
A scalable generative model for dynamical system
reconstruction from neuroimaging data

Eric Volkmann1,2,∗, Alena Brändle1,3,4,∗, Daniel Durstewitz1,3,4,†, Georgia Koppe3,5,6,†

1Department of Theoretical Neuroscience, Central Institute of Mental Health (CIMH),
Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
2Institute for Machine Learning, Johannes Kepler University, Linz, Austria

3Interdisciplinary Center for Scientific Computing, Heidelberg University, Heidelberg, Germany
4Faculty of Physics and Astronomy, Heidelberg University, Heidelberg, Germany

5Hector Institute for AI in Psychiatry & Dept. for Psychiatry and Psychotherapy, CIMH
6Faculty of Mathematics and Computer Science, Heidelberg University, Heidelberg, Germany

∗,† These authors contributed equally

Abstract

Data-driven inference of the generative dynamics underlying a set of observed
time series is of growing interest in machine learning and the natural sciences. In
neuroscience, such methods promise to alleviate the need to handcraft models based
on biophysical principles and allow to automatize the inference of inter-individual
differences in brain dynamics. Recent breakthroughs in training techniques for
state space models (SSMs) specifically geared toward dynamical systems (DS)
reconstruction (DSR) enable to recover the underlying system including its geo-
metrical (attractor) and long-term statistical invariants from even short time series.
These techniques are based on control-theoretic ideas, like modern variants of
teacher forcing (TF), to ensure stable loss gradient propagation while training.
However, as it currently stands, these techniques are not directly applicable to data
modalities where current observations depend on an entire history of previous states
due to a signal’s filtering properties, as common in neuroscience (and physiology
more generally). Prominent examples are the blood oxygenation level dependent
(BOLD) signal in functional magnetic resonance imaging (fMRI) or Ca2+ imaging
data. Such types of signals render the SSM’s decoder model non-invertible, a
requirement for previous TF-based methods. Here, exploiting the recent success of
control techniques for training SSMs, we propose a novel algorithm that solves this
problem and scales exceptionally well with model dimensionality and filter length.
We demonstrate its efficiency in reconstructing dynamical systems, including their
state space geometry and long-term temporal properties, from just short BOLD
time series.

1 Introduction

Models and theories based on dynamical systems (DS) concepts have a long tradition in computational
neuroscience in accounting for physiological phenomena and computational processes of the brain [74,
53, 33, 23]. Constructing such models from first principles (biophysics) is time-consuming and hard,
and utilizing them to account for inter-individual differences in brain dynamics, when model settings
need to be personalized, is even more challenging. Yet, constructing valid models of the brain’s
functional dynamics is immensely important, not only for understanding the neurocomputational
basis of inter-individual differences in cognitive and emotional style [23], but also when aiming at

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

diagnosing or predicting brain dysfunction and clinical characteristics based on DS features [66], or
for designing personalized therapies [54].

1.1 Dynamical models in neuroscience

In computational neuroscience, multiple approaches to infer large-scale brain dynamics have been
advanced over the past decades (e.g., [17, 46, 58, 32]). Pioneering work introduced latent linear DS,
including Gaussian process latent variable models [64, 81], and extensions like Switching Linear DS
(SLDS) [27]. Whereas linear DS models are very limited in their dynamical repertoire, SLDS offer a
more flexible approach to modeling a larger range of dynamical phenomena by combining several
linear (or affine) DS, with a switching mechanism that selects the active system at each moment
[44, 43, 27]. These approaches have become common tools for inferring and visualizing neural
trajectories within low-dimensional state spaces.

Arguably the most popular class of generative models in whole brain simulations relies on mean
field neural population models, including neural mass [76, 5] and neural field models [35, 5]. These
model the moments of the activity of cortical areas by averaging over properties (like firing rates) of
neural (sub)populations, and are often biophysically motivated [17]. Many popular large-scale mean
field modeling approaches are implemented in The Virtual Brain (TVB) environment [56, 58]. TVB
incorporates biologically realistic brain connectivity into neural field models to generate simulations
of large-scale brain activity. Alternatively, Dynamic Causal Modeling (DCM) describes a set of
more statistically motivated and mostly linear techniques, primarily for the purpose of inferring
the effective connectivity between brain regions based on invasive or non-invasive brain recordings
(e.g., [16, 37, 46]). While many of these models may account for aspects of the dynamics, like
patterns of functional connectivity and their task modulation, they are not, strictly, dynamical systems
reconstruction (DSR) tools, entailing that they may miss important dynamical phenomena by being
constrained through the biological assumptions and simplifications imposed.

In the analysis of functional magnetic resonance imaging (fMRI), only recently a shift in focus
has introduced data-driven, deep-learning based methods for inferring generative models of system
dynamics [40, 62, 63]. Models that implement dynamics either directly on the observed [62], or
within an underlying latent [40, 63] space have been proposed, partly using available structural
information and hierarchical inference approaches [63].

1.2 Dynamical systems reconstruction (DSR)

A variety of Deep Learning (DL)-based models for approximating the generative dynamical processes
underlying observed time series has been put forward in recent years ([8, 69, 49, 40, 60, 42, 6, 71,
31, 13, 80]; see also [24] for an overview). These include approaches which approximate a system’s
vector field, e.g., through a library of basis functions and penalized regression as in SINDy [8],
or through deep neural networks and neural Ordinary Differential Equations (ODE) [14, 57, 39].
Alternatively, methods that approximate the associated flow (solution) operator directly have been
suggested, often employing state space model (SSM)-type architectures which distinguish between
an observation process and a latent process commonly instantiated through recurrent neural networks
(RNNs; e.g., [40, 29, 70, 60, 7]). Recurrent SLDS (rSLDS) [44], an extension of SLDS, and Latent
Factor Analysis via Dynamical Systems (LFADS) [48] also fall into this category.

In DSR we ask for models that are generative in the sense that – after training – they provide an
executable surrogate model of the observed system, from which we can simulate samples that agree
with their empirical counterparts in topological, geometrical and temporal characteristics (in contrast
to [24]. This required agreement in long-term temporal and geometric properties is not automatically
guaranteed for standard training of common RNNs or neural ODEs, which may yield good short-term
predictions but may fail to recover the full system dynamics [34, 24, 52]. Recent breakthroughs in
data-driven DSR build on insights from the field of chaos control and synchronization [51, 1, 68, 2],
by guiding the training process through optimally chosen control signals – modern variations of
classical teacher forcing (TF) – that prevent exploding gradients [47, 6, 31, 7, 39].

Chaotic dynamics in particular, as typical for neural systems (e.g., [67, 22, 36, 26]), poses a severe
problem here as trajectories and hence loss gradients inevitably diverge due to the presence of
a positive Lyapunov exponent [47]. Recent amendments of TF protocols, including sparse TF

2

(STF; [47]) and generalized TF (GTF; [31]), keep trajectories and gradients in check by ‘weakly
synchronizing’ them with the observed signals.

1.3 Specific contributions

Nonlinear SSMs distinguish between an underlying latent process that governs the dynamics of a
system’s state, and an observation process (referred to as observation or decoder model), that links
the system states to the actual measurements [20]. Invertible (or pseudo-invertible) decoder models
play a crucial role in control-theoretic approaches, like STF or GTF, for training SSMs, in order
to project observations into the model’s latent space. This inversion is fairly straightforward when
ones assumes that the current measurement depends solely on the present latent state, i.e, when
xt = f(zt), but not if it depends on a history of states {zt, zt−1, . . . , zt−τ}. In practice, unfortunately,
this assumption is often violated due to a signal’s filtering properties. For instance, blood oxygenation
level dependent (BOLD) signals, as assessed via fMRI, are only an indirect measurement of neural
activity, with the hemodynamic response function (hrf) broadly smearing out the signal across time.
Each measurement is therefore a function of a history of past neural (latent) states whose dynamics
we wish to infer [28, 78]. Similar challenges arise in calcium imaging when spike times are to be
inferred [79, 72], or, in fact, any other observation process where the actual measurement is a filtering
of the process of interest.

Here we rectify this issue by developing a particularly efficient SSM approach which works for
measurements that depend on longer histories of latent states, yet allows to take advantage of recent
powerful training strategies for DSR [47, 31]. In particular, our contributions are threefold: First,
we create and validate a novel SSM-based DSR algorithm for observation models which involve
convolutions with latent state series, and demonstrate its scalability with SSM size, as well as
convolution filter length. Second, we introduce an evaluation scheme for selecting DSR models on
short empirical time series, by demonstrating that the used DSR measures assessed on short time
series accurately predict a system’s long-term temporal and geometric properties. This is of high
practical relevance, as in many empirically relevant scenarios, like fMRI, we only have access to
comparatively short time series. Finally, we show that the proposed models can reliably extract key
DS features that, moreover, differentiate between subjects.

