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Abstract001

In recent years, the increasing size of deep learning002

models and their growing demand for computational003

resources have drawn significant attention to the004

practice of pruning neural networks, while aiming005

to preserve their accuracy. In unstructured gradual006

pruning, which sparsifies a network by gradually007

removing individual network parameters until a tar-008

geted network sparsity is reached, recent works show009

that both gradient and weight magnitudes should be010

considered. In this work, we show that such mecha-011

nism, e.g., the order of prioritization and selection012

criteria, is essential. We introduce a gradient-first013

magnitude-next strategy for choosing the parame-014

ters to prune, and show that a fixed-rate subselection015

criterion between these steps works better, in con-016

trast to the annealing approach in the literature.017

We validate this on CIFAR-10 dataset, with multi-018

ple randomized initializations on both VGG-19 and019

ResNet-50 network backbones, for pruning targets of020

90, 95, and 98% sparsity and for both initially dense021

and 50% sparse networks. Our proposed fixed-rate022

gradient-first gradual pruning (FGGP) approach023

outperforms its state-of-the-art alternatives in most024

of the above experimental settings, even occasionally025

surpassing the upperbound of corresponding dense026

network results, and having the highest ranking027

across the considered experimental settings.028

1 Introduction029

In deep-learning for a given problem setting, typi-030

cally first a network architecture is engineered (hand-031

crafted) and then the parameters of such network are032

learned. However, even when the problem setting033

has an established solution with a known network034

architecture, the required number of features/filters,035

contextual depth, layer sizes, and other architec-036

tural settings often need to be adjusted empirically037

to achieve optimal results. Alternatively, overpa-038

rameterized deep neural networks are used, as most039

state-of-the-art today, aiming to capture hidden pat-040

terns in the data without manually optimizing ar-041

chitectures. Overparameterization, however, comes042

with largely increased computational costs at both043

training and inference time; requiring more energy,044

yielding higher CO2 emissions, and making mod-045

els less suitable for time critical tasks and embed-046

ded/edge/mobile computing. Overparameterized047

models are also more likely to overfit the training 048

data, hence yielding reduced performance especially 049

without suitable regularization treatments, due to 050

suboptimal optimization approaches or insufficient 051

time required for lengthy training. 052

Neural Architecture Search (NAS) [1], a type 053

of meta-learning and a subfield of automated ma- 054

chine learning (AutoML), aims to find optimal NN 055

architectures. NAS typically treats networks as 056

black-box models updating them based solely on ob- 057

served output or prediction accuracy using methods 058

such as evolutionary search, reinforcement learn- 059

ing, Bayesian approximation, etc. This typically 060

requires significant amount of resources and does 061

not seek principled update strategies that consider 062

the intrinsic dynamics and parameters of a network. 063

Pruning is a network model compression technique 064

that aims to remove the network parameters that are 065

least important, i.e., that would change the accuracy 066

minimally. Ideas of adapting network architectures 067

started as early as the introduction of neural net- 068

works themselves, including seminal works such as 069

“Optimal Brain Damage” (OBD) [2] by LeCun et 070

al. For a while, research mostly focused on devising 071

expressive neural representations, on efficient opti- 072

mization strategies, and on solving practical large 073

problems thanks to advances in compute capability. 074

Recently, pruning has gained popularity again with 075

an increasing focus on model compression for highly 076

complex problems and edge computing. 077

Our main contributions in this paper include: 078

(1) We provide a clear and transparent definition 079

and review of multi-step top-K selection processes 080

in gradual pruning. (2) We show the order priori- 081

tization and selection criteria both being essential 082

and inter-related for a successful gradual pruning 083

algorithm. (3) We propose a gradient-first top-K se- 084

lection criterion that performs well with a fixed-rate 085

selection quota. (4) We set the new state-of-the-art 086

in gradual pruning for CIFAR-10 dataset. 087

2 Background 088

Network pruning was shown by Frankle and 089

Carbin [3] and Liu et al. [4] to achieve similar or even 090

better classification performance than correspond- 091

ing dense models, with less than half of the original 092

parameters. These helped draw further attention 093

to the redundancy of state-of-the-art deep neural 094

networks. Structured pruning removes neurons in 095
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fully-connected (FC) or convolutional (conv) layers096

