, and
(g) Layout control controls the layout grounding of synthesized images with provided spatial information
of foreground objects and background. We have sorted out the associations between various conditional
synthesis tasks and conditioning mechanisms of representative existing works in Tab. 1.

3 Condition integration in denoising networks

The denoising network is the crucial component in the diffusion model (DM)-based synthesis framework,
which estimates the noise added in each forward step to reverse the initial Gaussian noise distribution
back into the data distribution. In practice, the most straightforward way to achieve conditional control
in DM-based synthesis framework is incorporating the conditional inputs into the denoising network. In
this section, we divide the condition integration in denoising network into three stages: (a) training stage:
training a denoising network on paired conditional input and target image from scratch, (b) re-purposing
stage: re-purposing a pre-trained denoising network to conditional synthesis scenarios beyond the task it
was trained on, (c) specialization stage: performing testing-time adjustments on denoising network based on
user-specified conditional input. Fig. 2 provides an examplar workflow to build desired denoising network for
conditional synthesis tasks including text-to-image, visual signals to image and customization via these three
condition integration stages. Next, we first review the fundamental conditional DMs modeled in training
stage in Sec. 3.1. We then summarize the architecture design choices and condition injection approaches in re-
purposing stage in Sec. 3.2. Finally, we introduce the works performing condition integration in specialization
stage in Sec. 3.3. Fig. 3 illustrates the taxonomy proposed in this section.
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Denoising
Networks
(Sec. 3)

Training
(Sec. 3.1)

Text-to-image
Stable Diffusion Rombach et al. (2022), Imagen Saharia et al.
(2022b), Nichol et al. (2022); Ramesh et al. (2022); Balaji et al.
(2022); Gu et al. (2022)

Image restoration
SR3 Saharia et al. (2022c), CDM Ho et al. (2022), Palette Sa-
haria et al. (2022a), Li et al. (2022a); Sahak et al. (2023); Shang
et al. (2024); Zhang et al. (2024c); Jiang et al. (2023a); Xue
et al. (2024); Zhao et al. (2024a)

Other synthesis
scenarios

Preechakul et al. (2022); Wang et al. (2022b); Zhang et al.
(2022); Li et al. (2023j); Liu et al. (2023a); Moghadam et al.
(2023); Meng et al. (2022b); Yang et al. (2022a); Graikos et al.
(2023)

Re-purposing
(Sec. 3.2)

Re-purposed
conditional encoders

T2I-Adapter Mou et al. (2024c), ControlNet Zhang et al.
(2023b), PITI Wang et al. (2022a), BLIP diffusion Li et al.
(2023a), MGIE Fu et al. (2023), Kocsis et al. (2024); Zhang
et al. (2023d); Goel et al. (2023); Yang et al. (2024b); Xu et al.
(2024); Xiao et al. (2023); Ma et al. (2024); Gal et al. (2023b);
Jia et al. (2023); Li et al. (2023h); Lu et al. (2024); Shi et al.
(2024a); Shiohara & Yamasaki (2024); Feng et al. (2023); Huang
et al. (2023c); Li et al. (2023e)

Condition injection
IP-adapter Ye et al. (2023), GLIGEN Li et al. (2023i), Dragon-
Diffusion Mou et al. (2024a), Wei et al. (2023b); Hoe et al.
(2023); Wang et al. (2024a); Qi et al. (2024); Gu et al. (2024)

Backbone fine-tuning

Instructpix2pix Brooks et al. (2023), PbE Yang et al. (2023a),
Yildirim et al. (2023); Wei et al. (2023a); Zhang et al. (2024a);
Geng et al. (2023); Sheynin et al. (2024); Zhang et al. (2024b);
Wang et al. (2023b); Xie et al. (2023a;b); Song et al. (2023c);
Kim et al. (2023b); Chen et al. (2024c); Zhang et al. (2024d)

Specialization
(Sec. 3.3)

Conditional
projection

Imagic Kawar et al. (2023), Textual inversion Gal et al. (2023a),
Wu et al. (2023); Mahajan et al. (2024); Ravi et al. (2023);
Zhang et al. (2023c); Bodur et al. (2024)

Testing-time
model fine-tuning

Imagic Kawar et al. (2023), DreamBooth Ruiz et al. (2023),
Valevski et al. (2023); Li et al. (2023c); Zhang et al. (2023f);
Kumari et al. (2023); Gal et al. (2023b); Choi et al. (2023); Liu
et al. (2023c;d); Gu et al. (2024); Han et al. (2023)

Figure 3: The proposed taxonomy of DCIS works performing condition integration in denoising network.
3.1 Condition Integration in the Training Stage

The most straightforward way to integrate the conditional control signal c into the denoising network is
performing supervised training from scratch with the following loss function:

Ec,x∼p(x|c),ϵ,t

[
∥ϵ − ϵθ (xt, t, c)∥2

2

]
, (6)

where c and x denote the paired conditional inputs and target image. Thereby, the learned conditional
denoising network ϵθ (xt, t, c) can be employed to sample from p(x|c).

Next, we introduce the existing conditional denoising networks trained from scratch, focusing their model
architectures, conditioning mechanisms, which are crucial for creating the connection between the conditional
inputs and its corresponding image. Because of the conditioning architectures and mechanisms are designed
based on the target scenarios, we categorize these works based on the their applications, represented by
text-to-image and image restoration.

3.1.1 Conditional Models for Text-to-Image (T2I)

Text-to-image is a fundamental task in the field of conditional image synthesis, which establishes the connec-
tion between images and the semantic space of text descriptions. Because of the expressiveness of the text
semantic space, text-to-image DMs always serve as the backbone for more complicated conditional synthesis
tasks including image editing Kawar et al. (2023); Hertz et al. (2023); Brooks et al. (2023), customization
Gal et al. (2023a); Ruiz et al. (2023), visual signal to image Mou et al. (2024c); Zhang et al. (2023b), image
composition Yang et al. (2023a) and layout control Wang et al. (2024a); Li et al. (2023i).

The main challenge in modeling a effective text-to-image framework lies in (a) precisely capture the users’
intention described in text prompts and (b) build the connection between text and image in acceptable
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computational cost. In practice, DM-based text-to-image works design different text encoders base on
Transformer encoder Nichol et al. (2022); Rombach et al. (2022), CLIP Ramesh et al. (2022); Balaji et al.
(2022); Gu et al. (2022) or more powerful large language models Saharia et al. (2022b); Balaji et al. (2022)
to extract the features from user provided text prompts. For computational efficiency, these works often
train the DMs on a low-dimension space including compressed latent space Rombach et al. (2022); Gu et al.
(2022) and low-resolution pixel space Nichol et al. (2022); Saharia et al. (2022c); Balaji et al. (2022); Ramesh
et al. (2022), and subsequently enlarge the resolution of the synthesized results.

Next, we introduce representative text-to-image model: Stable Diffusion Rombach et al. (2022) and Imagen
Saharia et al. (2022b), which serve as the T2I backbone for various conditional synthesis tasks.

Similar to VQ-VAE Van Den Oord et al. (2017) and VQ-GAN Esser et al. (2021), Stable Diffusion Rombach
et al. (2022) employs a pre-trained autoencoder to compress the generative space into a low-dimensional latent
space for computational efficiency. In the training stage, the text-conditioned diffusion model ϵθ(zt, t, c)
is trained on this latent space to approximate the conditional distribution of the latent representations.
In sampling process, the latent representation aligned with given text prompt is firstly generated by the
conditional diffusion model on latent space, and then fed into the decoder to recover its corresponding
high-quality image.

For conditional control, Stable Diffusion introduces a transformer text encoder to interpret the text prompt
and convert into the text embedding. Subsequently text embedding is fused with the features in U-Net
architecture of denoising network Rombach et al. (2022) via cross-attention mechanism. In practice, the
encoder can be different domain-specific experts other than the text encoder. Thereby, Stable Diffusion can
be employed into various conditional synthesis scenario beyond text-to-image.

Following up the pioneer DM-based text-to-image framework GLIDE Nichol et al. (2022) and Imagen Sa-
haria et al. (2022b) prefer to train the conditional denoising network on a low-resolution image space and
subsequently upsample the synthesized low-resolution image. In order to effectively capture the complexity
and compositionality of arbitrary text prompts, Imagen employs pre-trained large language models (e.g.,
BERT Kenton & Toutanova (2019), GPT Radford et al. (2021), T5 Raffel et al. (2020)) as powerful text-
encoders. For condition injection, Imagen Saharia et al. (2022b) concatenates the encoded text embedding
to the key-value pairs of the self-attention layers in denoising network. In Imagen, the basic 64 × 64 text-to-
image diffusion model is followed by two cascaded super-resolution diffusion models designed to enlarge the
resolution of synthesized image from 64 × 64 to 1024 × 1024.

3.1.2 Conditional Models for Image Restoration

DM-based conditional training is also widely employed to recover the high-quality clean image x from a given
degraded image c Saharia et al. (2022c;a); Ho et al. (2022); Shang et al. (2024); Zhao et al. (2024a). These
works primarily revolve around identifying the task-related features in degraded image as conditional input
for supervised training and recovering the clean image based on the model trained on these core features.

2.1) Conditioning on degraded images. The most straightforward modeling approach is directly conditioning
the diffusion model on the given degraded image via channel concatenation. Pioneer DM-based super-
resolution method SR3 Saharia et al. (2022c) concatenates the low-quality reference image with the latent
variable in the channel space of U-Net architecture. This simple operation empowers the U-Net architecture
to comprehensively capture information in low-resolution image. Concurrent SRdiff Li et al. (2022a) shifts
the generative space of SR3 to the residual space, and models the residuals between paired high and low
resolution image to avoid regenerating the structures already existing in the low-resolution image. As a
result, SRdiff performs on par with SR3 with significantly fewer computations. To adapt SR3 to real world
restoration tasks, SR3+ Sahak et al. (2023) employs second-order degradation simulation to create real-world
clean and degraded image-pairs to enhance the training dataset. Based on SR3 Saharia et al. (2022c), CDM
Ho et al. (2022) proposes to cascade super-resolution DMs to enlarge image resolution, and Palette Saharia
et al. (2022a) extends to more diverse image restoration tasks via supervised training on corresponding paired
clean/degraded image datasets.
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Figure 4: An illustration of the re-purposed denoising network based on text-to-image backbone, where ♠,
♡, ♣, ♢ denotes condition integration via channel-wise concatenation, T2I attention layers, addition and
developed attention modules respectively as describes in Sec. 3.2.2.