2 Convolution SSM model (convSSM)

2.1 Latent DSR model

We start by defining our generative model used for DSR, a variant of a piecewise linear RNN
(PLRNN). Its specific architecture has first been suggested in [21] and later expanded to increase the
PLRNN’s expressivity [6, 31]. While the present approach is generic and independent of the specific
DSR architecture, here we use the so-called shallow PLRNN (shPLRNN; Appx. A.3) and the clipped
shallow PLRNN (cshPLRNN; [31]). In the cshPLRNN, the temporal evolution of the (latent) system
state zt ∈ RM is expressed as

zt = Azt−1 +W1 [ϕ (W2zt−1 + h2)− ϕ (W2zt−1)] + h1 (1)

where ϕ(·) = max(0, ·) is an elementwise ReLU activation function, W1 ∈ RM×L, W2 ∈ RL×M
are connection weights, A ∈ RM×M is a diagonal matrix of autoregressive weights, and h1 ∈ RM
and h2 ∈ RL are bias vectors. Its trajectories {zt} ∈ RM×T will be bounded if the absolute
eigenvalues of A are smaller than 1 [31]. The Markov property of the latent model is crucial to
ensure it formally constitutes a DS with complete state space [50, 65]. Finally, Equation 1 can easily
be extended to incorporate the effect of external inputs, such as experimental stimuli, by adding
Cst (with st ∈ RK representing an input vector and C ∈ RM×K its effect on the latent dynamics).
However, here we consider input-free data from resting state experiments.

2.2 Teacher forcing for invertible decoder models

In [31], the latent state zt at each time point is assumed to be related to the actual observation
xt ∈ RN by a linear (Gaussian) decoder model

xt = Bzt + ηt, ηt ∼ N (0,Γ), (2)

3

referred to simply as ‘standard SSM’ in the following. Here, B ∈ RN×M is a matrix of regression
weights, and ηt describes Gaussian observation noise with diagonal covariance matrix Γ. A con-
ventional mean squared error (MSE) type loss function L =

∑
t Lt =

∑
t ∥x̂t − xt∥22 between the

generated (predicted) {x̂t} and the observed {xt} sequence is commonly used to optimize parameters
by stochastic gradient descent (SGD) with GTF [31]. Regularization terms to enforce a structure in
latent space that helps to map slowly evolving processes may further be added to this loss [60].

A fundamental issue in training such systems by SGD is the well-known ‘exploding-and-vanishing
gradients’ problem (EVGP), preventing systems from capturing relevant time scales in the data. In
fact, [47] proved that for chaotic systems gradient-based training techniques for RNNs will inevitably
lead to diverging loss gradients (see also [26]). Successful DSR algorithms need to address this
problem. Based on this connection between chaos and diverging gradients, Engelken [25] suggested
regularizing the system’s Lyapunov spectrum, thereby also biasing the dynamics toward certain
(non-hyperbolic) solutions. A theoretically well founded approach that does not limit a system’s
dynamical expressivity, which we will adopt here, is GTF, proposed in [31]. GTF is designed to keep
model generated trajectories on track and, theoretically, can completely abolish the EVGP without
constraining model expressivity. The main idea is that during training the latent state z̃t is computed
as a linear interpolation between the PLRNN generated state zt = PLRNN(z̃t−1) and a data-inferred
state dt that serves as a control signal [19], i.e.,

z̃t := (1− α) · zt + α · dt, α ∈ [0, 1). (3)
There is a theoretically optimal choice for α that can be approximated concurrently whilst training
through a specifically designed annealing protocol [31], but more simply α may just be determined
by grid search (as done here). Control signals dt are obtained by inverting the decoder model
(Equation 2). Since in general M ̸= N , the matrix inverse of B ∈ RN×M does not exist and is
approximated by the Moore-Penrose (pseudo-) inverse B+:

dt = B+xt (4)
To keep the gradients on track, the interpolation is performed at each time step before applying the
cshPLRNN mapping (Equation 1). These control signals are turned off during actual data generation
by the model (i.e., in a test phase), where it runs completely autonomously.

2.3 Teacher forcing for decoder models with signal convolution

Decoder model for convolved signals GTF (and similar techniques like STF; [47]) are powerful
state-of-the-art (SOTA) tools for controlling gradients, especially in the context of DSR. However, they
require a (pseudo-)invertible observation model for producing adequate control signals. Empirically,
there are many situations where this requirement is not met. For instance, in BOLD time series the
observed signal is a highly filtered and strongly smoothed version of the underlying neuronal process
that we would like to recover [9, 10, 28]. This fairly complex hemodynamic process is often modeled
by the hrf [28].

A decoder model that relates the neuronal processes given as latent time series {zt} to measured
BOLD time series {xt} may be formulated as in [40],

xt = B ((hrf ∗ z)t) + Jrt + ηt, ηt ∼ N(0,Γ) (5)
with regression coefficient matrices B ∈ RN×M and J ∈ RN×P , nuisance variables rt ∈ RP (such
as movement or respiratory artifacts) and a Gaussian observation noise term ηt (with usually diagonal
covariance Γ ∈ RN×N). Here, ∗ denotes the convolution operation and z is a history of states zt−τ :t,
the length of which depends on the observed sampling rate, commonly referred to as time of repetition
(TR). The discrete hrf sequence is computed by evaluating the canonical hrf at the observed TR
[78]. We will denote the hrf response for a given TR by hrfTR.

By incorporating the hrf into the observation model, we disentangle the neural state and its dynamics
– the processes of interest – from the neurovascular mechanics (or any filtering at the level of
observed signals). We thereby eliminate the history dependence present in the observations, and
thus help unfolding trajectories in latent space and satisfying the uniqueness assumptions required
in reconstructing dynamical systems [50] (see also Appx. Figure 7). However, Equation 5 poses
a major complication for applying TF techniques, as observations (and model outputs x̂t) do not
simply depend on the current state zt, but – due to the convolution – on a set of states across several
previous time steps. We can thus not compute the control signal dt through straightforward decoder
inversion anymore, but require a new type of inversion algorithm.

4

Wiener deconvolution Following [78], we use a Wiener filter [75] to invert Equation 5. We briefly
introduce this approach here in the context of our specific problem, and refer to Appx. A.4 for further
details. Given an observed noisy signal {xt}, composed of the signal of interest {zt} convolved with
a known impulse response hrf plus some noise term ηt (distribution unknown, Wiener is optimal for
Gaussian distribution),

xt = (hrf ∗ z)t + ηt, (6)
the Wiener deconvolution provides the estimate ẑt of the unknown signal zt through least-MSE
estimation. Defining Conv−1(·, hrf) as the Wiener deconvolution operator, we can write

{ẑt} = Conv−1({xt}, hrf). (7)

Inversion of BOLD decoder model Using the notation introduced above, we can write the inversion
to obtain control signals as

{dt} = Conv−1
({

B+(xt − Jrt)
}
, hrf

)
, (8)

where
{
B+(xt − Jrt)

}
is the time series that needs to be deconvolved. Note that this approach is

quite general and we can simply exchange the hrf with alternative functions if we want to account
for filtering in the original signal. As stated, since B and J are matrices of learnable parameters
updated during training, we would need to perform this deconvolution step at every training epoch,
which is computationally very costly. We therefore make use of the linearity of convolutions and
separate the deconvolution step from the learnable parameters, rewriting Equation 8 as

{dt} = B+
(
Conv−1({xt}, hrf)− J · Conv−1({rt}, hrf)

)
. (9)

With
{
xdeconv
t

}
and

{
rdeconv
t

}
denoting the respective deconvolved time series, this can be written as

dt = B+
(
xdeconv
t − J · rdeconv

t

)
. (10)

This now is computationally much more efficient, as we need to perform the deconvolution only
once prior to training. During training then, only the decoder model parameters need to be inferred
to obtain the control signal. We will refer to the convolutional model for DSR (Equation 1 and
Equation 5) trained with GTF and SGD as ‘convSSM’. The full inversion algorithm is provided in
Algorithm 1 with additional information given in Appx. A.6. Key components of SGD+GTF training
are illustrated in Figure 1.

3 Results

3.1 Performance measures

In DS theory in general, and DSR more specifically, we are mostly concerned with invariant properties
of a system, such as attractor geometry and long-term temporal statistics [24]. In chaotic systems in
particular, in which trajectories diverge exponentially fast with time, the mean squared prediction
error (PE) is a useful statistic only on relatively short time scales [77, 40, 60] (see Appx. Figure 6).
To evaluate our model’s performance, in addition to short-term n-step ahead PEs, PEn, we assess the
following two established performance measures to capture the temporal and geometrical structure:

1. The deviation in power spectra between the (smoothed) empirical and model-generated
power spectra, assessed in terms of the Hellinger distance and referred to as power spectrum
error (PSE), DPSE , in the following [47], and

2. the Kullback Leibler divergence between the empirical and model-generated trajectories
across state space, Dstsp, measuring the overlap in attractor geometries [40].

To obtain a reference value for Dstsp, we further included two references in which we assessed Dstsp

when all mass is centered on the expectation value (similar to a fixed point solution), and when the
state space is populated by points drawn from a Gaussian with mean and variance equal to the data
(similar to a fixed point solution plus measurement noise).

