X-Mahalanobis: Transformer Feature Mixing
for Reliable OOD Detection

Tong Wei'?3  Bo-Lin Wang':?>  Jiang-Xin Shi®*
Yu-Feng Li*>*  Min-Ling Zhang'-2
1School of Computer Science and Engineering, Southeast University, Nanjing, China
2Key Laboratory of Computer Network and Information Integration (Southeast University),
Ministry of Education, China
3National Key Laboratory for Novel Software Technology, Nanjing University, China
4School of Artificial Intelligence, Nanjing University, China
{weit,wangbl}@seu.edu.cn

Abstract

Recognizing out-of-distribution (OOD) samples is essential for deploying robust
machine learning systems in open-world environments. While conventional OOD
detection approaches rely on feature representations from the penultimate layer of
neural networks, they often overlook informative signals embedded in intermediate
layers. In this paper, we present a straightforward feature mixing approach for pre-
trained Transformers, which combines multi-layer representations via calculated
importance weights, and identifies OOD samples using Mahalanobis distance in the
blended feature space. When in-distribution samples are accessible, we show that
parameter-efficient fine-tuning strategies effectively balance classification accuracy
and OOD detection performance. We conduct extensive empirical analyses to
validate the superiority of our proposed method under zero-shot, and fine-tuning
settings using both class-balanced and long-tailed datasets. The source code is
available at https://github. com/SEUML/X-Maha.

1 Introduction

In recent years, deep learning models have made significant progress in various domains [40, [24].
However, a critical issue with these models is their tendency to be overly confident in their predictions,
even when the input deviates greatly from the data distribution seen during training. This issue
underscores the need for effective out-of-distribution (OOD) detection when training deep neural
networks (DNNs). The detection of OODs is crucial to ensure the safety of the model in many
applications, such as medical diagnostics [43]], industrial inspection [3l], and autonomous driving [26]].
For example, in the field of medical imaging, DNNs may fail to provide an accurate diagnosis when
presented with data that falls outside the training data distribution, such as images from an unknown
scanner. Therefore, it is imperative for a reliable model not only to recognize in-distribution (ID)
samples, but also to flag any OOD input as “unknown”.

Existing OOD detection methods design various scoring functions to assign an input sample a
likelihood to be OOD, using 1) predicted probabilities |14} 33,3119}, 132], 2) output logits [48 2], and
3) learned features (25,19} 136] by the model. However, these approaches neglect the rich information
in the features learned by the layers of shallow neural networks. Our motivation stems from the
observation that while the final features of a neural network are nonlinear transformations of shallow
features and inherently retain some information from earlier layers, features extracted from different
layers provide diverse representations of the data. Given that certain features may be particularly
effective for distinguishing between ID and OOD samples, it is crucial to comprehensively leverage
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Figure 1: (a-b): AUROC of X-Maha and competing methods based on fine-tuned/zero-shot models.
The experimental settings are the same as in Table 2] We denote RelativeMaha as R-Maha. (c)
AUROC of X-Maha and competing methods on OpenOODv1.5 benchmark using fine-tuned model.
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the information from all layers to enhance OOD detection performance. While the motivation is
appealing, a core challenge remains: how to effectively utilize shallow layer features for OOD
detection?

To address the above issue, we propose a new OOD detection approach by leveraging features from
all layers with an adaptive fusion module. We draw inspiration from the geometric properties of
“neural collapse” [37]], which states that the convergence of within-class covariance approaches zero in
the terminal phase of training as each activation collapses toward its respective class mean. Therefore,
we propose to measure the total variance of features across different layers of the neural network
to describe their importance weights for OOD detection. Layers with larger total variance have
more influence, while the contribution of layers with smaller total variance is down-weighted. The
advantage of this method is that layer weights are computed based on the data, without the need for
manual parameter tuning. Using the weighted fused features, we calculate the Mahalanobis distance
between the test sample and the data distribution of each ID class to calculate its OOD score.

Furthermore, we fine-tune the pre-trained visual models, including Vision Transformer (ViT)
and CLIP [39], using in-distribution data to adapt the feature representations to down-stream tasks.
We empirically find that parameter-efficient fine-tuning strategies consistently outperforms full
parameter fine-tuning and are more robust to hyperparameter choice, which coincides with prior
works [44]11]]. Specifically, by freezing the pre-trained model and adding a small number of learnable
parameters. Based on this finding, we develop a general fine-tuning framework and implement all
comparison methods within this framework in our experiments. We also conducted an in-depth
analysis of various fine-tuning strategies. Figure [I| presents the results for in-distribution samples
(from ImageNet) processed by ViT-B/16 under various experimental settings. Our X-Maha (X-
Mahalanobis) consistently achieves state-of-the-art OOD detection performance in both fine-tuned
and zero-shot scenarios, and demonstrates superior performance on the challenging OpenOODvV1.5
benchmark.

To systematically evaluate our approach, we focus on both class-balanced ID datasets, which are
commonly used in existing OOD detection literature 48| 2]], and long-tailed ID datasets because
the distribution of real-world data is often imbalanced and highly skewed on a per-class basis,
with a majority of classes containing a small number of samples [53} 52, [61]]. Notably, long-tailed
OOD detection has been studied in several recent works by improving 1) representation learning
[491 54, 511151, and 2) probabilistic calibration [22},[35]. However, these methods often require the use
of OOD data to train the model. In contrast, our approach only requires fine-tuning the model using
ID data, and more importantly, with no changes needed for the proposed feature mixing module.

Our contributions are summarized as follows:

1. We propose a new OOD detection method that exploits features from shallow layers of
pre-trained Transformers to enhance OOD separation.

2. We propose a simple but effective strategy to fuse multiple layer features with the importance
weights by measuring the covariance of features in each layer.



3. We justify the effectiveness of the proposed method in zero-shot setting, and fine-tuning
settings using both class-balanced and long-tailed datasets. Additionally, we show that the
propose method can generalize to various fine-tuning strategies and pre-trained models.

2 Related Works

Out-of-distribution detection. In recent years, the field of OOD detection has gained considerable
attention. The Maximum Softmax Probability (MSP) method [13]] serves as a foundational baseline,
utilizing softmax predictions as OOD scores. Building on this, ODIN [30] improves the softmax
score by perturbing input data and rescaling logits, enhancing its effectiveness in distinguishing
OOD samples. Further advancements explore alternative scoring mechanisms, such as the energy
score [31]], which is further refined through feature clipping in ReAct [45]. Additionally, gradient-
based approaches have been explored to differentiate between ID and OOD data [[19, 1]. Among
previous studies, the use of the Mahalanobis distance has shown significant promise. A prior work
[28] proposes to ensemble the Mahalanobis distance score calculated by features of each layer and
determine the optimal ensemble weights using an auxiliary OOD validation dataset. Trusted [[7]
introduces a novel approach that combines feature fusion during training with the Mahalanobis
distance during testing, guided by the optimal transport principle. On top of the CLIP model, CLIPN
[50] learns a “no” prompt to capture the negation-semantic with images using an auxiliary dataset,
and performs OOD detection depending on the similarity between the input image and the “no”
prompt. Similarly, NegLabel [23] extracts potential negative labels from a corpus database and
employs zero-shot CLIP for OOD detection by combining ID classes and negative labels.

Long-tailed out-of-distribution detection. In long-tailed OOD detection, prior research has ex-
amined several strategies to mitigate the challenges posed by class imbalance, including the use of
oversampling techniques and threshold adjustments to improve performance [29]]. Open Sampling
[51] incorporates OOD data to address the class imbalance problem. PASCL [49] focuses on en-
hancing representation learning for tail classes by leveraging a contrastive learning method, helping
to improve the separation between minority classes and OODs. Prior work [22] identifies several
common scenarios where the OOD-to-ID probabilities should be the ID-class-prior distribution and
proposes two strategies to modify existing inference-time detection methods. EAT [54] proposes ex-
panding the class space of ID classes with virtual classes to tackle OOD data. COCL [35] introduces
a calibrated learning approach aimed at improving outlier class detection in long-tailed tasks.

Parameter-efficient fine-tuning. PEFT methods freeze the pre-trained model and introduce only
a few learnable parameters for adaptation, which can effectively reduce overfitting and accelerate
convergence. Adapter [8] introduces a bottleneck module to optimize only a small subset of param-
eters. BitFit [S8] focuses on fine-tuning only the bias terms of the model, significantly reducing
the number of parameters that need to be updated during training. VPT [21] prepends learnable
prompts at each layer, offering two versions: VPT-Shallow, which uses prompts at shallow layers,
and VPT-Deep, which applies them across deeper layers. LoRA [17]] further optimizes efficiency by
applying low-rank adaptations, minimizing the overall parameter count while retaining performance.
AdaptFormer [4] builds on the Adapter method by shifting from a sequential to a parallel design.
LIFT [44] provides an empirical analysis showing that the commonly used full fine-tuning strategy is
prone to overfitting, especially on long-tailed datasets.

3 Method

In this section, we present a simple Mahalanobis-based OOD detection method by mixing features
from all Transformer layers based on importance weight.

3.1 Preliminary

We first introduce the problem setting and notations used throughout this paper.

1. We denote the training set as Dyyqin, = { (24, yi)}i]\il, where x; € R? represents an input
image, y; € [C] denotes its ground-truth class label, and C' denotes the total number of
classes in the training set. At test time, our goal is to flag images that do not belong to any
of the training classes using our OOD detector.



si  AUROC=97.99% 51 AUROC = 99.8¢%

6.0
55 AUROC = 99.40%

49 FPR95 =8.96% 47 FPR95 =1.11
| > FPR95 = 1.25% e T o W
a6 a2 D £ 2l — p
22 — ID il EX / < 38 s
. 00D g
o 22— 00D : :
* D 26 o 24 J/ . * D 24
PCA dim | S T TPCAdim 1 . - PCA dim | ” -
(a) Maha on 11-th Layer (b) Maha on Penultimate Layer (c) X-Maha

Figure 2: X-Maha: We illustrate how to improve Mahalanobis-based OOD detection. (a) Mahalanobis
distance applied to the 11-th layer. (b) Mahalanobis distance applied to the penultimate layer features.
(c) X-Maha which is applied to all layer features. Each subfigure comprises two components: a feature
visualization map and the corresponding OOD score distribution of test data. The visualizations are
based on data sampled from CIFAR-100 (ID) and Tiny ImageNet (OOD) using fine-tuned ViT-B/16.

2. Without loss of generality, let the deep neuron network be F' = f o g, where f(-) is known
as the feature exactor and g(-) is the classifier. For each layer ¢(-) in f, we define the
transformation learned by the I-th layer as ¢;(-). For an instance , its output from the {-th
layer is denoted as &' = ¢;(z). In particular, we denote the final feature learned by the
model x” = ¢ (z), where L denotes the number of Transformer layers.

3. In this paper, we build our OOD detector based on the Mahalanobis distance. For any test
image x, we calculate the negative distance between the image feature f(x) and feature
distribution of each class as the scoring function:

e
M(:B; He; 2) = (f(:l:) - uc) D) ! (f(w) - p’c) ) (D
where . is the mean feature vector of class ¢ and 3 is the covariance matrix of ID data.

4. To measure the Mahalanobis distance, we calculate the empirical class mean and covariance
matrix of training samples as follows:

C
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where N, is the number of training samples with class c. This is equivalent to fitting the
class-conditional Gaussian distribution with a tied covariance to the training samples under
the maximum likelihood estimator [28]].