2.2) Conditioning on pre-processed features. However, simply concatenating the degraded image in the
channel space places a burden on the denoising network to extract information relevant to the restoration
task from the unprocessed degraded image. To dedicate most modeling capacity on the task task-related
features, a branch of restoration works Shang et al. (2024); Zhao et al. (2024a); Jiang et al. (2023a); Xue et al.
(2024); Zhang et al. (2024c) prefer to firstly extract these features from the degraded image and subsequently
conditioning the model on these task task-related features.

State-of-the-art super-resolution framework Resdiff Shang et al. (2024) employs a pre-trained CNN to gener-
ate a higher quality intermediate image for the initial degraded image, and conditions the denoising network
on the intermediate image and its high-frequency details to synthesize the residual between intermediate
image and clean image. For more complex restoration tasks including underwater image restoration Zhao
et al. (2024a) and low-light image enhancement Jiang et al. (2023a); Xue et al. (2024), in which the given de-
graded image is severely corrupted, a branch of works prefer to condition the model on frequency information
extracted by discrete wavelet transformations. To restore real-world text images under severe degradation,
DiffTSR Zhang et al. (2024c) conducts parallel diffusion processes consist of an image diffusion model for
image restoration and a text diffusion model for text recognition and employs a multi-modality module to
interact the information of text and image diffusion process.

3.1.3 Conditional Models for Other Synthesis Scenarios

Although the mainstream DM-based frameworks for complicated conditional synthesis scenarios are estab-
lished by re-purposing the text-to-image backbone, some works also prefer supervised training from scratch
for different conditional synthesis tasks. Part of these works are early studies before the popularity of DM-
based text-to-image models designed for tasks including image editing Preechakul et al. (2022) and visual
signal to image Wang et al. (2022b); Zhang et al. (2022). Another part of these works are designed for novel
or highly specialized tasks conditional synthesis scenarios including medical image synthesis Li et al. (2023j);
Liu et al. (2023a); Moghadam et al. (2023); Meng et al. (2022b), graph-to-image Yang et al. (2022a) and
satellite image synthesis Graikos et al. (2023), in which the conditional control signals are difficult to be
aligned with the semantic space of the text-to-image backbone.

3.2 Condition Integration in the Re-purposing Stage

Currently, diffusion models (DMs) are employed in increasingly diverse and complex conditional synthesis
scenarios Ye et al. (2023); Zhang et al. (2023b); Li et al. (2023e); Zhang et al. (2023d); Li et al. (2023i);
Wang et al. (2024a); Shi et al. (2024b). Simply training denoising networks from scratch for each conditional
synthesis scenario would place a heavy burden on computational resources. Fortunately, pre-trained text-
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to-image (T2I) DMs effectively associate text embedding with its corresponding image, which serves as a
semantic powerful backbone for a wide range of conditional synthesis tasks beyond the T2I. Studies design
task-specific denoising network based on T2I backbone and performing fine-tuning on paired conditional
inputs and image to re-purpose the T2I-based denoising network to target task. In practice, the re-purposed
denoising network can be divided into three key modules: (a) Conditional encoder : The module to encode
the task-specific conditional inputs into feature embedding, (b) Conditioning injection: The module to inject
task-related feature embedding into T2I backbone, (c) Backbone: The T2I backbone that can stay frozen
or be fine-tuned during the re-purposing stage. In the re-purposing stage, conditional fine-tuning can be
performed in each of these components for condition integration. Subsequently, we will summarize the design
choice for these modules among current works performing condition integration in the re-purposing stage.

3.2.1 Re-purposed Conditional Encoders

In a T2I model, the text embedding is extracted from given text prompt through a text encoder and
subsequently injected into the U-Net architecture through cross attention. To re-purpose the T2I backbone
to tasks beyond text-to-image, various task-specific conditional encoders are designed to extract the features
from conditional control signals other than text.

1.1) Convolutional layer-based encoder for visual signals. For visual signals, conditional encoders are mainly
designed base on convolutional downsample blocks to extract multi-scale structure features.

Pioneer work T2I-Adapter Mou et al. (2024c) employs a four-layer convolutional network as a lightweight
adapter to encode the visual signal into a set of multiscale features. ControlNet Zhang et al. (2023b) provides
a more powerful architecture as tje encoder for visual signals, which cloned the deep encoding layers from
the U-Net architecture in Stable Diffusion. This ControlNet encoder inherits a wealth of prior knowledge in
the Stable Diffusion backbone and serves as a deep, robust, and strong architecture for diverse visual signals.
Currently, ControlNet delivers state-of-the-art results in diverse visual signal to image tasks and becomes a
the widely-employed conditional encoder various more complicated conditional synthesis scenarios including
explicit lighting control Kocsis et al. (2024), image composition Zhang et al. (2023d), image editing Goel
et al. (2023); Zhang et al. (2024d) and virtual try-on Kim et al. (2024); Zeng et al. (2024).

1.2) ViT-based encoder for images. In practice, Vision Transformer (ViT)-based encoders are widely em-
ployed to extract the features of conditional control signals in the form of images. Generally, visual signals
can also be viewed in the form of image, the pioneering work PITI Wang et al. (2022a) designs a ViT-based
encoder to map given visual signal into its corresponding text embedding for the T2I backbone. ImageBrush
Yang et al. (2024b) also employs a ViT-based encoder to extract the visual editing instruction described by
paired images before/after editing. Prompt-free Diffusion Xu et al. (2024) employs a more powerful Context
Encoder (SeeCoder) based on SWIM-L Liu et al. (2021) to convert image into meaningful visual embedding.
For customization, a branch of works Xiao et al. (2023); Ma et al. (2024); Shi et al. (2024a); Gal et al.
(2023b); Jia et al. (2023); Li et al. (2023h); Lu et al. (2024); Li et al. (2023a); Shiohara & Yamasaki (2024)
maps the given personal object into features on the textual space via different ViT-based image encoders
designed on the framework of CLIP Radford et al. (2021), SWIN Liu et al. (2021), BLIP Li et al. (2023b)
or ViT-based ArcFace encoder Deng et al. (2019).

1.3) LLMs-based encoder for image editing. In order to enhance the semantic information in the given text
prompt, a branch of works prefer to design more powerful Large Language Models (LLMs)-base encoders
for text-based image editing, Fu et al. (2023); Huang et al. (2023c); Li et al. (2023e) leverages a trainable
Multimodal Large Language Models (MLLMs) Liu et al. (2024b) module as the encoder for the given
source image and editing instruction. Ranni Feng et al. (2023) used LLMs to convert description or editing
prompts into a semantic panel, which serves as an intermediate representation that contains rich structure
and semantic information.

3.2.2 Condition Injection

In order to more effectively incorporate information from conditional inputs into the denoising network
during the re-purposing stage across various conditional synthesis scenarios, studies in this field have designed
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different task-specific conditional injection approaches to handle different types of conditional control signals.
Here, we categorize these methods into the following four categories.

2.1) Condition injection via concatenation ♠. For conditional inputs in form of image, a direct condition
injection approach is following the concatenation strategy proposed by SR3 Saharia et al. (2022c), which
concatenates the image form conditional inputs to the latent variable in the channel space of the U-Net
architecture. In practice, this conditioning strategy is usually performed with backbone fine-tuning to handle
conditional synthesis tasks that involve complex conditional inputs composed of multimodal components,
including instruction-based editing Brooks et al. (2023); Sheynin et al. (2024); Geng et al. (2023) and image
composition Zhang et al. (2023d); Song et al. (2023c); Xie et al. (2023a).

2.2) Condition injection via T2I attention layers ♡. In the T2I backbone, the cross-attention layers serve as
the conditioning module to inject text embedding into the U-Net architecture. Currently, a branch of works
also employ the cross-attention layers in T2I backbone to inject the features extracted from task-specific
conditional encoders Wang et al. (2022a); Yang et al. (2024b); Xu et al. (2024); Xiao et al. (2023); Gal et al.
(2023b); Jia et al. (2023); Li et al. (2023a); Shiohara & Yamasaki (2024); Zeng et al. (2024).

2.3) Condition injection via addition ♣. Because of the alignment between the architecture of conditional
encoder and the U-Net encoder in T2I backbone, for convolutional layer-based encoders Mou et al. (2024c);
Zhang et al. (2023b), the extracted features are injected via directly adding these features to the correspond-
ing intermediates layers of U-Net architecture in T2I backbone.

2.4) Condition injection via developed attention modules ♢. To achieve more fine-grained control over the
synthesized image, some works design developed task-specific attention modules for condition injection in
target conditional synthesis scenarios Ye et al. (2023); Li et al. (2023i); Wei et al. (2023b); Wang et al.
(2024a); Mou et al. (2024a). A branch of works prefer to incorporate extra attention module into the T2I
backbone to inject the task-specific conditional control signals Ye et al. (2023); Wei et al. (2023b); Li et al.
(2023i); Hoe et al. (2023); Wang et al. (2024a). IP-adapter Ye et al. (2023) employs additional image cross-
attention layers to inject the image embedding into the T2I backbone. For customization, ELITE Wei et al.
(2023b) leverages two parallel cross-attention layers to inject extracted global and local information of given
personal object separately.

In T2I backbone, attention layers control the structure and layout information of synthesized image. To exert
accurate object-level layout control, a branch of works prefer to add a trainable attention-module between
self-attention and cross-attention layers Li et al. (2023i); Ma et al. (2024); Shi et al. (2024a); Hoe et al. (2023);
Wang et al. (2024a). GLIGEN Li et al. (2023i) adds a gated self-attention layer to U-Net architecture to
inject provided layout information. This conditioning strategy is further employed in customization works
Ma et al. (2024); Shi et al. (2024a) to integrate patch features extracted from personal object images. To
perform more detailed layout control, InteractDiffusion Hoe et al. (2023) designs an attention-based Human-
Object Interaction module to inject the interactions between objects. InstanceDiffusion Wang et al. (2024a)
projects different forms of object-level control signals including single points, scribbles, bounding boxes or
intricate instance segmentation masks into the feature space through a UniFusion block, and inject these
features with a Instance-Masked Attention module.

