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Abstract

Conditional image synthesis based on user-specified requirements is a key component in cre-
ating complex visual content. In recent years, diffusion-based generative modeling has be-
come a highly effective way for conditional image synthesis, leading to exponential growth in
the literature. However, the complexity of diffusion-based modeling, the wide range of image
synthesis tasks, and the diversity of conditioning mechanisms present significant challenges
for researchers to keep up with rapid developments and to understand the core concepts on
this topic. In this survey, we categorize existing works based on how conditions are inte-
grated into the two fundamental components of diffusion-based modeling, i.e., the denoising
network and the sampling process. We specifically highlight the underlying principles, ad-
vantages, and potential challenges of various conditioning approaches during the training,
re-purposing, and specialization stages to construct a desired denoising network. We also
summarize six mainstream conditioning mechanisms in the sampling process. All discussions
are centered around popular applications. Finally, we pinpoint several critical yet still un-
solved problems and suggest some possible solutions for future research. Our reviewed works
are itemized at https://github.com/zju-pi/Awesome-Conditional-Diffusion-Models.

†Corresponding Author.
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Figure 1: Seven representative conditional image synthesis tasks with their corresponding inputs and outputs.
Figures are cited from the following papers: (A) Stable Diffusion (Rombach et al., 2022); (B) SR3 (Saharia
et al., 2022c); (C) ControlNet (Zhang et al., 2023b); (D) Imagic (Kawar et al., 2023); (E) DreamBooth (Ruiz
et al., 2023); (F) PbE (Yang et al., 2023a); (G) InteractDiffusion (Hoe et al., 2023).

1 Introduction

Image synthesis is an essential task in generative artificial intelligence. It is particularly useful when user-
provided conditional inputs guide the generation process, enabling precise control to meet diverse needs.
Early works have achieved significant breakthroughs in various conditional image synthesis tasks, such as
text-to-image generation (Reed et al., 2016; Zhang et al., 2017; Ding et al., 2021; Ramesh et al., 2021), image
restoration (Ledig et al., 2017; Wang et al., 2021; Maaløe et al., 2019; Lee et al., 2022), and image editing
(Brock et al., 2017; Ling et al., 2021; Abdal et al., 2020). However, early deep learning-based generative
models, such as generative adversarial networks (GANs) (Goodfellow et al., 2014; Mirza & Osindero, 2014),
variational auto-encoders (VAEs) (Kingma & Welling, 2014; Sohn et al., 2015), and auto-regressive models
(ARMs) (Van Den Oord et al., 2016; Van den Oord et al., 2016) face inherent limitations. GANs are
susceptible to mode collapse and unstable training (Goodfellow et al., 2014); VAEs often produce blurry
images (Kingma & Welling, 2014); and ARMs suffer from sequential error accumulation and significant time
delays (Van Den Oord et al., 2016).

In recent years, diffusion models (DMs) have emerged as the state-of-the-art framework for image generation
due to their strong generative capabilities and versatility (Sohl-Dickstein et al., 2015; Ho et al., 2020; Song
et al., 2021b; Karras et al., 2022; Chen et al., 2024a). In DMs, images are generally synthesized from
Gaussian noise through iterative denoising steps guided by the predictions of a denoising network. In practice,
DMs achieve remarkable performance in diverse generative tasks, characterized by stable training process,
diverse outputs, and exceptional sample quality. Furthermore, compared to one-step generative models, the
distinctive multi-step sampling process offers DMs a unique advantage in facilitating conditional integration.
These benefits have made DMs a preferred tool for conditional image synthesis, leading to a rapid growth in
Diffusion-based Conditional Image Synthesis (DCIS) research over the past few years (Rombach et al., 2022;
Saharia et al., 2022b; Lu et al., 2023; Choi et al., 2021; Saharia et al., 2022c; Kawar et al., 2023; Hertz et al.,
2023; Zhang et al., 2023e; Gal et al., 2023a; Zhang et al., 2023b; Wang et al., 2024b). Fig. 1 illustrates seven
popular DCIS tasks with different modalities of conditional inputs.

With the rapid growth of research in this area, coupled with the wide variability in model architectures,
training paradigms, and sampling strategies, as well as the broad scope of potential conditional synthesis
tasks, it has become increasingly challenging for newcomers to develop a comprehensive understanding of the
landscape of DCIS. This underscores the need for a systematic survey that offers a coherent and structured
synthesis of current advances in this rapidly evolving field.

Several surveys have focused on the application of diffusion models in specific conditional image synthesis
tasks, such as image restoration (Li et al., 2023g; Daras et al., 2024), text-to-image (Zhang et al., 2023a),
and image editing (Huang et al., 2024b), or have categorized diffusion-based works in the field of computer
vision according to their target conditional synthesis tasks (Croitoru et al., 2023; Po et al., 2023). While
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these task-oriented surveys provide valuable insights into approaches tailored for different tasks, they do not
explore the commonalities in model frameworks across different conditional synthesis tasks, particularly in
terms of model architectures and conditioning mechanisms.

Two recent surveys (Shuai et al., 2024; Cao et al., 2024) provide an overview of DM-based works across a
broad range of conditional image synthesis tasks. However, their scope remains limited, as they primarily
focus on DCIS methods built on text-to-image (T2I) backbones, neglecting earlier works that integrate
conditional inputs into unconditional denoising networks or train task-specific conditional denoising networks
from scratch. These earlier efforts are foundational to the current advancements in DCIS and are still widely
applied in low-level tasks such as image restoration.

In contrast, this survey aims to provide a comprehensive and structured framework that covers a wide range
of contemporary DCIS works. We present a taxonomy based on the mainstream techniques for condition
integration, offering a clear and systematic breakdown of the key components and design choices involved in
constructing a DCIS framework. Specifically, we review and categorize existing DCIS methods by examining
how conditions are integrated into the two fundamental components of diffusion modeling: the denoising
network and the sampling process. For the denoising network, we delineate the process of establishing a
conditional denoising network into three stages. For the sampling process, we categorize six mainstream
in-sampling conditioning mechanisms, detailing how control signals are integrated into various components
of the sampling process. Our objective is to provide readers with a high-level and accessible overview of
existing DCIS works across diverse tasks, equipping them with the knowledge to design conditional synthesis
frameworks for their own applications, including novel tasks that have yet to be explored. In practice, as
image synthesis is a fundamental task in computer vision, many more complex visual computing and synthesis
tasks are built upon its extensions. Therefore, the methods for image synthesis introduced in this paper can
be readily extended to more complex visual tasks, such as video synthesis (Wang et al., 2023c; Esser et al.,
2023), 3D scene generation (Haque et al., 2023; Höllein et al., 2023), motion generation (Karunratanakul
et al., 2023; Kulkarni et al., 2024).

The remainder of this survey is organized as follows: We first introduce the background of diffusion models
and conditional image synthesis in Sec. 2. Next, we summarize methods for condition integration within the
denoising network in Sec. 3, and for the sampling process in Sec. 4. Finally, we outlines potential future
directions in Sec. 5.

2 Backgrounds

Diffusion-based generative modeling adopts a forward diffusion process of gradually adding noise into clean
data and learns a denoising network to predict the added noise. In the sampling process, the data is
synthesized by reversing the forward process from Gaussian noise based on the prediction of a denoising
network. Currently, a branch of conditional synthesis research (Esser et al., 2024; Tewel et al., 2024; Wang
et al., 2024a; Rout et al., 2024a) leverages the flow matching framework (Lipman et al., 2023; Liu et al.,
2023c; Heitz et al., 2023) to model the mapping from a prior distribution to the real data distribution. In
practice, most of these works employ a special case of flow matching, where the prior distribution used in
flow matching corresponds to a Gaussian distribution, resulting in the same training and sampling algorithm
as the original diffusion framework in practice (Gao et al., 2024). Therefore, we primarily focus on the
generative process based on the original diffusion framework, unless otherwise specified. We first introduce
the core concepts of discrete-time and continuous-time diffusion modeling in Sec. 2.1. Then, we discuss the
model architecture in Sec. 2.2 and highlight representative DCIS tasks in Sec. 2.3. Finally, in Sec. 2.4, we
introduced the classic condition strengthening approaches widely employed across various DCIS works.

2.1 The Formulation of Diffusion Modeling

2.1.1 Discrete-Time Formulation

The discrete-time diffusion model was initially proposed in (Sohl-Dickstein et al., 2015). It constructs a
forward Markov chain to transform clean data into noise by progressively adding small amounts of Gaussian
noise so that a parameterized denoising network can be learned to predict the added noise in each forward
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step. Once the denoising network is trained, images can be generated from Gaussian noise by reversing the
diffusion process. This idea gained popularity through an important follow-up work known as denoising
diffusion probabilistic models (DDPMs) (Ho et al., 2020). This work led to a substantial improvement in the
quality of synthesized images in increased resolutions, from 32×32 (Sohl-Dickstein et al., 2015) to 256×256,
sparking a rapidly growth of interest in diffusion models. Next, we adopt the notation from DDPM (Ho
et al., 2020), which is widely employed in the literature to describe discrete-time diffusion models (Song
et al., 2021a; Rombach et al., 2022; Kawar et al., 2023).

The forward Markov chain is parameterized based on a pre-defined schedule β1, . . . , βT , where βt is the noise
variance in each step and the total number of steps T is usually large, e.g., 1,000. Given the clean data sam-
pled from the training dataset x0 ∼ pdata (x), the transition kernel is q (xt | xt−1) = N

(
xt;

√
1 − βtxt−1, βtI

)
,

or, q (xt | x0) = N
(
xt;

√
ᾱtx0, (1 − ᾱt) I

)
, where x1, . . . , xT are latent variables, αt = 1 − βt, ᾱt =

∏t
i=1 αi,

and ᾱT → 0. By progressively adding Gaussian noise to the clean data, this Markov chain transforms the
data distribution to an approximate normal distribution, i.e.,

∫
q(xT |x0)pdata(x0)dx0 ≈ N (0, I).

In the training phase, DDPM (Ho et al., 2020) learns a denoising network with parameter θ by minimizing
the KL divergence between the transition kernel pθ(xt−1|xt) and the posterior distribution q (xt−1 | xt, x0).
In practice, DDPM (Ho et al., 2020) is trained on the following re-parameterized loss function to improve
the training stability and sample quality:

Et,x0,ϵ

[∥∥ϵ − ϵθ

(√
ᾱtx0 +

√
1 − ᾱtϵ, t

)∥∥2
2

]
, (1)

where ϵθ(xt, t) is a noise-prediction network to estimate the added noise ϵ = xt−
√

ᾱtx0√
1−ᾱt

in each step. For
the conditional generation that performs denoising steps conditioned on control signals c, the conditional
denoising network ϵθ (xt, t, c) can be trained on a loss function similar to Eq. 1:

Et,c,x0∼p(x0|c),ϵ

[∥∥ϵ − ϵθ

(√
ᾱtx0 +

√
1 − ᾱtϵ, t, c

)∥∥2
2

]
. (2)

In the sampling process, DDPM gradually generates clean data from Gaussian noise by computing the reverse
transition kernel pθ with the learned network ϵθ, i.e.,

xt−1 = 1
√

αt

(
xt − 1 − αt√

1 − ᾱt
ϵθ

)
+ 1 − ᾱt−1

1 − ᾱt
βtϵt, (3)

where ϵt ∼ N (0, I) is the standard Gaussian noise independent of xt. The following work DDIM (Song
et al., 2021a) proposed a family of sampling processes sharing the same marginal distribution p(xt) with the
above sampling process, which are written as

xt−1 =
√

ᾱt−1 · fθ (xt) +
√

1 − ᾱt−1 − σ2
t · ϵθ + σtϵt, (4)

where fθ (xt) = xt−
√

1−ᾱtϵθ√
ᾱt

denotes the predicted x0 at time step t. For simplicity, we will refer to
fθ(xt) as the intermediate denoising output x0|t hereafter. Each choice of σt represents a specific sam-
pling process in DDIM (Song et al., 2021a). It is identical to the DDPM generative process in Eq. 3 when
σt =

√
(1 − ᾱt−1) / (1 − ᾱt) ·

√
1 − ᾱt/ᾱt−1 and becomes a deterministic process when σt = 0.

2.1.2 Continuous-Time Formulation

Song et al. (2021b) proposed to formulate a diffusion process {xt ∼ pt(x)}T
t=0 with the continuous time

variable t ∈ [0, T ] as the solution of an Itô stochastic differential equation (SDE) dx = f(x, t)dt + g(t)dwt,
where wt denotes the standard Wiener process, and f(x, t) and g(t) are drift and diffusion coefficients,
respectively (Oksendal, 2013; Chen et al., 2024a). This diffusion process smoothly transforms a data distri-
bution into an approximate noise distribution pT , and the forward process of DDPM (Ho et al., 2020) can
be regarded as a specific discretization of it. There exists a probability flow ordinary differential equation
(PF-ODE) dx =

[
f(x, t) − 1

2 g(t)2∇x log pt(x)
]

dt, sharing the same marginal distribution with the reverse
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SDE dx =
[
f(x, t) − g(t)2∇x log pt(x)

]
dt + g(t)dŵ (Song et al., 2021b; Karras et al., 2022; Zhang & Chen,

2023; Chen et al., 2024a). We can learn a time-dependent score-based denoising network sθ (xt, t) to esti-
mate the score function ∇xt log p (xt) with a sum of denoising score matching (Vincent, 2011; Lyu, 2009)
objectives weighted by λ(t):

Et

[
λ(t)Ex0,xt

[
∥sθ (xt, t) − ∇x log p (xt | x0)∥2

2

]]
. (5)

When the score-based denoising network sθ (xt, t) is trained, we can employ general-purpose numerical
methods such as Euler-Maruyama and Runge-Kutta methods to solve the reverse SDE or PF-ODE and
recover clean data x0 from xT .

In practice, learning a score-based denoising network sθ or a noise-prediction network ϵθ are essentially
equivalent(It can be proven that ϵθ approximates a scaled score function −

√
1 − ᾱt∇xt

log p (xt)). The
DDPM sampling process described in Eq. 3 can be regarded as a first-order numerical solution for the
reverse SDE. Therefore, in the following sections, unless otherwise specified, we will use the notation ϵθ to
represent the denoising network.

2.2 Architecture of the Denoising Network

Pioneering works adopt U-Net (Ronneberger et al., 2015) architectures as the backbone of denoising networks
(Ho et al., 2020; Song et al., 2021a; Song & Ermon, 2019; 2020). As illustrated in Fig.2, the denoising network
employed in DDPM (Ho et al., 2020) follows the U-shaped structure of downsampling and upsampling blocks
in the basic U-Net. At each resolution level, features from the downsampling blocks are directly passed to
the corresponding upsampling blocks through skip connections, which helps retain high-resolution local
information and prevent the loss of details during the upsampling process. To help the denoising network
to better capture visual features and the pixel correlations, the denoising network also replaces the simple
convolution layers in the original U-Net with residual convolution layers (Zagoruyko, 2016) and self-attention
layers.

Figure 2: An illustration of the DDPM denoising net-
work (Ho et al., 2020), which predicts the noise ϵ based
on the given latent variable xt and time step t. The
timestep t is firstly converted to high-dimensional rep-
resentations via a time encoder(e.g.,sinusoidal embed-
dings and MLPs) and subsequently added to interme-
diate feature maps.