3.2 X-Maha: Feature Mixing for Mahalanobis-based OOD Detection

By default, the Mahalanobis distance in Eq. (I)) uses the final output of the feature extractor, i.e.,
f (@), neglecting rich information in shallow layer features. Therefore, we now proceed to present
our approach to demonstrate that shallow features can help improve OOD detection performance.
For any test image « and a fine-tuned model, we first obtain its hidden representations ! of the [-th
layer, V1 <[ < L. Notably, we may use “features” and “representations” interchangeably throughout
the paper. We then integrate features from all layers by different importance weights. Formally, we
compute the fused feature representation of x by:

L
O(x) =) a'al, 3)
=1

where o is the weight of the [-th layer. To measure the Mahalanobis distance, we also calculate the
class mean feature vectors and global covariance matrix in the fused feature space. We reformulate
Eq. () by fusing shallow features as follows:

My Maha (5 i, 2) = — (D(2) — fi.) | 7H(@(2) - fie) , )
where X = £ S0 S (B(m0) — fic) (®(a;) — fie) | and fre = & 3, B().

Figure 2] provides an intuitive example in which shallow features can exhibit better discriminativity
between ID and OOD data than the final layer features. By mixing features as in Eq. (3)), X-Maha
can effectively alleviate feature overlapping between ID and OOD data.

We now provide a simple way to set a!. To reflect the importance of each layer, we propose to
calculate the weights by measuring the instance-discrimination capacity or variability of the features.



Definition 3.1 (Measure of Variability). Given a collection of x;, we calculate the mean feature by

pl =+ SN 2l then and measure the feature variability of the i-th layer by:

ol =Tr((A")" A", )
where Al = (zt — pl @l — pl, -+ @l — p!) " is the centralized feature matrix of the I-th layer,

and Tr(-) denotes the trace of a matrix, which is the sum of its diagonal elements. We normalize the
weights so that the sum of the weights across all layers is equal to 1.

The trace of the matrix Tr((A!)T A!) is proportional to the total variance of the features in the I-th
layer. A higher value of this trace indicates that the features at this layer are, on average, more spread
out across the training samples. This substantial variability suggests that the layer captures diverse
and discriminative patterns, making it highly sensitive to differences between instances. Therefore,
assigning a higher weight to such layers during feature fusion amplifies the contribution of these
more informative representations. Notably, Eq. (5) presents one simple way to set mixing weights,
though not necessarily optimal. We leave further optimization for future work, as our focus here is on
demonstrating the effectiveness of mixing features from shallow layers.

Distinctions with prior works. Our work differs from Mahalanobis [28|] and Trusted [7], which
also use internal representations. 1) Mahalanobis calculates the OOD score using the representation
of each layer individually and weights them together by training a logistic regression model using the
validation set. Our approach computes importance weights from training data and does not require
any validation set. 2) Trusted treats every layer equally with the same importance and averages
the representations. It is clear that certain layer representations may be more effective in detecting
OODs, whereas others may bring noise. Our approach can prevent the degradation of the overall
OOD detection performance even in the case when the features from some layers are not effective:
the weights would be nearly zero for those ineffective layers.

3.3 On the Fine-tuning Strategy for OOD Detection

Parameter-efficient fine-tuning is more robust than fully fine-tuning. To adapt the pre-trained
models to downstream classification and OOD detection tasks, we learn a linear classifier and fine-
tune the feature extractor using ID training data. In this paper, we adopt the logit adjustment loss [34]]
as the optimization objective for its simplicity and good generalization ability. The key advantage
of this choice is that, for class-balanced ID datasets, it simplifies to the conventional cross-entropy
loss; however, for long-tailed ID datasets, it allows the model to balance predictive confidence across
classes. Formally, the logit adjustment loss is defined as:

exp(z; +logP(y = j))
> kec) €xP(zk +log P(y = k)

where y = j denotes the ground-truth label of the input @, and z; is the logit (pre-softmax activation)
for class j. The class-prior probability P(y = j) is estimated from the training distribution.

Lia(z,y =j) = —log 6)
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The results indicate that FFT requires careful tuning of learning rates to achieve optimal performance,
while PEFT demonstrates more robust performance across a wider range of hyperparameters. More-
over, FFT necessitates tuning hyperparameters like the learning rate individually for each dataset,
whereas PEFT allows for consistent hyperparameter settings across multiple datasets, reducing the
burden of hyperparameter search.



Extension of our approach to vision-language models. Notably, our proposed X-Maha ap-
proach is model-agnostic and can be used for CLIP-like models. Specifically, we calculate the
cosine similarity between the image embedding and ID class text prompt embeddings with min-
imal computational overhead. This similarity score is integrated into X-Maha to improve the
effectiveness of OOD detection. Formally, the revised scoring function is defined as follows:
G (z) = max.cc] Mx-Maha(T; e, ) + A - sim(v, t.), where v denotes the image embedding
of « extracted by the pre-trained image encoder, and ¢. represents the text prompt embedding of class
¢, i.e., both image and text embeddings are obtained from pre-trained CLIP. The similarity measure

€

sim(v, t.) is defined as: sim(v,t.) = 27:;%’ where we use the default prompt template “a
€

k
photo of a {classname}” to obtain text embedding t. in our experiments. The hyperparameter A
controls the relative influence of the predicted similarity scores of the vision-language model. Notably,
we set X\ = 0 when using vision-only models. A test image is classified as OOD if G () > p, where
p is selected such that a high proportion of ID data exceeds this threshold. For samples classified
as ID, the class label is determined as § = arg max.¢[c) Pe, Where p = F(x) denotes the predicted
class probabilities from the classifier.

4 Experiments

We extensively evaluate X-Maha across different datasets and pre-trained models. Due to space
constraints, in the main paper, we report the experimental results of models fine-tuned on class-
balanced or long-tailed ID datasets.

4.1 Experiments Setup

In this section, we compare our approach with the latest algorithms across both small- and large-scale
OOD detection benchmarks. In line with prior research, we utilize CIFAR-100 and ImageNet as the
in-distribution (ID) datasets. Additionally, we incorporate the more challenging long-tailed variants,
CIFAR-100-LT and ImageNet-LT, as ID training sets to further demonstrate the effectiveness of our
proposed method in OOD detection scenarios in the appendix. The imbalance ratio for CIFAR-100-LT
is set to 100, reflecting a highly imbalanced class distribution.

OOD datasets. When CIFAR-100 or CIFAR-100-LT is used as the ID dataset, we evaluate OOD
detection performance on a range of diverse datasets, including Textures [6], SVHN [57], CIFAR-10,

Table 1: OOD detection performance on CIFAR-100 (ID) and six OOD datasets.
Texture SVHN CIFAR10 Tiny ImageNet LSUN Places365 Average

Method AUROC FPRY95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95
IMAGENET-21K PRE-TRAINED VIT
MSP 97.65 11.81 9491 28.17 9492 2632 8858 4450 86.75 6421 9223 4141 9251 36.07
MLS 99.79 0.83 9738 1031 97.07 1342 9328 25.16 98.09 1093 9898 539 9743 11.01
Energy 99.86 057 9748 947 97.09 1288 93.51 23.61 9859 7.58 9926 3778 97.63  9.65
Mahalanobis 9997 0.2  99.16 392 97.09 1649 9799 896  99.61 1.07  99.67 133 9892 532
Residual 99.99  0.02 97.66 12.81 92.08 4138 99.10 3.68 9993 0.00 9992 0.08 98.12 9.66
Vim 99.89 044 97.68 8.63 97.13 1273 94.09 2196 9885 572 9939 294 97.84 874
NECO 99.83 083 9795 870 9731 1398 9425 2193 9829 1077 99.08 535 97.78 10.26
Trusted 100.0  0.00 98.78 577 9335 3351 98.09 976 100.0  0.01 100.0  0.00 9837 8.17
KL-matching  98.60 6.10 96.66 1493 96.34 17.12 90.05 34.17 88.15 4934 93.67 2821 9391 2498
NNguide 99.24 303 9870 5.00 97.12 1742 9248 28.02 9344 4052 9625 21.11 9621 19.18
RelativeMaha  98.25 635 9744 1272 9641 17.73 91.66 3444 90.66 49.66 9449 3037 9482 2521
KNN 99.19  3.10 9851 6.13 9642 20.66 91.56 3020 9279 4519 96.06 21.73 9576 21.17

X-Maha (ours) 100.0  0.00 99.50 191 9647 1952 99.80 111 100.0 0.00 100.0 0.00 9929 3.76
CLIP-VIT-B/16

MSP 91.14 4133 86.22 57.75 8735 53.18 8211 6250 7483 80.64 84.02 60.61 8428 5933
MLS 96.11 20.73 91.58 41.81 9332 30.69 88.58 4586 8849 51.20 93.15 33.12 91.87 37.23
Energy 96.56 18.03 91.85 4192 9377 2889 89.06 4449 89.66 4566 9392 2921 9247 3470
Mahalanobis 99.23  1.68 96.89 2327 89.01 5226 93.75 3228 98.81 6.44 9929 3.13 96.16 19.84
Residual 99.05 1.86 9561 3196 8222 67.74 9448 3192 99.19 3.05 9936 2.03 9498 23.09
Vim 97.23 1433 92.88 3641 9382 28.66 89.94 4140 9158 3873 9513 2397 9343 3058
NECO 97.67 1220 94.04 3331 9357 31.58 90.25 41.08 92.65 3450 9590 2127 94.02 28.99
MCM 7298 92.09 90.75 6339 7553 88.66 6554 9336 50.79 99.11 6097 97.79 6943 89.06
Trusted 9998 0.04 9721 1780 8632 61.45 97.13 1568 9995 0.03 9996 0.08 96.76 15.85
KL-matching  94.32  25.12  90.69 3825 90.69 3852 84.16 5294 7785 7096 86.99 47.80 87.45 45.60
NNguide 9791 1023 9736 1361 9262 17.12 89.88 4193 86.77 60.83 93.14 3504 9295 33.13
RelativeMaha  96.70  14.36 9644 1935 91.64 46.09 86.99 5146 8257 61.12 91.69 3471 91.01 3785
KNN 97.38 1388 9693 1657 9132 46.27 9031 3947 8624 60.08 93.00 3422 9253 35.08

X-Maha (ours) 99.94  0.00 98.13 8.99 8874 5246 9731 1323 9993 005 9995 0.04 9733 1246




Tiny ImageNet [27], LSUN [56], and Places365 [60]. For experiments with ImageNet and ImageNet-
LT as the ID datasets, our primary evaluation employs five established OOD datasets: Textures
[6]], Places365 [60], iNaturalist [47], ImageNet-O [15], and SUN [55]]. Extended analysis using
OpenOODvV1.5 [59] is presented in the Appendix.

Baselines. We compare our method with MSP [[13]], MLS [12], Energy [31]], Mahalanobis [28]], Resid-
ual and Vim [48]], NECO [2], MCM [36]], Trusted [7], NNguide[38]], KNN[46], RelativeMaha[41]],
and KL-matching [12]. For Mahalanobis, we follow the setting in [[L0O], which uses only the final
feature instead of an ensemble of multiple layers [20, 28]]. It is worth noting that all these baselines
are reimplemented based on our fine-tuned models, except that MCM uses zero-shot CLIP.

Implementation details. We implement our approach and all competing methods in the same
framework on top of the ImageNet-21k pre-trained Vision Transformer (ViT) [8]] and the official pre-
trained CLIP model. We fine-tune the pre-trained models using in-distribution data for downstream
tasks. We employ a batch size of 64 for all experiments. For CIFAR-100 and CIFAR-100-LT, we set
the initial learning rate to 0.01 with a cosine annealing scheduler and fine-tune for 10 epochs. For
ImageNet and ImageNet-LT, the initial learning rate is set to 0.1, with a cosine annealing scheduler,
and the models are fine-tuned for 5 and 20 epochs, respectively. We set A = 1 on ImageNet and
A = 0.1 on CIFAR-100 for the CLIP model to calculate the scoring function. For the Adaptformer
module, we set the dimension to % where C' is the number of classes, and L is the number of
blocks in the ViT model. Other hyperparameters include a momentum of 0.9, and a weight decay of
5 x 10, following LIFT [44]]. For all baseline methods, we ensure a fair comparison by using the
same hyperparameter settings. All experiments are conducted on a single NVIDIA RTX 3090 GPU.

