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Abstract

While Large Language Models (LLMs) can solve many NLP tasks in zero-shot
settings, applications involving embodied agents remain problematic. In particular,
plans that require multi-step reasoning become difficult and too costly as the con-
text window grows. Planning requires understanding the likely effects of actions
and identifying whether the current environment satisfies the goal. While symbolic
planners can often find optimal solutions quickly, their capacity to handle noisy ob-
servations and uncertainty is relatively rudimentary, severely limiting their practical
use. In contrast, Large Language Models (LLMs) cope with noisy observations and
high levels of uncertainty. This paper presents LLM Dynamic Planner (LLM-DP):
a neuro-symbolic framework where an LLM works hand-in-hand with a traditional
planner to solve an embodied task. Given action-descriptions, LLM-DP solves
Alfworld more successfully and efficiently than a LLM-only ReAct baseline.

1 Introduction
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Figure 1: LLM Dynamic Planner (LLM-DP). The LLM grounds observations and processes natural
language instructions into PDDL to use with a symbolic planner. LLM-DP can solve plans involving
previously unknown objects because the LLM generates plausible predicates for them through
semantic and pragmatic inference. Through sampling, multiple plans can be found, and an Action
Selector decides whether to act, to review its understanding of the problem, or to ask for clarification.

Incorporating LLMs into embodied agents that interact with the environment presents substantial
challenges. As well as hallucinating, LLMs are brittle to the phrasing of prompts (Ji et al., 2022) and
are ill-equipped for naive long-term planning—managing an extensive context over multiple steps is
complex and resource-consuming (Silver et al., 2022; Liu et al., 2023). Various approaches aim to
improve LLM performance, for instance by augmenting the context with a reasoning trace (Wei et al.,
2022; Wang et al., 2023b; Yao et al., 2023). But they frequently involve high computational costs and
still face challenges dealing with the limits of the context window and hallucinations, compromising
the quality of the plans. Conversely, symbolic planners find optimal plans efficiently (Hoffmann and
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Nebel, 2001; Lipovetzky et al., 2014). But they have high information demands that cannot always
be met in real-world scenarios (McDermott, 2000): for instance, they require knowing a complete
and accurate description of the goal, but that may be impossible before exploring the environment
through actions.

In this work, we introduce the LLM Dynamic Planner (LLM-DP), a neuro-symbolic framework
that integrates an LLM with a symbolic planner to solve embodied tasks. LLM-DP capitalises on
the LLM’s ability to understand actions and their impact on their environment and combines it with
the planner’s efficiency in finding solutions. Using domain knowledge, LLM-DP solves the Alfworld
test set faster (in number of steps) and more efficiently (in number of tokens used) than a LLM-only
(ReAct) approach. The remainder of this paper explores the architecture of LLM-DP, discusses how
to combine the strengths of LLMs and symbolic planning and presents potential research avenues for
future work in LLM-driven agents.

2 Related Work

Symbolic Planners operate over symbolic representations of the world to find a sequence of actions
that transition from the current state to a goal state (Fikes and Nilsson, 1971). Since the introduction
of PDDL (McDermott, 2000), an array of efficient planning algorithms have been developed, via
heuristics that decompose the goal or search over relaxed versions of the problem (Hoffmann and
Nebel, 2001; Lipovetzky et al., 2014). These planners find high-quality or optimal solutions quickly
in well-defined domains, but their up-front requirement for comprehensive problem and domain
descriptions limits their practical use in complex real-world settings.