The U-Net architecture is particularly well-suited
for diffusion models due to its ability to per-
form superior feature extraction, contextual under-
standing, precise segmentation, and dimensionality
preservation. These attributes enable it to accu-
rately model complex data distributions and gener-
ate high-quality images. Building on this founda-
tion, many followed-up works have developed more
advanced U-Net-based denoising networks by incor-
porating multi-head attention (Song et al., 2021b;
Dhariwal & Nichol, 2021; Nichol & Dhariwal, 2021),
normalization (Ho et al., 2020; Dhariwal & Nichol,
2021; Nichol & Dhariwal, 2021), and cross-attention
layers (Rombach et al., 2022; Saharia et al., 2022b).
Transformers, known for their scalability, robust-
ness, and efficiency, have also emerged as a popular
choice for the model architecture in a variety of computer vision tasks. Researchers have attempted to employ
transformer architectures as the backbone of denoising networks in various conditional synthesis tasks (Yang
et al., 2022b; Tang et al., 2022; Gu et al., 2022; Li et al., 2023d). However, these initial efforts have yet to
rival the dominance of U-Net architectures in diffusion models. Notably, the recent groundbreaking Diffusion
Transformers (DiTs) (Peebles & Xie, 2023), built on the Vision Transformer (ViT) (Dosovitskiy et al., 2020)
architecture, first convert spatial input into a sequence of tokens and then process them through a series of
transformer blocks. The timestep and class label in DiTs are integrated via adaptive layer normalization. In
practice, DiTs achieve state-of-the-art sample quality, surpassing all previous diffusion models at comparable
computational costs.
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Despite the impressive generative performance of transformer-based model architectures, most DCIS works
still adopt U-Net as the model structure. Therefore, in the following sections, unless explicitly stated
otherwise, we assume that the denoising network follows a U-Net structure.

2.3 Conditional Image Synthesis Tasks

A conditional image synthesis task T generates target image x by sampling from a conditional distribution:

x ∼ pT (x|c), c ∈ DT , (6)

where DT is the domain of conditional inputs c, and pT is the conditional distribution defined by the task T .
Based on the form of conditional inputs c and the correlation between the conditional inputs and the target
image formulated as conditional distribution pT (x|c), we classify representative conditional image synthesis
tasks into seven categories as shown in Fig. 1: (a) Text-to-image synthesizes images in accordance with text
prompts, (b) Image restoration recovers clean images from their degraded counterparts, (c) visual signal
to image converts given visual signals such as sketch, depth and human pose into corresponding images,
(d) Image editing edits the given source images with provided semantic, structure or style information, (e)
Customization creates different editing renditions for personal objects specified by given images, (f) Image
composition composes the objects and the background specified in different images into a single image, and
(g) Layout control controls the layout grounding of synthesized images with provided spatial information
of foreground objects and background. Further qualitative comparisons between classic DCIS works for
text-to-image, image restoration, visual signal to image, image editing and customization are provided in
Fig. 11, 12, 13, 14, 15 in the Appendix. For image composition and layout control, due to the varying formats
of conditional inputs across different works, a direct comparison is not feasible. Therefore, we present only
representative outputs from popular works in Fig. 16, 17. Besides, we have sorted out the associations
between the conditional synthesis tasks and the representative conditioning mechanisms in Tab. 1.

2.4 Condition Strengthening in the Sampling Process

Currently, in order to strengthen the influence of the given conditional inputs c in the synthesized image,
numerous DCIS works attempt to sample from the conditional strengthened distribution p(x|c)p(c|x)w rather
than the original conditional distribution p(x|c). In this formula, the parameter w controls the strength of
conditional inputs c, which leads to a trade-off between sample quality and diversity. In practice, setting a
large scaling factor w can significantly enhance the sample quality and the consistency with the conditional
inputs c at the cost of sample diversity (Dhariwal & Nichol, 2021; Ho & Salimans, 2022).

Classifier Guidance (Dhariwal & Nichol, 2021) trains an auxiliary classifier pϕ (c | xt) to approximate
the likelihood term p (c | xt) in label-conditioned image synthesis. However, training an accurate clas-
sifier in most of the conditional synthesis tasks is challenging. Classifier-free guidance (Ho & Salimans,
2022) paves a training-free pathway to approximate p (c | xt) ∝ p (xt | c) /p (xt) with the access to con-
ditional noise prediction ϵθ (xt, c) = −

√
1 − ᾱt∇xt

log p (xt|c) and the unconditional noise prediction
ϵθ (xt) = −

√
1 − ᾱt∇xt

log p (xt). The proxy noise prediction ϵ̃θ can be expressed as:

ϵ̃θ (xt, c) = (1 + w)ϵθ (xt, c) − wϵθ (xt) . (7)

Due to its convenience and effectiveness, classifier-free guidance has become the mainstream condition
strengthening approach in various DCIS works. To alleviate the potential negative impact of large guid-
ance scales on sample diversity, subsequent works (Sadat et al., 2024; Kynkäänniemi et al., 2024) propose
dynamic classifier-free guidance, in which the guidance scaling factor is reduced during the denoising process
with high noise levels.

In practice, classifier guidance and classifier-free guidance can also be employed as conditioning mechanisms
to inject conditional inputs into the diffusion-based image synthesis framework. Therefore, we incorporate
them into our DCIS framework and provide a more detailed discussion in Sec.4.5 and Sec.4.3.
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Table 1: Stack of conditioning mechanisms applied to denoising network and sampling process, for main-
stream conditional synthesis tasks Conditioning encoder indicates the module to convert conditional in-
puts into task-related feature embedding, where * indicates that the encoder is determined by the specific
restoration task. ♠, ♡, ♣, ♢ denote the four condition injection methods employed in re-purposing stage as
described in Sec. 3.2.2. Due to page width limitations, we have placed the DCIS works performing condition
integration via the presented stacks of conditioning mechanisms in the row identified by corresponding serial
numbers in Tab. 4 in Appendix.

Stack of conditioning mechanisms for denoising network

Task Training
(backbone)

Conditional
encoder

Condition
Injection

Backbone
fine-tuning Specialization Serial Number

Text-to-image ✓ CLIP, BERT, LLMs ♡ ✗ ✗ DN1

Image restoration
✓ Non. ♠ ✗ ✗ DN2
✓ * ♠, ♡ ✗ ✗ DN3

Image editing
✗ (T2I DM) LLMs-based ♡ ✓ ✗ DN4
✗ (T2I DM) Non. ♠ ✓ ✗ DN5
✗ (T2I DM) Non./BLIP ♡ ✗ ✓ DN6

Customization
✗ (T2I DM) ViT (CLIP)-based ♡, ♢ ✗ Optional DN7
✗ (T2I DM) Non. ♡ ✗ ✓ DN8

Visual to image
✗ (T2I DM) Convolution-based ♣ ✗ ✗ DN9
✗ (T2I DM) ViT-based ♡ ✗ ✗ DN10

Image composition
✗ (T2I DM) Convolution-based ♡ ✓ ✗ DN11
✗ (T2I DM) ViT (CLIP)-based ♡, ♢ ✓ ✗ DN12

Layout control ✗ (T2I DM) ViT (CLIP)-based ♢ ✗ ✗ DN13

Stack of conditioning mechanisms for sampling process

Task Backbone model Conditioning mechanism Serial Number

Text-to-image Uncond DM Guidance SP1

Image restoration

Conditional restoration DM Revising Diffusion Process SP2
Uncond DM Revising Diffusion Process SP3
Uncond DM Guidance SP4
Uncond DM Conditional Correction SP5

Image editing

Uncond DM / T2I DM Inversion SP6
T2I DM Inversion, Conditional Correction SP7
T2I DM Inversion, Attention Manipulation SP8
T2I DM Inversion, Attention Manipulation, Guidance SP9

Visual to image T2I DM Guidance SP10
Image composition Uncond DM Noise Blending SP11

Layout control
T2I DM Attention Manipulation SP12
T2I DM Attention Manipulation, Guidance SP13

General purpose
Unspecified Noise Composition SP14
Unspecified Classifier-free Guidance SP15
Unspecified Universal Guidance Framework SP16

3 Condition integration in denoising networks

The denoising network is the crucial component in the diffusion model(DM)-based synthesis framework,
which estimates the noise added in each forward step to reverse the Gaussian distribution back into the data
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Figure 3: An example of the workflow to build denoising network via training, re-purposing and specialization
stages for target conditional synthesis tasks. In this framework, a text-to-image(T2I) denoising network
is firstly obtained via supervised learning on text/image pairs in training stage. Subsequently, this T2I
denoising network is fine-tuned on visual signal/image pairs for visual signal to image task in re-purposing
stage. Next, both T2I and visual signal to image denoising networks can be further fine-tuned on given
images in specialization stage to perform customization on the user-specified personal object. Figures are
cited from (Rombach et al., 2022; Zhang et al., 2023b; Ruiz et al., 2023; Li et al., 2023a).

Table 2: A Comparison of the characteristics of the three stages to perform condition integration in denoising
network. The “Training Cost” column reflects the computational cost involved in establishing a denoising
network for the target task, while the “Inference Cost” column represents the computational cost required
to customize the denoising network for user-specified conditional inputs. We further present the guarantees
of synthesis quality and the commonly applicable task scope(with capital letters indicating the tasks shown
in Fig.1) in this table.

Comparison of conditioning mechanisms for denoising network

Stage Training Cost Inference Cost Guarantees Applied scope

Training High No additional cost High A,B
Re-purposing Medium No additional cost Medium C,D,E,F,G
Specialization No additional cost A relatively high fine-tuning cost High D,E

distribution. In practice, the most straightforward way to achieve conditional control in DM-based synthesis
framework is incorporating the conditional inputs into the denoising network. In this section, we divide the
condition integration in denoising network into three stages: (a) training stage: training a denoising network
on paired conditional input and target image from scratch, (b) re-purposing stage: re-purposing a pre-trained
denoising network to conditional synthesis scenarios beyond the task it was trained on, (c) specialization
stage: performing testing-time adjustments on denoising network based on user-specified conditional input.
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Denoising
Networks
(Sec. 3)

Training
(Sec. 3.1)

Text-to-image
Stable Diffusion (Rombach et al., 2022), Imagen (Saharia et al.,
2022b), Nichol et al. (2022); Ramesh et al. (2022); Balaji et al.
(2022); Gu et al. (2022)

Image restoration
SR3 (Saharia et al., 2022c), CDM (Ho et al., 2022b),
Palette (Saharia et al., 2022a), Li et al. (2022a); Sahak et al.
(2023); Shang et al. (2024); Zhang et al. (2024d); Jiang et al.
(2023a); Xue et al. (2024); Zhao et al. (2024a)

Other synthesis
scenarios

Preechakul et al. (2022); Wang et al. (2022b); Zhang et al.
(2022); Li et al. (2023j); Liu et al. (2023a); Moghadam et al.
(2023); Meng et al. (2022b); Yang et al. (2022a); Graikos et al.
(2023)

Re-purposing
(Sec. 3.2)

Re-purposed
conditional encoders

T2I-Adapter (Mou et al., 2024c), ControlNet (Zhang et al.,
2023b), PITI (Wang et al., 2022a), BLIP diffusion (Li et al.,
2023a), MGIE (Fu et al., 2023), Kocsis et al. (2024); Zhang
et al. (2023d); Goel et al. (2023); Yang et al. (2024b); Xu et al.
(2024); Xiao et al. (2023); Ma et al. (2024); Gal et al. (2023b);
Jia et al. (2023); Li et al. (2023h); Lu et al. (2024); Shi et al.
(2024a); Shiohara & Yamasaki (2024); Feng et al. (2023); Huang
et al. (2023c); Li et al. (2023e)

Condition injection
IP-adapter (Ye et al., 2023), GLIGEN (Li et al., 2023i), Dragon-
Diffusion (Mou et al., 2024a), Wei et al. (2023b); Hoe et al.
(2023); Wang et al. (2024b); Qi et al. (2024); Gu et al. (2024)

Backbone fine-tuning

Instructpix2pix (Brooks et al., 2023), PbE (Yang et al., 2023a),
Yildirim et al. (2023); Wei et al. (2023a); Zhang et al. (2024b);
Geng et al. (2023); Sheynin et al. (2024); Zhang et al. (2024c);
Wang et al. (2023b); Xie et al. (2023a;b); Song et al. (2023d);
Kim et al. (2023b); Chen et al. (2024c); Zhang et al. (2024e)

Specialization
(Sec. 3.3)

Conditional
projection

Imagic (Kawar et al., 2023), Textual inversion (Gal et al.,
2023a), Wu et al. (2023); Mahajan et al. (2024); Ravi et al.
(2023); Zhang et al. (2023c); Bodur et al. (2024)

Testing-time
model fine-tuning

Imagic (Kawar et al., 2023), DreamBooth (Ruiz et al., 2023),
Valevski et al. (2023); Li et al. (2023c); Zhang et al. (2023f);
Kumari et al. (2023); Gal et al. (2023b); Choi et al. (2023); Liu
et al. (2023d;e); Gu et al. (2024); Han et al. (2023)

Figure 4: The proposed taxonomy of DCIS works performing condition integration in denoising network.

In practice, the training stage is often employed for condition integration in fundamental conditional im-
age synthesis tasks such as image restoration (Saharia et al., 2022c;a; Li et al., 2022a) and text-to-image
(Rombach et al., 2022; Ho et al., 2022a; Peebles & Xie, 2023). This stage establishes a reliable relation-
ship between conditional inputs and target images albeit at a high computational cost due to the need for
training from scratch. Given the substantial training cost, a branch of works (Zhang et al., 2023b; Li et al.,
2023i; Zhang et al., 2023d; Li et al., 2023a) opt to fine-tune a pre-trained text-to-image denoising network
to more complicated conditional synthesis tasks via a re-purposing stage. This strategy skips the training
process and significantly reduces computational cost. However, the relationship between novel conditional
inputs and target images re-established during the re-purposing stage is generally less reliable compared
to training from scratch. In highly personalized tasks such as customization (Lin et al., 2024a; Gal et al.,
2023a) and image editing (Kawar et al., 2023), the task-oriented denoising networks established through
the training and re-purposing stages often fail to accurately reproduce fine-grained features from the given
conditional inputs. In these cases, the specialization stage introduces time-consuming fine-tuning during
inference time to align user-specific conditional inputs with the prior knowledge embedded in the denoising
network, thereby ensuring detailed consistency between the synthesized image and the provided conditional
inputs. We provide a high-level comparison of the pros and cons of performing conditional integration into
the denoising network at each stage in Tab. 2.

Fig. 3 provides an examplar workflow to build desired denoising network for conditional synthesis tasks
including text-to-image, visual signal to image and customization via these three condition integration stages.

Next, we first review the fundamental conditional DMs modeled in the training stage in Sec. 3.1. We then
summarize the architecture design choices and conditioning mechanisms for the re-purposing stage in Sec. 3.2.
Finally, we introduce the works performing condition integration in the specialization stage in Sec. 3.3. Fig. 4
illustrates the taxonomy proposed in this section.
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3.1 Condition Integration in the Training Stage

The most straightforward way to integrate the conditional control signal c into the denoising network is
performing supervised training from scratch with the following loss function:

Ec,x∼p(x|c),ϵ,t

[
∥ϵ − ϵθ (xt, t, c)∥2

2

]
, (8)

where c and x denote the paired conditional inputs and target image. Thereby, the learned conditional
denoising network ϵθ (xt, t, c) can be employed to sample from p(x|c).