Table 2: Performance on ImageNet (ID) and five OOD datasets. T indicates the results are taken from
their papers, except that results for MCM on ImageNet-O are reproduced using official codebase.

Method Texture Places SUN iNaturalist ImageNet-O Average
AUROC FPRY95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPRY5
IMAGENET-21K PRE-TRAINED VIT
MSP 84.890 51.88 8452 5944 8531 5652 9586 1873 8224 60.00 86.56 49.31
MLS 90.12  37.80 88.01 51.67 89.72 4721 9798 875 89.79 4465 91.12 38.02
Energy 90.72  34.65 88.15 5040 90.06 4531 9823 741 90.73 41.00 91.58 35.75
Mahalanobis 9293 2631 8927 47.56 9153 3982 9933 272 9212 3750 93.03 30.78
Residual 92.84 30.66 8480 61.14 8834 50.14 98.02 951 87.11 5250 90.22 40.79
Vim 91.04 3333 8837 49.82 9030 4434 9837 6.86 9092 4020 91.80 34.91
NECO 92.13 30.16 89.92 4649 9195 40.11 9899 412 9145 39.80 92.89 32.14
NECOf 92.86 32.44 90.38 42.66 93.15 3398 9934 326 9453 2520 94.05 27.51
Trusted 4356 86.45 46.82 9695 5095 9475 4936 9148 39.15 9545 4597 93.02
KL-matching  87.85 4092 86.76 53.02 87.89 49.19 97.84 884 8625 4920 8932 40.23
NNguide 9098 3590 87.63 5490 89.12 51.52 98.62 555 9040 48.00 9135 39.17
RelativeMaha 90.28 39.80 88.05 5259 89.83 47.53 99.06 354 9023 46.10 9149 37091
KNN 89.18 42.16 8545 6449 8569 6631 9803 9.86 8745 6045 89.16 48.65

X-Maha (ours) 96.65 11.70 89.64 46.00 92.04 37.78 99.40 2:26 9376  29.80 94.30 2551

MSP 83.05 5759 7983 6839 7933 7029 89.74 4195 78.60 71.00 82.11 61.84
MLS 88.76 4543 86.02 57.05 8639 5828 9557 2345 86.53 61.15 88.65 49.07
Energy 89.26 4401 86.59 5439 87.12 5485 9638 17.67 87.32 5830 89.33 45.84
Mahalanobis 85.05 6649 8434 7206 8515 7537 9035 6500 80.71 79.00 8512 71.58
Residual 7625 80.05 75.64 8895 7540 91.87 7120 94.15 67.87 88.10 73.27 88.62
Vim 89.30 4420 86.70 5449 8722 5521 96.17 1883 87.17 5925 89.31 46.40
NECO 88.77 47.02 8786 5240 88.61 5392 9524 2530 8529 64.00 89.15 4853
McMmt 86.11 57.77 89.77 44.69 9257 3759 9461 3091 7951 7570 88.51 49.33
Trusted 95.87 1980 7459 78.06 76.71 7642 84.61 7277 84.12 6240 83.18 61.89
KL-matching  86.64 46.45 8328 5925 8321 6123 94.18 2499 8319 6245 86.10 50.87
NNguide 87.60 5105 8194 7129 8298 7477 93.14 3888 8527 67.85 86.19 60.77
RelativeMaha 85.14 62.00 81.81 63.13 8345 63.73 9453 2521 83.07 6775 85.60 56.36
KNN 8335 6835 7731 8127 76.03 8732 87.74 7530 81.63 79.75 81.21 78.40

X-Maha (ours) 89.11 49.52 90.64 41.44 93.11 35.77 9549 23.04 8239 69.40 90.15 43.83

4.2 Main Results

Result on CIFAR-100. As shown in Table|l} our proposed method, X-Maha, outperforms state-of-
the-art approaches across multiple OOD datasets. In particular, the average performance of X-Maha
on both the CLIP model and the ImageNet-21k pre-trained ViT significantly surpasses previous



methods. X-Maha achieves perfect separation of ID and OOD data on Texture, LSUN, and Places365
datasets. However, we observe a decrease in the performance when using CIFAR-10 as the OOD
data. This reduction can be attributed to the high similarity between CIFAR-10 and CIFAR-100 in
terms of characteristics, resolution, and visual style—both datasets consist of low-resolution, 32 x 32
images with somewhat blurred features, making certain samples challenging to differentiate, even
for human observers. This resemblance leads to overlapping feature representations in the shallow
layers, resulting in relatively diminished performance. Notably, MCM [36] is a zero-shot CLIP-based
OOD detection method, and its performance is significantly inferior to other methods, highlighting
the necessity of fine-tuning for downstream tasks.

Result on ImageNet. Table [2| summarizes the performance of our proposed method, X-Maha,
on the ImageNet dataset. Across both pre-trained models, namely, the ImageNet-21k pre-trained
ViT and CLIP-ViT-B/16, X-Maha consistently outperforms existing methods. Specifically, when
using the ImageNet-21k pre-trained ViT, X-Maha improves the FPR95 by more than 2% on average
compared to the second-best method Mahalanobis [28]]. Notably, while MCM [36]] does not require
fine-tuning, it achieves competitive performance across four OOD datasets, except ImageNet-O. Its
overall average performance is on par with the Vim [48]] and NECO [2] methods. However, X-Maha
still outperforms MCM by ~ 1.5% in AUROC and ~ 5.5% in FPR95.

Result on CIFAR-100-LT. Table [3] presents the results on the long-tailed version of CIFAR-100
dataset. It can be seen that our method consistently outperforms previous approaches. When using
the CLIP model, our method effectively reduces the FPR95 by an average of 6.31% (from 23.56% to
17.25%).

Table 3: OOD detection performance on CIFAR-100-LT (ID) and six OOD datasets.
Texture SVHN CIFAR10 Tiny ImageNet LSUN Places365 Average

Method AUROC FPRY95 AUROC FPRY95 AUROC FPR95 AUROC FPRY95 AUROC FPR95 AUROC FPR95 AUROC FPRY5
IMAGENET-21K PRE-TRAINED VIT
MSP 97.21 13.12 9552 2413 9192 3850 8527 48.02 84.06 64.81 9047 43.10 90.75 38.61
MLS 99.83  0.62 9638 1835 9494 2558 9036 34.08 9858 7.52 99.26 3.06 96.56 14.87
Energy 99.89 043  95.65 24.00 9449 2942 9038 3432 99.09 4.00 9952 1.62 9650 15.63
Mahalanobis 99.96 020 99.33 251 9509 2598 97.63 926 9948 226 9957 171 9851 699
Residual 99.98 0.05 9733 17.74 86.41 62776 9852 690 99.83 047 99.80 045 9698 14.73
Vim 9991 0.28 96.18 20.72 9456 29.01 9127 31.59 9925 320 99.60 123 96.80 1434
NECO 99.86  0.64 97.37 1358 9491 24.62 9122 2921 9839 1021 9922 378 96.83 13.67
Trusted 100.0 000 99.12 3.60 8734 5284 97.67 1037 9997 0.00 9998 0.00 97.35 11.13

KL-matching 9848 640 97.44 1211 94.00 26.88 87.56 3891 86.65 5278 9294 31.01 92.84 28.02
KL-matching 9848 640 97.44 12.11 94.00 26.88 87.56 3891 86.65 5278 9294 31.01 92.84 28.02

NNguide 99.19 330 9889 3.16 9510 2571 9095 3058 9292 3472 95.60 23.14 9544 20.10
RelativeMaha  97.25 11.19 96.01 2631 94.65 2699 89.94 4541 9046 5353 9243 3872 9346 33.69
KNN 98.82 457 9744 1468 9251 3642 8845 37.86 89.78 4325 9414 2830 9352 2751

X-Maha (ours) 100.0  0.00 99.75 043 9422 2986 99.75 112 9999 0.00 9999 001 9895 5.24
CLIP-VIT-B/16

MSP 91.05 3934 86.13 4873 8533 5547 7822 68.10 7352 7650 83.16 5792 8290 57.68
MLS 96.76 1695 8844 49.78 91.85 36.84 87.05 4753 9035 3677 9429 2552 9146 3557
Energy 9731 13.09 8640 59.64 9237 34.15 88.01 4379 9225 2845 9549 1949 9197 33.10
Mahalanobis 99.11 1.03 9592 29.87 8476 60.58 9097 43.83 99.08 4.07 99.28 1.99 9485 23.56
Residual 9890 142 9483 3399 77.19 7351 9124 4857 9928 194 9934 087 9346 2672
Vim 98.12  9.17 88.61 5292 92.19 3568 8897 41.63 9426 2187 96.76 14.76 93.15 29.34
NECO 98.00 9.57 91.32 41.13 91.11 4021 8751 4654 9399 2337 9671 1622 93.11 2951
Trusted 9997 0.11 9357 4380 80.76 7036 9546 2558 9995 0.10 9995 0.08 94.94 2334
KL-matching  95.01 21.76 90.76 ~ 31.69 838.87 44.17 81.68 5793 7931 63.65 87.64 4321 8721 4373
NNguide 96.24 1550 9595 2093 87.06 5799 8436 6030 8823 48.69 91.11 3220 9049 3927
RelativeMaha  97.25 11.19 96.01 2631 94.65 2699 89.94 4541 9046 5353 9243 3872 9346 33.69
KNN 97.48 12.68 91.39 44.15 8487 59.53 8454 53.89 83.62 5677 9025 4152 88.69 44.76

X-Maha (ours) 99.90  0.02 9741 1680 8535 59.44 9485 27.10 99.89 010 9991 0.03 96.22 17.25

Result on ImageNet-LT. Additionally, Table ] presents the results on the long-tailed ImageNet
dataset. It can be seen that our method consistently outperforms previous approaches. On average,
our method reduces FPR95 by 5.29% and 2.87% for ImageNet-21k pre-trained ViT and CLIP,
respectively. The AUROC also improves by 1.77% when using the CLIP model.

4.3 Ablation Studies

Why X-Maha works? Unless otherwise specified, in this subsection, we use the ImageNet-21k
pre-trained ViT as the default base model. Figure[d] presents a comparison of OOD score distributions
with and without the application of our proposed X-Maha method. When X-Maha is not applied,
only the final layer features are used to compute the Mahalanobis distance as a scoring function.