(the latter also known as channel pruning), hence097

not changing the layer’s original structural property,098

i.e., yielding a respective FC or conv layer. Unstruc-099

tured pruning removes weights (connections), which100

then typically makes the layer (and the network)101

unstructured, i.e., not a conventional FC or conv102

anymore.103

Structured pruning aims to remove redundant104

channels such as based on LASSO regression [5] and105

discrimination-aware loss [6], or to remove redundant106

neurons or convolutional filters such as based on107

mean activation magnitude [7]. Instead of such108

(structured) pruning, it is more natural to decide on109

the (unstructured) pruning of network parameters110

since these are the entities that are determined via111

optimization during training.112

Scheduling. Some methods update the neurons113

(filters) using a single one-shot approach, either at114

the very beginning (following initialization) or at the115

very end (after training to convergence). Pruning at116

start, also known as foresight pruning, assumes that117

an optimal subnetwork, which is capable of achiev-118

ing success at convergence, is already identifiable at119

initialization. For instance, SNIP [8] approximates120

synapse sensitivity after initialization by estimating121

the change in loss with respect to the removal of each122

parameter. To avoid numerous forward passes by123

removing each parameter individually, SNIP instead124

makes an infinitesimal (multiplicative) approxima-125

tion to removal that can be computed in a single126

forward-backward pass, and then pre-prunes the127

parameters with small magnitude |θi| and small gra-128

dients |gi| at initial state. Gradient Signal Preser-129

vation (GraSP) [9] revisits SNIP by considering ex-130

pected subsequent gradient flow using a second-order131

term |Hg|, which avoids explicit Hessian computa-132

tions; however, this leads to results not substantially133

different than SNIP. Despite the simplicity and at-134

traction of one-shot methods, superior results are135

often achieved using sequential pruning approaches,136

indicating that fixing the network structure once is137

not an optimal strategy.138

Iterative pruning is applied repeatedly over139

multiple rounds, following complete convergence af-140

ter each round, which is hence computationally very141

costly. Lottery Ticket Hypothesis (LTH) [3] assumes142

that a pruning-candidate subnetwork has the win-143

ning ticket primarily thanks to its random initial-144

ization of parameters. LTH then trains a network,145

prunes the weights with smallest magnitudes, and146

then retrains the pruned network starting from the147

same initial random parameters, and repeats this148

process iteratively until a desired sparsity level is149

reached. Later, Liu et al. [4] confute LTH by showing150

that any arbitrary initialization with such pruned151

network achieve similar results, hence showing that152

the key is the architecture, not the initialization.153

Fixed-sparsity pruning initializes a network at 154

the target low sparsity and then trains this network 155

to convergence while keeping its sparsity constant, 156

such that the total training cost can be kept lower 157

than a dense network. RigL [10] is such an exam- 158

ple, which during training first selects a subset of 159

weights with the smallest magnitudes to prune, and 160

then momentarily sets all missing weights to zero 161

to compute their gradient with a backprop, to de- 162

termine the highest gradient-magnitude weights to 163

add (grow) to keep the sparsity constant. 164

Gradual pruning prunes the network while it is 165

being trained, slowly changing the network sparsity 166

to a final targeted value, e.g. at regular iteration or 167

epoch intervals some parameters are pruned based on 168

a priority criterion and mechanism. This was shown 169

to achieve comparable performance to iterative prun- 170

ing, while incurring much lower computational costs. 171

The main challenge here is that the network is not 172

in a converged state during the pruning decisions. 173

Medeiros et al. [11] prune connections with lower 174

correlations between the errors within a layer and 175

those backpropagated to the preceding layer, which 176

they call the MAXCORE principle. Dynamic Net- 177

work Surgery [12] employs gradual pruning with a 178

binary mask for pruned/spliced connections, while 179

updating both the pruned and the remaining param- 180