Next, we introduce the existing conditional denoising networks trained from scratch, focusing on their model
architectures and conditioning mechanisms, which are crucial for creating the connection between the con-
ditional inputs and its corresponding image. Because conditioning architectures and mechanisms are always
designed based on the target conditional synthesis scenarios, we categorize these works based on their appli-
cations, represented by text-to-image and image restoration.

3.1.1 Conditional Models for Text-to-Image(T2I)

Text-to-image is a fundamental task in the field of conditional image synthesis, which establishes the con-
nection between images and the semantic space of text descriptions. Because of the expressiveness of text
prompts, text-to-image DMs always serve as the backbone for more complicated conditional synthesis tasks
including image editing (Kawar et al., 2023; Hertz et al., 2023; Brooks et al., 2023), customization (Gal et al.,
2023a; Ruiz et al., 2023), visual signal to image (Mou et al., 2024c; Zhang et al., 2023b), image composition
(Yang et al., 2023a) and layout control (Wang et al., 2024b; Li et al., 2023i).

The main challenge in modeling an effective text-to-image framework lies in (a) precisely capturing the users’
intention described in text prompts and (b) building the connection between text prompts and images at
a acceptable computational cost. In practice, DM-based text-to-image works design different text encoders
based on Transformer (Nichol et al., 2022; Rombach et al., 2022), CLIP (Ramesh et al., 2022; Balaji et al.,
2022; Gu et al., 2022) or more powerful large language models (Saharia et al., 2022b; Balaji et al., 2022) to
extract the features from user provided text prompts. For computational efficiency, these works often train
the DMs on a low-dimension space, e.g. compressed latent space (Rombach et al., 2022; Gu et al., 2022)
or low-resolution pixel space (Nichol et al., 2022; Saharia et al., 2022c; Balaji et al., 2022; Ramesh et al.,
2022), and subsequently convert the synthesized results into desired images via auto-encoders or upsampling
diffusion models.

Next, we introduce two representative text-to-image models: Stable Diffusion (Rombach et al., 2022) and
Imagen (Saharia et al., 2022b), which serve as the T2I backbone for various conditional synthesis tasks.

Similar to VQ-VAE (Van Den Oord et al., 2017) and VQ-GAN (Esser et al., 2021), Stable Diffusion (Rombach
et al., 2022) employs a pre-trained autoencoder to compress the generative space into a low-dimensional latent
space for computational efficiency. In the training stage, the text-conditioned diffusion model ϵθ(zt, t, c) is
trained on this latent space to approximate the conditional distribution of the latent representations. In
sampling process, the latent representation aligned with given text prompts is firstly generated by the
conditional diffusion model on latent space, and then fed into the decoder to recover its corresponding
high-quality image.

For conditional control, Stable Diffusion introduces a transformer text encoder to interpret the text prompts
and convert into the text embedding. Subsequently text embedding is fused with the features in U-Net
architecture of denoising network (Rombach et al., 2022) via cross-attention layers. In practice, the encoder
can be different domain-specific experts other than the text encoder. Thereby, Stable Diffusion can be
employed into various conditional synthesis scenarios beyond text-to-image.

Following up the pioneer DM-based text-to-image framework GLIDE (Nichol et al., 2022) and Imagen
(Saharia et al., 2022b) prefer to train the conditional denoising network on a low-resolution image space and
subsequently upsample the synthesized low-resolution image. In order to effectively interpret the complex
text prompts, Imagen employs pre-trained large language models (e.g. BERT (Kenton & Toutanova, 2019),
GPT (Radford et al., 2021), T5 (Raffel et al., 2020)) as powerful text-encoders. For condition injection,
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Imagen (Saharia et al., 2022b) concatenates the encoded text embedding to the key-value pairs of the self-
attention layers in denoising network. In Imagen, the basic 64 × 64 text-to-image diffusion model is followed
by two cascaded super-resolution diffusion models designed to enlarge the resolution of synthesized image
from 64 × 64 to 1024 × 1024.

Recently, the DiT architecture (Peebles & Xie, 2023) has achieved unprecedented sample quality in diffusion-
based image synthesis, making it a popular backbone for many cutting-edge diffusion-based text-to-image
(T2I) synthesis models (Chen et al., 2023; Esser et al., 2024; Black-Forest, 2024). Building on the con-
ditioning mechanism of Stable Diffusion (Rombach et al., 2022), Cross-DiT (Chen et al., 2023) integrates
text conditions into DiT via cross-attention modules. MMDiT (Esser et al., 2024) introduces a novel and
scalable DiT-based architecture for T2I synthesis. In contrast to earlier T2I models (Rombach et al., 2022;
Ho et al., 2022a; Chen et al., 2023), which rely on consecutive cross-attention and self-attention mecha-
nisms to manage interactions between text prompts and images, MMDiT utilizes a unified self-attention
mechanism for bidirectional mixing between text and image tokens. Furthermore, MMDiT (Esser et al.,
2024) employs the rectified flow framework to model the transition process from Gaussian distribution to
clean images. Leveraging the MMDiT (Esser et al., 2024) framework, Flux (Black-Forest, 2024) achieves
state-of-the-art T2I generation performance, excelling in tasks such as handling long sentences and capturing
complex multi-object relationships, which remains challenging for Stable Diffusion.

3.1.2 Conditional Models for Image Restoration

DM-based conditional training is also widely employed to recover the high-quality clean image x from a given
degraded image c (Saharia et al., 2022c;a; Ho et al., 2022b; Shang et al., 2024; Zhao et al., 2024a). These
studies primarily focus on extracting task-relevant features from degraded images to serve as conditional
inputs for supervised training, enabling the model to reconstruct clean images based on these essential
representations.

2.1) Conditioning on degraded images. The most straightforward modeling approach involves directly con-
ditioning the diffusion model on the degraded image through channel-wise concatenation. A pioneering
diffusion-based super-resolution method, SR3 (Saharia et al., 2022c), implements this strategy by concate-
nating the low-quality reference image with the latent variable in the channel dimension of the U-Net ar-
chitecture. This straightforward conditioning mechanism allows the U-Net architecture to comprehensively
capture the informative content of the low-resolution image. Concurrent work SRDiff (Li et al., 2022a)
shifts the generative space of SR3 to the residual space, modeling the difference between paired high- and
low-resolution images to avoid reconstructing structures already present in the low-resolution input. As
a result, SRDiff achieves performance comparable to SR3 while requiring significantly less computational
cost. To adapt SR3 for real-world restoration scenarios, SR3+ (Sahak et al., 2023) introduces second-order
degradation simulation to construct more realistic clean/degraded image pairs, thereby enriching the training
dataset. Building upon SR3 (Saharia et al., 2022c), CDM (Ho et al., 2022b) proposes a cascaded framework
of super-resolution diffusion models to progressively upscale image resolution, while Palette (Saharia et al.,
2022a) extends the SR3 framework to a broader range of image restoration tasks through supervised training
on task-specific paired datasets.

2.2) Conditioning on pre-processed features. However, directly concatenating the degraded image in the
channel space imposes a burden on the denoising network, which must implicitly extract task-relevant features
from the unprocessed input. To allocate the majority of modeling capacity to task-relevant features, a line
of restoration studies (Shang et al., 2024; Zhao et al., 2024a; Jiang et al., 2023a; Xue et al., 2024; Zhang
et al., 2024d) advocates first extracting these features from the degraded image and then conditioning the
diffusion model on them.

The state-of-the-art super-resolution framework ResDiff (Shang et al., 2024) utilizes a pre-trained Convolu-
tional Neural Network (CNN) to generate a high-quality intermediate image from the initial degraded input.
It then conditions the denoising network on this intermediate image, along with its high-frequency compo-
nents, to model the residual between the intermediate and the clean image. For more challenging restoration
tasks, such as underwater image restoration (Zhao et al., 2024a) and low-light image enhancement (Jiang
et al., 2023a; Xue et al., 2024), where the input images suffer from severe degradation, a branch of works
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Figure 5: An illustration of the re-purposed denoising network based on the text-to-image backbone, where
♠, ♡, ♣, ♢ denotes condition integration via channel-wise concatenation, T2I attention layers, addition and
developed attention modules respectively as described in Sec. 3.2.2.

prefer to condition the model on frequency information extracted by discrete wavelet transformations. To
restore real-world text images under severe degradation, DiffTSR (Zhang et al., 2024d) conducts parallel dif-
fusion processes consisting of an image diffusion model for image restoration and a text diffusion model for
text recognition. A multi-modal interaction module is further employed to facilitate information exchange
between the two diffusion streams.

3.1.3 Conditional Models for Other Synthesis Scenarios

While most diffusion model (DM)-based frameworks for complex conditional synthesis scenarios are built by
re-purposing text-to-image backbones, a number of studies instead adopt supervised training from scratch
for various conditional synthesis tasks. Some of these are early efforts preceding the widespread adoption of
DM-based text-to-image models, targeting tasks such as image editing (Preechakul et al., 2022) and visual
signal to image synthesis (Wang et al., 2022b; Zhang et al., 2022). Others are developed for novel or highly
specialized applications, including medical image synthesis (Li et al., 2023j; Liu et al., 2023a; Moghadam
et al., 2023; Meng et al., 2022b), graph-to-image generation (Yang et al., 2022a), and satellite image synthesis
(Graikos et al., 2023), where the conditional control signals are difficult to align with the semantic space of
text-to-image backbones.

3.2 Condition Integration in the Re-purposing Stage

Currently, diffusion models(DMs) are employed in increasingly diverse and complex conditional synthesis
scenarios (Ye et al., 2023; Zhang et al., 2023b; Li et al., 2023e; Zhang et al., 2023d; Li et al., 2023i; Wang
et al., 2024b; Shi et al., 2024b). Simply training denoising networks from scratch for each conditional
synthesis scenario would place a heavy burden on computational resources. Fortunately, pre-trained text-
to-image(T2I) DMs effectively associate text embedding with its corresponding image, which serves as a
semantic powerful backbone for a wide range of conditional synthesis tasks beyond the T2I. Studies design
task-specific denoising network based on T2I backbone and performing fine-tuning on pairs of conditional
inputs and image to re-purpose the T2I denoising network to the target task. In practice, the re-purposed
denoising network can be divided into three key modules: (a) Conditional encoder : The module to encode
the task-specific conditional inputs into feature embeddings, (b) Condition injection: The module to inject
task-related feature embeddings into the T2I backbone, (c) Backbone: The T2I backbone that can stay
frozen or be fine-tuned during the re-purposing stage. In the re-purposing stage, conditional fine-tuning can
be performed in each of these components for condition integration. In this section, we summarize the design
choices for these modules adopted by existing works for condition integration during the re-purposing stage.
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3.2.1 Re-purposed Conditional Encoders

In T2I diffusion models, text embeddings are extracted from input prompts via a text encoder and integrated
into the U-Net architecture through cross-attention layers. To adapt the T2I backbone for tasks beyond text-
to-image generation, a range of task-specific conditional encoders have been developed to extract features
from alternative control signals beyond textual inputs.

1.1) Convolution layer-based encoder for visual signals. For visual signals, conditional encoders are mainly
designed based on convolution downsample blocks to extract multi-scale structure features.

Pioneer work T2I-Adapter (Mou et al., 2024c) employs a four-layer convolutional network as a lightweight
adapter to encode the visual signals into a set of multiscale features. ControlNet (Zhang et al., 2023b)
provides a more powerful architecture as the encoder for visual signals, which clones the deep encoding layers
in the U-Net architecture of Stable Diffusion. This ControlNet encoder inherits a wealth of prior knowledge in
the Stable Diffusion backbone and serves as a deep, robust, and strong architecture for diverse visual signals.
Currently, ControlNet delivers state-of-the-art results in diverse visual signal to image tasks and becomes
a widely-employed conditional encoder various more complicated conditional synthesis scenarios including
explicit lighting control (Kocsis et al., 2024), image composition (Zhang et al., 2023d), image editing (Goel
et al., 2023; Zhang et al., 2024e) and virtual try-on (Kim et al., 2024; Zeng et al., 2024).

1.2) ViT-based encoder for images. In practice, Vision Transformer (ViT)-based encoders are widely utilized
to extract features from conditional control signals represented in the form of images. Since most visual
signals can be naturally represented as images, pioneering work such as PITI (Wang et al., 2022a) introduces
a ViT-based encoder to project visual inputs into corresponding text embeddings for use in T2I backbones.
Similarly, ImageBrush (Yang et al., 2024b) adopts a ViT-based encoder to capture visual editing instructions
from paired images before and after editing. Prompt-free Diffusion (Xu et al., 2024) further enhances visual
encoding by employing a more powerful context encoder (SeeCoder) built on Swin-L (Liu et al., 2021) to
convert given images into meaningful visual embedding.. For customization, a branch of works (Xiao et al.,
2023; Ma et al., 2024; Shi et al., 2024a; Gal et al., 2023b; Jia et al., 2023; Li et al., 2023h; Lu et al., 2024; Li
et al., 2023a; Shiohara & Yamasaki, 2024) project user-specific objects into features on the textual embedding
space via image encoders built upon different ViT-based frameworks such as CLIP (Radford et al., 2021),
Swin (Liu et al., 2021), BLIP (Li et al., 2023b), or ArcFace (Deng et al., 2019).

1.3) LLMs-based encoder for image editing. In recent years, the rapid development of Multimodal Large
Language Models (MLLMs) (Liu et al., 2024b), which are capable of jointly understanding semantic infor-
mation and associated visual content, has led many recent works to adopt MLLMs as powerful conditional
encoders for image editing tasks that require integrating semantic text with the given image for precise
manipulation. Fu et al. (2023); Huang et al. (2023c); Li et al. (2023e) leverage trainable Multimodal Large
Language Models (MLLMs) (Liu et al., 2024b) module as the encoder for the given source image and editing
instruction. Ranni (Feng et al., 2023) used MLLMs to convert description or editing prompts into a semantic
panel, which serves as an intermediate representation that contains rich structure and semantic information.

3.2.2 Condition Injection

In order to more effectively incorporate information in conditional inputs into the denoising network during
the re-purposing stage across various conditional synthesis scenarios, studies in this field have designed
different task-specific condition injection approaches to handle different types of conditional control signals.
Here, we categorize these methods into the following four categories.

2.1) Condition injection via concatenation ♠. For conditional inputs in the form of image, a direct condition
injection approach is following the concatenation strategy proposed by SR3 (Saharia et al., 2022c), which
concatenates the image form conditional inputs to the latent variable in the channel space of the U-Net
architecture. In practice, this conditioning strategy is usually performed with backbone fine-tuning to handle
conditional synthesis tasks that involve complex conditional inputs composed of multimodal components,
including instruction-based editing (Brooks et al., 2023; Sheynin et al., 2024; Geng et al., 2023) and image
composition (Zhang et al., 2023d; Song et al., 2023d; Xie et al., 2023a).
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2.2) Condition injection via T2I attention layers ♡. In the T2I backbone, the cross-attention layers serve as
the conditioning module to inject text embedding into the U-Net architecture. Currently, a branch of works
also employs the cross-attention layers in the T2I backbone to inject the features extracted from task-specific
conditional encoders (Wang et al., 2022a; Yang et al., 2024b; Xu et al., 2024; Xiao et al., 2023; Gal et al.,
2023b; Jia et al., 2023; Li et al., 2023a; Shiohara & Yamasaki, 2024; Zeng et al., 2024).