In contrast to symbolic planners, LLMs have shown promise in adapting to noisy planning and
reasoning tasks through various methods. For instance, Chain-of-Thought (Wei et al., 2022), Self-
Consistency (Wang et al., 2023b), and Reasoning via Planning (Hao et al., 2023) augment the context
with a reasoning trace that the LLM generates to improve its final prediction. Alternatively, giving
the LLM access to tools/APIs (Schick et al., 2023; Patil et al., 2023), external knowledge bases (Peng
et al., 2023; Hu et al., 2023), code (Surís et al., 2023), or symbolic reasoners (Yang et al., 2023) can
enrich the LLM’s context and ability to reason so as to improve its performance in planning: the LLM
can learn when and how to do this enrichment via fine-tuning or prompting. In a parallel direction,
works such as ReAct (Yao et al., 2023), Reflexion (Shinn et al., 2023), AutoGPT (Significant-Gravitas,
2023), and Voyager (Wang et al., 2023a) take an agent-based approach, augmenting reasoning by
iteratively feeding environment observations back to the LLM. ReAct (Yao et al., 2023) allows
the LLM agent to take either an action or a ‘thinking’ step—effectively an agent-driven Chain-of-
Thought prompting. Voyager (Wang et al., 2023a) incrementally builds an agent’s capabilities from
its interactions with the environment and an accessible memory component (skill library). While
many of these works show promising results (Wang et al., 2023a), they still require many expensive
calls to the LLMs, are limited by the LLM’s context window, and do not guarantee optimal plans.

3 Alfworld

Alfworld (Shridhar et al., 2020) is a text-only home environment where an agent is tasked with seven
possible tasks, such as interacting with one or more objects and placing them in a specific receptacle.
At the start of each episode, the goal is given in natural language, and the initial observation does
not include the location of any objects. The agent must navigate the environment to search for the
relevant objects and perform the correct actions. The possible locations are known, and the agent can
navigate to any receptacle by using a ‘go to’ action. However, since none of the objects’ locations
are initially observed, the agent must be able to plan around uncertainty, estimate where objects are
likely to be observed and adjust accordingly.

4 LLM-DP

To tackle an embodied environment like Alfworld, we introduce the Large Language Model Dynamic
Planner (LLM-DP), which operates as a closed-loop agent. LLM-DP uses a combination of language
understanding and symbolic reasoning to plan and solve tasks in the simulated environment. The
model tracks a World StateW and beliefs B about predicates in the environment, uses an LLM to
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Average Accuracy (%)
Model clean cool examine heat put puttwo overall ± std (↑) LLM Tokens ± std (↓)
LLM-DP 1.00 1.00 0.80 0.99 1.00 1.00 0.97± 0.00 702k ± 16k
LLM-DP-random 0.99 0.98 0.83 1.00 1.00 1.00 0.97± 0.01 67k ± 0
ReAct (Yao et al., 2023) 0.61 0.81 0.89 0.30 0.79 0.47 0.64 —*
ReAct (ours) 0.61 0.76 0.14 0.64 0.95 0.73 0.65± 0.02 9.48M ± 231k

(a) The average accuracy and number of LLM Tokens processed (context + generation) for each model. ∗Not
reported.

Average Episode Length
Model clean cool examine heat put puttwo overall ± std (↓)
LLM-DP 13.85 13.25 9.46 12.18 10.43 15.91 12.53± 7.11
LLM-DP-random 15.25 13.97 9.77 14.19 13.27 19.75 14.35± 7.71
ReAct (ours) 21.09 14.89 31.23 18.75 15.88 22.08 20.27± 12.32

(b) The average episode length for each model, where the length of an episode denotes how many actions the
agent has taken or attempted to take to complete a task. We do not count the ‘thinking’ action of ReAct as an

action in this metric.

Table 1: Summary of model performance on the Alfword test set. LLM-DP and LLM-DP-random
have different sampling strategies: LLM-DP uses an LLM to generate n = 3 plausible world states,
while LLM-DP-random randomly samples n = 3 plausible world states. We evaluate each setup
with five seeds and report the average for all results.

translate the task description into an executable goal state and samples its beliefs to generate plausible
world states. We describe the working of the LLM-DP agent as pseudo-code in Appendix A.

We make several simplifying assumptions when applying LLM-DP to Alfworld:

1. Known action-descriptions and predicates: Input to the planner and the LLM requires the
PDDL domain file: i.e., all predicates and action schemata (with preconditions and effects).

2. Perfect observations: The Alfworld environment provides a perfect textual description of
the current location, including intrinsic attributes of observed objects and receptacles, such
as whether or not a given receptacle can be opened.

3. Causal Environment: changes in the environment are entirely caused by the agent.
4. Valid actions always succeed

Generating a goal state. LLM-DP uses an LLM to generate a PDDL goal, given the natural
language instruction (task) and the valid predicates defined by the PDDL domain file. Figure 1 shows
an example task converted to a valid PDDL goal. For each episode, we use a set of three in-context
examples that are fixed for the entire evaluation duration. We use the OpenAI gpt-4o-mini-2024-07-18
LLM model with a temperature of 0.6 in all our LLM-DP experiments.