For comparability with experimental data, we evaluated performance on comparatively short time
series obtained from the adaptive linear-nonlinear (ALN) cascade model and the LEMON data set. In
these cases, performance metrics were assessed on 100 generated trajectories per model and then
averaged. For more details, see Appx. A.7.

5

A Pre-Training:

Deconvolution

x1

x2

...

xt

...

xN

xdeconv
1

xdeconv
2

...

xdeconv
t

...

xdeconv
N

Deconv

Training:

Gradient flow

zt

zt+1

zt−1

zt−τ

B Training:
Teacher forcing

xdeconv
t−1 rdeconvt−1

dt−1 zt−1

z̃t−1

zt

α 1
−
α

P
L
R
N
N∂zt

∂z̃t−1

∂z̃t−1

∂zt−1

∂zt
∂zt−1

C

(hrf ∗ z)t x̂t

rt

Lt xt
hrf∗

∂L
∂x̂t

∂x̂t

∂(hrf∗z)t
∂(hrf∗z)t

∂zt

∂(hrf∗z)t
∂zt−1

∂(hrf∗z)t
∂zt−τ

∂zt+1

∂zt

∂zt
∂zt−1

∂zt−1

∂zt−τ

Figure 1: Schematic of training protocol and gradient flow. A: Before training, observations {xt}
and nuisance artifacts {rt} are deconvolved. B: The deconvolved time series are used to generate
a forcing signal dt−1 which is used for guiding cshPLRNN training. C: Latent states zt−τ :t and
nuisance artifacts rt are used to predict x̂t through the decoder model. Gradients are computed on
the squared error loss Lt, propagated from the decoder model back to the latent states (blue), and
from the latent DS model backwards in time (orange).

3.2 convSSM validation & scalability on Lorenz63

As a well-established and popular benchmark for a chaotic system, we first performed numerical
experiments with the famous Lorenz63 system. The Lorenz63 is a 3-dimensional system introduced
in [45] to describe atmospheric convection, and exhibits chaotic behaviour in the chosen regime
(see Appx. B.1). To mimic BOLD observations, we generated 100 standardized chaotic Lorenz63
trajectories, convolved them with hrfTR functions at different sampling rates TR ∈ {0.2s, 0.5s, 1.2s}
(Figure 2B), and added Gaussian noise with standard deviation σ ∈ {0.01, 0.1}. This resulted in 6
benchmark settings with different levels of signal degradation by convolution and noise. Each data
set was divided into a training and a test set of T = 5 · 104 time steps each.

We trained 100 models on each of these 6 data sets. The following models were compared: the
convSSM trained via SGD+GTF, the convSSM trained via SGD and no GTF, the standard SSM
trained via SGD+GTF, and MINDy, a recently published method for DSR in fMRI [62]. convSSM
and standard SSMs were trained with the shPLRNN, with M = 3, L = 50, and α = .1 (see Appx.
Table 4 for all additional hyperparameters). The hidden dimension was selected such that the standard
SSM (no-hrf model) performed well [31]. We emphasize that the standard SSM has already been
extensively benchmarked on a variety of simulated and real-world data sets and is considered to be a
SOTA model in the field [6, 31]. The performance measures Dstsp, DPSE , and PE20 were assessed
on the test sets after training for 1, 000 epochs. We used the same hyperparameters for all networks
(aside from TR) to show that performance increases can be solely attributed to the improved decoder
model. Hyperparameters were chosen such that the shPLRNN achieved near perfect performance on
unconvolved, noiseless trajectories from the Lorenz63 system.

The convSSM significantly outperformed all other methods, including the standard SSM in almost all
cases, with the performance gap increasing with decreasing TR (see Appx. Table 2 for performance,
and Figure 2A for example reconstructions, providing an intuition on how to interpret Dstsp). The
more heavily the signal was degraded by the convolution filter, the larger was the performance gap in
favor of the convSSM.

An important consideration especially for large-scale applications of such models to empir-
ical data is how well they scale with model size and convolution filter length. To as-
sess this, we collected trajectories of length T = 105 from the chaotic Lorenz63 sys-
tem, and studied training epoch times as a function of convSSM latent dimension M =
{3, 10, 50, 100, 500}, hidden dimension L = {10, 50, 100, 500, 1000}, TR = {0.2, 0.5, 1.2, 3},
time series length T = {500, 1000, 5000, 10000, 50000, 100000} and observation dimension

6

A

B C

D E F

Figure 2: Validations on Lorenz63 and ALN. A: Illustration of reconstruction performance as
assessed by the geometrical agreement measure Dstsp. Average Dstsp values for the convSSM were
Dstsp < 0.30 at noise level σ = .01 and Dstsp < 0.71 at noise level σ = .1, indicating successful
reconstructions in the majority of cases. B: Example trajectory from the Lorenz63 system in latent
space (top) and observation space (convolved with hrf0.2) (bottom). C: Probability density over
maximal λmax values (orange) assessed on 1000 convSSMs trained on Lorenz63 time series of length
1000 (example shown in right panel). Black line denotes the known λmax ≈ 0.9056 of the Lorenz
system. D: Comparison of standard SSM (’standard’), convSSM (’conv’), and convSSM trained
without generalized teacher forcing (’conv (NoGTF)’) on the ALN data set. Histograms over Dstsp

assessed on the observed space (left panel) and latent space (right panel). E: Dstsp for convSSM
evaluated on the full pseudo-empirical time series of typical empirically available length (T = 500;
x-axis) vs. the long GT test set (T = 5, 000; y-axis). F:Dstsp for convSSM evaluated on the observed
time series (x-axis) vs. on the latent time series (y-axis).

N = {10, 30, 50, 100, 500, 1000}. Shorter/longer TRs directly implicate longer/shorter convolution
filters since the filters assume a constant time interval. Results are displayed in Appx. Figure 4A. The
runtime per epoch did not significantly depend on TR, which means that time series convolved with
long impulse response functions can be trained in times comparable to short ones. The per-epoch-
runtime increases approximately linearly with dimensions L, M , and N (Appx. Figure 4 B,C,E),
implying that models can be scaled up efficiently.

Finally, empirical data is often short, yet we want to reliably infer DS features that characterize the
underlying dynamics. To demonstrate that our model can robustly reconstruct dynamics based on
short time series, we inferred 1000 convSSMs on n = 100 convolved Lorenz63 time series (TR
= 0.5) of length T = 1000 only (see Figure 2C). We then assessed the degree of chaoticity in the
recovered trajectories by examining the trained models’ maximum Lyapunov exponents, λmax. λmax
measures how quickly trajectories starting from nearby points in a system’s state space converge or
diverge with time. If λmax > 0, trajectories will exponentially diverge and the system, if bounded,
will exhibit chaos. We show that we can successfully recover λmax (known for the Lorenz63 system;
Figure 2C) even from models trained on these just short series.

7

3.3 Validating performance measures on short time series

In empirical situations, we do not have access to the latent dynamics of the true system, of course,
but we still rely on our reconstruction measures evaluated on the observed signals to yield results
valid for the (unobserved) latent space. It is therefore a practically very relevant question whether a)
the convSSM trained on such short time series would be able to accurately recover the underlying
neural latent dynamics, and b) our measures (Dstsp, DPSE) evaluated on such short time series, and
directly on the observations, would yield results similar to what would be expected if much longer
time series and access to the ground truth latent space were available.

To tackle these questions, we used a more realistic simulation model, the ALN model [3, 11] for
simulating whole brain (neural) activity. 100 data sets of length T = 10, 000 were simulated from this
model using neurolib [12], sampled at 0.1ms, and filtered through Equation 5 (with TR = 0.1ms) to
compute the corresponding BOLD time series. Subsequently, these time series were downsampled
to a TR of 0.5 s to mimic an experimentally realistic scenario (see Appx. B.2 for details). Most
hyperparameters were adopted from previous experiments (see Appx. Table 4). For the latent
dimension, we chose M = 16 to match the dimensions of the empirical LEMON data set, see
subsection 3.4.

To mimic real fMRI experiments, we then pretended that only the first 500 time points are available
for model estimation (called ‘pseudo-empirical’ here to distinguish it from the actual empirical
LEMON data set). We trained 10 convSSM models on the first 375 time steps of each of these
virtual experiments, treating the left out 125 time points as pseudo-empirical test set and call the
last 5, 000 time points of the entire trajectory (i.e., time steps 5, 001-10, 000 of the full simulation
set) the ground truth (GT) test set (which would not be accessible in a real experiment). DSR
performance was assessed on both the observed {xt} and latent {zt} time series, evaluated for a) the
short pseudo-empirical test set of length 125, b) the full pseudo-empirical time series (i.e., of length
500), and c) the GT test set of length 5000 (which also assesses dynamics on the limit set and does
not contain transients anymore).