2.3) Condition injection via addition ♣. Because of the alignment between the architecture of conditional
encoder and the U-Net encoder in T2I backbone, for convolutional layer-based encoders (Mou et al., 2024c;
Zhang et al., 2023b), the extracted features are injected via directly adding these features to the corresponding
intermediates layers in the U-Net architecture of T2I backbone.

2.4) Condition injection via developed attention modules ♢. To achieve more fine-grained control over the
synthesized image, some works developed task-specific attention modules for condition injection in target
conditional synthesis scenarios (Ye et al., 2023; Li et al., 2023i; Wei et al., 2023b; Wang et al., 2024b; Mou
et al., 2024a).

A branch of works prefers to incorporate extra attention module into the T2I backbone to inject the task-
specific conditional control signals (Ye et al., 2023; Wei et al., 2023b; Li et al., 2023i; Hoe et al., 2023; Wang
et al., 2024b). IP-adapter (Ye et al., 2023) employs additional image cross-attention layers to inject the image
embedding into the T2I backbone. For customization, ELITE (Wei et al., 2023b) leverages two parallel cross-
attention layers to inject extracted global and local information of the personal object separately. In T2I
backbone, attention layers control the structure and layout information of the synthesized image. To exert
accurate object-level layout control, a branch of works prefer to add a trainable attention module between
self-attention and cross-attention layers (Li et al., 2023i; Ma et al., 2024; Shi et al., 2024a; Hoe et al., 2023;
Wang et al., 2024b). GLIGEN (Li et al., 2023i) adds a gated self-attention layer to the U-Net architecture to
inject provided layout information. This conditioning strategy is further employed in customization works
(Ma et al., 2024; Shi et al., 2024a) to integrate patch features extracted from personal object images. To
perform more detailed layout control, InteractDiffusion (Hoe et al., 2023) designs an attention-based Human-
Object Interaction module to inject the interactions between objects. InstanceDiffusion (Wang et al., 2024b)
projects different forms of object-level control signals including single points, scribbles, bounding boxes
or intricate instance segmentation masks into the feature space through MLP tokenizers, and fuses these
features with visual tokens from the text-to-image backbone via gated self-attention layers.

Another line of works modifies the cross-attention mechanism in T2I backbone to achieve more precise
control (Qi et al., 2024; Mou et al., 2024a; Lu et al., 2024; Gu et al., 2024). Different from IP-adapter
(Ye et al., 2023), DEADiff (Qi et al., 2024) concatenates the key and value attention features derived from
image and text embedding respectively and performs a single fused cross-attention mechanism to achieve
multimodal conditional control. In practice, performing fused attention mechanism to inject multimodal
control signals along with text embedding is also employed in instruct-based editing (Li et al., 2023f) and
pose-guided person image synthesis (Lu et al., 2024). To perform local control based on multiple regional
prompts, Mix-and-show (Gu et al., 2024) proposes an attention localization strategy in the re-purposing
stage, which substitutes the attention map in specified regions with the attention map generated based on
the regional prompts.

3.2.3 Backbone Fine-tuning

Currently, most of the re-purposing works confine the fine-tuning only on conditional encoders and condition
injection modules to ease the computational burden. However, for conditional inputs that contain multimodal
components or intricate semantics, performing fine-tuning while freezing the parameters in T2I backbone
often fails to fully understand intrinsic connections between the conditional input and target image. In these
scenarios, fine-tuning the T2I backbone together with encoders and condition injection modules is a more
preferable choice. Based on the fine-tuning strategy, we categorize these works into two types: (a) Fully
supervised fine-tuning on annotated datasets, and (b) Self-supervised fine-tuning on bare image dataset.

3.1) Fully supervised fine-tuning on the annotated dataset. In practice, we can re-purpose the T2I backbone
on the annotated dataset of paired conditional input and image in accordance with the specific task via fully
supervised fine-tuning. However, for some synthesis tasks involving complex conditional inputs, a major
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difficulty lies in collecting sufficient training data to fine-tune the model (Brooks et al., 2023; Zhang et al.,
2023d). For instruct-based editing task, which refers to using instructions instead of text descriptions to guide
the editing process, Instructpix2pix (Brooks et al., 2023) provides an effective approach for automatically
synthesizing training datasets. Firstly, InstructPix2Pix employs a fine-tuned GPT-3 (Brown et al., 2020) to
synthesize editing triplets composed of the input caption, edit instruction and output caption. Subsequently,
Instructpix2pix leverages Prompt-to-Prompt (Hertz et al., 2023) to synthesize paired images corresponding
to the input captions and output captions, which serves as the paired images before/after editing. This
contribution leads to a line of works on DM-based instruction editing. A branch of follow-up works attempts
to enhance the T2I backbone in some specific tasks by augmenting the training dataset for target scenario
including object removal and inpainting (Yildirim et al., 2023), global editing (Li et al., 2023f), dialog-based
editing (Wei et al., 2023a) and continuous editing (Zhang et al., 2024b). InstructDiffusion (Geng et al., 2023)
and Emu-edit (Sheynin et al., 2024) fine-tune the T2I backbone on larger and more comprehensive synthesized
datasets for a wide range of vision tasks including image editing, segmentation, keypoint estimation, detection
and low-level vision. To achieve more accurate editing, Fu et al. (2023); Huang et al. (2023c); Li et al. (2023e)
fine-tune the T2I backbone with a more powerful MLLMs-based conditional encoder to enhance the editing
prompts. Based on reinforcement learning, HIVE (Zhang et al., 2024c) fine-tunes the instruct-based editing
model with a reward model reflecting the human feedback for editing performance.

3.2) Self-supervised fine-tuning on bare image dataset. In non-general conditional synthesis scenarios in-
volving image composition or mask-based editing, the form of conditional inputs may be complicated. For
example, a classic image composition task aims to fuse a foreground reference image into the background main
image within the mask region. In these tasks, collecting annotated training data pairs is almost impossible.
A feasible approach is to create paired data based on the target scenario through cropping on a bare image
dataset, and thereby fine-tune the T2I backbone in a self-supervised manner. For image composition task,
PbE (Yang et al., 2023a) randomly crops the foreground objects from the source image as the reference image
and the corresponding mask, while the remaining background as the background main image. Subsequently,
PbE (Yang et al., 2023a) fine-tunes the T2I backbone with the cropped reference image and main image. In
practice, such a strategy is widely employed in conditional synthesis scenarios involving inpainting (Wang
et al., 2023b; Xie et al., 2023a) and composition (Song et al., 2023d; Kim et al., 2023b; Zhang et al., 2023d;
Xie et al., 2023b; Chen et al., 2024c). To generate reasonable masks for text-based inpainting, Imagen Editor
(Wang et al., 2023b) employs an off-the-shelf object detector to generate masks on the image in captioned
image datasets, which covers a region relevant to the text caption of image. SmartBrush (Xie et al., 2023a)
randomly augments the cropped training masks to create accurate instance masks, which facilitates the T2I
backbone to follow the shape of the input mask in testing-time.

For image composition, the greatest challenge faced by the self-supervised fine-tuning strategy is how to
avoid the trivial copy-and-paste solution caused by the training data cropped from a single image (Yang
et al., 2023a; Xie et al., 2023b; Zhang et al., 2024e). Currently, image composition frameworks resort to
compress the information in the conditional inputs into an information bottleneck. This, in turn, forces the
T2I backbone to interpret the intrinsic connections between the conditional input and the desired image,
thereby effectively avoiding the copy-and-paste solution. PbE (Yang et al., 2023a) and Dreaminpainter (Xie
et al., 2023b) select a part of the image tokens for condition injection to create an information bottleneck.
ObjectStitch (Song et al., 2023d) employs a two-stage fine-tuning strategy to decouple the fine-tuning stages
of the conditional encoder and the T2I backbone. Zhang et al. (2024e); Chen et al. (2024c); Zhang et al.
(2023d) prefer to remove or mask out the information such as colors, textures or background in the source
image to prevent identical mapping.

3.3 Condition Integration in the Specialization Stage

Although, in theory, any form of conditional input c can be incorporated into the denoising network
ϵθ(xt, t, c), in practice, integrating complex control signals into the conditional space of the network during
training and re-purposing presents significant challenges. These challenges primarily stem from the difficulty
of collecting annotated training data and modeling the intricate relationships between conditional inputs and
the desired outputs, thereby limiting the model’s capacity to generalize to zero-shot or few-shot conditional
inputs.
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Figure 6: The specialization process to align a given personal object (the clock) with a pesudo-word S∗ in
the conditional space of a text-to-image backbone. The clock image is cited from Textual Inversion (Gal
et al., 2023a).

A straightforward idea to remedy these issues is to align the user-specified conditional inputs with the condi-
tional space of a general T2I backbone through a specialization stage. As shown in Fig. 6, the specialization
for given specific conditional inputs is typically achieved by (a) conditional projection, which projects the
given conditional inputs onto the conditional space of the T2I backbone via embedding optimization (Kawar
et al., 2023; Gal et al., 2023a), or Vision-Language Pre-training (VLP) framework (Li et al., 2022b; 2023b),
(b) testing-time model fine-tuning, which fine-tunes the denoising network to insert the conditional inputs
into the prior of the T2I backbone. In practice, works perform condition integration in the specialization
stage are mainly targeted to image editing and customization tasks to achieve desired edits on user-specified
visual subjects including source image(image editing) and personal objects(customization) while preserving
the characteristics and details in these visual subjects (Kawar et al., 2023; Ruiz et al., 2023; Gal et al.,
2023a).

3.3.1 Conditional Projection

A widely used approach for editing or customization tasks involves projecting the given visual subject into
a corresponding text representation within the conditional space of a text-to-image model.

1.1) Conditional embedding optimization. In order to find a proper text embedding for given visual subject,
a branch of works directly searches the optimal embedding for the user-specified conditional inputs by
optimizing the following objective function:

v∗ = arg min
v

Ex=cI ,ϵ,t

[
∥ϵ − ϵθ (xt, t, v)∥2

2

]
, (9)

where v∗ denotes the optimized text embedding for the user-specified visual subject cI , and ϵθ denotes the
T2I denoising network. The embedding v∗ serves as a pseudo-word S∗ for the visual subject and can be
further composed into various natural language prompts to create different editing renditions for the given
visual subject (Kawar et al., 2023; Gal et al., 2023a).

For image editing, Imagic (Kawar et al., 2023) optimizes the embedding v∗ for the source image. Subse-
quently, Imagic performs interpolation between optimized source embedding v∗ and target embedding vtgt

to obtain v = η · vtgt + (1 − η) · v∗, which serves as the conditional input for denoising process. Diffusion
Disentanglement (Wu et al., 2023) optimizes the time-dependent combination weights of the source and
target text embeddings along the sampling process instead of interpolation to retrieve time-adaptable em-
bedding for editing. To reduce the computational cost of the optimization process, (Zhang et al., 2023c; Mou
et al., 2024b) first employed a image encoder to generate a coarse embedding of the given visual subject,
and subsequently fine-tuning the coarse embedding via optimization.

Pioneer customization work Textual Inversion (Gal et al., 2023a) performs optimization to discover the text
embedding v∗ for a personal object described by a few reference images (typically 3 to 5). This optimized
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embedding v∗ serves as the pseudo-pronoun S∗ for the personal object in the further conditional sampling
process. To provide human-readable text description instead of text embedding for given personal object,
PH2P (Mahajan et al., 2024) employ quasi-newton L-BFGS (Shanno, 1970) to directly optimize discrete
tokens from an existing pre-specified vocabulary for the target image.

1.2) Employing VLP models. However, performing time-consuming optimization for each new visual subject
hinders the deployment of these methods in practical applications. Therefore, a branch of works prefers
to employ Vision-Language Pre-training (VLP) models to directly generate the embedding for given visual
subjects (Zhang et al., 2023c; Li et al., 2023a).

BLIP (Li et al., 2022b) is a strong VLP framework to synthesize captions for given images, which is widely
employed in image editing tasks to generate an initial text prompt to describe the uncaptioned source
image (Zhang et al., 2023c; Li et al., 2023a; Bodur et al., 2024; Parmar et al., 2023). BLIP can also be used
to enhance user-provided prompts for eliminating editing failure caused by missing contexts in the coarse
input prompts (Kim et al., 2023c). Besides, PRedItOR (Ravi et al., 2023) prefer to leverage DALL-E2
(Ramesh et al., 2022) to fuse the source image with the target prompt by performing SDEdit (Meng et al.,
2022a) process on the CLIP embedding space.

3.3.2 Testing-time Model Fine-Tuning

In editing and customization tasks, directly using the denoising network built through scenario-oriented
training and re-purposing often fails to preserve the characteristics and fine details of the user-specified
visual subject, primarily due to the absence of subject-specific prior knowledge (Kumari et al., 2023).

To customize the T2I backbone for user-specified conditional inputs, approaches in this category resort to
performing testing-time fine-tuning on the T2I backbone to insert the given visual subjects into the denoising
network (Ruiz et al., 2023; Kumari et al., 2023).

To better preserve the outlook of the source image in editing tasks, a branch of works (Kawar et al., 2023;
Valevski et al., 2023; Zhang et al., 2023c;f) represented by Imagic (Kawar et al., 2023) fine-tune the T2I
backbone to bind the source image with its corresponding text description csrc in the conditional space
of T2I backbone. In order to simultaneously edit the foreground and background in the source image,
LayerDiffusion (Li et al., 2023c) employs Segment Anything Model (SAM) (Kirillov et al., 2023) to create
masks for foreground objects. Subsequently, LayerDiffusion (Li et al., 2023c) fine-tunes the T2I backbone
with a designed loss composed of the diffusion loss in both foreground and background region to edit the
foreground object and background independently. SINE (Zhang et al., 2023f) introduces a patch-based
fine-tuning strategy which incorporates the positional embedding into conditional T2I space to synthesize
arbitrary-resolution edited image.

For the customization task, DreamBooth (Ruiz et al., 2023) fine-tunes the T2I backbone to entangle a fixed
unique identifier with the semantic meaning of the personal object. To alleviate the computational burden in
the testing-time fine-tuning, followed up works (Kumari et al., 2023; Gal et al., 2023b; Choi et al., 2023; Liu
et al., 2023d;e; Gu et al., 2024; Han et al., 2023) prefer to only fine-tune a specific part of model parameters.
CustomDiffusion (Kumari et al., 2023) fine-tunes only the cross-attention layers. E4T (Gal et al., 2023b)
optimizes low-rank adaptations (LoRA) (Hu et al., 2021) of weight residuals in cross- and self-attention
layers to further reduce computational cost. Cones (Liu et al., 2023d) fine-tunes the attention layer concept
neurons highly-related to the given visual subject. Cones2 (Liu et al., 2023e) and Mix-and-show (Gu et al.,
2024) resort to fine-tune the text encoder in T2I backbone. SVDiff (Han et al., 2023) fine-tunes the singular
values of the decomposed convolution kernels.