Another line of works modify the cross-attention mechanism in T2I backbone to achieve more precise control
Qi et al. (2024); Mou et al. (2024a); Lu et al. (2024); Gu et al. (2024). Different from IP-adapter Ye et al.
(2023), DEADiff Qi et al. (2024) concatenates the key and value features from image and text embedding
respectively and perform a single fused cross-attention mechanism to achieve multimodal conditional control.
In practice, performing fused attention mechanism to inject multimodal control signals along with text
embedding is also employed in instruct-based editing Li et al. (2023f) and pose-guided person image synthesis
Lu et al. (2024). To perform local control based on multiple regional prompts, Mix-and-show Gu et al. (2024)
proposes an attention localization strategy in the re-purposing stage, which substitutes the attention map
in specified regions with the attention map generated based on the regional prompts.
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3.2.3 Backbone Fine-tuning

Currently, most of the re-purposing works confine the fine-tuning only on conditional encoders and condition
injection modules to ease the computational burden. However, for conditional inputs contain multimodal
components or intricate semantics, performing fine-tuning while freezing the parameters in T2I backbone
often fails to fully understand intrinsic connections between the conditional input and target image. In these
scenarios, fine-tuning the T2I backbone together with encoders and condition injection modules is a more
preferable choice. Base on the fine-tuning strategy, we categorize these works into two types: (a) Fully
supervised fine-tuning on annotated dataset, and (b) Self-supervised fine-tuning on bare image dataset.

3.1) Fully supervised fine-tuning on the annotated dataset. In practice, we can re-purpose the T2I backbone
on the annotated dataset of paired conditional input and image in accordance with the specific task via fully
supervised fine-tuning. For some synthesis tasks involving complex conditional inputs, a major difficulty lies
in collecting sufficient training data to fine-tune the model Brooks et al. (2023); Zhang et al. (2023d). For
instruct-based editing task which refers to using instruction instead of text description to guide the editing
process, Instructpix2pix Brooks et al. (2023) provides an effective approach for automatically synthesizing
training datasets. Firstly, InstructPix2Pix employs a fine-tuned GPT-3 Brown et al. (2020) to synthesize
editing triplets composed of input captions, edit instructions and output captions. Subsequently, Instruct-
pix2pix leverages Prompt-to-Prompt Hertz et al. (2023) to synthesize paired images corresponding to the
input captions and output captions, which serves as the paired images before/after editing. This contribution
leads to a line of works on DM-based instruction editing. A branch of follow-up works attempt to enhance
the T2I backbone in some specific tasks by augmenting the training dataset for target scenario including
object removal and inpainting Yildirim et al. (2023), global editing Li et al. (2023f), dialog-based editing Wei
et al. (2023a), continuous editing Zhang et al. (2024a). InstructDiffusion Geng et al. (2023) and Emu-edit
Sheynin et al. (2024) fine-tune the T2I backbone on larger and more comprehensive synthesized datasets
for a wide range of vision tasks including image editing, segmentation, keypoint estimation, detection, and
low-level vision. To achieve more accurate editing, Fu et al. (2023); Huang et al. (2023c); Li et al. (2023e)
fine-tune the T2I backbone with a more powerful MLLMs-based conditional encoder to enhance the editing
prompts. Based on reinforcement learning, HIVE Zhang et al. (2024b) fine-tunes the instruct-based editing
model with a reward model reflecting the human feedback for editing performance.

3.2) Self-supervised fine-tuning on bare image dataset. In non-general conditional synthesis scenarios in-
volving image composition or mask-based editing, the form of conditional inputs may be complicated. For
example, a classic image composition task aims to fuse a foreground reference image into the background
main image within the mask region. In these tasks, collecting annotated training data pairs is almost impos-
sible. A feasible approach is to create paired data based on the target scenario through cropping on a bare
image dataset, and thereby fine-tune the T2I backbone in a self-supervised manner. For image composition
task, PbE Yang et al. (2023a) randomly crops the foreground objects from the source image as reference im-
age and corresponding mask, while the remained background as the background main image. Subsequently,
PbE Yang et al. (2023a) fine-tunes the T2I backbone with paired cropped reference image and main image.
In practice, such strategy is widely employed in conditional synthesis scenarios involve inpainting Wang et al.
(2023b); Xie et al. (2023a) and composition Song et al. (2023c); Kim et al. (2023b); Zhang et al. (2023d); Xie
et al. (2023b); Chen et al. (2024c). To generate reasonable masks for text-based inpainting, Imagen Editor
Wang et al. (2023b) employs an off-the-shelf object detector to generate mask on the image in captioned
image datasets, which covers a region relevant to the text caption of image. SmartBrush Xie et al. (2023a)
randomly augments the cropped training masks to create accurate instance masks, which facilitates the T2I
backbone to follow the shape of the input mask at testing-time.

For image composition, the greatest challenge faced by the self-supervised fine-tuning strategy is how to
avoid the trivial copy-and-paste solution caused by the training data cropped from a single image Yang
et al. (2023a); Xie et al. (2023b); Zhang et al. (2024d). Currently, image composition frameworks resort
compress the information in the conditional inputs into an information bottleneck. This, in turn, forces the
T2I backbone to interpret the intrinsic connections between the conditional input and the desired image,
thereby effectively avoiding the copy-and-paste solution. PbE Yang et al. (2023a) and Dreaminpainter Xie
et al. (2023b) select part of the image tokens for condition injection to create information bottleneck. Ob-
jectStitch Song et al. (2023c) employs a two-stage fine-tuning strategy to decouple the fine-tuning stages
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Figure 5: The specialization process to align a given personal object (the clock) with a pesudo-word S∗ in
the conditional space of a text-to-image backbone. The clock image is from Textual Inversion Gal et al.
(2023a).

of the conditional encoder and the T2I backbone. Zhang et al. (2024d); Chen et al. (2024c); Zhang et al.
(2023d) prefer to remove or mask out the information such as colors, textures or background in source image
to prevent identical mapping.

3.3 Condition Integration in the Specialization Stage

Although theoretically we can incorporate any form of conditional inputs c into the denoising network
ϵθ (xt, t, c) during the training and re-purposing stages, for complicated conditional synthesis scenarios,
incorporating such control signals into the conditional space of denoising network faces challenges in collecting
annotated training dataset and modeling the complicated correlation between conditional inputs and desire
results. This limits the model capability to deal with zero-shot or few-shot conditional inputs.

A straightforward idea to remedy these issues is to align the given conditional inputs with the conditional
space of a general T2I backbone through a specialization stage. As shown in Fig. 5, the specialization for
given specific conditional inputs is typically achieved by (a) conditional projection, which projects the given
conditional inputs onto the conditional space of the T2I backbone via embedding optimization Kawar et al.
(2023); Gal et al. (2023a), or Vision-Language Pre-training (VLP) framework Li et al. (2022b; 2023b), (b)
testing-time model fine-tuning, which fine-tunes the denoising network to insert the conditional inputs into
the prior of the T2I backbone. In practice, works perform condition integration in specialization stage are
mainly targeted to image editing and customization tasks to achieve desired edits on user-specified visual
subjects including source image(image editing) and personal objects(customization) while preserving the
characteristics and details in these visual subjects Kawar et al. (2023); Ruiz et al. (2023); Gal et al. (2023a).

3.3.1 Conditional Projection

To perform editing or customization tasks, a widely employed approach is projecting the given visual subject
into corresponding text representation on the conditional space of text-to-image model.

1.1) Conditional embedding optimization. In order to find a proper text embedding for given visual subject,
a branch of works directly search for the optimal embedding for the user-specified conditional inputs by
optimizing the following objective function:

v∗ = arg min
v

Ex=cI ,ϵ,t

[
∥ϵ − ϵθ (xt, t, v)∥2

2

]
, (7)

where v∗ denotes the optimized text embedding for the user-specified visual subject cI , and ϵθ denotes
the T2I backbone. The embedding v∗ serves as a pseudo-word S∗ for the visual subject and can be fur-
ther composed into various natural language prompts to create different editing renditions for given visual
subject Kawar et al. (2023); Gal et al. (2023a).
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For image editing, Imagic Kawar et al. (2023) optimizes the embedding v∗ for the source image. Subse-
quently, Imagic perform interpolation between optimized source embedding v∗ and target embedding vtgt

to obtain v = η · vtgt + (1 − η) · v∗, which serves as the conditional input for denoising process. Diffusion
Disentanglement Wu et al. (2023) optimizes the time-specified combination weights λ1:T of the source and
target text embedding along the sampling process instead of interpolation to retrieve time-adaptable embed-
ding for editing. To reduce the computational cost of the optimization process, Zhang et al. (2023c); Mou
et al. (2024b) first employed image encoder to generate a coarse embedding of the given visual subject, and
subsequently fine-tuning the coarse embedding via optimization.

Pioneer customization work Textual inversion Gal et al. (2023a) perform optimization to discover the text
embedding v∗ for personal object described by a few reference images (typically 3 to 5). This optimized
embedding v∗ serves as the pseudo-pronoun S∗ for the personal object in further conditional sampling
process. To provide human-readable text description instead of text embedding for given personal object,
PH2P Mahajan et al. (2024) employ quasi-newton L-BFGS Shanno (1970) to directly optimize discrete
tokens from a existing pre-specified vocabulary for target image.

1.2) Employing VLP models. However, performing time-consuming optimization process for each new visual
subject hinders the deployment of these methods in application scenarios. Therefore, a branch of works
prefer to employ Vision-Language Pre-training (VLP) models to directly generate the embedding for given
visual subjects Zhang et al. (2023c); Li et al. (2023a).

BLIP Li et al. (2022b) is a strong VLP framework to synthesize captions for given images, which is widely
employed in image editing tasks to generate an initial text prompt to describe the uncaptioned source
image Zhang et al. (2023c); Li et al. (2023a); Bodur et al. (2024); Parmar et al. (2023). BLIP can also
be used to enhance user-provided prompts for eliminates editing failure caused by missing contexts in the
coarse input prompts Kim et al. (2023c). Besides, PRedItOR Ravi et al. (2023) prefer to leverage DALL-E2
Ramesh et al. (2022) to fuse the source image with the target prompt by performing SDEdit Meng et al.
(2022a) process on the CLIP embedding space.