Figure 2D shows histograms over Dstsp (on the full pseudo-empirical time series) for the convSSM,
the standard SSM, and the benchmark conditions. The convSSM significantly outperformed the
standard SSM in latent space (rank-sum test Z = 11.50, p ≤ .001), demonstrating an improved
recovery of the ground truth DS and indicating that the deconvolution acts as an inductive bias that
forces the model to learn a latent space structured in agreement with our biophysical understanding
of fMRI. Moreover, the proposed performance measures (Dstsp, DPSE) successfully discriminated
between good and poor reconstructions even on these short time series more typical for empirical data:
For one, evaluating DSR on the observations was consistent with evaluating DSR directly on the latent
dynamics space (Figure 2F and Appx. Figure 5). Second, DSR assessed on the pseudo-empirical
time series (either full or only test set) was strongly correlated with performance assessed on the long
GT test set (which, again, in empirical situations we do not have, Figure 2E and Appx. Figure 5).

3.4 Application to experimental fMRI data

We finally tested convSSM on empirical data, for which we chose the LEMON study (‘Leipzig Study
for Mind-Body-Emotion Interactions’) as a publicly available data set. This data set was collected
at the Max-Planck-Institute Leipzig [4] and consists of 227 healthy participants, each of whom
completed a battery of tests, including a 15min 30s resting state fMRI (rsfMRI) session sampled
at TR = 1.4s (thus comprising T = 652 time points). We used the preprocessed rsfMRI data sets
as provided, and selected 16 regions from which we extracted a subset of the available time series.
These were subsequently smoothed, band-pass filtered, and standardized as in [40]. The time series
were split 3 : 1 into training (Ttrain = 489) and test (Ttest = 163) set, respectively. Data from
participants with non-stable variance were discarded (i.e., non-stationary data, see Appx. B.3 for
details), leaving N = 51 participants for analysis.

We trained 20 models on data of each participant with latent dimension M = N = 16 (i.e., equal
to the observation dimension), α = .1, and hidden dimension L = 50 (where L and M refer to the
dimensions of the connectivity matrices W1,W2 in the cshPLRNN, Equation 1). Latent dimension
and α were determined via grid search, by inferring systems using a subset of the data and assessing
the performance on the held-out set [6]. Otherwise the same hyperparameters as used in [31] for
EEG data were applied (see Appx. Table 4 for all details). In addition to the model comparisons

8

A B C

D

E F G

Figure 3: Results on empirical LEMON data set. A: Distribution overDstsp for 1020 systems inferred
with convSSM. B: Example of a good and C: poor reconstruction. D: Illustration of reconstruction
performance as a function of Dstsp. E: Histogram over maximum Lyapunov exponents λmax. F:
Distribution over λmax for 5 selected participants (n = 100 systems with 10 trajectories each). G:
Within- as compared to between-subject variance in λmax distribution after filtering models by DS
performance measures (selecting the 20 best by Dstsp and 10 best by DPSE).

discussed earlier, we also compared our method to the performance of rSLDS [44] and LFADS [48]
(see Appx. C.2 for details). On top of Dststp, DPSE , and PEn, we also assessed the trained models’
maximum Lyapunov exponents, λmax, analyzed how reliably these can be inferred, and whether
they distinguish between subjects. Note that obtaining an estimate of the Lyapunov exponent is an
advantage of the generative model, as empirical time series are often too short to compute it reliably.
Also, since we do have access to the cshPLRNN’s Jacobians, the computations can be performed
analytically (although practically we need to evaluate these along model-generated trajectories, where
here we used an algorithm proposed in [73]).

The DSR results are shown in Table 1. We obtained successful reconstructions on average with a
mean Dstsp of 2.73, better than all other models (Figure 3A and D). Interestingly, most recovered
systems were characterized by a positive maximal Lyapunov exponent λmax (Figure 3E), indicating
the presence of chaotic attractors in these data (consistent with previous observations, [40, 36, 41]).
Moreover, λmax values could be inferred reliably (Figure 3F), and differentiated between individuals,
as indicated by lower within- as compared to between-subject variation (Figure 3G, T (50) =
−11.53, p < .001.

Table 1: DSR measures evaluated for the convSSM, standard SSM, convSSM trained without GTF,
as well as MINDy [62], rSLDS [44] and LFADS [14], trained on the LEMON dataset. Model runs
were excluded if the 1-step PE > 1 on the training data.

metric ConvSSM standard SSM No GTF (α = 0) MINDy rSLDS LFADS Noise process Fixed point

Dstsp 2.73± 1.09 2.77± 0.93 3.77± 1.22 6.79± 1.92 15.51± 10.02 3.24± 1.17 4.62± 0.91 5.27± 1.27
DPSE 0.14± 0.03 0.15± 0.03 0.34± 0.11 0.27± 0.06 0.24± 0.03 0.43± 0.09 0.76± 0.02 -
10-step PE 1.78± 0.38 2.00± 0.44 1.43± 0.61 1.97± 0.31 1.78± 0.42 2.45± 0.55 - -

9

4 Conclusions

Methods for producing generative models of the underlying dynamics from time series observations
is a rapidly expanding research field [24]. Current SOTA models for this purpose rely on control
theoretically motivated training techniques like STF [47] and GTF [31], but these require some means
to generate from the actual observations a TF signal in the model’s latent space for guiding trajectory
and gradient flows. This becomes difficult if the current observation depends on a whole series of
latent states, as common if the actual measurements are some filtering of an underlying process of
interest, such as in fMRI or Ca2+ imaging. Here we provide a novel technique that efficiently deals
with this problem, exploiting linearity of Wiener deconvolution. A hallmark of our technique is that
it efficiently scales with model size and convolution length.

Another major contribution of this work is to numerically demonstrate that the short time series
obtained in typical fMRI experiments are actually sufficient for proper model selection according
to established DSR performance measures, and that these can indeed be properly evaluated in
observation space and do not require access to the unobserved dynamics/ latent space. This is of
major empirical relevance for many scientific scenarios, beyond fMRI, in which time series sampling
is costly or restricted for technical reasons. Finally, using our DSR technique, we showed that
experimental fMRI signals mostly exhibit properties of chaotic oscillators (consistent with [36]), and
that these can be reliably inferred and differ between subjects. Taken together, these contributions
pave the way for deploying data-driven fMRI DSR models at large scale to understand inter-individual
differences in brain dynamics and explore the predictive value of nonlinear DS features for cognitive
or clinical assessment.

We emphasize that the proposed framework is highly flexible due to its modular structure, and may
be easily adapted to meet diverse requirements. First, the latent model can be replaced with any other
differentiable and recursive dynamical model, such as e.g. LSTMs [59]. The GTF training framework
would remain unchanged as the control signal and the latent state update (Equation 3) are not affected
by such modifications [31]. Likewise, the observation model can easily be adapted to account for
nonlinear effects of nuisance covariates, e.g. through basis expansions in these variables, or through
learnable but regularized MLPs. While our model was designed as a scalable method to integrate
biological prior knowledge on convolution filters like the hrf , alternatively we can parameterize
the filter weights within the observation model, making them learnable through BPTT, with filter
length either as a hyperparameter, or by imposing a regularization that truncates filter length by
driving coefficients to zero. To prevent conflicts between filter adjustment and latent model, a viable
strategy may be stage-wise learning as suggested in [40]. Once the filter is adjusted, one may reduce
the learning rate on the observation model, or even fix its parameters, to prioritize learning of the
dynamics. Fixing the filter parameters after an initial stage would have the advantage that subsequent
training would enjoy the same speed benefits as in our suggested method.

We furthermore highlight that our framework could be adapted to accommodate noise in the latent
process. For example, in Brenner et al. [7] the GTF procedure has been modified to work in the
context of stochastic DSR models using variational inference. Instead of the multimodal encoder
model in Brenner et al. [7], one may use the inversion in Equation 9 to generate a TF signal which
steers a probabilistic latent DS model, i.e. controls its distributional mean, via Equation 3, and using
the reparameterization trick [55, 38] for BPTT in latent space. However, although probabilistic frame-
works are appealing, ‘deterministic’ BPTT has previously been shown to be (at least) comparable in
terms of DSR performance, even for clearly noisy observations and latent processes [6], such that the
benefits for DSR would need to be further examined.

Limitations Data-driven approaches such as the one proposed here lack detailed biophysical mech-
anisms and may thus not be as suited to address specific questions relating to pharmacological or
receptor mechanisms beyond functional-dynamical implications. Moreover, currently open questions
are how to best deal with non-stationarity in the data, how to efficiently combine data from many
subjects, and how trained models generalize to out-of-domain data.

Software and Data

Code for the convSSM is available at https://github.com/humml-lab/GTF-ConvSSM.

10

https://github.com/humml-lab/GTF-ConvSSM

5 Acknowledgements

This work was supported by the German Research Foundation (DFG) within the collaborative
research center TRR 265, subproject B08, granted to GK, TRR 265 subproject A06 granted to DD
and GK, Germany’s Excellence Strategy EXC 2181/1 – 390900948 (STRUCTURES), and the Hector
II foundation.