4 Condition integration in the sampling process

In DM-based image synthesis frameworks, the sampling process iteratively reverse noisy latent variable
into desired image with the prediction of the denoising network. As mentioned in Sec. 3, integrating the
conditional control signals into the denoising network always requires time-consuming training, fine-tuning or
optimization. To ease the burden for conditioning the denoising network, numerous works perform condition
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Figure 7: An example of the conditional sampling process for image editing, in which we incorporate all six
mainstream in-sampling conditioning mechanisms for diffusion sampling process to provide a comprehensive
overview of the content in this section. The sample images are from Diffedit (Couairon et al., 2023).

Table 3: A Comparison of the conditioning mechanisms for sampling process. In the "Inference Cost" col-
umn, we present the additional computation cost for performing the corresponding conditioning mechanism
in sampling process (where T denotes the total number of sampling steps). The "Guarantee" column illus-
trates the synthesis quality guarantees of conditioning mechanism. In this column, "theoretical guarantee"
indicates the conditioning mechanism is theoretically supported to sample from the corresponding conditional
distribution, while "empirical results only" means the method is developed based on successful experimental
results, at the cost of disrupting the structure of the standard sampling process.

Comparison of conditioning mechanisms for sampling process

Conditioning Mechanism Inference Cost Guarantees Applied scopes

Inversion T NFEs for denoising network Theoretical guarantee D,E,F
Attention Manipulation T NFEs for denoising network Empirical results only E
Noise Blending T NFEs for denoising network Theoretical guarantee ALL
Revising Diffusion steps No additional cost Theoretical guarantee B
Guidance T NFEs for guidance loss function Depends on the guidance loss ALL
Conditional Correction No additional cost Empirical results only B,D,F

integration in the sampling process to ensure the consistency between synthesized image and given conditional
input without computational intensive supervised-training or fine-tuning (Su et al., 2023; Hertz et al., 2023;
Liu et al., 2022; Kawar et al., 2022; Dhariwal & Nichol, 2021; Choi et al., 2021).

Based on how the conditional control signals are incorporated into the sampling process, we divide main-
stream in-sampling conditioning mechanisms into six categories: (a) inversion, (b) attention manipulation,
(c) noise blending, (d) revising diffusion process, (e) guidance and (f) conditional correction. In Tab. 3, we
provides a comparison of the characteristics of all the six conditioning mechanisms for sampling process.

We illustrate these conditioning mechanisms with an exemplary image editing process in Fig. 7. In this
section, we will introduce the core idea of these conditioning mechanisms and summarize the corresponding
representative works as illustrated in Fig. 8.
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Sampling
(Sec. 4)

Inversion (Sec. 4.1)

SDEdit (Meng et al., 2022a), DDIB (Su et al., 2023), Null-text Inver-
sion (Mokady et al., 2023), Cyclediffusion (Wu & De la Torre, 2023),
DDPM inversion (Huberman-Spiegelglas et al., 2023), Dong et al. (2023);
Huang et al. (2023a); Wang et al. (2023d); Wallace et al. (2023); Miyake
et al. (2023); Ju et al. (2023); Meiri et al. (2023); Pan et al. (2023); Lu
et al. (2023); Brack et al. (2024); Nie et al. (2023); Zhang et al. (2023e);
Chung et al. (2024); Shi et al. (2024b)

Attention
manipulation (Sec. 4.2)

Prompt-to-Prompt (Hertz et al., 2023), PnP (Tumanyan et al., 2023), Mas-
actrl (Cao et al., 2023), Ediff-i (Balaji et al., 2022), Chen & Lathuilière
(2023); Choi et al. (2023); Wang et al. (2023d); Yang et al. (2024a); Liu
et al. (2024a); Chung et al. (2024); Shi et al. (2024b); Mou et al. (2024a);
Lu et al. (2023); Liu et al. (2023e); Guo & Lin (2023)

Noise blending (Sec. 4.3)
Composable DMs (Liu et al., 2022), Classifier-free guidance (Ho & Sali-
mans, 2022), Brack et al. (2024); Zhao et al. (2023a); Shirakawa & Uchida
(2024); Bar-Tal et al. (2023); Pan et al. (2023); Zhang et al. (2023f); Goel
et al. (2023)

Revising process (Sec. 4.4)
IR-SDE (Luo et al., 2023), SNIPS (Kawar et al., 2021), DDRM (Kawar
et al., 2022), Welker et al. (2024); Yue et al. (2024); Wang et al. (2024d);
Delbracio & Milanfar (2023); Wang et al. (2024c)

Guidance (Sec. 4.5)

Classifier Guidance (Dhariwal & Nichol, 2021), MCG (Chung et al., 2022a),
DPS (Chung et al., 2023b), Blend Diffusion (Avrahami et al., 2022), Sketch
guided DM (Voynov et al., 2023), Pix2Pix-Zero (Parmar et al., 2023), Free-
DoM (Yu et al., 2023), Universal Guidance (Bansal et al., 2023), Song et al.
(2023a); Rout et al. (2024b); Chung et al. (2023a); Fei et al. (2023); Liu
et al. (2023b); Kwon & Ye (2023); Singh et al. (2023); Luo et al. (2024); Mo
et al. (2024); Lin et al. (2023); Park et al. (2024); Chen et al. (2024b); Ep-
stein et al. (2024); Mou et al. (2024b;a)

Conditional
correction (Sec. 4.6)

SDE (Song et al., 2021b), Repaint (Lugmayr et al., 2022), ILVR (Choi
et al., 2021), Diffedit (Couairon et al., 2023), CCDF (Chung et al., 2022b),
MCG (Chung et al., 2022a), Patashnik et al. (2023); Wang et al. (2023a);
Lin et al. (2024b); Huang et al. (2023b)

Figure 8: The proposed taxonomy of DCIS works performing condition integration in sampling process.

4.1 Inversion

In diffusion model (DM)-based image synthesis, the starting latent variable controls the spatial structure
and semantics of synthesized result. Inversion process provides an effective way to encode the given source
image back into its corresponding starting latent variable and effectively preserve the image structure and
semantics for further editing. In this section, we firstly summarize the inversion approaches in Sec. 4.1.1.
Next, we will discuss the applications of inversion in various conditional synthesis scenarios in Sec. 4.1.2.

4.1.1 Inversion Approaches

Mainstream inversion approaches perform inversion based on the forward diffusion process, deterministic
sampling process and stochastic sampling process. We denote these three basic inversion pathways as noise-
adding inversion, deterministic inversion, and stochastic inversion, respectively.

1.1) Noise-adding inversion. Noise-Adding Inversion performs a standard forward diffusion process to invert
the source image to a certain noise step T ′, i.e., q (xT ′ | x0) = N

(
xT ′ ;

√
ᾱT ′x0, (1 − ᾱT ′) I

)
, where the latent

variable xT ′ is a mixture of source image and Gaussian noise.

1.2) Deterministic inversion. In practice, noise-adding inversion may smooth out details in the source image.
To more precisely preserve image features, deterministic inversion is proposed to encode the source image
x0 into its corresponding latent variable xT based on the discretization form of diffusion ODEs such as
DDIM (Song et al., 2021a). Theoretically, with a sufficiently large diffusion step T , DDIM inversion can
guarantee perfect reconstruction, which ensures the latent variable xT obtained from DDIM inversion to be
a meaningful diffusion starting point encapsulating all features pertaining to the source image x0.

1.3) Stochastic inversion. Different from deterministic inversion approaches performing inversion based
on deterministic sampling process, a branch of works prefers to invert the stochastic sampling process in
Eq. 3. Unlike the deterministic sampling process, which is determined by the starting point latent variable
xT , the stochastic sampling process involves the noise vector ϵt added in each reverse transition kernel.
Therefore, we have to memorize each noise vector ϵt along the inversion process to ensure the reconstruction
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property. Despite the additional memory requirements, stochastic inversion alleviates, to some extent, the
reconstruction failures caused by accumulated errors in deterministic inversion.

1.4) Enhanced inversion approaches. In conditional synthesis, the classifier-free guidance for condition
strengthening significantly magnified the accumulated error in inversion process, which leads to poor re-
construction and edit performance. Therefore, a series of inversion methods are developed to ensure the
inversion performance under classifier-free guidance.

For deterministic inversion, some approaches prefer to fine-tune relevant parameters in the classifier-free
guided sampling process to reduce the reconstruction error, including optimizing the null-text embed-
ding (Mokady et al., 2023), text embedding for the source image (Dong et al., 2023), key and value matrix in
the self-attention layers (Huang et al., 2023a), and the prompt embedding for cross-attention layers (Wang
et al., 2023d). To get rid of the computational burden for fine-tuning, a branch of works has developed
tuning-free approaches for perfect reconstruction (Wallace et al., 2023; Han et al., 2024; Miyake et al., 2023;
Ju et al., 2023). EDICT (Wallace et al., 2023) achieves precise DDIM inversion by utilizing an equiva-
lent reversible process consisting of two coupled noise vectors. Negative-prompt Inversion (Miyake et al.,
2023) demonstrates the prompt of the source image can serve as a training-free substitute for null-text em-
bedding. Proxedit (Han et al., 2024) further enhance the reconstruction performance of Negative-prompt
Inversion (Miyake et al., 2023) by incorporating a regularization term in classifier-free guidance to prevent
over-amplifying the editing direction in sampling process. Fixed-point Inversion (Meiri et al., 2023) and AIDI
(Pan et al., 2023) perform fixed-point iterations in each step of DDIM inversion to reduce the accumulation
errors due to the discrete DDIM process. Besides, Fixed-point Inversion (Meiri et al., 2023) provides a brief
cycle of fixed-point iterations for the VAE-encoded latent representation of the source image to eliminate the
misfit between latent representation and the given text prompts in latent diffusion models. TF-ICON (Lu
et al., 2023) and LEDITS++ (Brack et al., 2024) perform inversion based on high-order diffusion differential
equation solvers (Lu et al., 2022a;b) which significantly accelerates the inversion process and improves the
accuracy of inversion.

In theory, for stochastic inversion, any sampling sequence initialized from the source image can serve as the
sequence of latent variables in the stochastic inversion process. However, arbitrary sampling trajectories
may deviate from the prior marginal distribution of latent variables, thereby compromising the model’s
editing capability during the reconstruction process. To construct a reasonable sampling sequence, pioneer
work Cyclediffusion (Wu & De la Torre, 2023) samples a xT ∼ N (0, I) and subsequently denoises it based
on the source image x0 to recover the sampling sequence. DDPM inversion (Huberman-Spiegelglas et al.,
2023) constructs an editing-friendly sampling sequence by independently sampling each intermediate latent
variable xt based on the source image x0. This approach enables reconstruction of the source image with
the noise precisions, effectively mitigating error accumulation during the inversion process. SDE-Drag (Nie
et al., 2023) provides a theoretical foundation for the superior editing performance of stochastic inversion
compared to its deterministic counterpart. It shows that, under stochastic inversion, the KL divergence
between the distribution of the edited image and the prior data distribution decreases, whereas it remains
unchanged in widely adopted deterministic inversion methods.

4.1.2 Applications of Inversion in Conditional Synthesis

Inversion process converts the provided source image into its corresponding latent variable. In practice, this
latent variable can serve as the starting point for the sampling process to perform basic image-to-image
translation, text-based image editing or be further manipulated for more complicated tasks.

Image-to-image translation aims to translate the content of a given source image to a desired target ap-
pearance, which serves as a fundamental basis for image editing. The pioneering work SDEdit (Meng et al.,
2022a) performs this translation by denoising a noise-perturbed version of the source image with the de-
noising network trained on the target domain. This process effectively preserves the structural content of
the source image while imparting it with the visual characteristics of the target domain. Li et al. (2024b)
adopt the image-to-image translation strategy introduced in SDEdit to solve the subproblem associated with
the prior term in the Half-Quadratic Splitting (HQS) framework (Geman & Yang, 1995) for diffusion-based
image restoration.
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Based on deterministic inversion, DDIB (Su et al., 2023) proposes a highly flexible framework for image-to-
image translation between two data domains, α and β, via a simple transformation x∗ = Dβ(Eα(x)). Here,
x and x∗ represent the source and target images in domains α and β, respectively, while Eα and Dβ denote
the deterministic inversion and sampling processes performed using diffusion models specific to each domain.
The DDIB framework can be applied using either two independently trained diffusion models or a single
model conditioned on different control signals.

In practice, text-based image editing, which aims to modify a source image cI described by a source prompt
csrc to align with the given target prompt ctgt can be achieved by performing the DDIB image-to-image
translation process: x∗ = Dctgt

(Ecsrc
(cI)). Here, cI and x∗ represent the paired source and edited images,

while Ecsrc and Dctgt denote the inversion and sampling processes conditioned on the source and target
prompts, respectively. However, this editing process can only coarsely preserve semantic consistency and
overall structure, often failing to retain the fine-grained details of the source image.

To more effectively preserve intricate details during editing, the inversion process is often augmented with
additional conditioning mechanisms. One widely adopted approach involves applying conditional corrections
using spatial masks to protect regions that do not require modification (Couairon et al., 2023; Li et al., 2023c;
Patashnik et al., 2023; Yang et al., 2024a; Wang et al., 2023a; Lin et al., 2024b; Huang et al., 2023b). Another
line of work focuses on manipulating attention features during the editing process to explicitly incorporate
the visual appearance of the source image, as discussed in Sec.4.2 (Hertz et al., 2023; Tumanyan et al., 2023).
Additionally, some methods enhance source-image fidelity by fine-tuning the model or applying conditional
projection techniques during the specialization stage, as outlined in Sec.3.3 (Kawar et al., 2023; Zhang et al.,
2023c).

Moreover, by leveraging task-specific conditional encoders that convert multimodal control inputs into text
embeddings, the inversion-based editing framework can be extended to conditional synthesis tasks beyond
text-driven editing. For instance, InST (Zhang et al., 2023e) performs style transfer by denoising a noise-
perturbed reference image obtained via inversion with a denoising network conditioned on embedding vectors
extracted from a style image.

For more complex conditional synthesis scenarios, the latent variables obtained through inversion can be
further manipulated to incorporate additional information beyond the original source image. In image
composition tasks, several methods propose fusing latent representations derived from multiple source images
(Chung et al., 2024; Lu et al., 2023). For example, Style Injection in Diffusion (Chung et al., 2024) combines
the latent variables of both style and content images obtained via DDIM inversion to achieve style transfer.
Similarly, TF-ICON (Lu et al., 2023) performs image composition by integrating the inverted representations
of main and reference images. In drag-based editing, the latent variable can be spatially adjusted according
to user-provided drag instructions. DragDiffusion (Shi et al., 2024b) refines the latent variable using a motion
supervision loss tailored for drag-style manipulation. In contrast, the stochastic inversion-based method SDE-
Drag (Nie et al., 2023) employs a copy-and-paste strategy to manipulate latent variables without relying on
latent-space optimization.