3.3.2 Testing-time Model Fine-Tuning

In editing and customization tasks, simply employing the denoising network modeled in scenario-orient
training and re-purposing stage always fails to retain the characteristics and details in the user-specified
visual subject, due to the lack of prior knowledge Kumari et al. (2023). To customize the T2I backbone for
user-specified conditional inputs, approaches in this category resort to perform testing-time fine-tuning on
the T2I backbone to insert the given visual subjects into the denoising network Ruiz et al. (2023); Kumari
et al. (2023).

To better preserve the outlook of source image in editing tasks, a branch of works Kawar et al. (2023);
Valevski et al. (2023); Zhang et al. (2023c;f) represented by Imagic Kawar et al. (2023) fine-tune the T2I
backbone to bind the source image with its corresponding text description csrc in the conditional space.
In order to simultaneously editing the foreground and background in source image, LayerDiffusion employ
Segment Anything Model (SAM) Kirillov et al. (2023) to create masks for foreground objects. Subsequently,
LayerDiffusion Li et al. (2023c) fine-tunes the T2I backbone with a designed loss composed of the diffusion loss
in both foreground and background region to editing the foreground object and background independently.
SINE Zhang et al. (2023f) introduces a patch-based fine-tuning strategy which incorporates the positional
embedding into conditional T2I space to synthesize arbitrary-resolution edited image.

For the customization task, DreamBooth Ruiz et al. (2023) fine-tunes the T2I backbone to entangle a fixed
unique identifier with the semantic meaning of the personal object. To alleviate the computational burden
in the testing-time fine-tuning, followed up works Kumari et al. (2023); Gal et al. (2023b); Choi et al. (2023);
Liu et al. (2023c;d); Gu et al. (2024); Han et al. (2023) prefer to only fine-tune a specific part of model
parameters. CustomDiffusion Kumari et al. (2023) fine-tunes only the cross-attention layers. E4T Gal
et al. (2023b) optimizes low-rank adaptations (LoRA) Hu et al. (2021) of weight residuals in cross- and
self-attention layers to further reduce computational cost. Cones Liu et al. (2023c) fine-tunes the attention
layer concept neurons highly-related to the given visual subject. Cones2 Liu et al. (2023d) and Mix-and-show

14



Under review as submission to TMLR

Conditional Denoising Step

“A Zebra”

 “A Horse”

4.4: Reverse Diffusion Step

Denoising       
U-Net

Attention Attention

4.5: Guidance4.6: Conditional Correction

4.3: Noise Blending
4.2: Attention Manipulation

“A Zebra”

Target imageSource image

4.1: Inversion

“A Horse”

Denoising       
U-Net

Attention Attention

Denoising       
U-Net

Attention Attention

DDIM Step DDIM Step

Inversed 
DDIM Step

Inversed 
DDIM Step

Conditional 
Denoising Step

Conditional 
Denoising Step

Figure 6: An example of the conditional sampling process for image editing, in which we incorporate all six
mainstream in-sampling conditioning mechanisms for diffusion sampling process to provide a comprehensive
overview of the content in this section. The sample images are from Diffedit Couairon et al. (2023).

Gu et al. (2024) resort to fine-tune the text encoder in T2I backbone. SVDiff Han et al. (2023) fine-tunes
the singular values of the decomposed convolution kernels.

4 Condition integration in the sampling process

In DM-based image synthesis frameworks, the sampling process iteratively reserve noisy latent variable
into desired image with the prediction of the denoising network. As mentioned in Sec. 3, integrating the
conditional control signals into the denoising network always requires time-consuming training, fine-tuning or
optimization. To ease the burden for conditioning the denoising network, numerous works perform condition
integration in the sampling process to ensure the consistency between synthesized image and given conditional
input without computational intensive supervised-training or fine-tuning Su et al. (2023); Hertz et al. (2023);
Liu et al. (2022); Kawar et al. (2022); Dhariwal & Nichol (2021); Choi et al. (2021).

Based on how the conditional control signals are incorporated into the sampling process, we divide main-
stream in-sampling conditioning mechanisms into six categories: (a) inversion, (b) attention manipulation,
(c) noise blending, (d) revising diffusion process, (e) guidance and (f) conditional correction. We illustrate
these conditioning mechanisms with an exemplary image editing process in Fig. 6. In this section, we will
introduce the core idea of these conditioning mechanisms and summarize the corresponding representative
works as taxonomized in Fig. 7.

4.1 Inversion

In diffusion model (DM)-based image synthesis, the starting latent variable controls the spatial structure
and semantics of synthesized result. Inversion process provides an effective way to encode the given source
image back into its corresponding starting latent variable and effectively preserve the image structure and
semantics for further editing. In this section, we firstly summarize the inversion approaches in Sec. 4.1.1.
Next, we will discuss the applications of inversion in various conditional synthesis scenarios in Sec. 4.1.2.

4.1.1 Inversion Approaches

Mainstream inversion approaches perform inversion based on the forward diffusion process, deterministic
sampling process, and stochastic sampling process. We denote these three basic inversion pathways as noise-
adding inversion, deterministic inversion, and stochastic inversion, respectively. Due to accumulated errors
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Sampling
(Sec. 4)

Inversion (Sec. 4.1)

SDEdit Meng et al. (2022a), DDIB Su et al. (2023), Null-text Inver-
sion Mokady et al. (2023), Cyclediffusion Wu & De la Torre (2023), DDPM
inversion Huberman-Spiegelglas et al. (2023), Dong et al. (2023); Huang
et al. (2023a); Wang et al. (2023c); Wallace et al. (2023); Miyake et al.
(2023); Ju et al. (2023); Meiri et al. (2023); Pan et al. (2023b); Lu et al.
(2023); Brack et al. (2024); Nie et al. (2023); Zhang et al. (2023e); Chung
et al. (2024); Shi et al. (2024b)

Attention
manipulation (Sec. 4.2)

Prompt-to-Prompt Hertz et al. (2023), PnP Tumanyan et al. (2023), Mas-
actrl Cao et al. (2023), Ediff-i Balaji et al. (2022), Chen & Lathuilière
(2023); Choi et al. (2023); Wang et al. (2023c); Yang et al. (2024a); Liu
et al. (2024a); Chung et al. (2024); Shi et al. (2024b); Mou et al. (2024a);
Lu et al. (2023); Liu et al. (2023d); Guo & Lin (2023)

Noise blending (Sec. 4.3)
Composable DMs Liu et al. (2022), Classifier-free guidance Ho & Sali-
mans (2022), Brack et al. (2024); Zhao et al. (2023a); Shirakawa & Uchida
(2024); Bar-Tal et al. (2023); Pan et al. (2023b); Zhang et al. (2023f); Goel
et al. (2023)

Revising process (Sec. 4.4)
IR-SDE Luo et al. (2023), SNIPS Kawar et al. (2021), DDRM Kawar et al.
(2022), Welker et al. (2024); Yue et al. (2024); Wang et al. (2024c); Delbra-
cio & Milanfar (2023); Wang et al. (2024b)

Guidance (Sec. 4.5)

Classifier Guidance Dhariwal & Nichol (2021), MCG Chung et al. (2022a),
DPS Chung et al. (2023b), Blend Diffusion Avrahami et al. (2022), Sketch
guided DM Voynov et al. (2023), Pix2Pix-Zero Parmar et al. (2023), Free-
DoM Yu et al. (2023), Universal Guidance Bansal et al. (2023), Song et al.
(2023a); Rout et al. (2024); Chung et al. (2023a); Fei et al. (2023); Liu
et al. (2023b); Kwon & Ye (2023); Singh et al. (2023); Luo et al. (2024);
Mo et al. (2024); Lin et al. (2023); Park et al. (2024); Chen et al. (2024b);
Epstein et al. (2024); Mou et al. (2024b;a)

Conditional
correction (Sec. 4.6)

SDE Song et al. (2021b), Repaint Lugmayr et al. (2022), ILVR Choi
et al. (2021), Diffedit Couairon et al. (2023), CCDF Chung et al. (2022b),
MCG Chung et al. (2022a), Patashnik et al. (2023); Wang et al. (2023a);
Lin et al. (2024); Huang et al. (2023b)

Figure 7: The proposed taxonomy of DCIS works performing condition integration in sampling process.

in the discrete diffusion process, the naive inversion process often fails to preserve details in the source
image, especially with classifier-free guidance. Therefore, numerous works propose enhancements to these
basic inversion approaches to ensure perfect reconstruction of the source image.

1.1) Noise-ddding inversion. Noise-Adding Inversion performs a standard forward diffusion process to inverse
the source image to a certain noise step T ′, i.e., q (xT ′ | x0) = N

(
xT ′ ;

√
ᾱT ′x0, (1 − ᾱT ′) I

)
, where the latent

variable xT ′ is a mixture of source image and Gaussian noise.

1.2) Deterministic inversion. However, noise-adding inversion may smooth out details in the source image.
To more precisely preserve image features, deterministic inversion is proposed to encode the source image
x0 into its corresponding latent variable xT with the discretization of diffusion ODEs such as DDIM Song
et al. (2021a). Theoretically, with a sufficiently large diffusion step T , DDIM inversion can guarantee perfect
reconstruction, which ensures the latent variable xT obtained from DDIM inversion to be a meaningful
diffusion starting point encapsulating all features pertaining to the source image x0.

1.3) Stochastic inversion. However, DDIM inversion performs accurate inversion only when the diffusion time
steps is sufficiently large, which always leads to unsatisfied results especially under classifier-free guidance.
Therefore, a branch of works prefer to inverse the stochastic sampling process in Eq. 2. Different from the
deterministic sampling process, which is determined by the starting point latent variable xT , the stochastic
sampling process involves the noise vector ϵt added in each reverse transition kernel. Therefore, we have to
memorize each noise vector ϵt along the inversion process to ensure the reconstruction property.

1.4) Enhanced inversion approaches. In conditional synthesis, the classifier-free guidance significantly mag-
nified the accumulated error in inversion process, which leads to poor reconstruction and edit performance.
Therefore, a series of inversion methods are developed to ensure the inversion performance under classifier-
free guidance.