References
[1] H. D. I. Abarbanel. Predicting the future: Completing models of observed complex systems.

Springer, 2013.

[2] H. D. I. Abarbanel. The statistical physics of data assimilation and machine learning. Cambridge
University Press, 2022.

[3] M. Augustin, J. Ladenbauer, F. Baumann, and K. Obermayer. Low-dimensional spike rate
models derived from networks of adaptive integrate-and-fire neurons: Comparison and imple-
mentation. PLoS Computational Biology, 13(6):e1005545, 2017.

[4] A. Babayan, M. Erbey, D. Kumral, J. D. Reinelt, A. M. Reiter, J. Röbbig, H. L. Schaare,
M. Uhlig, A. Anwander, P.-L. Bazin, et al. A mind-brain-body dataset of MRI, EEG, cognition,
emotion, and peripheral physiology in young and old adults. Scientific Data, 6(1):1–21, 2019.

[5] M. Breakspear. Dynamic models of large-scale brain activity. Nature Neuroscience, 20(3):
340–352, 2017.

[6] M. Brenner, F. Hess, J. M. Mikhaeil, L. F. Bereska, Z. Monfared, P.-C. Kuo, and D. Durstewitz.
Tractable dendritic RNNs for reconstructing nonlinear dynamical systems. In International
Conference on Machine Learning, volume 162, pages 2292–2320. PMLR, 2022.

[7] M. Brenner, G. Koppe, and D. Durstewitz. Multimodal teacher forcing for reconstructing
nonlinear dynamical systems. AAAI Workshops, 2023.

[8] S. L. Brunton, J. L. Proctor, and J. N. Kutz. Discovering governing equations from data by
sparse identification of nonlinear dynamical systems. Proceedings of the National Academy of
Sciences USA, 113(15):3932–3937, 2016.

[9] R. L. Buckner. Event-related fMRI and the hemodynamic response. Human Brain Mapping, 6
(5-6):373–377, 1998.

[10] R. B. Buxton, K. Uludağ, D. J. Dubowitz, and T. T. Liu. Modeling the hemodynamic response
to brain activation. NeuroImage, 23:S220–S233, 2004.

[11] C. Cakan and K. Obermayer. Biophysically grounded mean-field models of neural populations
under electrical stimulation. PLoS Computational Biology, 16(4):e1007822, 2020.

[12] C. Cakan, N. Jajcay, and K. Obermayer. neurolib: A simulation framework for whole-brain
neural mass modeling. Cognitive Computation, 15(4):1132–1152, 2023.

[13] J. Chen and K. Wu. Deep-OSG: Deep learning of operators in semigroup. Journal of Computa-
tional Physics, 493:112498, 2023.

[14] R. T. Q. Chen, Y. Rubanova, J. Bettencourt, and D. Duvenaud. Neural ordinary differential
equations. In Advances in Neural Information Processing Systems, volume 31, pages 6571–6583,
2018.

[15] G. Datseris. DynamicalSystems.jl: A Julia software library for chaos and nonlinear dynamics.
Journal of Open Source Software, 3(23):598, 2018.

[16] O. David and K. J. Friston. A neural mass model for MEG/EEG:: Coupling and neuronal
dynamics. NeuroImage, 20(3):1743–1755, 2003.

11

[17] G. Deco, V. K. Jirsa, P. A. Robinson, M. Breakspear, and K. Friston. The dynamic brain:
From spiking neurons to neural masses and cortical fields. PLoS Computational Biology, 4(8):
e1000092, 2008.

[18] D. L. Donoho and I. M. Johnstone. Ideal spatial adaptation by wavelet shrinkage. Biometrika,
81(3):425–455, 1994.

[19] K. Doya. Bifurcations in the learning of recurrent neural networks. In International Symposium
on Circuits and Systems, volume 6, pages 2777–2780. IEEE, 1992.

[20] J. Durbin and S. J. Koopman. Time series analysis by state space methods, volume 38. OUP
Oxford, 2012.

[21] D. Durstewitz. A state space approach for piecewise-linear recurrent neural networks for
identifying computational dynamics from neural measurements. PLoS Computational Biology,
13(6):e1005542, 2017.

[22] D. Durstewitz and T. Gabriel. Dynamical basis of irregular spiking in NMDA-driven prefrontal
cortex neurons. Cerebral Cortex, 17(4):894–908, 2007.

[23] D. Durstewitz, Q. J. Huys, and G. Koppe. Psychiatric illnesses as disorders of network dynamics.
Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 6(9):865–876, 2021.

[24] D. Durstewitz, G. Koppe, and M. I. Thurm. Reconstructing computational system dynamics
from neural data with recurrent neural networks. Nature Reviews Neuroscience, pages 1–18,
2023.

[25] R. Engelken. Gradient flossing: Improving gradient descent through dynamic control of
Jacobians. In Advances in Neural Information Processing Systems, volume 36, pages 10412–
10439, 2023.

[26] R. Engelken, F. Wolf, and L. F. Abbott. Lyapunov spectra of chaotic recurrent neural networks.
Physical Review Research, 5(4):043044, 2023.

[27] Z. Ghahramani. Variational learning for switching state-space models. Neural Computation, 12
(4):831–864, 2000.

[28] R. Henson and K. Friston. Chapter 14 - Convolution Models for fMRI. In Statistical Parametric
Mapping, pages 178–192. Academic Press, London, 2007.

[29] D. Hernandez, A. K. Moretti, Z. Wei, S. Saxena, J. Cunningham, and L. Paninski. Nonlinear
evolution via spatially-dependent linear dynamics for electrophysiology and calcium data.
Neurons, Behavior, Data analysis, and Theory, 3(3), 2020.

[30] J. R. Hershey and P. A. Olsen. Approximating the Kullback Leibler divergence between Gaussian
mixture models. In International Conference on Acoustics, Speech and Signal Processing,
volume 4, pages 317–320. IEEE, 2007.

[31] F. Hess, Z. Monfared, M. Brenner, and D. Durstewitz. Generalized teacher forcing for learning
chaotic dynamics. In International Conference on Machine Learning, volume 202, page
13017–13049. PMLR, 2023.

[32] R. Hindriks, M. H. Adhikari, Y. Murayama, M. Ganzetti, D. Mantini, N. K. Logothetis, and
G. Deco. Can sliding-window correlations reveal dynamic functional connectivity in resting-
state fMRI? NeuroImage, 127:242–256, 2016.

[33] E. M. Izhikevich. Dynamical Systems in Neuroscience: The Geometry of Excitability and
Bursting. MIT press, 2006.

[34] R. Jiang, P. Y. Lu, E. Orlova, and R. Willett. Training neural operators to preserve invariant mea-
sures of chaotic attractors. In Advances in Neural Information Processing Systems, volume 36,
pages 27645–27669, 2023.

[35] V. K. Jirsa and H. Haken. Field theory of electromagnetic brain activity. Physical Review
Letters, 77(5):960, 1996.

12

[36] S. Keilholz, E. Maltbie, X. Zhang, B. Yousefi, W.-J. Pan, N. Xu, M. Nezafati, T. J. LaGrow, and
Y. Guo. Relationship between basic properties of BOLD fluctuations and calculated metrics of
complexity in the human connectome project. Frontiers in Neuroscience, 14:550923, 2020.

[37] S. J. Kiebel, M. I. Garrido, R. J. Moran, and K. J. Friston. Dynamic causal modelling for EEG
and MEG. Cognitive Neurodynamics, 2:121–136, 2008.

[38] D. Kingma and M. Welling. Auto-encoding variational bayes. In International Conference on
Learning Representations. ICLR, 2014.

[39] J.-H. Ko, H. Koh, N. Park, and W. Jhe. Homotopy-based training of NeuralODEs for accurate
dynamics discovery. In Advances in Neural Information Processing Systems, volume 36, pages
64725–64752, 2023.

[40] G. Koppe, H. Toutounji, P. Kirsch, S. Lis, and D. Durstewitz. Identifying nonlinear dynamical
systems via generative recurrent neural networks with applications to fMRI. PLoS Computa-
tional Biology, 15(8):e1007263, 2019.

[41] D. Kramer, P. L. Bommer, C. Tombolini, G. Koppe, and D. Durstewitz. Reconstructing nonlinear
dynamical systems from multi-modal time series. In International Conference on Machine
Learning, volume 162, page 11613–11633. PMLR, 2022.

[42] F. Lejarza and M. Baldea. Data-driven discovery of the governing equations of dynamical
systems via moving horizon optimization. Scientific Reports, 12(1):11836, 2022.

[43] S. Linderman, M. Johnson, A. Miller, R. Adams, D. Blei, and L. Paninski. Bayesian learning
and inference in recurrent switching linear dynamical systems. In Artificial Intelligence and
Statistics, pages 914–922. PMLR, 2017.

[44] S. W. Linderman, A. C. Miller, R. P. Adams, D. M. Blei, L. Paninski, and M. J. Johnson.
Recurrent switching linear dynamical systems. In Advances in Neural Information Processing
Systems, volume 33, pages 14867–14878, 2020.