eters. Zhu et al. [13] gradually change the network 181

sparsity based on a cubic scheduling function, while 182

pruning the weights with smallest magnitudes – al- 183

though the weights alone are not sufficiently infor- 184

mative in an uncoverged network state. Dettmers 185

et al. [14] utilize exponentially smoothed gradients 186

(momentum) to identify layer and parameter con- 187

tributions to error reduction, while both pruning 188

and regrowing the connections based on momenta. 189

GraNet [15] combines the pruning schedule of [13] 190

with the pruning criterion of RigL [10], achieving 191

the state-of-the-art results in unstructured gradual 192

pruning. Note that although GraNet calls the subset 193

selection process as weight “addition” (where the 194

second stage is explained as if adding [back] high- 195

gradient parameters), this is somewhat a misnomer 196

as GraNet does not aim and cannot grow synapses 197

inexistent at the beginning of pruning. In this pa- 198

per, we describe GraNet with a literature-consistent 199

terminology, which helps to better contrast it with 200

our proposed method. 201

3 Methods 202

For a neural network f parametrized by Θ = 203

{θ1, θ2, ..., θw} with w parameters, the goal of train- 204

ing on a datasetD = {(x1, y1), (x2, y2), ..., (xK , yK)} 205

with K input-groundtruth pairs (xi, yi) is 206

min
Θ

L =

K∑
i=1

l(f(xi; Θ), yi), (1) 207
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where l(·, ·) is the penalty/loss function for the208

distance between yi and the network prediction209

f(xi; Θ). The optimization problem is then solved210

iteratively via backpropagation (training), which211

is typically stabilized by using a regularization of212

parameters as an additional objective.213

3.1 Pruning schedule214

Let sparsity s define the number of parameters, N , in215

a pruned network with respect to its dense equivalent216

N∗ as N = (1− s)N∗. Gradual pruning reduces the217

network parameters slowly over training time based218

on a desired decay pattern (also called ”schedule”).219

To prune a network from an initial sparsity sini at220

iteration tini to an intended target sparsity sfin at it-221

eration tfin, we employ cubic sparsity scheduling [13]222

where sparsity st at iteration t is given by:223

st = sfin + (sini − sfin)(1−
t− tini
tfin − tini

)3, (2)224

which then defines the desired number of parameters225

at any iteration t as Nt = (1− st)N
∗.226

Pruning events can either be applied regularly dur-227

ing training, e.g., every ∆t epochs or iterations, or228

be at instances sampled randomly from a probability229

distribution. Each event will then prune Np network230

parameters to reduce their number to that desired231

(scheduled) at that instance, i.e., Np = Nt−∆t −Nt232

assuming pruning events with ∆t iteration interval.233

3.2 Pruning strategy234

Parameter selection criteria and mechanism have235

the utmost importance that can affect the outcome236

significantly. We motivate our choice based on the237

framework of OBD [2], which approximates the sen-238

sitivity of loss L to individual network parameters239

θi using a second-order Taylor-series expansion as:240

δL =
∑
i

giδθi︸ ︷︷ ︸
1st term

+
1

2

∑
i

hiiδθ
2
i︸ ︷︷ ︸

2nd term

+
1

2

∑
i ̸=j

hijδθiδθj︸ ︷︷ ︸
3rd term

(3)241

where higher order terms are omitted, gi is the gra-242

dient of L with respect to θi, and hij are the ele-243

ments of the Hessian matrix. Pruning a parameter,244

which nullifies its effect, causes a negative change245

equivalent to its value, i.e., δθi = −θi. The 3rd246

term is often omitted by assuming minimal cross-247

parameter effect. If the network is already trained248

(i.e., converged at a local minimum), then the gra-249

dients diminish and the 1st term can be omitted250

as well. OBD then estimates the diagonal Hessian251

terms to prune parameters based on the 2nd term.252

The above, however, cannot be assumed in a grad-253

ual pruning setting where the network is not con-254

verged. Assuming a simpler first-order Taylor expan-255

sion δL ≈
∑

i giδθi, several works aim to minimize256

this by simply pruning parameters with small mag-257

Algorithm 1 FGGP algorithmic overview

Inputs:
1: network fΘ, dataset D

Initialize
2: Neural network fΘ
3: st : sparsity scheduled as in (2)
4: ∆t : update interval
5: r : sub-selection rate
6: for each training iteration t do
7: Sample a minibatch Bt ∼ D
8: if t ≡ 0 (mod ∆t) then
9: Sort theNt−∆t parameters in ascending order