4.2 Attention Manipulation

After determining the starting point via randomly sampling from a Gaussian distribution or inversion meth-
ods, the sampling process is performed by iterative denoising steps. As pointed out in E4T (Gal et al.,
2023b), the attention layers in the denoising network have the greatest impact on the predicted noise and
control the structure and layout of the synthesized image. Therefore, a branch of works resorts to design
task-specific manipulation to the attention layers in the denoising network to achieve more accurate control
over the spatial layout and geometry of synthesized image (Hertz et al., 2023; Tumanyan et al., 2023; Lu
et al., 2023; Patashnik et al., 2023). Different from the works performing fine-tuning on modified attention
module in re-purposing stage (Li et al., 2023i; Ye et al., 2023), approaches in this category manipulate the
attention layers via tuning-free replacement or localization during the sampling process.
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4.2.1 Replacement Manipulation

Pioneer attention manipulation works are designed to preserve the structure of the source image during
the inversion-based image editing process. Prompt-to-Prompt (Hertz et al., 2023) performs parallel sam-
pling processes for the inverted source image separately conditioned on source and target prompts. During
the sampling process, Prompt-to-Prompt replaces the cross-attention maps in the editing branch with its
counterpart in the reconstruction branch to preserve the structure of the source image during the editing
process. This replacement strategy is further employed in follow-up works for face aging editing (Chen &
Lathuilière, 2023) and customization-based editing (Choi et al., 2023). P2Plus (Wang et al., 2023d) further
performs attention replacement when predicting unconditional noise term in Eq. 7 to achieve more accurate
editing under classifier-free guidance. To prevent undesired changes caused by cross-attention leakage, DPL
(Yang et al., 2024a) optimizes the word embedding corresponding to the noun words in the source prompt
to produce more suitable cross-attention maps for attention replacement.

PnP (Tumanyan et al., 2023) points out that more detailed spatial features are restored in self-attention
layers compared to the cross-attention maps. Therefore, a branch of editing works (Tumanyan et al., 2023;
Liu et al., 2024a; Cao et al., 2023) prefers to replace query and key features in self-attention layers to achieve
better structure preservation. This replacement strategy is followed by works designed for drag-based editing
(Shi et al., 2024b; Mou et al., 2024a) and style transfer (Chung et al., 2024) to ensure the consistency between
the synthesized result and the provided source image. However, performing replacement manipulation on
attention maps locks the spatial layout of the generated image to that of the source image. To support
more complex image editing scenarios, a series of works (Cao et al., 2023; Huang et al., 2024a) prefer to
perform attention replacement on the key and value features within the attention layers, enabling the model
to handle structural changes in non-rigid editing tasks.

In practice, the effectiveness of editing highly depends on the capability of the underlying text-to-image
model. Currently, DiT-based text-to-image models (Peebles & Xie, 2023; Chen et al., 2023; Esser et al.,
2024; Black-Forest, 2024) demonstrate significantly stronger language understanding and image generation
capabilities compared to traditional text-to-image models (Rombach et al., 2022; Ho et al., 2022a). As a
result, a series of recent works (Wang et al., 2024a; Tewel et al., 2024) have chosen to apply the classic
attention manipulation strategies to these models (Esser et al., 2024; Black-Forest, 2024), which achieves
state-of-the-art performance in image editing.

4.2.2 Localization Manipulation

In order to enable more precise layout control in the synthesized image, a branch of works manipulates
(Patashnik et al., 2023; Lu et al., 2023; Balaji et al., 2022). the attention layers with masks or segmentation
maps that specify object locations.

Some of these works propose localized self-attention mechanisms to address different regions separately and
locate the contents into desired regions. Masactrl (Cao et al., 2023) and Object-Shape Variation (Patashnik
et al., 2023) firstly extract the regions with attention value above a threshold in the cross-attention maps
for object text tokens as foreground masks. Subsequently, Masactrl performs self-attention for foreground
and background separately to prevent mixing the foreground objects and the background. Object-Shape
Variation (Patashnik et al., 2023) restricts the region for attention replacement on the background instead
of injecting the full self-attention maps in every denoising step. For image composition, TF-ICON (Lu et al.,
2023) fuses the attention features extracted from the reconstruction process of both main and reference
images via a cross-attention mechanism to create a composite self-attention map seamlessly blending the
two images.

Another line of work incorporates an increment into the cross-attention map to adjust the attention values
in the region for designated objects and thereby achieve layout control for the synthesized image. Pioneer
text-to-image work Ediff-i (Balaji et al., 2022) successfully guides the object described by the nouns in the
text prompt to the specified area by enhancing the its attention values in the corresponding region. Similarly,
Cones2 (Liu et al., 2023e) increases the attention values in the region corresponding to desired objects while
reducing the attention values in irrelevant regions to perform layout control. For image editing, FoI (Guo &
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Lin, 2023) amplifies the attention value in the region of the foreground object to be edited to achieve more
precisely control for the objects in accordance with editing instructions.

4.3 Noise Blending

The noise blending process integrates noise predictions from multiple (conditional) diffusion models to enable
a unified sampling process guided by multiple control signals. Based on the corresponding application
scenarios, existing noise blending methods can be categorized into Noise Composition and Classifier-Free
Guidance.

4.3.1 Noise Composition

In conditional synthesis scenarios that require generating images based on multiple control signals, directly
training a denoising network to simultaneously handle all conditional inputs often results in prohibitively high
training costs. A widely adopted approach for handling multi-conditional synthesis involves independently
predicting the noise ϵi for each conditional component ci, and subsequently composing them into a proxy
noise ϵ̃ that reflects the influence of all control signals. Composable Diffusion Models (Liu et al., 2022) propose
a noise composition method based on Bayes’ rule to enable multi-conditional image synthesis, formulated as
follows::

ϵ̃ = ϵθ (xt, t) +
n∑

i=1
wi (ϵθ (xt, t, ci) − ϵθ (xt, t)) , (10)

where the unconditional denoising network ϵθ (xt, t) can be trained along with the conditional model by
substituting the conditional inputs c with emptyset ∅. The noise composition can be performed based on
masks or layouts to locate the objects in provided conditional inputs into desired regions. To perform im-
age editing on multiple instructions, LEDITS++ (Brack et al., 2024) calculates the mask for the region
related to each instruction with the grounding information in cross-attention layers and noise estimations.
Subsequently, LEDITS++ (Brack et al., 2024) performs noise composition based on the formula of Eq.10
while restricting effect of the conditional term ϵθ (xt, t, ci) − ϵθ (xt, t) of each editing instruction ci in its
corresponding mask region. In order to fuse the synthesized results of two diffusion models, MagicFusion
(Zhao et al., 2023a) firstly generates a mask by contrasting the saliency map of the two diffusion models
to differentiate the region controlled by each model. Subsequently, MagicFusion (Zhao et al., 2023a) settles
the noise into the region controlled by its corresponding diffusion model. Similarly, NoiseCollage (Shirakawa
& Uchida, 2024) independently estimates the noises for each individual object and then merges them with
a crop-and-merge operation based on the provided layouts. In order to perform more seamless noise com-
position, Multi-diffusion (Bar-Tal et al., 2023) blends the noise by solving an optimization objective with
closed-form optimal solution, which ensure the consistency in composed noise map ϵ̃.

4.3.2 Classifier-Free Guidance

As described in Sec.2.4, classifier-free guidance (Ho & Salimans, 2022) performs extrapolation noise blending
between the conditional noise prediction and the unconditional noise prediction ϵ̃θ (xt, c) = (1+w)ϵθ (xt, c)−
wϵθ (xt) to balance the quality and diversity of synthesized samples. In practice, some works also propose
variations of classifier-free guidance for condition incorporation in different conditional synthesis scenarios.
Instructpix2pix (Brooks et al., 2023) and Pairdiffusion (Goel et al., 2023) develop the classifier-free guidance
to adjust the conditioning strength for each component in multiple conditional inputs by decomposing
the multi-conditional score function. For customization tasks, SINE (Zhang et al., 2023f) interpolates the
noise prediction on specialized and pre-trained model to obtain conditional noise prediction in classifier-
free guidance, which alleviates the overfitting in the specialized model. Null-text Guidance perturbs the
classifier-free guidance by altering the noise-level in unconditional prediction to smooth out some realistic
details and create cartoon-style images. For inversion-based editing, AIDI (Pan et al., 2023) proposes a
blended classifier-free guidance based on the positive/negative masks indicating the area to be edited or
preserved, which enables larger guidance scales and ensures more accurate editing results.
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4.4 Revising Diffusion Process

Most of in-sampling conditioning mechanisms such as Guidance, Conditional Correction and Attention Ma-
nipulation performs modification on the standard formulation of the denoising step, which leads to devia-
tions from the predetermined sampling trajectory and results in artifacts in synthesized images. Therefore,
a branch of works prefer to incorporate the condition control signals into the denoising step via revising the
formulation of standard diffusion process to adapt the conditional synthesis task (Luo et al., 2023; Yue et al.,
2024; Kawar et al., 2022; Wang et al., 2024c). Thereby, the conditional control signals can be incorporated
into the corresponding reverse diffusion step of the revised diffusion process without deviations from the
diffusion formulation.

Based on the revision on diffusion process, these works can be divided into two categories: (a) mean-
reverting SDEs, which revise the diffusion process to preserve the information in conditional inputs for image
restoration, (b) decomposition-based noise redefinition, which incorporate a sequence of additive noises in
the sampling process on the spectral space to revise the noise-level mismatch in noisy linear problems.

4.4.1 Mean-Reverting SDEs

In numerous restoration tasks, most structure and semantic features of the target image are provided by
the degraded image c. To avoid consuming part of the model capability on regenerating these features
from pure Gaussian noise, numerous studies design novel diffusion processes in which the diffused output xT

approximates a noisy version of degraded image c instead of pure Gaussian noise (Welker et al., 2024; Luo
et al., 2023; Yue et al., 2024; Wang et al., 2024d; Delbracio & Milanfar, 2023). IR-SDE (Luo et al., 2023)
constructs a set of mean-reverting SDEs identified by degraded image c, which models the diffusion process
from clean image x to a Gaussian distribution averaged on degraded image. Subsequently, IR-SDE trains a
conditional denoising network to predict the score function in the reversed mean-reverting SDEs to recover
the clean image from the noisy degraded image. Similarly, ResShift (Yue et al., 2024) and DriftRec (Welker
et al., 2024) construct an iterative degradation process from a high-resolution image to its corresponding low-
resolution image as the diffusion process and train a conditional denoising network to reverse the degradation
process for super-resolution. SinSR (Wang et al., 2024d) distills the sampling process of ResShift (Yue et al.,
2024), thereby achieving one-step DM-based super-resolution. InDI (Delbracio & Milanfar, 2023) constructs
a continuous forward degradation process derived from interpolation: xt = (1−t)x+tc and trains a denoising
network on paired clean/degraded images to predict the clean image x0. Subsequently, image restoration can
be performed by reversing the interpolation-based degradation process with the prediction of this denoising
network.

4.4.2 Decomposition-Based Noise Redefinition

Methods in this category construct novel diffusion processes to recover image x from its partial measurement
c in the noisy linear inverse problems as follows c = Hx + n, where H is a known linear degradation matrix,
n ∼ N

(
0, σ2

cI
)

is an i.i.d. additive Gaussian noise with known variance. In practice, numerous restoration
tasks including inpainting, super-resolution and colorization can be written in the form of this noisy linear
inverse problems. SVD Decomposition-based methods firstly perform SVD decomposition on the linear
degradation matrix H to decouple the components in the measurement c. Thereby, the components in
measurement c on spectral space can be viewed as a noisy version of their counterparts derived from clean
image x. In order to incorporate the measurement c into the diffusion process while preventing the mismatch
in noise-level caused by the noise in measurement c, decomposition-based methods design a proper noise
sequence to link the noise in the measurement c with the noise added in the standard diffusion process. It can
be proven that the optimized unconditional denoising network pre-trained on the prior of the clean image x
is also the optimal solution for the variational objective of the designed novel diffusion process. Thereby, we
can perform the sampling process in the spectral space to recover clean image x from its noisy counterpart
c based on a pre-trained unconditional denoising network. SNIPS (Kawar et al., 2021) and DDRM (Kawar
et al., 2022) construct SVD decomposition-based novel diffusion process in the spectral space based on the
annealed Langevin dynamics framework provided by NCSN (Song & Ermon, 2019) and the Markov chain
diffusion process provided by DDPM (Ho et al., 2020) respectively.
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Different from SNIPS and DDRM, DDNM (Wang et al., 2024c) construct a general solution x̂ based on
range-null space decomposition which holds Hx̂ ≡ c. In each denoising step, DDNM (Wang et al., 2024c)
projects the denoising output x0|t onto the general solution to guarantee the consistency between denoising
output x0|t and given measurement c. For noisy linear inverse problem y = Hx + n, DDNM (Wang et al.,
2024c) incorporates a scaling factor into the formulation of the general solution and designs a noise sequence
corresponding to the scaling factor during sampling process to ensure the noise level in xt−1 aligned with
the definition of q (xt−1 | x0) for the pre-trained unconditional denoising network.

4.5 Guidance

Sampling from the conditional distribution p(x|c) with diffusion models requires approximating the con-
ditional score function ∇xt

log pt (xt | c) with a conditional denoising network ϵθ(xt, t, c). sssIn practice,
guidance provides another pathway to approximate the conditional score function without time-consuming
conditional training, since the conditional score function can be decomposed into an unconditional score
function and the gradient of log likelihood as follows:

∇xt
log pt (xt | c) = ∇xt

log pt (c | xt) + ∇xt
log pt (xt) , (11)

where the score function ∇xt
log pt (xt) can be estimated by an unconditional denoising network ϵθ(xt, t).

Guidance-based methods design task-specific guidance losses to reflect the alignment between interme-
diate latent variable xt and conditional inputs c at each time step, which approximates the log likeli-
hood log pt (c | xt). For multiple conditional inputs, guidance can also be employed to perform condi-
tional control for part of the conditional inputs. We can split the conditional inputs c into components
c0 and c1 which are incorporated into the diffusion synthesis framework with conditional denoising net-
work and guidance. In this case, the conditional score function can be written as ∇xt

log pt (xt | c0, c1) =
∇xt

log pt (c1 | xt, c0)+∇xt
log pt (xt | c0), where ∇xt

log pt (xt | c0) can be estimated by a denoising network
conditioned on c0 and log pt (c1 | xt, c0) can be estimated by the guidance loss.

Currently, by designing different task-specific guidance losses, guidance-based methods are widely adopted
across various conditional synthesis scenarios. Apart from the simplest case discussed in Sec.2.4, where
a classifier is trained conditioned on class labels(Dhariwal & Nichol, 2021), training an accurate classifier
becomes challenging when dealing with more complex control signals. To address this, subsequent works
have proposed more flexible guidance losses that do not require explicit training or optimization. In the
following, we categorize these approaches based on their target applications.

4.5.1 Guidance for Inverse Problems

Figure 9: An illustration of the guided sampling process
for inverse problems. The curve Mt denotes the data man-
ifold of the intermediate diffused output xt. The guidance
process (red arrow) moves xt towards the data manifold
satisfying the constraint c = A (x) (purple line).

As mentioned in Sec. 4.4.2, a wide range of
restoration tasks can be expressed by recovering
a clean image x from a given partial measure-
ment c in the form of noisy inverse problems:
c = A (x) + n, n ∼ N (0; σ2

cI), where A is a
known degradation function and n denotes the
additive noise. In practice, approximating the
likelihood pt(c|xt) and performing guidance on
the sampling process is a widely employed strat-
egy to solve the noisy inverse problem. Fig. 9
provides an illustration of the sampling process
with guidance for the inverse problem.