Sampling beliefs. We parse the scene description into a structured representationW and a set of
beliefs B. The worldW contains all known information, such as receptacles and their attributes (e.g.,
isFridge). In contrast, B consists of predicates that may be true or false. Since object locations are
unknown in Alfworld, the possible predicates for each object include all potential locations. LLM-DP
uses observations (W), beliefs (B), and an LLM to generate planning problem files in PDDL . These
files define objects (:objects), the world state (:init), and goals (:goal).

The LLM derives the goal, whileW and B provide object attributes and beliefs. Because B contains
unknowns, we sample from B using the LLM to obtain wbelief . For instance, (inReceptacle
tomato ?x) may suggest several locations for ?x. Sampling selects a value for ?x by passingW
and the predicate to the LLM. We compare LLM sampling with random sampling (llmdp-random).
The likely world state is the union of sampled beliefs and known states, wbelief

⋃
W . By sampling N

belief sets, we obtain N likely world states, which are converted to predicates for the PDDL planner.

Plan Generator. Upon constructing the different PDDL problems, the agent uses a Plan Generator
(PG) to solve each problem and obtain a plan. We use the BFS(f) solver (Lipovetzky et al., 2014)
implemented as an executable by LAPKT (Ramirez et al., 2015). A generated plan is a sequence of
actions, each represented in a symbolic form, which, if executed in the intial state, yields a goal state.
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Action Selector. The Action Selector (AS) module decides the agent’s immediate next action. It
takes the planner’s output, a set of plans, and selects an action from them. In our Alfworld experiments,
the Action Selector simply selects the shortest plan returned. If no valid plans are returned, then all
sampled states satisfy goal states, or there is a mistake with the constructed domain/problem files, or
the planner has failed to find a path to the goal. In the first case, we re-sample random world states
and re-run the planners once. We also propose exploring different strategies when valid plans cannot
be found. For instance, similarly to self-reflection (Shinn et al., 2023), the Action Selector could
prompt an update in the agent’s belief about the world state if none of generated problem descriptions
are solvable. The Action Selector could also interact with a human teacher or oracle to adjust its
understanding of the environment (problem) or its logic (domain).

Observation Processing. LLM-DP uses the result of each action to updateW and B. It uses the
symbolic effects of the action to infer changes in the state of the objects and receptacles. Then it
integrates the information from the new observation, which might reveal additional details not directly
inferred from the action itself: for instance, opening an unseen drawer might reveal new objects
inside. If an object is observed at a location, it cannot be elsewhere; if it’s not, then it cannot be there.
These observations trigger updates toW and B. If the agent detects new information from the scene,
such as discovering new objects, it triggers a re-planning process. The agent then generates a new
set of possible PDDL problems using the updated state representation and corresponding plans using
the Plan Generator. This approach is similar to some Task and Motion Planning (TAMP) methods
(Garrett et al., 2018; Chen et al., 2023), enabling the agent to adapt to environmental changes and
unexpected outcomes of actions.

5 Results

We contrast the LLM-DP approach with ReAct (LLM-only baseline) from the original implementation
by Yao et al. (2023). Since LLM-DP uses a chat model rather than the original text-davinci-002, we
also reproduce ReAct’s results using gpt-4o-mini and adapt its prompts to a chat format. The ReAct
baseline makes different assumptions about the problem: it doesn’t require a domain file containing
the action-descriptions and predicates, but instead uses two separate human-annotated episodes per
example to bootstrap its in-context logic. In ReAct, we select the two few-shot examples based on
the type of task being solved.

As shown in Table 1a, LLM-DP solves Alfworld almost perfectly (97%), in contrast to the baselines.
Errors occur when sampling, for instance, picks states where the goal is already satisfied. Our
reproduction of ReAct obtains similar results to the original, doing worse on some tasks (e.g.
examine) and better on others (e.g. puttwo). We also measure the length of each successful episode
(Table 1b) and find that LLM-DP reaches the goal state faster on average than ReAct and a random
search strategy.