by gradient magnitude (step 1 in Figure 1(a))
10: For the first r · Nt−∆t parameters, sort in

ascending order by weight magnitude (step 2)
11: Prune the first Nt−∆t − Nt parameters, so

there are Nt parameters left (step 3 in Figure 1(a))
12: end if
13: Update parameters via backpropagation
14: end for
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(b) GraNet [15]

Figure 1. Comparison of the parameter selection mech-
anisms between our proposed FGGP and GraNet [15].

nitudes, but this only applies if those gradients are 258

not large. Although some recent works [8, 10, 15] 259

consider the gradients in addition, they do this with- 260

out a basis on the terms higher than the first order. 261

In this work, we consider the gradients first, focusing 262

on the parameters with small gradient magnitudes 263

for which the 1st term in (3) has a basis to be omit- 264

ted, and then we focus on small magnitudes that 265

ensure the 1st term to diminish as well as the 2nd 266

term where they appear quadratically – selecting 267

the parameters with minimal effect on the loss. 268

A pseudocode of our proposed approach fixed-rate 269

gradient-first gradual pruning (FGGP) is given in 270

Algorithm 1, with the pruning criteria visualized in 271

Figure 1(a). At every ∆t iterations, our method 272

chooses the parameters to prune with a two-step 273

selection process: We first rank the parameters by 274

their gradient magnitudes |gi| ; we select the small- 275

est rNt−∆T out of these, and then rank those by 276

their parameter magnitude |θi| ; finally we select 277

the smallest Np of these to prune. This strategy 278

avoids the magnitude-based selection from applying 279

to unconverged parameters, whose values are still be- 280

ing changed, i.e., having large gradient magnitudes. 281

GraNet, in contrast, applies an opposite order of 282
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selection as illustrated in Figure 1(b), which may283