MCG (Chung et al., 2022a) and DPS (Chung
et al., 2023b) approximate the gradient of likeli-
hood as: ∇xt log pt (c | xt) ≈ ∇xt log p(c|x0|t) =
− 1

σ2
c
∇xt

∥∥c − A
(
x0|t

)∥∥2
2. The estimation error

can be proven to converge to 0 as σc → ∞ in
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most inverse problems. IIGDM (Song et al., 2023a) provides a more accurate estimation for the likelihood
by approximating pt (x0 | xt) with a Gaussian distribution averaged on x0|t.

To perform these guidance approaches for inverse problems on latent diffusion models (Rombach et al.,
2022), PSLD (Rout et al., 2024b) adds an additional guidance term measuring the reconstruction ability of
the intermediate denoising output z0|t to avoid guiding the sampling trajectory towards latent variable z0
away from the manifold of real data. Resample (Song et al., 2024) introduces a stochastic resampling schema
that reliably maps the measurement-guided intermediate diffuse output x0|t to the latent variable xt−1 for
the subsequent sampling step, effectively preventing noisy image reconstructions in latent diffusion models.

However, these guidance approaches can only estimate the likelihood term in inverse problems with known
a concrete form of the degradation operator A(·). This hinders the deployment of these approaches for
unknown real-world degradations. BlindDPS (Chung et al., 2023a) explores the applicability of DPS to
blind inverse problems, in which the degradation operator Aφ(·) is parameterized with unknown parameter
φ. To identify the degradation parameter along with the sampling process for the desired image, BlindDPS
trains a diffusion model for the parameters φ in the degradation operator. In the sampling process, BlindDPS
employed a similar approximation strategy as DPS (Chung et al., 2023b) to estimate the likelihood term as
follows:

pt (c | xt, φt) ≈ p
(
c | x0|t, φ0|t

)
. (12)

Subsequently, BlindDPS performs a parallel sampling process to simultaneously recover the clean image x
and the unknown degradation parameters φ from the conditional distribution p(x, φ|c) with the estimated
likelihood in Eq. 12. GDP (Fei et al., 2023) offers a heuristic approximation for the likelihood term,
which consists of a distance metric measuring the consistency to conditional inputs and an optional quality
enhancement loss to control some desired properties in synthesized results. GDP can also be employed in
blind inverse problems by optimizing the degradation parameters in the degradation function A with the
distance metric during sampling process.

4.5.2 Guidance for Semantic Control

Guidance can also be employed to ensure the consistency to provided semantic control signals, such as text
prompts or semantic images, without time-consuming fine-tuning or training. Semantic guidance losses are
usually designed based on pre-trained CLIP models which have a rich shared image-text embedding space.

Blend Diffusion (Avrahami et al., 2022) aims to inpaint the masked region cm in source image cI based on
the provided text description cd. It designs a CLIP loss for the conditional inputs c = (cm, cI , cd) as follows:

L(xt, c) = DCLIP

(
x0|t, c

)
+ λDbg

(
x0|t, c

)
, (13)

where DCLIP measures the CLIP distance between the intermediate denoising output x0|t and text descrip-
tion cd in mask region for semantic alignment, and Dbg calculates the MSE and LPIPS similarity between
x0|t and source image cI in unmasked region for the faithfulness to source image. To jointly control the
sampling process using both a text prompt and a style reference image, SDG (Liu et al., 2023b) employs a
linear combination of the CLIP distances between the current denoising output and the embeddings of both
the text and the reference image as the guidance loss. In addition, DiffuseIT (Kwon & Ye, 2023) introduces
an auxiliary structure loss computed from the self-attention features of the source image extracted using a
Vision Transformer (ViT) (Dosovitskiy et al., 2020), in order to better preserve the structural integrity of
the source image.

4.5.3 Guidance for Visual Signals

In practice, a branch of works employs guidance to ensure the consistency between the diffused output
and the given visual signal. In order to measure the consistency between intermediate diffused output and
the provided visual signal, some works train neural networks to project the intermediate diffused output
xt onto its corresponding visual signal and leverage a distance metric as the guidance loss for sketch-to-
image (Voynov et al., 2023) and stroke-to-image (Singh et al., 2023). Readout Guidance (Luo et al., 2024)
provide a unified guidance-based framework for diverse visual signals to image task by training various
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readout heads to synthesize different task-specific visual feature maps reflecting the spatial layout or inherent
correspondence in images to perform guidance. Different from these works, FreeControl (Mo et al., 2024)
prefers to impose guidance loss on the difference in the space of PCA components of self-attention map
between the intermediate diffused output and visual signal.

4.5.4 Guidance for Attention Layers

In DM-based conditional image synthesis, the attention layers in denoising network effectively control the
layout, structure and semantics of synthesized image. However, directly manipulating the attention layers
through replacement or localization as described in Section 4.2 introduces artificial modifications to the
internal parameters of the denoising network and may impair its modeling capability. Therefore, a branch
of works employ guidance to achieve soft control for attention layers.

For image editing, attention guidance is performed as a substitution of attention replacement to softly control
the consistency between source image and edited result. Pix2Pix-Zero (Parmar et al., 2023) employs a guid-
ance loss measuring the L2 distance between the cross-attention maps in editing branch and reconstruction
branch instead of the replacement manipulation in Prompt-to-prompt (Hertz et al., 2023). In order to find a
more expressive attention map as a guidance reference, Rediffuser (Lin et al., 2023) employs a sliding fusion
strategy to fuse the cross-attention maps obtained from sampling branches conditioned on source prompt,
target prompt and an intermediate representation. EBMs (Park et al., 2024) employs an energy function
to guide the integration of the semantic information in editorial prompts with the structure and layout of
source image restored in cross-attention layers.

Attention guidance can also be employed to perform attention localization. For object-level layout control,
Chen et al. (2024b) employs guidance to control the cross-attention map, which locates the objects in text
prompts into their desired bounding boxes. Self-guidance (Epstein et al., 2024) extracts various characteris-
tics including position, size, shape and appearance of the desired object from the intermediate activations and
attention maps. Subsequently, Self-guidance places constraints on these characteristics with guidance loss
measuring their consistency to desired conditional control signal. For drag-based editing tasks which target
to move certain foreground contents in source image into target region, Dragondiffusion (Mou et al., 2024a)
designs energy functions based on the cosine distance between intermediate features in the U-Net decoder
as guidance to ensure correspondence between the original content region and the target dragging region.
DiffEditor (Mou et al., 2024b) develops the guidance framework of DragonDiffusion (Mou et al., 2024a) by
introducing SDE-based sampling process on the masked region instead of ODEs to improve editing flexibility.

4.5.5 Enhanced Guidance Framework

In some complicated conditional synthesis scenarios, simply incorporating the gradient of guidance loss in
each denoising step may lead to artifacts and strange behaviors because of the failure in balancing the realness
and guidance constraint satisfaction in guided sampling process. Therefore, some state-of-the-art guidance
works provide enhanced guidance frameworks to more effectively fuse the prior knowledge in pre-trained
models and the information in conditional control signals. FreeDoM (Yu et al., 2023) employs a time-travel
strategy that rolls back the intermediate latent variable xt to a certain previous time step xt+j and resamples
it to time step t again. This strategy inserts additional steps into the guided sampling process, allowing for a
more seamless integration of the information from the pre-trained model and the conditional control signals.

In order to enhance the sample consistency to conditional control signals, a branch of works (Bansal et al.,
2023; Zhu et al., 2023; Song et al., 2024; Zhang et al., 2024a) performs a multi-step gradient descent op-
timization process instead of the traditional one-step gradient guidance to find the point with minimum
guidance loss in the vicinity of the intermediate denoising output x0|t , and adopts this point to infer the
next latent variable xt−1. Universal Guidance (Bansal et al., 2023) refers to this enhanced guidance frame-
work as backward guidance, and it has successfully generated quality images in tasks such as segmentation,
face recognition, object detection, and classifier signals. For inverse problems, DAPS (Zhang et al., 2024a)
guides the intermediate denoising output x0|t toward the conditional distribution p (x0 | xt, c) through multi-
step MCMC sampling methods (Welling & Teh, 2011). DiffPIR (Zhu et al., 2023) utilizes a Half-Quadratic
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Splitting (Geman & Yang, 1995) (HQS) optimization process as an optimization-based guidance to ensure
the consistency to the partial measurement c.

TFG(Ye et al., 2024) integrates several classic diffusion guidance approaches (Chung et al., 2023b; Yu et al.,
2023; Bansal et al., 2023; He et al., 2024; Song et al., 2023b) into a unified framework and optimizes the
associated hyper-parameters via an efficient beam search strategy, leading to enhanced performance in diverse
conditional synthesis tasks.

4.6 Conditional Correction

Figure 10: An illustration of the sampling process with
conditional correction operator for inverse problem. The
conditional correction process (cyan arrow) projects
xt onto the data manifold satisfying the constraint
c = A (x).

In some conditional synthesis scenarios, the syn-
thesized images are controlled by the constraints
specified by conditional inputs c (such as the for-
mulation of inverse problems). To ensure the
synthesized result to be consistent to the inputs
c, conditional correction-based methods perform
a correction operator on the intermediate dif-
fused output xt (or x0|t), which projects the cur-
rent diffused output onto the data manifold satis-
fying the constraint imposed by given conditional
control signal c. Subsequently, this corrected la-
tent variable will be passed into next denoising
step, as shown in Fig. 10.

Currently, conditional correction are widely em-
ployed in image inpainting tasks, which involves
synthesizing content for the masked region cm in
incomplete reference image cy. The constraint
in inpainting tasks can be expressed as: cy = (1 − cm) ⊙ x. Pioneer diffusion work SDE (Song et al.,
2021b) performs inpainting based on conditional correction by replacing the unmask region in denoising
output x0|t with its counterpart in reference image cy to ensure the faithfulness to the content in unmasked
region. Different from SDE (Song et al., 2021b), Repaint (Lugmayr et al., 2022) prefers to perform replace-
ment correction on latent variable xt. Besides, Repaint rolls back the intermediate latent variable xt to the
previous time step and resamples it back to time step t several times to eliminate the artifacts caused by
conditional correction. The constraint in super-resolution task can be written as: c = ϕN x, where c denotes
the low-resolution image of x downsampled by degradation matrix ϕN with factor N . ILVR (Choi et al.,
2021) performs conditional correction by substituting the low-frequency components in the latent variable
with its counterpart noisy low-resolution image to ensure the consistency between degraded latent variable
and its counterpart noisy reference low-resolution image. Conditional correction operators are also widely
employed in image editing tasks to preserve the background not requiring editing (Couairon et al., 2023;
Patashnik et al., 2023; Wang et al., 2023a; Lin et al., 2024b; Huang et al., 2023b).

Given a background mask in the source image, text-based image editing can be formulated as an image
inpainting task, where the masked foreground region is synthesized based on the provided text prompt.
However, such foreground or background masks are often unavailable in real-world editing scenarios. To
address this, a line of work proposes automatic mask or segmentation generation by inferring plausible
layouts for the user-desired edited image, conditioned on both the source image and the text prompt. DiffEdit
(Couairon et al., 2023) identifies background masks by comparing the denoising outputs of a noisy source
image when conditioned on the source prompt versus the target prompt. Object-Shape Variation (Patashnik
et al., 2023) segments the source image by clustering attention maps into semantically coherent regions and
aligning them with noun tokens in the prompt based on similarity with their corresponding cross-attention
maps. Additionally, several approaches (Wang et al., 2023a; Lin et al., 2024b; Huang et al., 2023b) utilize
pre-trained image segmentation models to automatically generate masks or segmentations, leveraging the
structural information from both the source image and the text prompt.
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CCDF (Chung et al., 2022b) proposes a general conditional correction formula for constraints in the form of
a general noisy linear inverse problem. In practice, the conditional correction operator in (Song et al., 2021b;
Lugmayr et al., 2022; Choi et al., 2021) can be expressed in the general form provided by CCDF. Besides,
CCDF provides a theoretical basis for the faithfulness of this corrected sampling trajectory to original
sampling process. CCDF proves when the linear degradation operator H is a non-expansive mapping,
the upper bound of the deviation in final output x0 will converge to a constant as the total diffusion step
T → ∞. MCG (Chung et al., 2022a) further performs guidance on conditional correction framework provided
by CCDF, which alleviates the deviation from original sampling process caused by conditional correction.

5 Challenges and Future Directions

Although DM-based conditional image synthesis has made remarkable progresses in generating high-quality
images aligned with various user-provided conditions, there remains a significant disparity between academic
advancements and practical needs for conditional image synthesis. In this section, we summarize several main
challenges in this field and identify potential solutions to address them in the future.

5.1 Sampling Acceleration

The time-consuming sampling process often creates a bottleneck of diffusion-based image synthesis, and its
acceleration will facilitate the model deployment in practice (Li et al., 2024c; Zhao et al., 2023b). Early
works on sampling acceleration are devoted to reducing the number of sampling steps with better numerical
solvers (Song et al., 2021a; Lu et al., 2022a;b; Zhou et al., 2024a; Chen et al., 2024a) or distilling pre-
trained diffusion models to build short-cuts that enable faster sampling (Salimans & Ho, 2022; Meng et al.,
2023; Song et al., 2023c; Zhou et al., 2024b). However, too few denoising steps in the distilled models
may compromise the effectiveness of in-sampling condition integration. One feasible solution is to first
train a model to approximate the conditional denoising outputs along the sampling process equipped with
in-sampling conditioning mechanisms, and then perform distillation on this model (Meng et al., 2023).
Another important line of existing works reduces the computational cost of each denoising step by decreasing
model parameters using techniques such as knowledge distillation (Chen et al., 2021; 2022) and architecture
search (Li et al., 2024c; Kim et al., 2023a; Zhao et al., 2023b). Most of DM-based parameter compression
approaches are currently tailored for text-to-image models. Analyzing whether the parameter redundancy
also exists for models of other conditional synthesis tasks, similar to those in text-to-image models, and
extending these model compression methods to more complicated downstream tasks, is another promising
future direction.