6 Conclusion

The LLM-DP agent integrates language understanding, symbolic planning and state tracking. It
offers a trade-off between a wholly symbolic solution and an LLM-only model: the LLM’s semantic
knowledge is leveraged to translate the natural language problem into PDDL and to support belief
sampling. Our experiments show that LLM-DP can handle complex tasks in Alfworld, making
it a promising approach for embodied tasks that involve language understanding, reasoning and
decision-making. It was not only cheaper, on a per-token comparison, but also faster and more
successful at long-term planning than an LLM-only baseline.

These initial results, while promising, raise numerous topics that remain open. Key among these
is devising strategies to encode the world model and belief, currently handled symbolically, and
managing uncertain observations—particularly from an image model—along with propagating any
uncertainty to the planner and Action Selector. Future work may also explore more sophisticated
Action Selector strategies that encourage self-reflection: for instance, if all plans prove invalid, it
might indicate an incorrect domain definition. Such instances may necessitate interactions with an
instructor, who provides insights about the domain. Indeed, such interactions could lead to changes
in the domain file, making the agent truly adaptable to new environments.
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A Pseudo-code

We describe the LLM-DP algorithm in Algorithm 1.

Algorithm 1 LLM-DP Pseudo-code

Require: LLM, PG, AS, Domain, task, obs0
goal← LLM(Domain, task)
W,B ←observe(goal, obs0)
while goal not reached do

plans← ∅
for i in N do

wbelief ←LLM(B,W)
plans←PG(wbelief

⋃
W)

end for
action←AS(plans)
obs←Env(action)
W,B ←observe(action, obs)

end while

B Prompts and Few-shot details

See Table 2 and Table 3 for LLM-DP prompts used.

C ReAct

C.1 Reproduction with Chat Model

We slightly modify the ‘system’ prompt of the original ReAct (see Table 4) to guide the model away
from its conversational tendencies. gpt-4o-mini apologises significantly more than the text-davinci-
002 model, and we found that it would often get stuck in loops of apologising. We also modify the
code so that we replace all generated instances of ‘in’ and ‘on’ with ‘in/on’ if the model did not
generate it correctly, since Alfworld expects ‘in/on’ but gpt-4o-mini tends to generate only the correct
preposition. Without these changes, ReAct would be significantly worse than our reported metric.
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(define (domain alfred)
(:predicates

(isReceptacle ?o - object) ; true if the object is a receptacle
(atReceptacleLocation ?r - object) ; true if the robot is at the receptacle location
(inReceptacle ?o - object ?r - object) ; true if object ?o is in receptacle ?r
(openable ?r - object) ; true if a receptacle is openable
(opened ?r - object) ; true if a receptacle is opened
(isLight ?o - object) ; true if an object is light source
(examined ?o - object ?l - object) ; whether the object has been looked at with light
(holds ?o - object) ; object ?o is held by robot
(isClean ?o - object) ; true if the object has been cleaned in sink
(isHot ?o - object) ; true if the object has been heated up
(isCool ?o - object) ; true if the object has been cooled
(isSink ?o - object) ; true if the object is a sink
(isMicrowave ?o - object) ; true if the object is a microwave
(isFridge ?o - object) ; true if the object is a fridge

))

Table 2: System Prompt used by gpt-4o-mini for generating the :goal in LLM-DP

Your task is to: put a clean plate in microwave.
(:goal
(exists (?t - plate ?r - microwave)
(and (inReceptacle ?t ?r)
(isClean ?t)
)))

Your task is to: examine an alarmclock with the desklamp",
(:goal
(exists (?t - alarmclock ?l - desklamp)
(and (examined ?t ?l) (holds ?t)
)))

Your task is to: put two cellphone in bed
(:goal
(exists (?t1 - cellphone ?t2 - cellphone ?r - bed)
(and (inReceptacle ?t1 ?r)
(inReceptacle ?t2 ?r)
(not (= ?t1 ?t2))
)))

Table 3: Fixed Few-shot examples used by gpt-4o-mini for generating the :goal in LLM-DP

D LLM-DP

D.1 Generated Goal Examples

See Table 5 for examples of generated goals, both valid and invalid.