[45] E. N. Lorenz. Deterministic nonperiodic flow. Journal of Atmospheric Sciences, 20(2):130–141,
1963.

[46] A. C. Marreiros, S. J. Kiebel, and K. J. Friston. Dynamic causal modelling for fMRI: A two-state
model. NeuroImage, 39(1):269–278, 2008.

[47] J. Mikhaeil, Z. Monfared, and D. Durstewitz. On the difficulty of learning chaotic dynamics with
RNNs. In Advances in Neural Information Processing Systems, volume 35, pages 11297–11312,
2022.

[48] C. Pandarinath, D. J. O’Shea, J. Collins, R. Jozefowicz, S. D. Stavisky, J. C. Kao, E. M.
Trautmann, M. T. Kaufman, S. I. Ryu, L. R. Hochberg, et al. Inferring single-trial neural
population dynamics using sequential auto-encoders. Nature Methods, 15(10):805–815, 2018.

[49] J. Pathak, B. Hunt, M. Girvan, Z. Lu, and E. Ott. Model-free prediction of large spatiotemporally
chaotic systems from data: A reservoir computing approach. Physical Review Letters, 120(2):
024102, 2018.

[50] L. Perko. Differential equations and dynamical systems, volume 7. Springer Science & Business
Media, 2013.

[51] A. Pikovsky, M. Rosenblum, and J. Kurths. Synchronization: A universal concept in nonlinear
sciences. Cambridge Nonlinear Science Series. Cambridge University Press, 2001.

[52] J. A. Platt, S. G. Penny, T. A. Smith, T.-C. Chen, and H. D. Abarbanel. Constraining chaos: En-
forcing dynamical invariants in the training of reservoir computers. Chaos: An Interdisciplinary
Journal of Nonlinear Science, 33(10):103107, 2023.

[53] M. I. Rabinovich, P. Varona, A. I. Selverston, and H. D. Abarbanel. Dynamical principles in
neuroscience. Reviews of Modern Physics, 78(4):1213, 2006.

13

[54] J. P. Ramirez-Mahaluf, A. Roxin, H. S. Mayberg, and A. Compte. A computational model
of major depression: the role of glutamate dysfunction on cingulo-frontal network dynamics.
Cerebral Cortex, 27(1):660–679, 2017.

[55] D. J. Rezende, S. Mohamed, and D. Wierstra. Stochastic backpropagation and approximate
inference in deep generative models. In International Conference on Machine Learning,
volume 32, pages 1278–1286. PMLR, 2014.

[56] P. Ritter, M. Schirner, A. R. McIntosh, and V. K. Jirsa. The virtual brain integrates computational
modeling and multimodal neuroimaging. Brain Connectivity, 3(2):121–145, 2013.

[57] N. A. Roy, J. H. Bak, A. Akrami, C. Brody, and J. W. Pillow. Efficient inference for time-varying
behavior during learning. In Advances in Neural Information Processing systems, volume 31,
pages 5695–5705, 2018.

[58] P. Sanz-Leon, S. Knock, M. Woodman, L. Domide, J. Mersmann, A. McIntosh, and V. Jirsa. The
Virtual Brain: a simulator of primate brain network dynamics. Frontiers in Neuroinformatics, 7:
10, 2013.

[59] J. Schmidhuber, S. Hochreiter, et al. Long short-term memory. Neural Computation, 9(8):
1735–1780, 1997.

[60] D. Schmidt, G. Koppe, Z. Monfared, M. Beutelspacher, and D. Durstewitz. Identifying nonlinear
dynamical systems with multiple time scales and long-range dependencies. In International
Conference on Learning Representations, 2021.

[61] A. R. Sedler and C. Pandarinath. lfads-torch: A modular and extensible implementation of
latent factor analysis via dynamical systems. arXiv preprint arXiv:2309.01230, 2023.

[62] M. Singh, T. Braver, M. Cole, and S. Ching. Estimation and validation of individualized
dynamic brain models with resting state fMRI. NeuroImage, 221:117046, 2020.

[63] V. Sip, M. Hashemi, T. Dickscheid, K. Amunts, S. Petkoski, and V. Jirsa. Characterization of
regional differences in resting-state fMRI with a data-driven network model of brain dynamics.
Science Advances, 9(11):eabq7547, 2023.

[64] A. C. Smith and E. N. Brown. Estimating a state-space model from point process observations.
Neural computation, 15(5):965–991, 2003.

[65] S. H. Strogatz. Nonlinear dynamics and chaos: With applications to physics, biology, chemistry,
and engineering. CRC press, 2018.

[66] J. Thome, R. Steinbach, J. Grosskreutz, D. Durstewitz, and G. Koppe. Classification of
amyotrophic lateral sclerosis by brain volume, connectivity, and network dynamics. Human
Brain Mapping, 43(2):681–699, 2022.

[67] C. van Vreeswijk and H. Sompolinsky. Chaos in neuronal networks with balanced excitatory
and inhibitory activity. Science, 274(5293):1724–1726, 1996.

[68] P. Verzelli, C. Alippi, and L. Livi. Learn to synchronize, synchronize to learn. Chaos: An
Interdisciplinary Journal of Nonlinear Science, 31(8), 2021.

[69] P. R. Vlachas, W. Byeon, Z. Y. Wan, T. P. Sapsis, and P. Koumoutsakos. Data-driven forecasting
of high-dimensional chaotic systems with long short-term memory networks. Proceedings of
the Royal Society A: Mathematical, Physical and Engineering Sciences, 474(2213):20170844,
2018.

[70] P. R. Vlachas, J. Pathak, B. R. Hunt, T. P. Sapsis, M. Girvan, E. Ott, and P. Koumoutsakos.
Backpropagation algorithms and reservoir computing in recurrent neural networks for the
forecasting of complex spatiotemporal dynamics. Neural Networks, 126:191–217, 2020.

[71] P. R. Vlachas, G. Arampatzis, C. Uhler, and P. Koumoutsakos. Multiscale simulations of
complex systems by learning their effective dynamics. Nature Machine Intelligence, 4(4):
359–366, 2022.

14

[72] J. T. Vogelstein, A. M. Packer, T. A. Machado, T. Sippy, B. Babadi, R. Yuste, and L. Paninski.
Fast nonnegative deconvolution for spike train inference from population calcium imaging.
Journal of Neurophysiology, 104(6):3691–3704, 2010.

[73] R. Vogt, M. Puelma Touzel, E. Shlizerman, and G. Lajoie. On Lyapunov exponents for RNNs:
Understanding information propagation using dynamical systems tools. Frontiers in Applied
Mathematics and Statistics, 8:818799, 2022.

[74] X.-J. Wang. Probabilistic decision making by slow reverberation in cortical circuits. Neuron,
36(5):955–968, 2002.

[75] N. Wiener. Extrapolation, interpolation, and smoothing of stationary time series: With engi-
neering applications. MIT Press, 1949.

[76] H. R. Wilson and J. D. Cowan. Excitatory and inhibitory interactions in localized populations
of model neurons. Biophysical Journal, 12(1):1–24, 1972.

[77] S. N. Wood. Statistical inference for noisy nonlinear ecological dynamic systems. Nature, 466
(7310):1102–1104, 2010.

[78] G.-R. Wu, N. Colenbier, S. Van Den Bossche, K. Clauw, A. Johri, M. Tandon, and D. Marinazzo.
rsHRF: A toolbox for resting-state HRF estimation and deconvolution. NeuroImage, 244:
118591, 2021.

[79] E. Yaksi and R. W. Friedrich. Reconstruction of firing rate changes across neuronal populations
by temporally deconvolved Ca2+ imaging. Nature Methods, 3(5):377–383, 2006.

[80] L. Yang, X. Sun, B. Hamzi, H. Owhadi, and N. Xie. Learning dynamical systems from data:
A simple cross-validation perspective, part V: Sparse kernel flows for 132 chaotic dynamical
systems. arXiv preprint arXiv:2301.10321, 2023.

[81] B. M. Yu, J. P. Cunningham, G. Santhanam, S. Ryu, K. V. Shenoy, and M. Sahani. Gaussian-
process factor analysis for low-dimensional single-trial analysis of neural population activity.
In Advances in Neural Information Processing Systems, volume 21, pages 1881–1888, 2008.