5.2 Artifacts Caused by In-sampling Conditioning Mechanisms

In-sampling conditioning mechanisms summarized in Sec. 4 allow for flexible condition integration in DM-
based image synthesis without performing time-consuming condition integration for the denoising network.
However, these conditioning mechanisms introduce modification to the standard sampling process in diffusion
framework and lead to deviations from the modeled data distribution, which results in artifacts in synthesized
images (Parmar et al., 2023; Lugmayr et al., 2022; Bansal et al., 2023; Yu et al., 2023). The vast majority of
works resort to complex adjustment mechanisms to address the artifact issue caused by in-sampling condition
integration. This includes time-step rolling back for guidance (Yu et al., 2023), localization for attention
maps (Cao et al., 2023; Lu et al., 2023) and diffusion process revision for restoration tasks (Luo et al., 2023;
Kawar et al., 2022). However, these methods are highly customized based on specific application scenarios.
A feasible future direction for developing more generic solution is to perform lightweight fine-tuning on
the denoising network with the diffusion loss based on the intermediate latent variables in the sampling
process equipped with in-sampling conditioning mechanisms. This tends to smooth out artifacts under in-
sampling conditioning mechanisms and synthesize desired images in a lower computational cost compared
to performing condition integration in the denoising network.
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5.3 Training Datasets

Among the various conditioning mechanisms, the most fundamental and effective pathway for condition
integration is still the supervised learning on pairs of conditional input and image. Although training
datasets are relatively sufficient for conditional synthesis tasks involving single-modality conditional inputs,
such as text-to-image (Schuhmann et al., 2021; 2022), restoration (Agustsson & Timofte, 2017; Nah et al.,
2017; Karras et al., 2019), and visual signal to image (Lin et al., 2014; Caesar et al., 2018; Zhou et al.,
2017), gathering enough data for tasks with complex, multi-modal conditional inputs like image editing,
customization, and composition remains challenging. With the advancement of training and efficient fine-
tuning techniques for large language models, various types of large models are constantly being developed
with powerful multi-modal representation learning (Brown et al., 2020; Li et al., 2022b; 2023b) and content
generation abilities (Hertz et al., 2023; Tumanyan et al., 2023), making it possible to leverage these pre-
trained models to automatically produce desired training datasets. We may also consider self-supervised or
weakly supervised learning to reduce the demand for a large amount of high-quality training data (Zhang
et al., 2023d; Xie et al., 2023b; Zhang et al., 2024e).

5.4 Robustness

Due to the lack of objective task-specific evaluation datasets and metrics in some complex tasks, studies for
these tasks prefer to compare models based on a set of self-defined conditional inputs, making the performance
appear overly optimistic. In fact, many renowned text-to-image models (Ramesh et al., 2022; Saharia et al.,
2022b; Rombach et al., 2022) have been found to produce unsatisfactory synthesized results for certain
specific categories of text prompts, as demonstrated by the shortcomings of Imagen (Saharia et al., 2022b)
in generating facial images. Here we point out some pathways to address issues of robustness. First, for
conditional inputs where the model performs poorly, augmenting the training dataset is a direct approach.
Second, the difficulties in handling conditional inputs in a certain category may be due to the insufficient
capability or unsuitability of the conditional encoder for this category of data. In this case, incorporating
encoder architectures tailored for this data category into the conditional encoder, or designing more capable
compound conditional encoders, becomes a preferable choice. Besides, performing specialization for given
conditional inputs is also an effective pathway to provide robust results at the cost of time-consuming fine-
tuning or optimization. Finally, sampling process conditioning mechanisms, such as guidance, conditional
correction, and attention manipulation, can also be employed to achieve more detailed control and prevent
undesired synthesis results.

5.5 Ethic considerations

The developments in AI-generated content (AIGC) propelled by the superior performance of diffusion-based
conditional synthesis and their downstream applications lead to severe ethic considerations in aspects of bias
and fairness, copyright, and the risk of exposure to harmful content. Safety-oriented DM-based conditional
image synthesis is dedicated to mitigating these issues by embedding watermarks that are easily reproducible
in DM-generated images to detect copyright infringement (Yuan et al., 2024; Cui et al., 2023; Wen et al.,
2023), and reducing bias by increasing model’s orientation towards minority groups in basic unconditional
or text-conditioned synthesis via classic conditioning mechanisms, such as fine-tuning (Shen et al., 2023),
guidance (Um et al., 2024), and conditional correction (Li et al., 2024a). Efforts have also been made in
preventing harmful contents in the text-to-image task via harmful prompt detection (Rombach et al., 2022),
prompt engineering (Li et al., 2024a) and safety guidance (Schramowski et al., 2023). The current safety-
focused efforts mainly concentrate on basic unconditional or text-conditioned synthesis. We believe that
for more complex conditional synthesis scenarios, safety-oriented efforts in this area can be focused on four
main aspects: (a) detecting harmful conditional inputs, (b) filtering and removing bias from the training
dataset, (c) providing safety-focused guidance for the sampling process, and (d) implementing safety-focused
fine-tuning of the denoising network.
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5.6 Unified conditional synthesis framework

While current research has developed diverse diffusion-based frameworks (Saharia et al., 2022c; Rombach
et al., 2022; Hertz et al., 2023; Li et al., 2023i) specialized for specific conditional synthesis tasks, this
often formalizes complex user intents into strict categories, which limits flexibility and ease of use amidst
the rapidly growing number of conditional image synthesis models and tasks. A highly appealing future
direction is developing a unified framework that allows users to specify tasks, conditional inputs, and desired
outputs flexibly. The recent advent of powerful multimodal large language models (MLLMs) represented by
GPT-4o1 and Gemini 2.0 Flash2 offers a promising path. Leveraging their strong language understanding
and integrated image processing capabilities, MLLMs can interpret various user intents and potentially unify
diverse synthesis tasks within a single framework.

However, current MLLMs still exhibit limitations in image generation quality and control, represented by
detail inaccuracies in restoration and editing, and difficulties with complex scenes. While the closed nature of
SOTA MLLMs hinders detailed analysis, we hypothesize these limitations might stem from processing input
images by aligning them to a semantic space, potentially neglecting fine-grained local details. Based on the
impressive ability of current state-of-the-art MLLMs to understand user intent and synthesize corresponding
images, we believe there is an urgent need to develop a powerful open-source MLLM in this field. Additionally,
integrating more local details in user-provided images during conversations into the image generation modules
of large models is also a promising future direction.

6 Conclusion

This survey presents a thorough investigation of DM-based conditional image synthesis, focusing on
framework-level construction and common design choices behind various conditional image synthesis prob-
lems across seven representative categories of tasks. Despite the progress made, efforts are still needed in
the future to handle challenges in practical applications. Future research should focus on collecting and con-
structing high-quality, unbiased, and task-specific datasets, as well as designing effective conditional encoder
architectures and in-sampling conditioning mechanisms to enable robust and accurate conditional modeling
for generating stable and high-fidelity results. The trade-off between fast sampling and synthesis quality also
remains a critical challenge for real-world deployment. In addition, exploring unified conditional synthesis
frameworks built upon state-of-the-art Multimodal Large Language Models (MLLMs) offers a promising
direction, as these models can seamlessly integrate diverse control signals and provide generalizable condi-
tioning across a wide range of tasks. Finally, as a popular AIGC technology, it is necessary to fully consider
the safety issues and legitimacy it brings.
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Prompt: “A photo of a Shiba Inu dog with a backpack riding a bike.
It is wearing sunglasses and a beach hat”

GLIDE SD-1.5 SD-2.1 Imagen-3 DALLE-3 Flux

Prompt: “A blue coloured pizza”

GLIDE SD-1.5 SD-2.1 Imagen-3 DALLE-3 Flux

Prompt: “A photo of a confused grizzly bear in calculus class”

GLIDE SD-1.5 SD-2.1 Imagen-3 DALLE-3 Flux

Prompt: “A crayon drawing of a space elevator”

GLIDE SD-1.5 SD-2.1 Imagen-3 DALLE-3 Flux

Prompt: “A stained glass window of a panda eating bamboo”

GLIDE SD-1.5 SD-2.1 Imagen-3 DALLE-3 Flux

Prompt: “A fog rolling into new york”

GLIDE SD-1.5 SD-2.1 Imagen-3 DALLE-3 Flux

Figure 11: Visual comparison of the classic diffusion-based works for text-to-image, including GLIDE (Nichol
et al., 2022), Stable Diffusion (Rombach et al., 2022), Imagen (Ho et al., 2022a), DALLE (Ramesh et al.,
2022), and Flux (Black-Forest, 2024).
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Sourse SR3 SRDiff DDRM DPS

Sourse SR3 SRDiff DDRM DPS

Sourse SR3 SRDiff DDRM DPS

Sourse SR3 SRDiff DDRM DPS

Sourse SR3 SRDiff DDRM DPS

Sourse SR3 SRDiff DDRM DPS

Figure 12: Visual comparison of the classic diffusion-based works for super-resolution restoration, including
SR3 (Saharia et al., 2022c)), SRDiff (Li et al., 2022a), DDRM (Kawar et al., 2022), and DPS (Chung et al.,
2023b).
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Edit: “Add a cat”

Source Prompt-to-prompt Plug-and-Play Masactrl Imagic RF-edit

Edit: “Change black chothes to white clothes”

Source Prompt-to-prompt Plug-and-Play Masactrl Imagic RF-edit

Edit: “Add a red sun in the sky”

Source Prompt-to-prompt Plug-and-Play Masactrl Imagic RF-edit

Edit: “Change sitting to running”

Source Prompt-to-prompt Plug-and-Play Masactrl Imagic RF-edit

Edit: “Change horse to Wooden horse”

Source Prompt-to-prompt Plug-and-Play Masactrl Imagic RF-edit

Edit: “Hold an apple”

Source Prompt-to-prompt Plug-and-Play Masactrl Imagic RF-edit

Figure 13: Visual comparison of the classic diffusion-based works for image editing, including Prompt-to-
prompt (Hertz et al., 2023), Plug-and-play (Tumanyan et al., 2023), Masactrl (Cao et al., 2023), Imagi
(Kawar et al., 2023), and RF-edit (Wang et al., 2024a).
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Prompt: “A cute cat, high quality, extremely detailed”

Source Visual Signal Readout Guidance T2I-Adapter X-adapter ControlNet

Prompt: “Flower,best quality, extremely datailed”

Source Visual Signal Readout Guidance T2I-Adapter X-adapter ControlNet

Prompt: “Professional headshot of a woman with the eiffel tower in the background”

Source Visual Signal Readout Guidance T2I-Adapter X-adapter ControlNet

Prompt: “A beautiful living room”

Source Visual Signal Readout Guidance T2I-Adapter X-adapter ControlNet

Figure 14: Visual comparison of the classic diffusion-based works for depth to image (visual signal-to-image),
including Readout Guidance (Luo et al., 2024), T2I-Adapter (Mou et al., 2024c), X-adapter (Ran et al., 2024),
and ControlNet(Zhang et al., 2023b).

Prompt: “A teddybear wearing a fedora cap”

Source Textual inversion Dreambooth Custom Diffusion BLIP Diffusion

Prompt: “A dog in a swimming pool”

Source Textual inversion Dreambooth Custom Diffusion BLIP Diffusion

Figure 15: Visual comparison of the classic diffusion-based works for Customization, including Textual
Inversion (Gal et al., 2023a), DreamBooth (Ruiz et al., 2023), Custom Diffusion (Kumari et al., 2023), and
BLIP Diffusion (Li et al., 2023a).
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Figure 16: Visual comparison of the classic diffusion-based works for Customization, including 1. PbE
(Zhang et al., 2023d), 2. DreamInpainter (Xie et al., 2023b), 3. TF-ICON (Lu et al., 2023), 4. Anydoor
(Chen et al., 2024c).
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Figure 17: Visual comparison of the classic diffusion-based works for Customization, including 1. GLIGEN
(Li et al., 2023i), 2. InteractDiffusion (Hoe et al., 2023).
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Table 4: The corresponding works for the various stacks of conditioning mechanisms shown in Tab.1.

Stack of conditioning mechanisms for denoising network

Serial Number Model

DN1 Rombach et al. (2022); Saharia et al. (2022b); Nichol et al. (2022)
Ramesh et al. (2022); Gu et al. (2022); Balaji et al. (2022)

DN2 Saharia et al. (2022c); Ho et al. (2022b); Li et al. (2022a)

DN3 Shang et al. (2024); Zhao et al. (2024a); Jiang et al. (2023a)
Zheng et al. (2024a;b); Zhang et al. (2024d); Xue et al. (2024)

DN4 Fu et al. (2023); Huang et al. (2023c); Feng et al. (2023); Li et al. (2023e)

DN5 Brooks et al. (2023); Zhang et al. (2024c); Yildirim et al. (2023); Zhang et al. (2024b)
Geng et al. (2023); Sheynin et al. (2024); Li et al. (2023f)

DN6 Kawar et al. (2023); Wu et al. (2023); Zhang et al. (2023c); Mou et al. (2024b)
Mahajan et al. (2024); Ravi et al. (2023); Bodur et al. (2024); Li et al. (2023c); Zhang et al. (2023f)

DN7 Xiao et al. (2023); Ma et al. (2024); Shi et al. (2024a); Gal et al. (2023b)
Jia et al. (2023); Lu et al. (2024); Shiohara & Yamasaki (2024)

DN8 Ruiz et al. (2023); Gal et al. (2023a); Kumari et al. (2023)
Gu et al. (2024); Liu et al. (2023d;e); Han et al. (2023)

DN9 Mou et al. (2024c); Zhang et al. (2023b;d); Goel et al. (2023)
Qin et al. (2023); Yang et al. (2023b); Zhao et al. (2024b); Ran et al. (2024); Jiang et al. (2023b)

DN10 Wang et al. (2022a); Xu et al. (2024)
DN11 Li et al. (2023h); Zeng et al. (2024); Kim et al. (2024)

DN12 Yang et al. (2023a); Xie et al. (2023a); Wang et al. (2023b); Xie et al. (2023b)
Song et al. (2023d); Kim et al. (2023b); Chen et al. (2024c)

DN13 Li et al. (2023i); Hoe et al. (2023); Wang et al. (2024b)

Stack of conditioning mechanisms for sampling process

Serial Number Model

SP1 Tian et al. (2024); Liu et al. (2023b)
SP2 Luo et al. (2023); Yue et al. (2024); Welker et al. (2024); Wang et al. (2024d); Delbracio & Milanfar (2023)
SP3 Kawar et al. (2021; 2022); Wang et al. (2024c)

SP4 Avrahami et al. (2022); Chung et al. (2022a); Song et al. (2023a)
Chung et al. (2023a); Fei et al. (2023); Rout et al. (2024b)

SP5 Lugmayr et al. (2022); Choi et al. (2021); Chung et al. (2022b)

SP6
Su et al. (2023); Meng et al. (2022a); Mokady et al. (2023); Dong et al. (2023); Wang et al. (2023d);

Wallace et al. (2023); Miyake et al. (2023); Ju et al. (2023); Meiri et al. (2023); Brack et al. (2024); Wu &
De la Torre (2023); Huberman-Spiegelglas et al. (2023); Nie et al. (2023); Zhang et al. (2023e)

SP7 Couairon et al. (2023); Yang et al. (2023c); Patashnik et al. (2023)
Wang et al. (2023a); Lee et al. (2024); Huang et al. (2023b)

SP8 Hertz et al. (2023); Tumanyan et al. (2023); Cao et al. (2023)
Lu et al. (2023); Chung et al. (2024); Guo & Lin (2023)

SP9 Parmar et al. (2023); Mou et al. (2024b); Lin et al. (2023); Park et al. (2024)
SP10 Voynov et al. (2023); Singh et al. (2023); Luo et al. (2024); Mo et al. (2024)
SP11 Zhao et al. (2023a); Shirakawa & Uchida (2024); Bar-Tal et al. (2023)

SP12 Cao et al. (2023); Patashnik et al. (2023); Lu et al. (2023)
Balaji et al. (2022); Liu et al. (2023e); Guo & Lin (2023)

SP13 Chen et al. (2024b); Epstein et al. (2024); Mou et al. (2024a)
SP14 Liu et al. (2022)
SP15 Ho & Salimans (2022); Sadat et al. (2024); Kynkäänniemi et al. (2024)
SP16 Yu et al. (2023); Bansal et al. (2023)
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