fail by pruning important parameters if many pa-284

rameters with small magnitudes are still in change285

(i.e., with large gradients), since its 2nd step can286

only consider those culled/selected from the 1st step.287

With our subset selection order, we avoid this.288

For pruning we consider the paremeters from all289

the network layers, unlike RigL [10] which does not290

prune the first convolutional layer and LTH [3] which291

does not prune the last fully-connected layer. We292

prune the network globally, pooling the parameters293

from all layers for their prioritization in pruning.294

3.3 Subset selection rate295

In the above process, an important factor is the de-296

cision of which gradients to consider as large to omit297

from the next steps of parameter selection. Any298

fixed threshold would not be applicable, since the299

parameters and gradients all have values relative to300

each other, and in gradual pruning a predetermined301

schedule has to be met to achieve a desired sparsity.302

So, the selection needs to be based on a ratio from303

a ranked (sorted) prioritization. In its magnitude-304

first strategy, GraNet employs (cosine) annealing to305

reduce a parameter p, seen in Figure 1(b). This re-306

duces the subset considered from step 1 over training307

iterations, focusing on incresingly smaller parame-308

ter magnitudes at later iterations. In our gradient-309

first strategy, such reduction is not necessary and is310

found to be counterproductive in our ablation stud-311

ies. Instead we utilize a fixed rate r as the ratio of312

gradient magnitudes to selected from the first step.313

We herein set r = 0.5 such that the parameters314

with gradient magnitudes smaller than their median315

value are taken into further consideration.316

4 Experiments and Results317

For evaluation we use the CIFAR-10 dataset as com-318

mon in the field, allowing us to compare our re-319

sults to multiple published works. We evaluate our320

method based on ResNet-50 and VGG-19 architec-321

tures, as were adapted for the CIFAR dataset [4].322

Implementation details are given in Appendix A. We323

aim for target sparsities sfin = {90, 95, 98} in two324

experimental settings of dense-to-sparse (sini = 0%)325

and sparse-to-sparse (sini = 50%). For initializ-326

ing the parameters in sparse networks, we employ327

Erdős–Rényi Kernel (ERK) [10] inline with the com-328

pared state-of-the-art. See Appendix B for details.329

In comparisons, we provide single-shot pruning330

results from other methods as reference. The prun-331

ing accuracies of the methods with a dense network332

upperbound are seen in Table 1, where ± results indi-333

cate those from three different random initialization.334

The single-shot methods are seen to be inferior to335

the gradual methods, and among the latter the ones336
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Figure 2. Comparison of weight magnitude distribu-
tions at the end of training with (a) a dense network, as
well as pruned with (b) GraNet and (c) FGGP from 0%
to 95% sparsity.

that consider both gradient and parameter magni- 337

tudes (e.g., RigL, GraNet, and our FGGP) perform 338

relatively better. These differences are more pro- 339

nounced at higher sparsity targets and for ResNet-50 340

architecture, indicating that these potentially rep- 341

resent more challenging pruning scenarios. In most 342

scenarios our method FGGP outperforms the other 343

state-of-the-art methods. For VGG-19, our method 344

is more successful at higher sparsity targets of 95% 345

and 98%, for both sparse- and dense-to-sparse train- 346

ing scenarios. In both scenarios for ResNet-50, two- 347

out-of-three sparsity levels our method outperforms 348

the others – although some results may be too close 349

to call for a clear winner. For an overall comparison 350

across all experiments, we employ a ranking strat- 351

egy where the methods are ranked by their mean 352

accuracy in each experimental configuration (each 353

column and grouping). Our method is seen to lead 354

the overall rankings. 355

For a sparsified network, the distribution of num- 356

ber of parameters across layers exemplified for VGG- 357

19 in Appendix C indicates that the depth of this 358

network was potentially redundant for the given 359

task, as most filters in the latter half of the lay- 360

ers have been sparsified almost completely, without 361

much reducing the accuracy as seen in our results. 362

To provide further insight, in Figure 2 we present 363

the distributions of weight magnitudes for networks 364

trained using a dense model as well as using GraNet 365

and the proposed FGGP. Although both pruning 366

methods reduce near-zero weights, which may have 367

less impact on the final predictions, our approach is 368

seen to be more effective in this regard. 369

4.1 Ablation Study 370

To study the effect of the proposed method compo- 371

nents and parameters, we conduct ablation experi- 372

ments for the dense-to-sparse setting with VGG-19 373

on CIFAR-10, repeating each experiment with three 374

initialization seeds and reporting the mean values 375

for comparison. 376

First, we evaluate the impact of the subset se- 377

lection rate r by comparing results for values r = 378
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Table 1. Test accuracy of pruned VGG-19 and ResNet-50 networks on CIFAR-10 dataset, with mean±std values
from experiments with three different seeds. GraNet [15] and RigL [10] results were taken from [15], while the
other results were compiled from [9, 16] for the reported settings. The bold numbers indicate the best accuracy in
each given gradual pruning subcategory. The rightmost column shows the average ranking of methods within a
subcategory across the six experimental settings (columns) (the stars indicate averages from VGG-19 only).

VGG-19 ResNet-50 Rank

Sparsity target (N%) 90% 95% 98% 90% 95% 98%

Single-shot
(0%→N% at init)

SNIP [8] 93.63 93.43 92.05 92.65 90.86 87.21 2.17
GraSP [9] 93.30 93.04 92.19 92.47 91.32 88.77 2.33

SynFlow [17] 93.35 93.45 92.24 92.49 91.22 88.82 1.50

Sparse-to-sparse
(50%→N% gradual)

Deep-R [18] 90.81 89.59 86.77 - - - 5.00∗

SET [19] 92.46 91.73 89.18 - - - 4.00∗

RigL [10] 93.38±0.11 93.06±0.09 91.98±0.09 94.45±0.43 93.86±0.25 93.26±0.22 3.00
GraNet [15] 93.73±0.08 93.66±0.07 93.38±0.15 94.64±0.27 94.38±0.28 94.01±0.23 1.67
FGGP (ours) 93.68±0.04 93.94±0.17 93.63±0.15 94.76±0.11 94.27±0.38 94.22±0.24 1.33