For deterministic inversion, some approaches prefer to fine-tune relevant parameters in the classifier-free
guided sampling process to reduce the reconstruction error, including optimizing the null-text embed-
ding Mokady et al. (2023), text embedding for the source image Dong et al. (2023), key and value matrix
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in the self-attention layers Huang et al. (2023a), and the prompt embedding for cross-attention layers Wang
et al. (2023c). To get rid of the computational burden for fine-tuning, a branch of works has developed
tuning-free approaches for perfect reconstruction Wallace et al. (2023); Han et al. (2024); Miyake et al.
(2023); Ju et al. (2023). EDICT Wallace et al. (2023) achieves precise DDIM inversion by utilizing an equiv-
alent reversible process consisting of two coupled noise vectors. Negative-prompt Inversion Miyake et al.
(2023) demonstrates the prompt of the source image can serve as a training-free substitute for null-text
embedding. Proxedit Han et al. (2024) further enhance the reconstruction performance of Negative-prompt
Inversion Miyake et al. (2023) by incorporating a regularization term in classifier-free guidance to prevent
over-amplifying the editing direction in sampling process. Fixed-point Inversion Meiri et al. (2023) and AIDI
Pan et al. (2023b) perform fixed-point iterations in each step of DDIM inversion to reduce the accumulation
errors due to the discrete DDIM process. Besides, Fixed-point Inversion Meiri et al. (2023) provides a brief
cycle of fixed-point iterations for the VAE-encoded latent representation of source image to eliminate the
misfit between latent representation and given text prompt in latent diffusion model. TF-ICON Lu et al.
(2023) and LEDITS++ Brack et al. (2024) perform inversion based on high-order diffusion differential equa-
tion solvers Lu et al. (2022a;b) which significantly accelerates the inversion process and improve the accuracy
of inversion.

For stochastic inversion, theoretically, any sampling sequence starts with source image can be employed as the
iterative latent variables in stochastic inversion process. However, arbitrary sampling sequence will deviate
from the prior marginal distribution of latent variables and harm the editing ability in reconstruction process.
To construct a reasonable sampling sequence, pioneer work Cyclediffusion Wu & De la Torre (2023) firstly
samples a xT ∼ N (0, I) and subsequently denoise it based on the source image x0 to recover the sampling
sequence. DDPM inversion Huberman-Spiegelglas et al. (2023) constructs an editing-friendly sequence by
sampling each intermediate latent variable xt independently based on the source image x0 and reconstructs
the source image up to noise precision to avoid error accumulation . SDE-Drag Nie et al. (2023) provides a
theoretical fundamental to explain the superiority in editing performance of stochastic inversion comparing
to deterministic inversion. It demonstrates that the KL-Divergence between the distribution of edited image
and prior data distribution decrease in stochastic inversion while remaining in widely used deterministic
inversion.

4.1.2 Applications of Inversion in Conditional Synthesis

Inversion process converts the provided source image into its corresponding latent variable. In practice,
this latent variable can serve as the starting point for sampling process to perform basic image-to-image
translation, text-based image editing or be further manipulated for more complicated tasks.

Image-to-image translation target to translate the content in a given source image into the desired appear-
ance, which serves as the foundation for image editing. Pioneer SDEdit Meng et al. (2022a) translate a given
out-of-domain source image into its counterpart in target domain by denoising the noise-adding inversed
source image with the denoising network trained on target domain. This process preserves the content in
source image while endowing it with appearance in the target domain.

Based on deterministic inversion, DDIB Su et al. (2023) introduces a highly flexible technique for image-to-
image translation between two manifolds α and β via a simple process x∗ = Dβ(Eα(x)) , where x and x∗

denote the source and target image on manifold α and β respectively, Eα and Dβ denote the deterministic
inversion and sampling process performed with the diffusion models for manifold α and β. DDIB process can
be performed with two independently trained diffusion models or a diffusion model conditioned on different
control signals.

In practice, text-based editing task, which targets to edit the source image cI described by csrc to align
with target text prompt ctgt, can be achieved by performing the DDIB image-to-image translation process
as x∗ = Dctgt

(Ecsrc
(cI)), where cI , x∗ are paired source and edited image, and Dctgt

and Ecsrc
denotes the

sampling process conditioned on target prompts and the inversion process conditioned on source prompts.
However, this editing process can only roughly ensure the consistency in semantics and overall structure
while always failing to precisely preserve the intricate details in source image. In order to more accurately
recover the details in source image in editing process, inversion is always performed with other conditioning
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mechanisms in the editing process. Performing conditional correction with mask is a preferable choice to
preserve the region not requiring editing Couairon et al. (2023); Li et al. (2023c); Patashnik et al. (2023);
Yang et al. (2024a); Wang et al. (2023a); Lin et al. (2024); Huang et al. (2023b). Another choice is performing
attention manipulation during the editing process to incorporate the outlook of source image, as discussed
in Sec. 4.2 Hertz et al. (2023); Tumanyan et al. (2023). Besides, a branch of works employ model fine-tuning
in specialization stage or conditional projection described in Sec. 3.3 to inject the detailed outlook of source
image into the T2I backbone Kawar et al. (2023); Zhang et al. (2023c).

Besides, based on the task-specific conditional encoders to convert multi-model conditional inputs into text
embedding, this inversion-based editing process can also be employed in conditional synthesis tasks beyond
text-based editing. For example, InST Zhang et al. (2023e) denoise the noisy reference image obtained by
noise-adding inversion with the denoising network conditioned on the embedding vectors extracted from the
style image to achieve style transfer editing.

For more complicated conditional synthesis scenarios, the latent variable obtained from inversion can be
manipulated to incorporate additional information beyond the source image. For image composition, a
branch of works prefer to fuse the latent variable obtained from inversion process for different source images
Chung et al. (2024); Lu et al. (2023). Style Injection in Diffusion Chung et al. (2024) fuse the latent
variable of both style and content image obtained by DDIM inversion to perform style transfer. TF-ICON
Lu et al. (2023) compose the inverted main and reference images for image compositing. In drag-based
editing, we can adjust the corresponding area in the latent variable based on the provided drag instructions.
Dragdiffusion Shi et al. (2024b) optimize the latent variable with designed motion supervision loss for drag-
style manipulation. The stochastic inversion-based work, SDE-Drag Nie et al. (2023), manipulates the latent
variable through a copy-and-paste strategy instead of performing optimization in the latent space.

4.2 Attention Manipulation

After determining the starting point for the sampling process via sampling from Gaussian distribution or
inversion methods, the sampling process is performed by iterative denoising steps. As pointed out in E4T
Gal et al. (2023b), the attention layers in the denoising network have the greatest influence on the predicted
noise in each denoising step and thereby control the structure and layout of synthesized image. Therefore,
a branch of works resort to design task-specific manipulation to the attention layers in denoising network
to achieve more accurate control over the spatial layout and geometry Hertz et al. (2023); Tumanyan et al.
(2023); Lu et al. (2023); Patashnik et al. (2023). Different from the works Li et al. (2023i); Ye et al. (2023)
performing fine-tuning on modified attention module in re-purposing stage, approaches in this category
manipulates the attention layers via tuning-free replacement or localization during sampling process.

4.2.1 Replacement Manipulation

Pioneer attention manipulation works are designed preserve the structure of source image during the
inversion-based image editing process. Prompt-to-Prompt Hertz et al. (2023) performs parallel sampling
processes for the inverted source image separately conditioned on source and target prompts. During the
parallel sampling process, Prompt-to-Prompt replaces the cross-attention maps in editing branch with its
counterpart in reconstruction branch in order to preserve the structure of source image during the editing
sampling process. This replacement strategy is further employed in followed up works for face aging editing
Chen & Lathuilière (2023) and customization-based editing Choi et al. (2023). P2Plus Wang et al. (2023c)
further replaces the editing branch self-attention map in the unconditional noise predictor network with its
counterpart in reconstruction branch to obtain more accurate editing capabilities with classifier-free guid-
ance. In order to prevent undesired changes caused by cross-attention leakage, DPL Yang et al. (2024a)
optimizes the word embedding corresponding to the noun words in source prompt to produce more suitable
cross-attention maps for attention replacement.

PnP Tumanyan et al. (2023) points out that more detailed spatial features are restored in self-attention
layers comparing to the cross-attention maps. Therefore, a branch of editing works Tumanyan et al. (2023);
Liu et al. (2024a); Cao et al. (2023) prefer to replace query and key feature in self-attention layer to achieve
better structure preservation. This replacement strategy is followed by works designed for drag-based editing
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Shi et al. (2024b); Mou et al. (2024a) and style transfer Chung et al. (2024) to ensure the consistency between
synthesized result and provided source image.

4.2.2 Attention Localization

To achieve more precise layout control for the synthesized image, a branch of works manipulate the attention
layers with masks or segmentation indicating the locations of objects Patashnik et al. (2023); Lu et al. (2023);
Balaji et al. (2022).

Some of these works propose localized self-attention mechanisms to address different regions separately and
locate the contents into desired regions. Masactrl Cao et al. (2023) and Object-Shape Variation Patashnik
et al. (2023) firstly extract the regions with attention value above a threshold in the cross-attention maps for
object text tokens as foreground masks. Subsequently, Masactrl performs self-attention for foreground and
background separately to prevent confusion between the foreground objects and the background. Object-
Shape Variation Patashnik et al. (2023) restrict the region for attention replacement on the background
not requiring editing instead of injecting the full self-attention maps in every denoising step. For image
composition, TF-ICON Lu et al. (2023) fuses the attention features extracted from the reconstruction process
for the reconstruction branches of both main and reference images via cross-attention mechanism to create
a composite self-attention map seamlessly blending the two images.

Another line of works incorporate an increment into the cross-attention map to adjust the attention values
in the region for designated objects and thereby achieve layout control for synthesized image. Pioneer text-
to-image work Ediff-i Balaji et al. (2022) successfully guides the object described by the nouns in the text
prompt to the specified area by enhancing the attention values in the corresponding region. Similarly, Cones2
Liu et al. (2023d) increases the attention values in the region corresponding to desired objects while reducing
the attention values in irrelevant regions to perform layout control. For image editing, FoI Guo & Lin (2023)
amplifies the attention value in the region of foreground object to be edited to achieve more precisely control
for the objects in accordance with editing instructions.