15

A Further methodological details

A.1 Deconvolution algorithm in convSSM

Algorithm 1 Deconvolution in convSSM
Input:

X : measured time series as (N × T) matrix
Parameters:

ψ: analyzing wavelet
σ̃min: minimum noise level
cutl, cutr: edge cutoffs
hrft: kernel of hemodynamic response function

Output:
Xdeconv: deconvolved time series as (N × T) matrix

Initialize Xdeconv := zeros (N,T)
for i = 1 to N do
xt := X [i, :]
σ̃, z̃t := VISUSHRINK(xt, ψ)
if σ̃ < σ̃min then
σ̃ := σ̃min

end if

Compute Fourier transforms F{·} and expectation values of spectral densities E
[
|F {·} |2

]
Xk := F {xt}
HRFk := F {hrft}
Nk := E

[
|F {ηt} |2

]
Sk := E

[
|F {z̃t} |2

]
Compute and apply Wiener filter
Wk :=

HRF∗
k ·Sk

|HRFk|2·Sk+Nk

Z̃k :=Wk ·Xk

Transform back to time domain
x̃t := F−1

{
Z̃k

}
Remove signal edges
x̃t[begin + cutl : end] := NaN
x̃t[begin : end − cutr] := NaN
Xdeconv[i, :] := x̃t

end for

16

A.2 Scalability

A B C

D E

Figure 4: Training duration per epoch (y-axis) in seconds for different TRs (A), hidden dimensions L
(B), latent dimensions M (C), time series length (D), and observation dimensions (E). Mean, standard
error (SEM) and linear curve fits (gray dashed lines) are displayed. The per-epoch-runtime increases
approximately linearly with dimensions L,M , andN ; explained varianceR2

L = 0.989,R2
M = 0.993,

and R2
N = 0.996 for linear regressions with predictors ’L’, ’M ’, and ’N ’, respectively. Experiments

were performed on a standard notebook with Intel i5-8250U 1,60 GHz CPU and 8GB RAM.

A.3 PLRNNs

The simplest form of the PLRNN is given by

zt = Azt−1 +WΦ(zt−1) + h. (11)

where zt ∈ RM is a latent state vector at time t, Φ(·) = max(0, ·) is the ReLU activation function,
W ∈ RM×M is an off-diagonal matrix of connection weights and A ∈ RM×M a diagonal matrix
containing the autoregressive weights [21].

Neurobiologically motivated, the entries of the latent state zi,t may be interpreted as membrane
potentials, the diagonal elements in A as the neurons’ individual membrane time constants, and the
off-diagonal elements in W as synaptic connections between neurons. The ReLU activation emulates
that neurons only start spiking above a certain firing threshold.

By adding one hidden layer, we obtain the so-called shallow PLRNN

zt = Azt−1 +W1ϕ (W2zt−1 + h2) + h1 (12)

with zt ∈ RM latent states at time t, ϕ(·) = ReLU(·), diagonal matrix A ∈ RM×M , rectangular
connectivity matrices W1 ∈ RM×L and W2 ∈ RL×M and thresholds h1 ∈ RM and h2 ∈ RL.

A.4 Wiener filter

The Wiener deconvolution filter is typically described in the frequency domain, and, for the setting in
Equation 6 and Equation 7, is given by

Wk =
HRF ∗

kSk
|HRFk|2Sk +Nk

(13)

and returns the estimate ẑt as

ẑt = F−1(WkXk) =
(
Conv−1({xt′}, hrf)

)
t

(14)

• where time series denoted with capital letters correspond to the Fourier transformation of
time series denoted by lowercase letters, i.e., {Xk} = F ({xt}),

• Wk is the Wiener filter,
• Sk = E[|Zk|2] is the mean power spectral density of the original signal zt,

17

• Nk = E[|Hk|2] is the mean power spectral density of the noise ηt,
• the superscript ∗ denotes complex conjugation, and
• F−1 is the inverse Fourier transform.

The noise spectrum Nk is typically unknown in practice, but can be reliably estimated based on
the median estimator on the finest scale wavelet coefficients of xt. As approximation to the power
spectrum of the original signal, we use the denoised signal x̃t which we obtain by applying the
VISUSHRINK algorithm [18], Algorithm 2, to the observed signal xt. This approximation works
well in practice in absence of knowledge about the true underlying signal.

Algorithm 2 VISUSHRINK algorithm
Input: time series data {xt} of length N ; analyzing wavelet ψ

1. Apply the discrete wavelet transformation (DWT) to the input data {xt} to obtain the wavelet
coefficients Θ0

t
Θt = Wψ{xt} (15)

2. Calculate the MAD of the fine scale coefficients Θ0
t , the estimate of the noise level σ̃ and the

universal estimator λU . Let Θ̄ = median(Θ0
t) be the median of the fine scale coefficients

and N the length of the time series {xt}

MAD = median(|Θ0
t − Θ̄|) (16)

σ̃ =
MAD
0.6745

(17)

λU = (2 lnN)1/2σ̃ (18)

3. Apply hard thresholding to the fine scale wavelet coefficients

Θ1
t =

{
0, |Θ0

t | < λU
Θ0
t , |Θ0

i | ≥ λU
(19)

4. Apply the inverse DWT to the tresholded coefficients Θ1
t to obtain an estimate of the

denoised signal {x̃t}
{x̃t} = W −1

ψ {Θ1
t} (20)

Output: estimate of the noise level σ̃; estimate of denoised signal {x̃t}

A.5 Additional details on BOLD observation model

The discrete convolution of two time series {ft} and {gt} in its general definition is given by

(f ∗ g)t =
∞∑

s=−∞
fs · gt−s (21)

which in case of the decoder model given in Equation 5 translates to

(hrf ∗ z)t =
τ∑
s=0

hrfs · zt−s (22)

due to the finite non-zero value of τ , i.e., the maximum time difference at which a previous state
zt−τ still influences the current state zt according to the hrf . Furthermore, due to causality, only
past states are allowed to influence the current state.

Since the convolution operation as well as matrix multiplication are linear, the order of convolution
and matrix multiplication in Equation 5 can be inverted to yield Equation 9. This can be seen more
easily if we consider a decoder model without noise

xt = B(hrf ∗ z)t. (23)

18

Due to the hrf being the same for all latent dimensions (i.e., a scalar and not a function), we
interchange the matrix multiplication with B and the convolution with the hrf

B(hrf ∗ z)t = B

τ∑
s=0

hrfs · zt−s (24)

(B(hrf ∗ z)t)i =
M∑
j=1

Bij

τ∑
s=0

hrfs · zt−s,j =
τ∑
s=0

hrfs

M∑
j=1

Bij · zt−s,j =
τ∑
s=0

hrfs(B · zt−s)i

(25)
B(hrf ∗ z)t = (hrf ∗ (Bz))t. (26)

Consequentially, we divide the observations into two parts

xt =
(
hrf ∗ xdeconv)

t
⇔ {xt} = Conv

({
xdeconv
t′

}
, hrf

)
(27)

xdeconv
t = Bzt (28)

The second part, Equation 28, is of the same form as Equation 2 and permits the same inversion.
Therefore, by computing

{
xdeconv
t

}
from {xt} once, we can perform GTF as in the standard SSM.

To include the nuisance artifacts {rt}, one has to also swap the order of the matrix multiplication and
the convolution in the full decoder model (Equation 5). This poses a problem since the {rt} are not
convolved. Our solution is deconvolving the {rt} time series as well

Jrt =
{
hrf ∗

(
Jrdeconv)}

t
(29)

rdeconv
s = Conv−1({rt}, hrf)s. (30)

We use this as a simple mathematical trick to incorporate the artifacts into the convolution

xt = B(hrf ∗ z)t + Jrt = (hrf ∗Bz)t +
(
hrf ∗

(
Jrdeconv))

t
=
(
hrf ∗

(
Bz + Jrdeconv))

t
.

(31)

Finally, we obtain the relation between the deconvolved time series and the latent states as

xdeconv
t = Bzt + Jrdeconv

t (32)

zt = B+
(
xdeconv
t − Jrdeconv

t

)
. (33)

A.6 Additional information on Algorithm 1

In order to deal with numerical instabilities, additional hyperparameters were introduced. A too low
noise level σ̃ determined by the VISUSHRINK Algorithm 2 can lead to high frequency artifacts,
which can be dealt with by defining a lower noise level boundary σ̃min. Although this is unlikely to
occur in empirical (noisy) data, the lower noise level boundary helps to study artificial noise free data.
Since the convolution treats the finite signal as periodic, artifacts at the boundaries of the computed
deconvolved signal xdeconv

t may occur. With the hyperparameters cut_l, cut_r (corresponding to start
and end of signal, respectively) one can therefore define absolute cutoff times, either by integer or by
floating point values (if, e.g., a cutoff time is to be defined relative to the length of the hrf).

A.7 Performance measures

If the maximum Lyapunov exponent λmax of a dynamical system is larger than 0, a necessary
condition for chaos, nearby trajectories will diverge exponentially. This limits the applicability of
n-step ahead prediction errors (PEs), as conventionally used in machine learning, to evaluate model
performance, as even small numerical errors will lead to exponentially growing PEs. In processes
in which we can expect chaotic behavior (like neural recordings), we therefore need performance
measures which are insensitive to a system’s initial conditions and yet capture the most relevant
dynamical properties. Here, we use two established measures [40, 47] to evaluate the DSR, the state
space divergence, capturing geometric overlap of (ergodic) distributions in state space, and the power
spectrum error, capturing agreement in long-term temporal properties.