Table 4: OOD detection performance on ImageNet-LT (ID) and five OOD datasets.
Texture Places SUN iNaturalist ImageNet-O Average

Method AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPRY5
IMAGENET-21K PRE-TRAINED VIT
MSP 8604 4750 8520 5652 8636 5307 9717 1197 8368 5740 87.69 450
MLS 90.18 3871 8876 4934 9039 4544 9847 671 8891 4790 9134 37.62
Energy 9087 3551 8929 4597 9105 41.04 9878 506 89.83 4280 9196 34.08
Mahalanobis ~ 92.99 2695 8948 4634 9171 3835 9928 284 91.66 3885 93.02 30.67
Residual 9160 3574 8223 6571 8658 5554 9744 1267 8405 5905 8838 4574
Vim 9123 3410 8947 4523 9127 39.83 9888 477 9005 4170 9218 33.13
NECO 0166 3144 8921 4371 9144 37.07 9893 409 89.64 4270 9218 31.80
Trusted 9198 3236 8201 6631 8572 5834 9809 929 9091 40.15 89.76 4129
KL-matching 8872 3871 8741 50.03 89.14 4583 9844 619 8724 4750 90.19 37.65
NNguide 91.06 3585 87.66 5260 8953 4861 9866 533 90.08 4655 9140 37.79
RelativeMaha ~89.97 4074 8822 5289 89.02 4820 9897 401 89.67 4740 9135 3865
KNN 8980 39.86 8586 59.61 8730 5679 9821 743 8797 5610 89.83 43.96

X-Maha (ours) 96.92 11.79 89.82 4536 92.18 36.16 9933 251 9346 31.10 9434 2538

MSP 81.55 6034 7932 65.16 7844 66.53 90.60 3849 7837 71.60 81.66 60.42
MLS 87.00 5227 8531 5620 8547 57.19 9503 2521 8433 6510 8743 51.19
Energy 87.81 50.07 8637 51.85 86.76 53.08 9594 19.61 85.12 63.65 8840 47.65
Mahalanobis 83.81 67.64 8444 66.85 8550 69.58 8749 7257 78.82 8020 84.01 71.37
Residual 7481 80.71 75.62 86.49 76.56 87.93 63.27 96.67 6443 8930 7094 88.22
Vim 87.90 49.72 8652 5132 8696 5247 9555 21.06 8496 6390 88.38 47.69
NECO 86.67 53.67 86.71 53.11 87.17 54.63 94.08 2995 8290 67.60 87.51 51.79
Trusted 7196 7046 4451 97.89 49.78 97.77 4944 9859 4879 89.05 5290 90.75
KL-matching  85.35 51.56 82.84 57.00 82.51 57.56 9454 2336 8252 64.00 8555 50.70
NNguide 86.06 5644 8253 6549 83.68 66.66 9059 4729 83.07 71.15 8518 6141
RelativeMaha 83.81 67.38 81.84 6331 8274 64.13 9395 31.74 8225 71.10 8492 59.53
KNN 8258 6642 78.66 74.60 78.64 7796 8397 70.68 79.61 79.10 80.69 73.75

X-Maha (ours) 89.94 46.79 90.47 4251 9271 3795 9479 2757 8294 69.10 90.17 44.78
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Figure 4: Comparisons of OOD score distribution before and after applying our X-Maha method.
CIFAR-100 is used as the ID dataset and the OOD dataset from left to right is Texture, Tiny ImageNet,
LSUN, and Places365. The horizontal axis represents the OOD score (small values indicate a high
likelihood of being OOD samples).

It can be seen that the score distributions for ID samples remain largely consistent, whether or not
the X-Maha method is applied. However, the use of X-Maha causes a significant leftward shift in
the score distribution for OOD samples. This shift occurs because the features in the final layer of
unseen OOD samples are not effectively captured. Furthermore, re-weighted information from the
shallow layers amplifies this shift, resulting in better discrimination. As a result, the X-Maha method
enhances the separation between ID and OOD samples in the embedding space. This improvement is
critical for more accurate identification and differentiation of ID and OOD samples, thus boosting the
overall performance and reliability of the detection process.

Importance weights of each layer. As depicted in Figure|5| our proposed method can adaptively
assign importance weights to different layers. Overall, the first 6 layers are assigned relatively
lower weights compared to the rest of the Transformer layers. Notably, the final layer’s weight
is particularly prominent. This is because the last layer of the feature extractor learns the most
discriminative features for in-distribution classes and is important for OOD detection. As shown
in the figure, rather than relying solely on the penultimate layer’s features, our method effectively
utilizes shallow layer features as well.

Impact of features from shallow layers. Figure [6]illustrates the effect of fusing features from
varying numbers of layers. The x-axis represents the number of layers counted from the penultimate
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Figure 5: Distribution of layer-specific weights for CIFAR-100, ImageNet, ImageNet (CLIP), and
ImageNet-LT where the y-axis denotes AUROC (%).
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Figure 6: Impact of the number of layers used for feature fusion on OOD detection performance. The
ID dataset from left to right is CIFAR-100, ImageNet, ImageNet (CLIP), and ImageNet-LT, where
the vertical axis represents AUROC.

layer towards the first, while the y-axis indicates the average OOD detection AUROC. As shown
in the figures, using only the penultimate layer’s features yields decent results, but fusing the last
6 layers of the Transformer achieves the best performance, highlighting the importance of shallow
features. For features from the sixth layer and beyond, their impact on the results is minimal. As
discussed in the previous analysis, our method assigns lower weights to these layers accordingly.

Table 5: Comparisons of different feature mixing strategies. ‘In21k’ denotes ViT pre-trained on
ImageNet-21k.

CIFAR-100 ImageNet
CLIP In21k CLIP In21k Average
AUROC FPRY95 AUROC FPR95 AUROC FPRY95S AUROC FPR95 AUROC FPRY95
Trusted 96.76 15.85 98.37 8.17 83.18 61.89 45.97 93.02 81.49 44.73

Method

SA 96.53 13.19 98.77 6.58 82.68 64.59 94.01 27.62 93.00 28.00
PM 96.15 18.13 98.16 10.05 81.03 77.59 81.86 27.47 89.30 33.31
Flatten12 42.10 89.67 29.00 90.93 - - - - 34.05 90.15
Flatten6 93.31 15.99 81.75 49.33 - - - - 87.53 32.66
Ours 97.33 12.46 99.29 3.76 90.15 43.83 94.30 25.51 95.27 21.39

Ways to fuse shallow features. We compare our proposed feature mixing method with other fusion
strategies including 1) Trusted [7] which directly employs the arithmetic mean to fuse features from
each layer during both the training and test phases; 2) Score Aggregation (SA) [28] which calculates
the OOD score via Mahalanobis distance using features from each layer separately and weighted
them together. Since SA requires a validation set containing both ID and OOD data, we use the
weights derived from our method to calculate the weighted sum of scores; 3) Power Mean (PM) [42]
proposes to reweight each layer’s feature based on feature norms; 4) Flatten12 concatenates all layers’
features into a single vector, while Flatten6 concatenates the last six layers’ features. The results are
presented in Table[5] It can be seen that our proposed adaptive fusion method achieves a significant
advantage in aggregating shallow features, further confirming its effectiveness.

5 Conclusion

This paper introduces a timely improvement to Mahalanobis-based OOD detection by effectively
mixing Transformer features across layers. While shallow features may lack class discrimination, we
demonstrate their strength in separating ID and OOD data. Our method assigns importance weights
to layer features, without relying on validation data, and leverages parameter-efficient fine-tuning
to better adapt pre-trained Transformers for OOD detection. Extensive experiments validate our
approach across zero-shot and fine-tuning settings, vision-only and vision-language models, and both
balanced and long-tailed ID datasets. Ablation studies further clarify its mechanisms. We believe this
work establishes a strong baseline for future OOD detection research.
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contributions in the introduction.
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made in the paper.
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2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
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model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
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depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
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Question: Does the paper fully disclose all the information needed to reproduce the main ex-
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of the paper (regardless of whether the code and data are provided or not)?
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Justification: Code is open-sourced on Github and implementation details are introduced in
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In the case of closed-source models, it may be that access to the model is limited in
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to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: Code is in the supplementary.
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* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
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* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: Implementation details are presented in Section 4.1.
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» The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: In Section 4.2 of the main paper and Appendix, we show the results in different
settings. Since random seeds have little effect on the results, the paper does not report error
bars following previous studies.
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* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
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run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)
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« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: Implementation details are provoided in Section 4.1.
Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The authors have reviewed the NeurIPS Code of Ethics and the research
conforms with them in every respect.
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¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: We analyze the potential societal impacts in Section |A.9
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* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
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(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
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* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: The licenses for existing assets are properly respected.
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* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

 For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
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Question: Are new assets introduced in the paper well documented and is the documentation
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Answer: [Yes]
Justification: Code is in the suppmentary.
Guidelines:

* The answer NA means that the paper does not release new assets.
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* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
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* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
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Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: The paper does not use LLMs in the proposed method.
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* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Additional Experiments

A.1 Zero-shot OOD detection performance

To further demonstrate the effectiveness of our proposed feature mixing approach, we evaluate the
zero-shot performance without fine-tuning pre-trained models using ID datasets. The results are
reported in Table 6]

Table 6: OOD detection performance on ImageNet-LT (ID) and five OOD datasets using the pre-
trained models without fine-tuning.

Method Texture Places SUN iNaturalist ImageNet-O Average
AUROC FPRY95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95
IMAGENET-21K PRE-TRAINED VIT
MSP 8492 50.12 81.63 68.06 81.77 6888 9502 24.12 80.04 64.65 84.68 55.17
MLS 91.01 3622 8448 61.71 86.96 5693 96.88 17.52 8931 5245 89.73 4497
Energy 91.17 3644 84.11 6257 8691 56.66 9630 2256 89.72 5190 89.64 46.03
Mahalanobis 93.13 2463 81.79 6752 8516 6130 98.63 559 9126 4130 89.99 40.07
Residual 91.78 3383 64.01 86.88 71.16 8023 9444 2758 8322 5895 8092 5749
Vim 91.51 3447 8398 6244 8690 5637 96.57 2037 8994 50.15 89.78 44.76
NECO 9254 27.00 79.76 6531 8377 6032 9855 537 9027 4350 8898 40.30

KL-matching ~ 87.51 40.66 83.23 64.05 84.18 6198 96.72 16.12 8340 55.15 87.01 47.59
X-Maha (ours) 97.15 1020 8151 6720 8549 5649 98.69 513 93.15 3215 91.20 34.23

MSP 76.67 82.07 6122 9421 61.62 96.00 7278 9294 70.56 89.95 68.57 91.03
MLS 76.88 9190 78.12 8599 7629 93.61 7486 9557 7428 8920 76.09 91.25
Energy 69.74 97.02 78.19 89.82 7568 9623 69.13 9824 6940 9255 7243 94.77
Mahalanobis 6991 9486 7020 96.58 67.53 9878 67.77 9896 70.57 9030 69.20 95.90
Residual 64.57 96.51 59.59 9811 5523 9938 49.12 9935 62.89 91.65 5828 97.00
Vim 69.34 9699 7689 91.80 74.19 9736 6749 9844 6896 92.10 7137 9534
NECO 73.70 9259 73,55 9338 7199 9732 70.80 98.68 7096 89.65 7220 94.32

KL-matching  83.71 63.99 6227 8625 63.80 8892 7940 7931 7473 80.90 7278 79.87
X-Maha (ours) 87.74 58.03 88.22 59.63 89.77 61.21 91.07 5593 80.75 76.60 87.51 62.28

A.2 In-distribution classification accuracy

Our fine-tuned model also shows strong ID classification performance, as detailed in Table[/| In
terms of overall accuracy, both CIFAR-100 and ImageNet-1k perform better with balanced data
compared to long-tailed data. This indicates that data balance positively impacts model performance,
facilitating more accurate classification tasks.

When comparing different models, the pre-trained ViT consistently outperform CLIP-ViT-B/16 in
most scenarios. This indicates that the pre-trained ViT has specific advantages for these data sets and
tasks, suggesting that its pre-training approach is more suitable for these classification tasks, thereby
also enhancing its efficacy in OOD detection tasks.

Table 7: Top 1% accuracy on ID data for the original classification task, for the models.