4.3 Noise Blending

Noise blending process fuses noises predicted by different (conditional) DMs to perform single sampling
process controlled by multiple conditional signals.

4.3.1 Noise Composition

In conditional synthesis scenarios aiming at synthesizing images conditioned on multiple control signals,
directly training a denoising network to take all conditional inputs always leads to an unsustainable training
cost. A widely employed approach to tackle these tasks is predicting the noise ϵi for each conditional
component ci separately and subsequently composing these noise to acquire a novel proxy noise ϵ̃ controlled
by all the conditional control signals without supervised-learning. Composable Diffusion Models Liu et al.
(2022) present a noise composition approach based on Bayes’ formula as follows to perform multi-conditional
synthesis:

ϵ̃ = ϵθ (xt, t) +
n∑

i=1
wi (ϵθ (xt, t, ci) − ϵθ (xt, t)) , (8)

where the unconditional denoising network ϵθ (xt, t) can be trained along with the conditional model by
substituting the conditional parameter with emptyset ∅.

The noise composition can be performed based on masks or layouts to locate the objects in provided con-
ditional inputs into desired regions. To perform image editing on multiple instructions, LEDITS++ Brack
et al. (2024) calculates the mask for the region related to each instruction with the grounding information in
cross-attention layers and noise estimations. Subsequently, LEDITS++ Brack et al. (2024) performs noise
composition based on the formula of Eq.8 while restricting effect of the conditional term ϵθ (xt, t, ci)−ϵθ (xt, t)
of each editing instruction ci in its corresponding mask region. In order to fuse the generated results of two
diffusion models, MagicFusion Zhao et al. (2023a) firstly generates mask by contrasting the saliency map of
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the two diffusion models to differentiate the region controlled by each model. Subsequently, MagicFusion
Zhao et al. (2023a) settles the noise into the region controlled by its corresponding diffusion model. Similarly,
NoiseCollage Shirakawa & Uchida (2024) independently estimates the noises for each individual object and
then merges them with a crop-and-merge operation based on the provided layouts. In order to perform more
seamless noise composition, Multi-diffusion Bar-Tal et al. (2023) blends the noise by solving an optimization
objective with closed-form optimal solution, which ensure the consistency of composed noise map ϵ̃.

4.3.2 Classifier-Free Guidance

As described in Sec.4.5, in traditional guidance, adjusting the guidance strength scaling factor w allows us
to effectively balance the quality and diversity of synthesized samples. However, estimating the likelihood
term pt (c | xt) in traditional guidance is challenging.

Classifier-free guidance Ho & Salimans (2022) provides a new pathway to achieve balance the quality and
diversity of synthesized samples without likelihood estimation, which can be achieved by performing ex-
trapolation blending between the conditional noise prediction and the unconditional noise prediction as:
ϵ̃θ (xt, c) = (1 + w)ϵθ (xt, c) − wϵθ (xt). In this formula, the parameter w controls the strength of guidance
and the trade-off between sample quality and diversity. In practice, setting the scaling factor w to a value
greater than zero can significantly enhance the sample quality and the consistency to the conditional control
signal c. In order to alleviate the negative impact of classifier-free guidance on sample diversity, followed
works Sadat et al. (2024); Kynkäänniemi et al. (2024) propose dynamic classifier-free guidance, in which the
guidance scaling factor w is reduced during the denoising process with high noise levels.

Moreover, some works also propose variations of classifier-free guidance for different conditional synthesis
scenarios. Instructpix2pix Brooks et al. (2023) and Pair diffusion Goel et al. (2023) develop the classifier-
free guidance to adjust the conditioning strength for each component in multiple conditional inputs by
decomposing the multi-conditional score function. For customization tasks, SINE Zhang et al. (2023f)
interpolates the noise prediction on specialized and pre-trained model to obtain conditional noise prediction
in classifier-free guidance, which alleviates the overfitting in the specialized model. Null-text Guidance
perturbs the classifier-free guidance by altering the noise-level in unconditional prediction to smooth out
some realistic details and create cartoon-style images. For inversion-based editing, AIDI Pan et al. (2023b)
proposes a blended classifier-free guidance based on the positive/negative masks indicating the area to be
edited or preserved, which enables larger guidance scales and ensures more accurate editing results.

4.4 Revising Diffusion Process

Most of in-sampling conditioning mechanisms such as Guidance, Conditional Correction and Attention Ma-
nipulation performs modification on the standard formulation of the denoising step, which leads to devia-
tions from the predetermined sampling trajectory and results in artifacts in synthesized images. Therefore,
a branch of works prefer to incorporate the conditional control signals into the denoising step via revising
the formulation of standard diffusion process to adapt the conditional synthesis task Luo et al. (2023); Yue
et al. (2024); Kawar et al. (2022); Wang et al. (2024b). Thereby, the conditional control signals can be
incorporated into the corresponding reverse diffusion step of the revised diffusion process without deviations
from the diffusion formulation.

Based on the revision on diffusion process, these works can be divided into two categories: (a) mean-
reverting SDEs, which revise the diffusion process to preserve the information in conditional inputs in image
restoration, (b) decomposition-based noise redefinition, which incorporate a sequence of additive noises in
the sampling process on spectral space to revise the noise-level mismatch in noisy linear problem.

4.4.1 Mean-Reverting SDEs

In numerous restoration tasks, most structure and semantic features of the target image is provided by the
degraded image c. To avoid consuming part of the model capability on regenerating these features from pure
Gaussian noise, some studies design novel diffusion process in which the diffused output xT approximates a
noisy version of degraded image c instead of pure Gaussian noise Welker et al. (2024); Luo et al. (2023); Yue

20



Under review as submission to TMLR

et al. (2024); Wang et al. (2024c); Delbracio & Milanfar (2023). IR-SDE Luo et al. (2023) construct a set of
mean-reverting SDEs identified by degraded image c, which models the diffusion process from clean image x
to a Gaussian distribution averaged on degraded image. Subsequently, IR-SDE trains a conditional denoising
network to predict the score function in the reversed mean-reverting SDEs to recover the clean image from
the noisy degraded image. Similarly, ResShift Yue et al. (2024) and DriftRec Welker et al. (2024) construct
an iterative degradation process from a high-resolution image to its corresponding low-resolution image as
diffusion process and train a conditional denoising network to reverse the degradation process for super-
resolution. SinSR Wang et al. (2024c) distills the sampling process of ResShift Yue et al. (2024), thereby
achieving one-step DM-based super-resolution. InDI Delbracio & Milanfar (2023) constructs a continuous
forward degradation process derived from interpolation: xt = (1 − t)x + tc and trains a denoising network
on paired clean/degraded image to predict clean image x0 from latent variable xt. Subsequently, image
restoration can be performed by reversing the interpolation-based degradation process with the prediction
of this denoising network.

4.4.2 Decomposition-Based Noise Redefinition

This kind of methods construct novel diffusion process to recover image x from its partial measurement c
in the noisy linear inverse problems as follows c = Hx + n, where H is a known linear degradation matrix,
n ∼ N

(
0, σ2

cI
)

is an i.i.d. additive Gaussian noise with known variance. In practice, numerous restoration
tasks including inpainting, super-resolution, colorization can be written in form of this noisy linear inverse
problems. SVD Decomposition-based methods firstly perform SVD decomposition on the linear degradation
matrix H to decouples the components in the measurement c. Thereby, the components in measurement
c on spectral space can be viewed as a noisy version of their counterparts derived from clean image x. In
order to incorporate the measurement c into the diffusion process while preventing the mismatch in noise-
level caused by the noise in measurement c, decomposition-based methods design a proper noise sequence
to link the noise in the measurement c with the noise added in the standard diffusion process. It can be
proven that the optimized unconditional denoising network pre-trained on the prior of clean image x is
also the optimal solution for the variational objective of the designed novel diffusion process. Thereby, we
can perform sampling process in the spectral space to recover clean image x from its noisy counterpart c
based on pre-trained unconditional denoising network. SNIPS Kawar et al. (2021) and DDRM Kawar et al.
(2022) construct SVD decomposition-based novel diffusion process in spectral space based on the annealed
Langevin dynamics framework provided by NCSN Song & Ermon (2019) and the Markov chain diffusion
process provided by DDPM Ho et al. (2020) respectively.

Different from SNIPS and DDRM, DDNM Wang et al. (2024b) construct a general solution x̂ based on
range-null space decomposition which holds Hx̂ ≡ c. In each denoising step, DDNM Wang et al. (2024b)
project the denoising output x0|t onto the general solution to guarantee the consistency between denoising
output x0|t and given measurement c. For noisy linear inverse problem y = Hx + n, DDNM Wang et al.
(2024b) incorporates a scaling factor into the formulation of general solution and designs noise sequence
corresponding to the scaling factor during sampling process to assure the noise level in xt−1 aligned with
the definiation of q (xt−1 | x0) for pre-trained unconditional denoising network.

4.5 Guidance

In the field of conditional image synthesis, an intuitive idea to sample from the conditional distribution
p(x|c) is approximating the conditional score function ∇xt

log pt (xt | c) with conditional denoising network
ϵθ(xt, t, c). Guidance provides another pathway to approximate the conditional score function without time-
consuming conditional training, since the conditional score function can be decomposed into an unconditional
score function and the gradient of log likelihood as follows:

∇xt log pt (xt | c) = ∇xt log pt (c | xt) + ∇xt log pt (xt) (9)

where the score function ∇xt log pt (xt) can be estimated by an unconditional denoising network ϵθ(xt, t).
Guidance-based methods design task-specific guidance loss function to reflect the consistency between inter-
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mediate latent variable xt and conditional inputs c at each time step t, which serves as the estimation for
the log likelihood log pt (c | xt) .