Dense-to-sparse
(0%→N% gradual)

STR [20] 93.73 93.27 92.21 92.59 91.35 88.75 4.50
SIS [16] 93.99 93.31 92.16 92.81 91.69 90.11 3.67
GMP [21] 93.59±0.10 93.58 ±0.07 93.52±0.03 94.34±0.09 94.52±0.08 94.19±0.04 3.17
GraNet [15] 93.80±0.10 93.72±0.11 93.63±0.08 94.49±0.08 94.44±0.01 94.34±0.17 2.00
FGGP (ours) 93.71±0.15 93.77±0.25 93.80±0.02 94.78±0.19 94.64±0.38 94.33±0.42 1.67

Dense (0% upperbound) 93.93±0.35 94.73±0.06
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Figure 3. (a) Comparison of FGGP for four differ-
ent subset selection ratios r. (b) Ablations of FGGP
indicated as (·,·) where the first indicated the pruning
criteria order (g→θ: gradient-first & θ→g: magnitude-
first) and the second the subset selection strategy (with
the rate fixed or varying as cosine annealed). GraNet’s
proposed method choices are also indicated in the same
notation for clarity. Note that FGGP(g→θ, fixed) is our
proposed mechanism with gradient-first fixed-rate subset
selection. Experiments are reported for dense-to-sparse
pruning of VGG-19 for target sparsities of {90,95,98}%.

{0.20, 0.50, 0.80, 0.95}. Note that in the extreme379

case of r = 1, the second stage would be the380

sole determining criterion -— effectively reducing381

the method similar to gradual magnitude pruning382

(GMP). The results are depicted in Figure 3 (a).383

Although settings differ in their performance (with384

r = 0.95 even surpassing the upper bound at 95%385

sparsity), overall r = 0.5 and r = 0.8 consistently386

perform well. We chose r = 0.5 for all the experi-387

ments given its superior trend with higher sparsity,388

as a primary target of network compression.389

Second, we ablate different parts of our method390

FGGP, mimicking the GraNet behaviour to assess 391

the components with positive contribution. For the 392

subset selection, we use our fixed rate as well as the 393

varying (cosine annealing) rate change from GraNet. 394

We also test the change of order from gradient-first 395

to magnitude-first, as well as the combinations of 396

this with the rate choice above. The results are seen 397

in Figure 3(b). As the sparsity level gets higher, 398

our proposed method FGGP with the gradient-first 399

and fixed-rate settings are seen to achieve the best 400

performance. Note that for all these methods the 401

cubic scheduling function already reduces Np over 402

time, so the results may indicate that an additional 403

reduction of the subset selection rate is redundant 404

and detrimental. 405

5 Discussion and Conclusion 406

In this paper, we consider both gradient and weight 407

magnitudes in the unstructured gradual pruning 408

of parameters to sparsify networks. We herein ar- 409

gue that the criteria and the mechanism (the order, 410

thresholds, etc) used in the prioritization of pruned 411

parameters are essential. We propose to use a fixed- 412

ratio of parameter gradient magnitudes as a first 413

decision criteria for pruning, and experimentally 414

validate this in a variety of settings. Pruning has 415

the potential to substantially reduce computational 416

costs in deep learning, thereby contributing to lower 417

energy consumption and carbon emissions without 418

sacrificing ultimate performance. Lower energy use 419

can enable novel end-user experience, such as ren- 420

dering IoT devices feasible. Having smaller models 421

with similar performances could allow the deploy- 422

ment of complex models on smaller hardware and 423

of very large/deep models that would otherwise be 424

infeasible. 425
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Note that Liu et al. [15] explain their method426