ID dataset Label distribution Model Accuracy (%)
Zero-shot CLIP-ViT-B/16 66.69
CLIP-ViT-B/16 82.87
CIFAR-100 Long-tailed Pre-trained ViT 89.99
CLIP-ViT-B/16 88.59
Balanced Pre-trained ViT 93.47
Zero-shot CLIP-ViT-B/16 67.12
CLIP-ViT-B/16 75.82
ImageNet-1k Long-tailed Pre-trained ViT 81.79
CLIP-ViT-B/16 79.08
Balanced Pre-trained ViT 83.50
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Table 8: Ablation studies on weights of different layers on CIFAR-100 (ID).
Texture SVHN CIFAR10 Tiny ImageNet LSUN Places365 Average

Method AUROC FPRY95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95
IMAGENET-21K PRE-TRAINED VIT
Wo.083 100.0 000 99.61 028 90.02 51.14 100.0 0.00 1000 0.00 100.0 0.00 9827 857
Wo.s 100.0  0.00 9943 236 9676 1826 99.62  1.81 100.0  0.00 9999 0.01 9930 3.74
Wo.75 99.99  0.04 9927 333 9699 1682 9883 522 99.89 0.06 9989 026 99.14 429
Wio 99.97  0.12  99.16 392 97.09 1649 9799 896  99.61 1.07  99.67 133 9892 532
X-Maha (ours) 100.0  0.00  99.50 191 96.47 1952 99.80 1.11 100.0  0.00 100.0 0.00 9929 3.76
CLIP-VIT-B/16
Wo.083 100.0  0.00 99.05 2.82 8392 6574 9994 0.08 100.0 0.00 100.0 0.00 97.15 11.44
Wos 99.92  0.07 98.00 1027 89.15 51.09 9649 1736 9988 021 9991 0.12 9722 13.19
Wo.7s 99.61 085 97.84 1234 8936 50.66 9438 2656 9924 3.85 9955 168 96.66 1599
Wio 99.23 1.68  96.89 2327 89.01 5226 9375 3228 9881 6.44 9929 313 96.16 19.84

X-Maha (ours) 99.95 0.02 9831 8.62 8856 5397 9754 1291 9993 006 9995 0.02 9737 12.60

A.3 Ablation studies on weights of different layers

To further emphasize the importance of differentiated layer weighting, we provide experimental tables
(i.e., Table 8 O [T0). In these Tables, we test different scenarios where the final layer is given weights
of 0.083 (i.e., uniform), 0.5, 0.75, and 1 (which are represented by Wy os3, Wo.5, Wo.75, W1.0), while
the other layers receive the remaining weights evenly. Overall, the OOD detection performance
is sensitive to layer weights; however, our X-Maha approach consistently achieves remarkable
performance.

Table 9: Ablation studies on weights of different layers on CIFAR-100-LT (ID).
Texture SVHN CIFAR10 Tiny ImageNet LSUN Places365 Average

Method AUROC FPRY5 AUROC FPRY95 AUROC FPR95 AUROC FPRY95 AUROC FPR95 AUROC FPR95 AUROC FPRY5
IMAGENET-21K PRE-TRAINED VIT

Wo.083 1000 0.00 9985 0.01 8554 6856 1000 0.00 1000 0.00 100.0 0.00 97.57 11.43

Wo.s 100.0  0.00 99.68 0.68 9456 2790 99.58 1.68 99.99 0.00 99.98 0.01 98.97 5.05

Wo.zs 99.99 005 9949 1.66 9493 2642 98.67 557 99.81 039 9983 053 9879 577

Wio 99.96 020 99.33 251 95.09 2598 97.63 926 9948 226 9957 171 9851  6.99

X-Maha (ours) 100.0  0.00 99.75 043 9422 2986 99.75 1129999 0.00 9999 0.01 9895 524
CLIP-VIT-B/16

Wo.083 100.0  0.00 98.76 5.09 80.77 6839 99.89 020 100.0 0.00 100.0 0.00 96.57 12.28
Wo.s 99.88  0.04 9737 1690 8552 5897 9436 28.65 9987 0.11 9989 005 96.15 17.45
Wo.zs 99.52 055 97.15 19.66 8573 5899 9158 3922 9936 2,63 9952 120 9548 2038
Wio 99.11  1.03 9592 2987 8476 60.58 90.97 43.83 99.08 4.07 9928 199 9485 23.50

X-Maha (ours) 99.94  0.00 98.13 899 8874 5246 9731 1323 9993 0.05 9995 0.04 9733 1246

Table 10: Ablation studies on weights of different layers on ImageNet-1k-LT (ID).

Texture Places SUN iNaturalist ImageNet-O Average

Method AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPRY95 AUROC FPRY95 AUROC FPRY5
IMAGENET-21K PRE-TRAINED VIT

Wo.083 98.55 645 8632 60.57 8892 4925 98.02 942 91.72 37.05 9271 3255

Wo.s 95.02 1796 89.76 44.79 92.08 36.60 9936 2.63 92.68 3430 93.78 27.26

Wo.rs 93.78 2339 89.62 4554 9188 3722 9932 274 9206 36.75 93.33 29.13

Wio 9299 2695 89.48 46.34 91.71 3835 9928 284 91.66 3885 93.02 30.67

X-Maha (ours) 96.92 11.79 89.82 4536 9218 36.16 9933 251 9346 31.10 9434 2538
CLIP-VIT-B/16

Wo.083 9223 3676 91.11 39.65 93.02 3638 94.62 29.54 8330 6745 90.86 41.96
Wo.s 88.52 5223 89.87 4547 9221 40.58 9454 2845 8256 71.00 89.54 4755
Wo.7s 87.68 5539 89.69 4637 92.08 41.23 9441 2930 8223 7240 89.22 4894
Wio 83.81 67.64 8444 6685 8550 69.58 8749 7257 78.82 8020 84.01 71.37

X-Maha (ours) 89.94 46:79 90:47 42:51 9271 3795 94.79 27.57 82:94 69.10 90.17 44.78

A.4 Ablation studies on smaller pre-trained transformers

As depicted in Table and[T4] we have included models like vit_tiny_patch16_224 and
vit_small_patch16_224, shown in the upper and lower sections of each table. The outcomes from
these smaller models provide further confirmation that our OOD score remains robust and effective
across various model scales, thereby enhancing the generalizability and reliability of our proposed
approach.
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Table 11: OOD detection performance on CIFAR-100 (ID) on smaller transformers.
Texture SVHN CIFAR10 Tiny ImageNet LSUN Places365 Average

Method AUROC FPRY95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95
VIT_TINY_PATCH16_224
MSP 92.09 3534 8328 6128 8330 63.73 79.89 69.73 7286 84.07 82.13 6555 8226 6328
MLS 98.62 6.13 92.09 3585 8739 5492 8771 5279 8892 57.57 9427 3032 9150 39.60
Energy 99.03 426 9278 3241 8728 5596 88.18 51.27 90.32 51.04 9525 2494 92.14 36.65
Mahalanobis 9990 035 9628 1578 87.78 56.67 9248 33.81 9820 9.10 9877 627 9557 2033
Residual 99.71 085 86.24 52770 7686 7272 90.89 4255 9746 1402 9725 13.66 9140 3275
Vim 99.19  3.62 9299 31.18 8749 5490 8870 4896 91.14 47.63 95.67 22.63 9253 34.82
NECO 99.17 3.83 9234 3424 8785 5347 8947 4645 9238 43.05 96.06 21.11 92.88 33.69

KL-matching 9541 1840 87.58 45.71 86.32 53775 8247 6045 7528 79.24 85.65 5282 8545 51.73
X-Maha (ours) 100.0  0.02 96.85 14.13 86.48 60.56 97.00 1534 9998 0.01 9996 0.10 96.71 15.03

VIT_SMALL_PATCH16_224

MSP 9598 19.17 9229 38.18 90.82 39.01 8595 5236 8284 6892 8931 47.87 89.53 4425
MLS 99.28 3.16 9635 18.16 9522 2490 9218 3272 9621 2540 97.71 1344 96.16 19.63
Energy 99.48 229 9654 1655 9542 2324 9259 2999 97.12 1857 9825 10.09 96.57 16.79
Mahalanobis 9991 059 99.05 472 9465 28.65 9753 1136 99.60 1.78 99.54 252 98.38  8.27
Residual 99.96  0.11 98.60 7.06 88.66 5227 98.09 9.68 99.65 0.75 99.67 1.14 9744 11.83
Vim 99.56 1.99 96.88 14.63 9546 23.06 93.17 27.68 9752 1628 9847 882 96.84 1541
NECO 99.50 216 96.76 1591 9533 2433 9349 2662 9726 17.04 9829 975 96.77 1597

KL-matching  97.66  9.24 9475 2221 93.18 28.02 88.04 4026 8527 5547 91.73 3341 91.77 3143
X-Maha (ours) 100.0  0.00 99.36 3.16 94.09 3135 9947 2.69 9999 0.01 9999 0.01 9882 6.20

Table 12: OOD detection performance on CIFAR-100-LT (ID) on smaller transformers.
Texture SVHN CIFAR10 Tiny ImageNet LSUN Places365 Average

Method AUROC FPR95 AUROC FPR9Y95 AUROC FPRY5 AUROC FPR95 AUROC FPR95 AUROC FPRY5 AUROC FPR9Y95
VIT_TINY_PATCH16_224
MSP 90.08 4337 81.70 67.65 7948 71.62 7596 7524 7136 8426 79.41 7140 79.66 68.92
MLS 99.12 360 9333 3393 7987 7486 8581 56.68 93.82 33.03 9658 1897 9142 36.85
Energy 99.38  2.13 93.83 3125 7833 7886 8624 56.10 9532 2489 9750 13.26 91.77 3442
Mahalanobis 99.85 053 9729 12.80 85.08 63.78 91.26 3545 9844 8.10 98.67 6.67 95.10 21.22
Residual 99.36 270 85.09 6399 6392 86.08 86.92 5650 9555 2338 95.84 23.68 88.68 42.72
Vim 99.48 1.86 94.02 30.06 7859 7829 86.75 5395 9567 2296 9770 12.17 92.03 33.21
NECO 99.43  2.16 9371 31.78 8042 73.09 8726 50.52 95.19 2422 9742 1401 9224 32.63

KL-matching  94.50 2348 86.54 5521 8274 6281 79.16 66.66 7456 80.30 83.53 60.59 83.51 58.18
X-Maha (ours) 99.99  0.04 97.77 10.81 83.67 6699 9631 16.67 9997 0.01 9995 0.14 96.28 15.78

VIT_SMALL_PATCH16_224

MSP 96.39 1672 9272 3739 87.58 49.60 8239 57.10 8054 68.09 87.52 49.64 87.85 4642
MLS 99.69 1.44 9597 2184 9196 41.67 92,62 2945 97.66 1461 9877 674 96.11 19.29
Energy 99.80  1.13 9529 2728 9155 4520 9337 2575 9858 886 99.28 378 96.31 18.67
Mahalanobis 9991 053 9943 235 93.02 3598 97.15 1293 9959 235  99.65 1.67 98.12  9.30
Residual 99.93 025 9622 2449 8328 64.13 9596 2120 9926 3.78 9937 278 95.67 19.44
Vim 99.84 096 9574 2512 91.69 44.68 9378 2460 9877 7.65 9938 329 9653 17.72
NECO 99.77 .13 9630 2092 91.64 4149 9286 27.03 97.67 1401 9892 590 96.19 184l

KL-matching  98.12  7.73  95.63 2027 90.16 37.62 8525 4640 8394 56.00 90.77 36.06 90.65 34.01
X-Maha (ours) 100.0  0.00 99.68 1.05 9224 39.11 9948 244 100.0 0.00 100.0 0.00 98.57 7.10

A.5 Additional time consumption analysis

Unlike the direct Mahalanobis distance, which considers only the final layer of features, our approach
necessitates the integration of features across all layers. This inevitably leads to additional time
consumption. Table[T5|presents the time consumption at different stages of the test phase, measured
in seconds, on the ImageNet-LT dataset (ID) and the fine-tuned ViT model. “Pre-process” represents
the process of pre-processing the ID training set, including the calculation of the mean and covariance
matrix required for Mahalanobis distance, with additional importance weights o for X-Maha. Each
subsequent column represents the time required to process each dataset including the ID test set and
OOD datasets, and the last column represents the total time consumed. From the results, we observe
that our approach only brings about an additional 10% total time consumption, but results in an
improvement of AUROC by 2.39% and a reduction of FPR95 by 7.66% on average, demonstrating
the efficacy of our approach.