For multiple conditional inputs, guidance can also be employed to perform conditional control for part
of the conditional inputs. In practice, we can split the conditional inputs c into components c0 and c1
which are incorporate into the diffusion synthesis framework with conditional denoising network and guid-
ance respectively. In this case, the conditional score function can be written as ∇xt

log pt (xt | c0, c1) =
∇xt

log pt (c1 | xt, c0) + ∇xt
log pt (xt | c0). In this formulation, ∇xt

log pt (xt | c0) can be estimated by a
denoising network conditioned on c0 and the log likelihood log pt (c1 | xt, c0) can be estimated with the
guidance loss.

Currently, guidance-based methods are employed in a wide range of conditional synthesis scenarios with
task-specific guidance loss. Subsequently, we categorize these approaches based on the target applications.

4.5.1 Classifier Guidance

Figure 8: An illustration of the guided sampling pro-
cess for inverse problems. The curve Mt denotes the
data manifold of intermediate diffuse output xt. The
guidance process (red arrow) moves xt towards the
data manifold satisfying the constrain c = A (x),
which is denoted as the purple line.

The pioneer guidance work Classifier Guidance
Dhariwal & Nichol (2021) trains an auxiliary classi-
fier pϕ (c | xt) as the guidance loss function for im-
age synthesis conditioned on class label c. However,
for more complicated conditional control signal c
beyond the class label, training an accurate classi-
fier pϕ (c | xt) is challenging. Therefore, followed up
works designs more flexible guidance loss without
training or optimizing to handle more complicate
tasks.

4.5.2 Guidance for Inverse Problems

As mentioned in Sec. 4.4.2, a wide range of restora-
tion tasks can be expressed by recovering clean im-
age x from a given partial measurement c in form
of noisy inverse problem: c = A (x) + n, n ∼
N (0; σ2

cI), where A is a known degradation func-
tion and n denotes the additive noise. In practice,
approximating the likelihood pt(c|xt) and perform
guidance on sampling process is a widely employed strategy to solve noisy inverse problem. Fig. 8 provides
an illustration of sampling process with guidance for inverse problem.

MCG Chung et al. (2022a) and DPS Chung et al. (2023b) approximate the gradient of likelihood as follows:
∇xt log pt (c | xt) ≈ ∇xt log p(c|x0|t) = − 1

σ2
c
∇xt

∥∥c − A
(
x0|t

)∥∥2
2. The error of this estimation can be proven

to converge to 0 as σc → ∞ in most inverse problems. IIGDM Song et al. (2023a) provides a more accurate
estimation for the likelihood by approximating pt (x0 | xt) with a Gaussian distribution averaged on x0|t.
In order to perform these guidance approaches for inverse problems on diffusion framework on latent space
Rombach et al. (2022), PSLD Rout et al. (2024) adds an additional guidance term measuring the recon-
struction ability of the intermediate denoising output z0|t to avoid guiding the sampling trajectory towards
latent variable z0 away from the manifold of real data.

However, these guidance approaches can only estimate the likelihood term in inverse problems with known
concrete form of the degradation operator A(·). This hinders the deployment of these approaches for unknown
real world degradation. BlindDPS Chung et al. (2023a) explores the applicability of DPS to blind inverse
problems, in which degradation operator Aφ(·) is parameterized with unknown parameter φ. In order to
identify the degradation parameter along with the sampling process for desired image, BlindDPS trains a
diffusion model for the parameter φ in degradation operator. In sampling process, BlindDPS employed the
similar approximation strategy as DPS Chung et al. (2023b) to estimate the likelihood term as follows:

pt (c | xt, φt) ≈ p
(
c | x0|t, φ0|t

)
. (10)
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Subsequently, BlindDPS performs parallel sampling process to simultaneously recover the clean image x and
the unknown degradation parameter φ from conditional distribution p(x, φ|c) with the estimated likelihood
in Eq.10.

GDP Fei et al. (2023) offers a heuristic approximation for the likelihood term, which consists of a distance
metric measuring the consistency to conditional inputs and a optional quality enhancement loss to control
some desired properties in synthesized results. GDP can also be employed in blind inverse problems by
optimizing the degradation parameters in degradation function A with the distance metric during sampling
process.

4.5.3 Guidance for Semantic Control

Guidance can also be employed to ensure the consistency of diffused output and provided semantic control
signals including text prompts or semantic images without time-consuming fine-tuning or training. In prac-
tice, semantic guidance loss is usually designed based on pre-trained CLIP model which learned a rich shared
embedding space for image and text.

Blend Diffusion Avrahami et al. (2022) is the pioneer work in the field of semantic guidance, which targets
to inpaint the masked region cm in source image cI according to the provided text description cd. Blend
Diffusion designs a CLIP guidance loss for the conditional inputs c = (cm, cI , cd) as follows:

L(xt, c) = DCLIP

(
x0|t, c

)
+ λDbg

(
x0|t, c

)
, (11)

where DCLIP measures the CLIP distance between the intermediate denoising output x0|t and text de-
scription cd in mask region for semantic-level alignment, and Dbg calculates the MSE and LPIPS similarity
between x0|t and source image cI in unmasked region for the faithfulness to source image.

In order to control the sampling process with both provided text prompt and style reference image, SDG
Liu et al. (2023b) employs a linear combination of the CLIP distance from current denoising output to both
text embedding and reference image embedding as the guidance loss. DiffuseIT Kwon & Ye (2023) introduce
a more comprehensive guidance loss to perform image editing in accordance with given text prompt or style
reference image. In addition to the CLIP distance, DiffuseIT also incorporates a structure loss calculated
based on the self-attention features of the source image extracted from the Vision Transformer (ViT) to
better preserve the structure of the source image.

4.5.4 Guidance for Visual Signals

In practice, a branch of works employ guidance to control the consistency between diffuse output and given
visual signal. In order to measure the consistency between intermediate diffuse output and provided visual
signal, some works train neural networks to project the intermediate diffuse output xt onto its corresponding
visual signal and leverage distance metric as the guidance loss for sketch-to-image Voynov et al. (2023) and
stroke-to-image Singh et al. (2023). Readout Guidance Luo et al. (2024) provide a unified guidance-based
framework for diverse visual signal to image task by training various readout heads to synthesize different
task-specific visual feature maps reflecting the spatial layout or inherent correspondence in images to perform
guidance. Different from these works, FreeControl Mo et al. (2024) prefers to impose guidance loss on the
difference in the space of PCA components of self-attention map between the intermediate diffuse output
and visual signal.

4.5.5 Guidance for Attention Layers

In DM-based conditional image synthesis, the attention layers in denoising network effectively control the
layout, structure and semantics of synthesized image. However, directly manipulating the attention layers
through replacement or localization as described in Section 4.2 introduces artificial modifications to the
internal parameters of the denoising network and may impair its modeling capability. Therefore, a branch
of works employ guidance to achieve softly control for attention layers.

For image editing, attention guidance is performed as substitution of attention replacement to softly control
the consistency between source image and edited result. Pix2Pix-Zero Parmar et al. (2023) employs a guid-
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ance loss measuring the L2 distance between the cross-attention maps in editing branch and reconstruction
branch instead of the replacement manipulation in Prompt-to-prompt Hertz et al. (2023). In order to find
a more expressive attention map as guide reference, Rediffuser Lin et al. (2023) employs a sliding fusion
strategy to fuse the cross-attention maps obtained from sampling branches conditioned on source prompt,
target prompt and an intermediate representation. EBMs Park et al. (2024) employs a energy function to
guide the integration of the semantic information in editorial prompts with the structure and layout of source
image restored in cross-attention layers.

Attention guidance can also be employed to perform attention localization. For object-level layout control,
Chen et.al Chen et al. (2024b) employs guidance to control the cross-attention map, which locates the objects
in text prompts into their desired bounding boxes. Self-guidance Epstein et al. (2024) extracts the various
characteristics including position, size, shape and appearance of the desired object from the intermediate
activations and attention maps. Subsequently, Self-guidance places constraints on these characteristics with
guidance loss measuring their consistency to desired conditional control signal. For drag-based editing
tasks which target to move certain foreground contents in source image into target region, Dragondiffusion
Mou et al. (2024a) designs energy functions based on the cosine distance between intermediate features in
the U-Net decoder as guidance to ensure correspondence between the original content region and target
dragging region. DiffEditor Mou et al. (2024b) develops the guidance framework of DragonDiffusion Mou
et al. (2024a) by introducing SDE-based sampling process on the masked region instead of ODEs to improve
editing flexibility.

4.5.6 Enhanced Guidance framework

In some complicated conditional synthesis scenarios, simply incorporating the gradient of guidance loss in
each denoising step may lead to artifacts and strange behaviors because of the failure in balancing the
realness and guidance constraint satisfaction in guided sampling process. Therefore, some state-of-the-art
guidance works provide enhanced unified guidance frameworks to more effectively fuse the prior knowledge
in pre-trained model and the information in control signals. FreeDoM Yu et al. (2023) employs a time-travel
strategy that rolls back the intermediate latent variable xt to a certain previous time step xt+j and resamples
it to time step t again. This strategy inserts additional steps into the guided sampling process, allowing for a
more seamless integration of the information from the pre-trained model and the conditional control signals.
In order to enhance the consistency to conditional control signals, Universal Guidance Bansal et al. (2023)
performs an m-step gradient descent optimization process to find the point with minimum guidance loss in
the vicinity of the intermediate denoising output x0|t. Subsequently, this point is employed to infer the next
latent variable xt−1.

4.6 Conditional Correction

Figure 9: An illustration of the sampling process
with conditional correction for inverse problem. The
conditional correction process (cyan arrow) projects
xt onto the data manifold satisfying the constrain
c = A (x).

In some conditional synthesis scenarios, the synthe-
sized images are controlled by the constrains spec-
ified by conditional inputs c (such as the formula-
tion of inverse problems). To ensure the synthesized
result to be consistent to the inputs c, conditional
correction-based methods perform a correction oper-
ator on the intermediate diffuse output xt (or x0|t),
which directly projects the current diffuse output
onto the data manifold satisfying the constrain im-
posed by given conditional control signal c. Subse-
quently, this corrected latent variable will be pass
into next denoising step. Fig. 9 provides an illustra-
tion of sampling process with conditional correction
for inverse problem.