GraNet as being able to regenerate/add (pNt) con-427

nections/parameters to a network during the prun-428

ing operations. However, following their descriptions429

and pseudocode it becomes evident that they apply430

a two-step strategy which first ranks the parameters431

by their magnitude |θ| to select the subset of small-432

est Np+pNt for further ranking gradient magnitude433

|gi| to select the smallest Np of them to prune, as434

demonstrated in Figure 1(b). We believe this de-435

mystification of such state-of-the-art is a further436

minor contribution of our work, as it also enabled437

us herein to technically compare our methods and438

experimentally design comparative ablation experi-439

ments. Note that at any given training step, some440

parameters may momentarily be zero (e.g., while441

changing sign) despite having nonzero gradients. If442

the number of such parameters exceeds Np + pNt,443

the second step of GraNet may inadvertently prune444

essential parameters, especially for larger p at earlier445

iterations. In contrast, our approach prioritizes gra-446

dient magnitudes in the first ranking step, ensuring447

that only relatively stable parameters (those that448

have locally converged) are considered for pruning.449

Note that our above criterion is more conservative450

than GraNet, and it may disregard some good pa-451

rameter candidates. Also, if all gradients are large,452

changing parameters may still be considered erro-453

neously. Nevertheless, the results show that our454

strategy is superior to that of the earlier state-of-455

the-art. In the future, including |gθ| and/or Hessian456

approximations can potentially improve the results457

further.458
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A Experiment details551

Our proposed method FGGP is implemented in Py-552

torch 2.0. We use cross-entropy loss for classification553

and the Stochastic Gradient Descent (SGD) for op-554

timization in all experiments. Training hyperparam-555

eters are tabulated in Table A.1. We set ∆t = 1000556

iterations. Pruning is stopped after 80% of the tar-557

geted epochs (i.e., tfin is set to the iteration number558

forecast for the 148th epoch), hence leaving the559

remaining 20% of training to fine-tune the model pa-560

rameters without any disruption from architectural561

changes – a strategy also common in other gradual562

pruning approaches. CIFAR-10 dataset contains 10563

different classes representing airplanes, cars, birds,564

cats, deer, dogs, frogs, horses, ships, and trucks. It565

consists of 60k 32×32 color images with 6k images566

for each class, with a split of 50k training and 10k567

testing images. We use data augmentation with568

random crops with padding of 4 and horizontal flips.569

570

B Erdős–Rényi initialization571

Erdős–Rényi [19] is a strategy for initializing the pa-572

rameters in fully-connected layers. Erdős–Rényi Ker-573

nel (ERK) [10] offers an extension of this to convo-574

lutional layers. Such initialization was shown to per-575

form superior to networks initialized randomly [10].576

ERK [10] determines a factor fl to scale the initial-577

ization of the parameters in the convolutional kernel578

l with width wl and height hl as:579

fl = 1− nl−1 + nl + wl + hl

nl−1 × nl × wl × hl
, (4)580

where nl is the total number of parameters in that581

convolutional kernel.582

C Sparsity of pruned network583

To give an insight of where the parameters are584

pruned the most and how the pruned networks look585

like, in this section we show the sparsity distribution586

of networks after applying FGGP. The number of pa-587

rameters of a dense and an FGGP pruned VGG-19588

Table A.1. Training hyperparameters.

Data CIFAR-10
Model VGG-19 / ResNet-50
Epochs 160
Batch Size 128
LR 0.1
LR Decay Epoch [80, 120]
LR Decay Factor 0.1
Weight Decay (L2) 0.0005
Momentum 0.9
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Figure C.1. (a) Number of parameters per layer in
a dense and FGGP-pruned VGG-19 network, shown
in logarithmic scale. (b) Sparsity of each layer after
pruning. The results are shown for a sample experiment.
Note that the final layer is fully-connected while the
others are convolutional.

are shown in Figure C.1(a), with the resulting layer 589

sparsity plotted in Figure C.1(b). As can be seen, 590

the second half of the network is almost completely 591

sparsified, likely leaving one or a few unit filters to 592

simply forward propagate the information extracted 593

by the initial convolutional layers for the final the 594

prediction in the last fully-connected layer (which 595

hence could not sparsify much). This observation 596

suggests that the depth of VGG-19 may be highly 597

redundant for the task of CIFAR-10 classification, 598

which could potentially be tackled with a half-the- 599

depth network. Future studies shall investigate this 600

aspect, potentially using pruning as an automatic 601

tool to determine optimal network shape and size 602

of traditional handcrafted architectures. 603
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