A.6 Fair comparison with MCM

The MCM method is naturally better suited for zero-shot OOD tasks compared to fine-tuning
tasks. The prevalent fine-tuning approach, which mainly targets the visual encoder, tends to disrupt
the initial alignment between the visual and text components after fine-tuning, resulting in less
effective outcomes. Our goal in including the MCM method in our experiment was not to make a
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Table 13: OOD detection performance on ImageNet-LT (ID) on smaller transformers.

Method Texture Places SUN iNaturalist ImageNet-O Average
AUROC FPRY95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95
VIT_TINY_PATCH16_224
MSP 78.01 7335 7550 7845 7530 79.07 8721 5452 6795 8770 76.80 74.62
MLS 84.44 6573 7850 75.84 79.44 7544 91.83 4649 76.83 8455 8221 69.61
Energy 8585 60.04 78776 7490 80.02 74.11 9272 42,10 78.73 8155 8322 66.54
Mahalanobis 89.61 41.86 79.27 67.26 8244 6388 97.62 11.83 80.09 7730 85.81 5243
Residual 84.86 5621 6821 86.03 6996 84.55 88.63 49.79 7394 7795 77.12 7091
Vim 86.49 57.06 7897 7435 8027 73.02 9325 38.66 79.22 8085 83.64 64.79
NECO 86.84 5644 79.03 7347 80.61 7226 9478 30.01 79.54 79.75 84.16 52.39

KL-matching  81.97 67.22 77.80 7427 78.06 7372 9159 41.18 7278 8435 80.44 68.15
X-Maha (ours) 92.21 29.84 7840 68.87 8125 66.86 97.72 11.30 8243 6990 86.40 49.35

VIT_SMALL_PATCH16_224

MSP 82.60 60.11 81.41 6659 8197 63.84 9431 2569 7774 73.60 83.61 57.97
MLS 87.94 5051 8497 60.73 86.46 5644 96.63 17.04 84.64 6540 88.13 50.02
Energy 88.96 46.03 8545 58.10 8720 53.27 97.09 14.06 8591 6085 88.92 46.46
Mahalanobis 91.13 36.06 86.30 54.87 89.54 4681 99.03 449 87.74 5545 90.75 39.54
Residual 88.66 45.11 79.43 7030 8429 60.89 96.18 2030 82.07 6585 86.12 52.49
Vim 89.38 4408 8572 5697 8757 52.06 9739 1238 86.29 59.25 89.27 4495
NECO 89.72 4340 8586 56.63 88.18 51.50 98.07 9.36 87.00 5840 89.77 43.86

KL-matching  86.01 50.67 83.63 60.68 84.80 56.71 96.68 14.62 8190 6535 86.60 49.61
X-Maha (ours) 93.35 2594 86.18 5521 8952 46.74 99.13 399 89.13 5020 9146 36.42

Table 14: OOD detection performance on ImageNet-LT (ID) and five OOD datasets using the
zero-shot models without fine-tuning.

Method Texture Places SUN iNaturalist ImageNet-O Average
AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPRY5
IMAGENET-21K PRE-TRAINED VIT-SMALL
MSP 8224 5821 77775 7534 7832 7435 9241 3739 7487 7570 81.12 64.20
MLS 91.03 38.14 82.05 6633 8545 6021 96.08 2466 8579 66.60 88.08 51.19
Energy 91.76  33.60 82.07 64.62 8592 5638 96.00 2585 86.59 63.60 88.47 48.81
Mahalanobis 9294 2674 80.88 6896 85.09 6041 9859 610 88.12 5375 89.12 43.19
Residual 89.39 43.03 61.84 89.78 69.77 84.65 9223 39.67 80.85 67.70 78.82 64.97
Vim 92.03 3250 8199 64.63 8596 56.15 96.28 2385 8691 62.05 88.63 47.84
NECO 9233 31.10 78.84 69.23 8322 6275 9791 957 8792 56.55 88.05 45.84

KL-matching  85.44 49.66 7942 7235 80.89 69.74 9490 29.76 78.69 67.90 83.87 57.88
X-Maha (ours) 96.57 1243 7875 7276 83.04 6338 9828 748 90.59 42.60 8945 39.73

IMAGENET-21K PRE-TRAINED VIT-TINY

MSP 7640 73771 70.13 86.79 6843 8856 8249 70.08 6486 87.55 7246 81.34
MLS 87.68 51.84 7355 81.88 76.13 8279 9023 57.60 77.84 8325 81.09 71.47
Energy 88.63 4647 7336 8129 7659 81.44 9041 56.67 7899 81.80 81.59 69.53
Mahalanobis 91.78 30.85 7334 7918 7717 7642 9489 2837 8038 7575 83.51 58.11
Residual 88.96 4339 5328 95.00 5674 9470 7495 79.52 7457 7840 69.70 78.20
Vim 89.06 4447 73.18 8150 76.48 8148 9055 5622 7933 81.10 81.72 68.95
NECO 90.04 4158 7285 8142 76.17 81.01 9423 3609 80.81 7730 82.82 63.48

KL-matching  80.83 65.53 7126 8635 70.28 88.57 86.62 6547 69.79 83.85 7575 7795
X-Maha (ours) 9547 17.93 71.78 79.73 7444 78.06 96.08 20.33 8539 5730 84.63 50.67

Table 15: Time consumption (in seconds) comparison between Mahalanobis and X-Maha.

Dataset Pre-process ID testset Texture Places SUN iNaturalist ImageNet-O Total

Mabhalanobis 685 238 36 61 56 59 14 1149
X-Maha 748 291 38 62 60 61 15 1275

direct comparison but to empirically showcase that our proposed method enhances OOD detection
performance. Conversely, methods like ViM and NECO are methodologically and conceptually more
similar to our approach and, therefore, require a more thorough comparison. Moreover, we present
the results of MCM on the fine-tuned model (i.e., MCM-tuned) in Table[T6|for comparison.

A.7 Ablation studies on OpenOOD v1.5 benchmark

We conducted our experiment again using the Openood v1.5 [59] benchmark and chose Imagenet-
1K-LT as the ID dataset, as shown in Table From our experience, this approach is comparable to
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Table 16: Fair comparison with MCM on CIFAR-100, CIFAR-100-LT, and ImageNet-LT ID datasets.

Method Texture SVHN CIFARI10 Tiny ImageNet LSUN Places365 Average
AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95
CIFAR-100

MCM-untuned 7298 92.09 90.75 63.39 7553 88.66 6554 9336 50.79 99.11 6097 97.79 6943 89.06
MCM-tuned 7533 9138 9155 6096 7560 91.03 64.07 9540 5514 9893 63.71 97.67 7090 89.23
X-Maha (ours) 9990  0.02 9741 16.80 8535 5944 9485 27.10 9989 010 9991 0.03 96.22 17.25

CIFAR-100-LT

MCM-untuned 7298 92.09 90.75 6339 7553 88.66 6554 9336 50.79 99.11 6097 97.79 6943 89.06
MCM-tuned 7533 9138 9155 6096 7560 91.03 64.07 9540 55.14 9893 63.71 97.67 7090 89.23
X-Maha (ours) 99.94  0.00 98.13 899 8874 5246 97.31 1323 9993 0.05 9995 0.04 9733 1246
Texture Places SUN iNaturalist ImageNet-O Average
AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPRY5

IMAGENET-1K-LT

MCM-untuned 86.11 57.77 89.77 44.69 9257 37.59 9461 3091 7951 7570 88.51 49.33
MCM-tuned 85.64 60.11 89.82 4432 9292 36.25 9426 3201 7926 76.10 88.38 49.76
X-Maha (ours) 89.94 46.79 90.47 42,51 9271 3795 9479 2757 8294 69.10 90.17 44.78

Method

using ImageNet-1k while being more time-efficient. Our results surpassed those of all other methods
by a significant margin on average, highlighting the success of our X-Mabha strategy.

Table 17: OOD detection performance on ImageNet-LT (ID) on OpenOOD v1.5.

NINCO Openimage-O SSB-Hard ilmageNet-C ImageNet-ES ilmageNet-R ImageNet-V2 Average

Method AUROC FPRY95 AUROC FPRY95 AUROC FPRY95 AUROC FPR95 AUROC FPR95 AUROC FPRY95 AUROC FPRY95 AUROC FPR9Y5
IMAGENET-21K PRE-TRAINED VIT
MSP 87.81 50.02 9372 2751 7672 6843 6791 7858 6935 6926 79.73 59.15 5757 8992 7612 63.27
MLS 91.59 4280 96.28 18.65 81.25 6386 70.54 76.77 7211 66.79 83.65 5322 5786 90.09 79.04 5888
Energy 9212 39.62 96.80 16.02 81.87 6153 70.80 76.02 7244 6606 8425 5052 5779 90.19 79.44 57.14
Mahalanobis 94.00 3251 9758 12.61 8501 52.17 7393 7264 73.04 67.08 8532 4895 5802 90.81 80.99 53.83
Residual 8387 6245 9241 33.88 8487 5619 7496 78.03 6525 8287 7505 7646 53.03 9438 7563 69.18
Vim 9229 3865 9694 1532 8236 6040 71.19 7539 7247 6598 8437 5020 5779 90.15 79.63 56.58
NECO 91.97 38.09 9690 15.19 8481 5496 70.55 7548 72.01 67.61 8243 53.86 5686 90.44 79.36 56.52

KL-matching ~ 90.53 41.63 9595 18.15 79.52 63.02 70.03 7591 7154 6635 8256 5260 5833 89.85 7835 5822
X-Maha (ours) 94.98 26.74 9821 9.72 8634 4946 8396 53.57 76.78 6345 8849 4285 5836 9136 83.88 48.16

CLIP-VIT-B/16

MSP 80.11 6894 8822 4672 68.06 83.66 7344 7044 7031 6846 7727 6400 57.12 90.78 7350 70.43
MLS 84.17 67.11 9293 3517 7199 8244 77.66 67.65 7566 6421 8461 5596 5824 90.38 77.89 66.13
Energy 84.15 67.78 93.73 3059 7225 8243 78.02 67.13 76,51 6251 8587 5226 5822 90.28 7839 64.71
Mahalanobis 75.13 8328 8695 63.82 66.11 89.49 82.68 62.64 8427 5246 90.02 4733 5818 9031 77.62 69.90
Residual 61.56 91.54 7043 8135 61.00 92.63 8286 6828 8630 54.65 86.28 57.41 5647 92.06 72.13 76.85
Vim 8391 6820 9357 31.15 7228 8257 7885 65.06 7752 6034 8673 49.79 5835 89.88 78.74 63.86
NECO 880.96 71.90 9248 37.13 6922 8510 77.84 68.17 78.69 61.76 86.00 5492 5818 89.83 77.63 6697

KL-matching ~ 83.21 66.88 92.13 34.08 70.63 81.75 76.09 67.07 7292 6425 81.70 5546 5783 90.51 7636 6571
X-Maha (ours) 830  74.67 9290 3693 71.64 8179 8549 5094 87.84 4349 8876 5031 5822 89.50 8045 61.09

A.8 Experiments on OpenOOD v1.5 benchmark

Table [T§] presents a comprehensive evaluation of the EVA model’s out-of-distribution detection
performance using the ImageNet-LT dataset under the OpenOOD v1.5 evaluation framework.

Table 18: OOD detection performance on ImageNet-LT (ID) on OpenOOD v1.5 on EVA.