Currently, conditional correction are widely em-
ployed in image inpainting tasks, which involves syn-
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thesizing content for the masked region cm in incom-
plete reference image cy. The constrain in inpainting tasks can be expressed as: cy = (1 − cm) ⊙ x. Pioneer
diffusion work SDE Song et al. (2021b) performs inpainting based on conditional correction by replacing the
unmask region in denoising output x0|t with its counterpart in reference image cy to ensure the faithfulness
to the content in unmasked region. Different from SDE Song et al. (2021b), Repaint Lugmayr et al. (2022)
prefers to perform replacement correction on latent variable xt. Besides, Repaint rolls back the intermediate
latent variable xt to the previous time step and resamples it to time step t several times to eliminate the ar-
tifacts caused by conditional correction. The constrain in Super-resolution task can be written as: c = ϕN x,
where c denotes the low-resolution image of x downsampled by degradation matrix ϕN with factor N . ILVR
Choi et al. (2021) performs conditional correction by substituting the low-frequency components in latent
variable with its counterpart noisy low-resolution image to the consistency between degraded latent variable
and its counterpart noisy reference low-resolution image.

Conditional correction are also widely employed in image editing tasks to preserve the background not
requiring editing Couairon et al. (2023); Patashnik et al. (2023); Wang et al. (2023a); Lin et al. (2024);
Huang et al. (2023b). With the provided mask for background in source image, text-based image editing
tasks can be viewed as performing image inpainting for the foreground region based on given text prompt.
However, the provided mask for background is always not available in editing tasks. Therefore, a branch
of works propose approaches to generate masks or segmentation automatically by inferring the reasonable
layout for the user-desired edited image based on the given source image and text prompt. Diffedit Couairon
et al. (2023) identifies the mask for background by comparing differences in the denoising outputs of noisy
source image conditioned on source prompt and target prompt. Object-Shape Variation Patashnik et al.
(2023) segments the provided source image by the aggregating the attention map into clusters corresponding
to different semantic segments and identifying the segments with the nouns in the text prompt based on the
similarity between the segments and the cross-attention map of noun tokens. Besides, a branch of works
Wang et al. (2023a); Lin et al. (2024); Huang et al. (2023b) employ pre-trained image segmentation modules
to automatically generate masks or segmentation according to the structure information in the given source
image and text prompt.

CCDF Chung et al. (2022b) proposes a general conditional correction formula for constrains in form of general
noisy linear inverse problem. In practice, the conditional correction operator in Song et al. (2021b); Lugmayr
et al. (2022); Choi et al. (2021) can be expressed in the general form provided by CCDF. Besides, CCDF
provides a theoretical basis for the faithfulness of this corrected sampling trajectory to original sampling
process. CCDF proves when the linear degradation operator H is a non-expansive mapping, the upper
bound of the deviation in final output x0 will converge to a constant as the total diffusion step T → ∞.
MCG Chung et al. (2022a) further performs guidance on conditional correction framework provided by
CCDF, which alleviates the deviation from original sampling process caused by conditional correction.

5 Challenges and Future Directions

Although DM-based conditional image synthesis has made remarkable progress in generating high-quality
images aligned with various user-provided conditions, there remains a significant disparity between academic
advancements and practical needs for conditional image synthesis. In this section, we summarize several main
challenges in this field and identify potential solutions to address them in the future.

5.1 Sampling Acceleration

The time-consuming sampling process often creates a bottleneck of diffusion-based image synthesis, and its
acceleration will facilitate the model deployment in practice Li et al. (2024b); Zhao et al. (2023b). Early
works on sampling acceleration are devoted to reducing the number of sampling steps with better numerical
solvers Song et al. (2021a); Lu et al. (2022a;b); Zhou et al. (2024); Chen et al. (2024a) or distilling pre-
trained diffusion models to build short-cuts that enable faster sampling Salimans & Ho (2022); Meng et al.
(2023); Song et al. (2023b); Chen et al. (2023). However, too few denoising steps with the distilled model
may compromise the effectiveness of in-sampling condition integration. One feasible solution is to first train
a model to approximate the conditional denoising outputs along the sampling process equipped with in-
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sampling conditioning mechanisms, and then perform distillation on this model Meng et al. (2023). Another
important type of existing works reduces the computational cost of each denoising step by decreasing model
parameters using techniques such as knowledge distillation Chen et al. (2021; 2022) and architecture search Li
et al. (2024b); Kim et al. (2023a); Zhao et al. (2023b). Most of DM-based parameter compression approaches
are currently tailored for text-to-image models. Analyzing whether the parameter redundancy also exists for
models of other conditional synthesis tasks, similar to those in text-to-image models, and extending these
model compression methods to more complicated downstream tasks, is another promising future direction.

5.2 Artifacts Caused by In-sampling Conditioning Mechanisms

In-sampling condition mechanisms summarized in Sec. 4 allows for flexible condition integration in DM-
based image synthesis without performing time-consuming condition integration for the denoising network.
However, these conditioning mechanisms introduce modification to the standard sampling process in dif-
fusion framework and lead to deviations from the modeled data distribution, which resulting in artifacts
in synthesized images Parmar et al. (2023); Lugmayr et al. (2022); Bansal et al. (2023); Yu et al. (2023).
The vast majority of works resort to complex adjustment mechanisms to address the artifact issue caused
by in-sampling condition integration. This includes time-step rolling back for guidance Yu et al. (2023),
localization for attention map Cao et al. (2023); Lu et al. (2023) and diffusion process revision for restora-
tion tasks Luo et al. (2023); Kawar et al. (2022). However, these methods are highly customized based on
specific application scenarios. A feasible future direction for developing more generic solution is to perform
lightweight fine-tuning on the denoising network with the diffusion loss based on the intermediate latent vari-
ables in the sampling process equipped with in-sampling conditioning mechanisms. This tends to smooth out
artifacts under in-sampling conditioning mechanisms and synthesize desire images in a lower computational
cost comparing to perform condition integration in denoising network .

5.3 Training Datasets

Among the various conditioning mechanisms, the most fundamental and effective pathway for condition
integration is still the supervised learning on pairs of conditional input and image. Although training
datasets are relatively sufficient for conditional synthesis tasks involving single modality conditional inputs,
such as text-to-image Schuhmann et al. (2021; 2022), restoration Agustsson & Timofte (2017); Nah et al.
(2017); Karras et al. (2019), and visual signal to image Lin et al. (2014); Caesar et al. (2018); Zhou et al.
(2017), gathering enough data for tasks with complex, multi-modal conditional inputs like image editing,
customization, and composition remains challenging. With the advancement of training and efficient fine-
tuning techniques for large language models, various types of large models are constantly being developed
with powerful multi-modal representation learning Brown et al. (2020); Li et al. (2022b; 2023b) and content
generation abilities Hertz et al. (2023); Tumanyan et al. (2023), making it possible to leverage these pre-
trained models to automatically produce desired training datasets. We may also consider self-supervised or
weakly supervised learning to reduce the demand for a large amount of high-quality training data Zhang
et al. (2023d); Xie et al. (2023b); Zhang et al. (2024d).

5.4 Robustness

Due to the lack of objective task-specific evaluation datasets and metrics in some complex tasks, studies
for these tasks prefer to compare models based on a set of self-defined conditional inputs, making the
performance appear overly optimistic. In fact, many renowned text-to-image models Ramesh et al. (2022);
Saharia et al. (2022b); Rombach et al. (2022) have been found to produce unsatisfactory synthesized results
for certain specific categories of text prompts, as demonstrated by the shortcomings of Imagen Saharia
et al. (2022b) in generating facial images. Training dataset augmentation, carefully designed architecture of
conditional encoders, and improved conditioning formulation for fine-grained control are promising directions
for enhancing robustness.

Here we point out some pathways to address issues of robustness. First, for conditional inputs where the
model performs poorly, augmenting the training dataset is a direct approach. Second, the difficulties to
handle conditional inputs in a certain category may be due to the insufficient capability or unsuitability
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of the conditional encoder with this category of data. In this case, incorporating encoder architectures
tailored for this data category into the conditional encoder, or designing more capable compound conditional
encoders, becomes a preferable choice. Besides, performing specialization for given conditional inputs is also
an effective pathway to provide robust results at the cost of time-consuming fine-tuning or optimization.
Finally, employ sampling process conditioning mechanisms, such as guidance, conditional correction and
attention manipulation, to achieve more detailed control can also prevent undesired synthesis results.

5.5 Safety

The developments in AI-generated content (AIGC) propelled by the superior performance of diffusion-based
conditional synthesis and their downstream applications lead to severe safety concerns in aspects of bias
and fairness, copyright, and the risk of exposure to harmful content. Safety-oriented DM-based conditional
image synthesis is dedicated to mitigating these issues by embedding watermarks that are easily reproducible
in DM-generated images to detect copyright infringement Yuan et al. (2024); Cui et al. (2023); Wen et al.
(2023), and reducing bias by increasing model’s orientation towards minority groups in basic unconditional
or text-conditioned synthesis via classic conditioning mechanisms, such as fine-tuning Shen et al. (2023),
guidance Um et al. (2024), and conditional correction Li et al. (2024a). Efforts have also been made in
preventing harmful contents in the text-to-image task via harmful prompt detection Rombach et al. (2022),
prompt engineering Li et al. (2024a) and safety guidance Schramowski et al. (2023). The current safety-
focused efforts mainly concentrate on basic unconditional or text-conditioned synthesis. We believe that
for more complex conditional synthesis scenarios, safety-oriented efforts in this area can be focused on four
main aspects: (a) detecting harmful conditional inputs, (b) filtering and removing bias from the training
dataset, (c) providing safety-focused guidance for the sampling process, and (d) implementing safety-focused
fine-tuning of the denoising network.

6 Conclusion

This survey presents a thorough investigation of DM-based conditional image synthesis, focusing on
framework-level construction and common design choices behind various conditional image synthesis prob-
lems across seven representative categories of tasks. Despite the progress made, efforts are still needed in
the future to handle challenges in practical applications. Future researches should focus on gathering and
creating sufficient high-quality and unbiased task-specific datasets, carefully designed conditional encoder
architectures and in-sampling conditioning mechanisms for effective and robust conditional modeling to syn-
thesize stable and flawless results. Trade-off between fast sampling and synthesization quality and is also a
key issue for practical deployment. Finally, as a popular AIGC technology, it is necessary to fully consider
the safety issues and legitimacy it brings.
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