D.2 Varying the number of plans n

See Table 6 for results when different varying n and fallback. Fallback is when no plans are sampled
successfully through the LLM, LLM-DP re-samples n plans randomly.

Interact with a household to solve a task.
Only reply with > followed by the action to take or ’think’.
Do not apologize.
Follow the format of the two examples below.

Table 4: System Prompt used by gpt-4o-mini in our reproduction of ReAct
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task: put some peppershaker on drawer.
Generated:
(:goal

(exists (?t - peppershaker ?r - drawer)
(inReceptacle ?t ?r)

))

VALID ✓

task: put a clean mug in coffeemachine.
Generated:
(:goal

(exists (?t - mug ?r - coffeemachine)
(and (inReceptacle ?t ?r)

(isClean ?t)
)))

VALID ✓

task: put two cd in safe.
Generated:
(:goal

(exists (?t1 - cd ?t2 - cd ?r - safe)
(and (inReceptacle ?t1 ?r)

(inReceptacle ?t2 ?r)
(not (= ?t1 ?t2))

)))
VALID ✓

task: heat some mug and put it in coffeemachine.
Generated:
(:goal

(exists (?m - mug ?c - coffeemachine)
(and (isReceptacle ?m)

(isHot ?m)
(inReceptacle ?m ?c)

)))
INVALID ✗

Table 5: Sample of generated PDDL goals from LLM-DP. The generation gets confused by the
semantics of ‘receptacle’ and identifies a mug as a receptacle. While it is true that a mug is a
receptacle, in our defined logic, receptacles are fixed, immovable objects which can contain other
objects and therefore, a mug is not a Receptacle which leads the planning to fail subsequently.

SR EL
LLM-DP (n=3) 0.97 12.53
LLM-DP (n=3) - fallback 0.82 11.34
LLM-DP (n=5) 0.97 12.49
LLM-DP (n=5) - fallback 0.84 11.08

Table 6: We compare the average Success Rate (SR) and average Episode Length (EL) for different
sampling sizes n and with or without a fallback to random sampling. The random sampling fallback
affects the success rate as the LLM sampler can more often sample n world states which are already
satisfied. However, as n increases, it becomes more likely for the sampling procedure to at find at
least one plan, and therefore the SR increases when no fallback (- fallback) is used. We also note,
that while the success rate without fallback is lower, the paths found to the goal tend to be shorter.

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Yes, all the claims in the abstract and introduction are supported by our results.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: While we touch upon some of the limitations of in the Conclusion, we do not
include a Limitations section due to lack of space. The main limitation of LLM-DP is that it
still requires a formal definition of actions and a knowledge the structure of the world and
the possible values that it can take.
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Guidelines:
• The answer NA means that the paper has no limitation while the answer No means that

the paper has limitations, but those are not discussed in the paper.
• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
Justification: Our work is not theoretical in nature.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We note all major hyper-parameters as well as release the code used to obtain
our results. Even without the code, we believe to have provided enough detail to assist future
replication.
Guidelines:

• The answer NA means that the paper does not include experiments.
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• If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: The Alfworld dataset is open-source, and our code is released under the MIT
license. Our code release includes a README and scripts to run all of the mentioned
configurations in our paper.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
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• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We specify all details where possible. Since our method is zero-shot, we note
all prompts used in the Appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We run all configurations over five different seeds and report the standard
deviation on the overall results.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Because we argue that LLM-DP is a more efficient planner than a ReAct
baseline, we report the number of tokens used as a main result in Table 1. The number of
tokens can easily be extrapolated in terms of cost.

Guidelines:
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• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Our research conforms with the above Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: We do not specifically detail the positive nor negative societal impacts of our
work. Our work provides a neuro-symbolic method to improve LLM-based planning. We
do not envisage our work to lead to negative societal impact.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
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Answer: [NA]

Justification: We do not release any models or data, as we only make use of OpenAI models
called through its APIs, and the Alfworld open-source dataset.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We appropriately credit the dataset creators Shridhar et al. (2020), previous
work Yao et al. (2023) and the model owners OpenAI (2023).

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package

should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the license
of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We release our code along with README instructions on how to run it.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
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14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: We do not involve human participants.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: We do not involve human participants.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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