NINCO Openimage-O SSB-Hard iImageNet-C ImageNet-ES ilmageNet-R ImageNet-V2 Average

Method AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR9S AUROC FPR95 AUROC FPR9Y5
EVA02-SMALL-PATCH14-336
MSP 8542 5874 9396 2832 6721 81.62 71.52 7071 71.12 6598 8242 50.02 5644 90.10 7544 63.64
MLS 8522 5942 9398 2832 66.81 81.78 70.94 7124 7248 6516 8291 4936 5644 90.19 7554 63.64
Energy 6093 8979 7032 86.76 51.36 95.11 5030 9521 70.05 7432 7141 7983 51.72 9381 6087 87.83
Mahalanobis ~ 88.50 5247 9535 2499 73.67 73.68 7499 66.73 7417 64.15 86.59 4758 5797 90.15 7875 59.97
Residual 46.13 9922 6180 96.84 4891 9538 59.63 9257 5734 9172 6401 8943 48.01 9641 5512 9451
Vim 46.94  99.00 63.01 9648 49.00 9531 59.52 9249 5876 9123 65.12 88.46 48.13 9633 5452 9487
NECO 7929 6375 9332 2833 6144 8342 6880 72.11 7025 66.85 8147 49.12 5427 9134 7269 64.99
KNN 8502 68.02 9333 3961 6899 8643 7423 68.85 7550 6343 8655 4553 5785 9052 7735 66.06
NNguide 8497 68.02 9333 3947 6890 8647 7411 6892 7567 6336 86.58 4544 5783 9052 77.34 66.03

RelativeMaha 89.44  50.54 95.04 2524 7426 7355 7382 6831 7332 6474 8549 4887 5837 89.66 7853 60.13
KL-matching 1243 99.97 723 9999 27.79 98.64 27.30 99.01 26.64 98.68 13.68 99.77 42.69 96.04 22.54 98.87
X-Maha 88.71 51.72 9550 24.17 7439 7280 76.70 6517 7430 64.14 87.15 46.55 5812 90.09 79.27 59.23

A.9 Ablation studies on varying parameter-efficient fine-tuning methods.

X-Mabha is a general framework in which many lightweight fine-tuning methods can be integrated.
In addition to Adaptformer [4] which is used in our experiments by default, we test X-Maha with
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another 5 parameter-efficient fine-tuning (PEFT) methods as well as full fine-tuning. Specifically, we
combine X-Maha with Bias-tuning [38], VPT-shallow [21]], VPT-deep [21]], LoRA [18], and Adapter
[16]. We report the empirical results for CIFAR-100 in Table[I9] CIFAR-100-LT in Table 20| and
ImageNet-LT in Table 21} From the results, we observe that X-Maha consistently improves the
baselines by a large margin, showing its robustness to the PEFT methods.

Table 19: OOD detection performance in terms of AUROC (1) and FPR95 () for different PEFT
methods, and full fine-tuning on CIFAR-100 dataset.

Texture SVHN CIFAR10 Tiny ImageNet LSUN Places Average
AUROC FPRY95 AUROC FPRY95 AUROC FPRY95 AUROC FPRY95 AUROC FPRY95 AUROC FPRY95 AUROC FPRY5

Method

Bias-tuning

+ MSP 9746 1277 9472 27.13 9419 2944 8842 4458 8625 6476 9193 4180 9216 36.75
+MLS 99.71 124 96.60 1331 96.96 1423 94.69 22.00 98.07 10.86 9873 684 9746 1141
+ Energy 99.82  0.87 96.62 12,60 97.07 13.58 95.10 20.07 9872 6.86 99.11 474 9774 9.79
+ Mahalanobis 9993 034 9880 532  96.18 20.60 9731 1071 99.58 132 9945 2.68 98.54 6.83
+ Residual 99.98 0.04 9720 1692 90.96 49.13 9846 6.69 9990 0.14 9981 059 97.72 1225
+ Vim 99.85 0.74 96.84 11.84 97.09 1358 9548 1894 9896 521 9924 390 9791 9.04
+NECO 99.77 121 97.03 1242 9695 1577 9497 20.55 9834 10.19 9884 658 97.65 11.12
+ X-Maha (ours) 100.0  0.00 9944 229 9532 2535 99.68 1.52 9999 001 9999 0.02 99.07 4.87
VPT-shallow
+ MSP 95.84 18.09 93.78 3450 92.09 3735 8590 49.15 79.15 78.05 87.17 5451 8899 4527
+MLS 98.77 528 9655 1836 9442 2510 8629 4731 88.68 5955 9294 3522 9224 31.81
+ Energy 99.04 457 9658 1587 9442 2475 8583 51.00 89.64 5553 9347 32,64 93.16 30.73
+ Mahalanobis 9997  0.18 9241 4463 9384 3215 98.04 923 9986 0.18 9977 0.88 9731 14.54
+ Residual 99.98 0.05 8046 67.16 8692 5554 99.02 517 9995 0.10 99.89 037 9437 2140
+ Vim 99.29  3.62 9671 1516 9457 24.64 8734 4583 91.64 4632 9470 2697 94.04 27.09
+NECO 99.30 356 9599 2570 95.02 2455 90.59 34.88 9424 3405 96.17 20.60 9522 23.89
+ X-Maha (ours) 100.0  0.00 9428 3641 9237 3848 99.78 1.15 9999 001 9998 006 9773 12.68
VPT-deep
+ MSP 9743 1349 91.72 4453 9433 30.07 8693 48.16 8423 69.02 91.10 4798 90.79 4221
+MLS 99.69 1249 9655 1598 9121 30.65 9581 2568 9751 1326 9751 1326 9634 16.59
+ Energy 99.79  1.12 9759 1049 96.53 1582 9143 29.60 96.53 21.24 9795 11.21 96.64 1491
+ Mahalanobis 99.94 030 9427 39.67 96.08 2259 97.10 162.99 99.08 4.88 99.16 447 97.60 14.15
+ Residual 99.97 0.04 9125 5335 89.88 50.67 98.07 10.16 99.69 0.74 99.58 1.64 9641 1943
+ Vim 99.83  0.83 97.68 10.13 9657 1591 9209 2775 97.05 1826 9822 996 9691 13.81
+NECO 99.72 144 96,53 17.02 96.71 17.06 9273 26.10 96.80 20.68 98.03 11.12 96.75 15.57
+ X-Maha (ours) 99.99  0.02 9636 2531 9533 2639 9959 203 9995 000 9993 0.18 9852 8.99
LoRA
+ MSP 97.36 1277 9485 29.23 9436 2949 8726 46.89 8476 68.83 90.95 4535 9159 38.76
+MLS 99.57 191 9788 889 9698 1476 89.51 3434 9570 27.11 97.68 1253 9622 16.59
+ Energy 99.68 138 98.09 7.79 97.09 1428 89.57 3475 9637 2326 98.09 10.67 9648 15.36
+ Mahalanobis 9996 0.1 9933 2,69 96.65 1798 97.72 947 9939 207 9947 235 9876 5.8
+ Residual 99.99 0.02 9815 9.65 9125 44.12 9885 483 99.84 0.14 99.80 045 9798 9.87
+ Vim 99.75 113 9829 691 97.121 1425 9050 3238 9696 20.00 9838 927 96.83 13.99
+NECO 99.69 1.67 9843 6.15 9698 1596 9195 27.74 96.66 21.84 98.17 997 9698 13.89
+ X-Maha (ours) 100.0 0.00 99.78 088 9599 2152 99.82 096 9999 000 9999 001 9926 3.89
Adapter
+ MSP 97.34 1254 9556 2393 91.73 38.80 8530 48.04 8470 6247 90.66 42.81 90.88 38.10
+MLS 9990 032 9831 8.0l 9426 29.06 9218 2958 99.10 3.69 9950 1.51 9721 12.03
+ Energy 99.93  0.18 9828 756 93.67 34.00 9243 2842 9948 143 9971 0.61 9725 12.03
+ Mahalanobis 9997  0.12  99.44  1.82 9504 2643 9758 9.60 9955 1.76 99.63 136 98.53  6.85
+ Residual 99.98 0.02 97.78 1480 86.21 64.68 9851 691 99.85 047 99.84 036 97.03 14.54
+ Vim 9995 0.16 9848 636 9377 3318 93.09 26.10 9957 098 9975 045 9744 1120
+NECO 99.90 030 98.60 692 9441 27.76 9231 2644 9891 670 9945 268 9726 11.82

+ X-Maha (ours) 100.0  0.00 99.50 254 96.79 18.07 99.72 150 100.0 0.00 100.0 0.00 99.33  3.68
Full fine-tuning

+ MSP 97.24 1539 9145 46778 93.64 3362 8779 4874 8544 7287 9158 4841 91.19 4430
+MLS 99.72 112 90.65 36.84 96.55 16.03 9043 30.61 97.84 11.13 9897 363 95.69 15.56
+ Energy 99.76  0.89 90.44 38.61 9657 1589 90.47 3036 98.11 9.60 99.13 3.08 9575 16.40
+ Mahalanobis 99.87  0.55 9680 16.06 96.87 1538 97.46 1326 97.69 1625 98.96  6.61 97.94 11.35
+ Residual 99.98 0.12 9813 9.62 9511 2657 99.13 486 99.70 1.04 99.86 054 98.65 7.13
+ Vim 99.82  0.57 9157 3406 96.64 1550 9195 2590 9839 7.19 9928 227 9627 1425
+NECO 99.71 1.33  93.01 31.88 96.96 1553 9241 2621 9735 17.86 9878 6.72 9637 16.59

+ X-Maha (ours) 9993 032  97.12 1456 9691 1518 97.92 11.72 98.64 887 9940 341 98.32  9.01

Limitations and Broader Impacts

Limitations Despite X-Maha’s superior performance compared to the existing methods, it exhibits
certain limitations, and there are several unexplored research avenues. For example, the current
algorithm only provides a simple approach to calculate Transformer feature mixing weights, which
might not be optimal. In addition, our method assumes consistent feature dimensions across all layers,
which limits the applicability for more neural network architectures.
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Table 20: OOD detection performance in terms of AUROC (1) and FPR95 () for different PEFT
methods, and full fine-tuning on CIFAR-100-LT dataset.

Texture SVHN CIFAR10 Tiny ImageNet LSUN Places Average
AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR9Y5

Method

Bias-tuning

+ MSP 97.23 1291 95.68 23.01 91.66 3832 85.10 49.19 8391 6544 89.82 4537 90.56 39.04
+MLS 99.89 037 9773 1036 9429 28.15 93.67 2436 9887 506 9929 291 9729 11.87
+ Energy 99.93 025 9742 13.18 93.78 33.19 94.14 22.64 9938 208 99.59 138 9737 1212
+ Mahalanobis 99.96 020 99.58 127 9459 2856 9726 1039 99.54 2.14 9955 1.84 9840 740
+ Residual 99.97 0.05 9798 11.87 8550 67.10 98.00 9.44 99.77 053 99.74 071 96.83 14.95
+ Vim 99.95 0.16 97.74 10.84 93.87 3251 94.67 2093 9950 149 99.66 099 9757 1115
+NECO 99.80 051 98.15 8.82 9432 27.12 9333 2252 9859 934 9923 402 9725 12.06
+ X-Maha (ours) 100.0 0.00 9991 0.08 9333 3586 99.76 1.18 100.0 0.00 100.0 0.00 98.83 6.19
VPT-shallow
+ MSP 9499 22,66 9431 32.06 88.65 5240 82.64 5858 7845 8238 8596 59.76 87.50 51.31
+MLS 9943 285 96.76 1852 87.77 5441 81.14 6450 9333 40.85 95.01 27.59 9224 3479
+ Energy 99.61 172 96.05 2439 86.05 6246 79.32 7340 9482 3144 9572 23.16 9193 36.09
+ Mahalanobis 99.92 037 93.09 38.88 91.12 42.84 9648 1427 99.64 134 9957 182 96.64 16.59
+ Residual 99.92 028 8478 5396 80.83 70.84 9742 1356 99.75 0.76  99.61 1.35 9372 23.46
+ Vim 99.72 140 9626 2238 8639 60.61 81.39 6738 9597 24.05 9655 1872 9272 3242
+NECO 99.70  1.37 96.04 24.00 89.82 4379 86.69 4397 9527 2419 9775 16.80 94.05 25.69
+ X-Maha (ours) 100.0  0.02 9565 2596 88.82 50.14 99.72 136 9998 0.00 9997 0.04 97.36 12.92
VPT-deep
+ MSP 96.78 1473 92.13 3871 90.87 42.17 83.57 53.66 81.08 72.16 87.71 52.15 88.69 45.60
+MLS 99.78 0.87 97.63 11.72 9042 4426 8738 4551 9643 2213 97.87 1218 9492 2278
+ Energy 99.86 0.55 9775 1055 88.92 54.12 87.04 49.12 9725 16.66 9835 925 9486 23.37
+ Mahalanobis 99.88 039 9822 1049 92.63 4093 9585 1672 9881 674 9894 510 97.39 13.39
+ Residual 99.90 030 9561 23.77 82.05 73.28 9625 18.13 99.23 343 99.11 377 9536 2045
+ Vim 99.89 050 98.00 927 89.13 53.34 88.05 45.00 97.68 14.16 9858 780 9522 21.68
+ NECO 99.82  0.78 97.78 11.74 91.39 39.08 89.00 3593 96.60 1840 98.14 10.10 9545 19.34
+ X-Maha (ours) 99.99  0.00 9932 297 91.05 46.61 99.56 2.10 99.94 0.00 99.92 0.07 9830 8.62
LoRA
+ MSP 96.77 15.05 94.10 3279 9125 41.07 84.06 51.62 81.70 71.24 88.80 49.24 8945 43.50
+MLS 99.78 0.85 9695 16.78 93.06 32.74 87.54 43.19 97.66 1445 9875 6.61 9562 19.10
+ Energy 99.84 044 9651 2022 9228 39.13 87.19 47.63 9831 971 99.09 423 9554 20.23
+ Mahalanobis 99.97  0.09 9959 1.12 9416 3032 9726 1076 9947 215 9959 155 9834 7.66
+ Residual 99.98  0.07 98.04 11.86 84.77 6635 98.08 899 99.74 0.77 99.72 070 96.72 14.79
+ Vim 99.89 039 97.00 1642 9241 3874 8848 4291 98.63 775 99.25 328 9595 1825
+NECO 99.84  0.69 97.89 1125 9325 3142 89.67 33.65 9747 1513 9884 6.11 96.16 16.38
+ X-Maha (ours) 100.0 0.00 99.96 0.01 92,62 3801 99.87 0.59 100.0 0.00 100.0 0.00 98.74 6.43
Adapter
+ MSP 97.34 1254 9556 2393 91.73 38.80 8530 48.04 8470 6247 90.66 42.81 90.88 38.10
+MLS 99.90 032 9831 801 9426 29.06 92.18 29.58 99.10 3.69 9950 151 97.21 12.03
+ Energy 99.93  0.18 9828 7.56 93.67 34.00 9243 2842 9948 143 9971 0.61 9725 12.03
+ Mahalanobis 99.97 0.12 9944 182 95.04 2643 9758 9.60 9955 1.76  99.63 136 98.53  6.85
+ Residual 99.98 0.02 97.78 14.80 8621 64.68 9851 691 99.85 047 99.84 036 97.03 14.54
+ Vim 99.95 0.16 9848 636 93.77 33.18 93.09 26.10 99.57 098 99.75 045 9744 11.20
+NECO 99.90 030 98.60 6.92 9441 27.76 9231 2644 9891 670 9945 268 9726 11.82

+ X-Maha (ours) 100.0  0.00 9992 0.09 9412 30.70 99.80 092 1000 0.00 1000 0.00 9897 528

Full fine-tuning

+ MSP 9693 1429 9398 3233 9046 4633 8391 5360 8516 6675 9043 4644 90.14 4329
+MLS 99.86 050 94.01 33.58 93.96 28.83 8843 37.80 99.16 193 9941 1.80 9581 17.41
+ Energy 9991 034 9259 4761 9384 29.66 8846 37.68 9953 0.71 99.64 097 9566 19.49
+ Mahalanobis 99.95 027 97.08 16.06 95.14 23.82 97.04 13.62 99.18 522 9952 262 9799 10.27
+ Residual 99.99  0.02 9771 1320 90.08 49.81 9889 516 9986 035 9991 026 97.74 1147
+ Vim 99.94 025 93.63 4038 9398 29.20 90.18 32.65 99.65 041 99.73 0.65 96.18 17.26
+NECO 99.87  0.57 9473 2996 9434 2566 90.05 31.81 9875 839 9927 389 96.17 16.71

+ X-Maha (ours) 99.99  0.02 97.86 1072 9520 23.66 98.50 3837 99.81 80.77 99.87 058 98.54 735

Broader Impacts This study falls within the domain of out-of-distribution (OOD) detection, a
machine learning paradigm that aims to achieve superior classification performance in known classes
while identifying OOD samples. Consequently, as this technique gains efficacy and wider adoption,
the necessity for extensive data annotation may get diminished, potentially contributing to a rise in
unemployment among data annotation professionals.
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Table 21: OOD detection performance in terms of AUROC (1) and FPR95 () for different PEFT
methods, and full fine-tuning on ImageNet-LT dataset.

Texture Places SUN iNaturalist ImageNet-O Average
AUROC FPRY95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPRY95 AUROC FPRY5

Method

Bias-tuning

+ MSP 8392 5830 8095 6786 81.16 6633 9431 2699 7583 77.60 8323 59.42
+MLS 88.71 49.75 8446 6147 8584 5857 9693 1631 82.68 7140 87.72 51.50
+ Energy 89.93 4348 85.15 5730 8697 5285 97.84 10.11 8422 6695 88.82 46.14
+ Mahalanobis 87.55 59.63 8272 61.63 86.38 5155 97.89 10.89 85.03 62.65 87.92 49.27
+ Residual 73.74 81.88 6843 8287 75.65 73.07 8827 4856 7240 80.00 7570 73.28
+ Vim 90.06 42.68 8522 57.05 87.16 52.08 9792 983 8439 66.60 88.95 45.65
+ NECO 88.38 50.51 84.00 60.84 86.25 5723 97.65 12.16 8385 6740 88.03 49.63
+ X-Maha (ours) 90.95 4145 81.67 6398 8548 54.88 97.75 11.44 86.58 56.70 88.48 45.69
VPT-shallow
+ MSP 85.58 49.11 8544 5599 86.38 5279 97.53 1026 83.79 5795 8774 4522
+MLS 89.30 4147 88.52 4937 90.05 4547 98.64 590 8874 4850 91.05 38.14
+ Energy 90.00 3794 89.01 46.13 90.73 41.65 9895 431 89.69 4420 91.68 34.85
+ Mahalanobis 92.07 29.52 86.20 58.31 8898 4994 99.19 3.10 9151 3895 91.59 3596
+ Residual 88.37 49.73 73.68 80.55 79.27 7240 96.66 16.66 84.03 60.05 84.40 55.88
+ Vim 90.32 3633 89.04 46.03 90.82 4124 99.02 4.11 89.93 4275 91.83 34.09
+ NECO 91.15 3332 87.20 49.53 89.67 4433 99.01 386 8998 4380 9140 3497
+ X-Maha (ours) 95.93 1454 8598 57.66 89.03 47.59 99.18 3.17 9334 3230 92.69 31.05
VPT-deep
+ MSP 8528 49.27 8475 57.12 8592 5382 97.13 11.51 83.13 5820 87.24 4598
+MLS 89.57 4030 88.37 49.82 89.97 4576 9842 6.61 88.35 49.70 90.93 38.44
+ Energy 90.32 37.02 8892 46.67 90.65 42.09 9872 521 8923 4560 91.57 3532
+ Mahalanobis 92.06 2938 8941 46.03 91.53 3921 9920 3.07 90.76 41.65 92.59 31.87
+ Residual 89.31 43.60 8248 6582 86.52 5629 97.04 1473 8229 62.05 8753 48.50
+ Vim 90.62 3525 89.11 4587 90.88 41.07 9881 486 89.42 44.15 91.77 3424
+ NECO 90.47 3504 8846 4625 90.73 3993 9882 456 88.81 4515 9146 34.19
+ X-Maha (ours) 9552 16.03 89.27 4636 91.57 3840 99.25 3.07 9255 3525 93.63 27.82
LoRA
+ MSP 8599 47.75 8529 56.70 86.36 53.65 97.14 11.87 83.59 58.30 87.67 45.65
+MLS 90.06 39.08 88.56 50.13 90.17 4598 9841 679 88.82 4835 9120 38.07
+ Energy 90.81 3580 89.03 47.35 90.81 4237 98.70 5.17 89.78 4335 9193 3481
+ Mahalanobis 93.12 2578 88.31 50.24 9092 41.66 99.28 284 91.57 39.00 92.64 31.90
+ Residual 91.25 37.61 7895 71.78 84.13 61.05 97.08 1496 8392 59.10 87.07 48.90
+ Vim 91.18 3392 89.16 46.63 91.01 41.06 98.81 481 90.01 4230 92.03 33.74
+NECO 91.80 30.76 88.35 47.11 90.79 4031 9893 4.07 89.71 43.80 91.92 3321
+ X-Maha (ours) 96.85 11.28 88.36 49.55 91.06 4036 99.26 2.84 93.58 30.70 93.82 26.95
Adapter
+ MSP 8548 49.04 8497 56.62 86.28 53.16 9697 1259 83.56 57.50 87.45 45.78
+MLS 89.75 40.18 8851 49.51 90.28 4491 9834 6.89 88.88 48.10 91.15 37.92
+ Energy 90.47 37.02 89.01 46.88 9093 41.73 98.65 559 89.79 4290 91.77 34.82
+ Mahalanobis 92.61 2832 89.17 47.15 9147 3920 9924 300 9135 3995 9277 31.52
+ Residual 91.32 37.02 8247 6559 86.63 5503 9742 12.88 83.67 60.25 88.30 46.15
+ Vim 90.83 3555 89.20 4593 91.15 4046 9876 5.14 90.00 42.05 9199 3383
+ NECO 91.13  33.10 8891 4455 9123 3750 9884 433 8949 43.10 9192 3252

+ X-Maha (ours) 96.71 1248 89.35 4641 91.87 37.28 99.28 2:77 9341 3190 94.12 26.17
Full fine-tuning

+ MSP 8221 56.24 81.12 6598 81.83 6282 9392 2460 78.67 6485 8355 54.90
+MLS 87.34 48.72 8431 60.57 8587 5724 96.04 18.77 86.30 56.00 8797 48.26
+ Energy 8732 49.65 84.07 61.19 8570 5851 9557 2225 86.55 5545 87.84 4941
+ Mahalanobis 89.84 3794 8582 56.61 87.51 53.62 9821 727 8721 5245 89.72 41.28
+ Residual 81.65 6537 71.82 8397 7522 7832 9241 3893 7036 7990 7829 69.30
+ Vim 87.56 4842 84.12 6091 8580 5811 9581 20.61 86.53 5570 87.97 48.75
+NECO 87.56 43.74 8330 5795 8599 5372 97.11 11.76 8576 5220 8795 43.87

+ X-Mabha (ours) 93.28 25:05 86.17 55.15 8790 5141 9854 599 88.87 4635 9095 36.79
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