On the ALN and LEMON benchmark, we computed these two measures as average over 100
trajectories, generated by perturbing the initial state with a small Gaussian noise term (µ = 0,
σ = .01).

19

A.7.1 Prediction Error PE

The n-step prediction error is given by

PE(n) =
1

N(T − n)

T−n∑
t=1

∥xt+n − x̂t+n∥22, (34)

i.e. , the mean squared error between ground truth data {xt} and n-step ahead predictions of the
model {x̂t}.

A.7.2 State space divergence Dstsp

Given an observed N -dimensional time series {xt} of length T and a time series {x̂t} with the same
dimension/length generated by a model, Dstsp measures the geometrical overlap of orbits in state
space [40].

For low dimensional systems, N ≤ 6, the state space is segregated into kN bins where k is the
number of bins per dimension. Each bin is given an index i and we count the number of times ni the
time series visited bin i. The relative frequency of visits is then obtained by dividing by time series
length T

pi =
ni
T
. (35)

Combining these frequencies across all bins in space results in a probability distribution which
approximates the state space distribution (the occupation measure) of the underlying dynamical
system. The Kullback-Leibler divergence of these empirical distributions can then be computed to
assess the overlap of both systems in their state space geometry,

Dstsp =

kN∑
i=1

pi log

(
pi
qi

)
(36)

where pi are the relative frequencies of the observed and qi of the predicted (generated) time series.
Note that Dstsp is not a metric in the mathematical sense, but a divergence that assesses the (dis-
)agreement of probability distributions.

The complexity of this binning approach scales exponentially with the observation dimension N
and thus becomes intractable for larger N . To compute Dstsp in higher-dimensional systems, [6]
use Gaussian mixture models (GMMs) with centers (means) xt and diagonal covariance Σ =
diag(σ2, · · · , σ2), where σ is a hyperparameter. The GMMs along the trajectory points are given by

f(y) =
1

T

T∑
t=1

N (y;xt,Σ). (37)

Following [30], the Kullback-Leibler divergence of the two GMMs can be computed using a Monte-
Carlo sampling approach

Dstsp ≈
1

K

K∑
i=1

log

(
fobs(yi)

fgen(yi)

)
=

1

K

K∑
i=1

log

(
1/T

∑T
t=1 N (yi;xt;Σ)

1/T
∑T
t=1 N (yi; x̂t;Σ)

)
(38)

where K is the number of samples drawn, fobs is the distribution of the observed time series, and
fgen is the distribution of the generated time series. The binning and GMM-based measures correlate
strongly in low dimensions (whereas determining the correlation in high dimensions is challenging
for the stated reasons).

A.7.3 Power spectrum error DPSE

The state space measure introduced above discards all temporal structure in the data. To include
temporal information in the model evaluation, we compare the power spectra of observed and

20

generated time series. For each dimension i ∈ {1, · · · , N}, the scalar time series {xi,t} is converted
into a power spectrum density (PSD) {Si,k}. The components are computed from the Fourier
transform of {xi,t}

Si,k =
|x̂i,k|
T

=
|F{xi,t}k|

T
. (39)

The agreement in power spectra is then evaluated in terms of the Hellinger Distance (HD) as suggested
by [47]. Since HD is a probability measure, the computed power spectra have to be normalized by

S̄i,k =
Si,k∑T
j=1 Si,j

. (40)

Using the power spectra of the observed time series pi,k = S̄i,k({xi,t}) and the generated time series
qi,k = S̄i,k({x̂i,t}), the HD is then assessed as

DH,i =

√√√√1−
T∑
k=1

√
pi,kqi,k. (41)

The power spectrum error (DPSE) is computed by averaging the HDs across all N dimensions of the
observed system:

DPSE =
1

N

N∑
i=1

DH,i (42)

Before analysis, the power spectra usually have to be smoothed with a Gaussian kernel of width σ to
reduce noise. σ can thus be considered a hyperparameter in the evaluation process and was set to
σ = 1 in the current work as in [6].

B Details on dynamical systems benchmarks

B.1 Lorenz63 system

The Lorenz63 introduced in [45] was designed to describe atmospheric convection based on three
dynamic variables. A two-dimensional fluid layer is uniformly warmed from below and cooled from
above. It is a continuous-time dynamical system given by the following set of differential equations:

dx1
dt

= σ(x2 − x1) (43)

dx2
dt

= x1(ρ− x3)− x2 (44)

dx3
dt

= x1x2 − βx3 (45)

where x1 is proportional to the rate of convection, x2 to the horizontal temperature variation, and x3
to the vertical temperature variation. The constants σ, ρ and β are system parameters proportional to
the Prandtl number, Rayleigh number, and certain physical dimensions of the fluid-layer. For chaotic
behavior, σ = 10, ρ = 28 and β = 8

3 are typical settings. These settings produce the so-called
"butterfly attractor" characteristic of the Lorenz system. For each data set, we drew random initial
conditions x0 ∼ N (0, 13×3) and simulated the system using the DynamicalSystems.jl Julia package,
([15]). 105 time steps were saved and used as data set (1 : 1 training vs. test split) after discarding
the first 1, 000 time points to remove transients from the data. To create the benchmark data sets,
these trajectories were then convolved with the hrfTR function. Gaussian white noise drawn from
N (0, σ13×3) was added to all data points.

Results on the Lorenz63 system are in Table 2.

21

https://juliadynamics.github.io/DynamicalSystems.jl/latest/

Table 2: Quantitative comparison between standard SSM and convSSM on noisy Lorenz63 data
(Nconverged is the number of converged models).

Convolution σ Obs. model Nconverged PE20 Dstsp DPSE

hrf1.2 0.01 Standard 80 0.0013± 0.0001 0.15± 0.32 0.06± 0.01
hrf1.2 0.01 Conv 82 0.0011± 0.0001 0.16± 0.46 0.06± 0.02
hrf0.5 0.01 Standard 92 0.0117± 0.0018 0.42± 0.55 0.10± 0.07
hrf0.5 0.01 Conv 90 0.0012± 0.0001 0.09± 0.02 0.06± 0.01
hrf0.2 0.01 Standard 22 0.0418± 0.0099 2.97± 0.75 0.64± 0.22
hrf0.2 0.01 Conv 92 0.0023± 0.0001 0.29± 0.47 0.14± 0.03
hrf1.2 0.1 Standard 86 0.0387± 0.0002 0.45± 0.02 0.09± 0.01
hrf1.2 0.1 Conv 86 0.0158± 0.0001 0.46± 0.17 0.09± 0.01
hrf0.5 0.1 Standard 93 0.0538± 0.0016 0.47± 0.10 0.10± 0.02
hrf0.5 0.1 Conv 85 0.0145± 0.0001 0.44± 0.27 0.09± 0.01
hrf0.2 0.1 Standard 54 0.0893± 0.0087 2.79± 0.90 0.58± 0.22
hrf0.2 0.1 Conv 84 0.0191± 0.0002 0.70± 0.08 0.24± 0.02

B.2 ALN model

The adaptive linear-nonlinear (ALN) cascade model is a population model of spiking neural networks.
The dynamical variables of the ALN model describe the average firing rate and other macroscopic
variables of a randomly connected, delay-coupled network of excitatory and inhibitory adaptive
exponential integrate-and-fire neurons (AdEx) with non-linear synaptic currents [3].

We used neurolib to create neural activity generated by an ALN model [12]. In neurolib, the firing
rate of the excitatory subpopulation of every brain area is used to simulate the BOLD signal via
the Balloon–Windkessel model (for formula see [11]). As an alternative, we implemented the
BOLD decoder model (Equation 5) as model linking the latent states zt (i.e., the latent neural
activity corresponding to the excitatory firing rates) to the observed BOLD signal. In order to create
interesting dynamics, certain values were altered from the authors’ default settings, ’sigma_ou’ = 0
and ’b’ = 5.0. Furthermore, only the first 16 dimensions of the structural connectivity matrix ’Cmat’
and the delay matrix ’Dmat’ (see explanatory notebook provided by [12]) were used for comparability
with the empirical LEMON data set.

neurolib produces simulated (latent) neural activity with a sampling rate of 0.1ms. To stay in a
comparable regime with the fMRI and Lorenz time series, we chose a sampling rate of 0.5s for the
simulated (observed) data. To achieve this without loss of critical information, the neuronal activity
as well as the BOLD time series were decimated using a 30 point finite impulse response (FIR) filter
with Hamming window. Furthermore, the neural activity time series was smoothed with a Gaussian
kernel with standard deviation σ = 1 and length 5, and then standardized.

Outliers in DSR measures (Table 3) were removed using the interquartile range (IQR) method. The
IQR method considers values as outliers if they are 1.5 IQRs above the third (Q3) or below the first
(Q1) quantile (where IQR = Q3 −Q1).

In Table 3 and corresponding Figure 2D, we present the quantitative comparison between the standard
SSM, the convSSM, the convSSM without GTF, and two benchmark conditions. Figure 5 depicts
correlations between measures computed on different subsets of the ALN dataset.

22

Table 3: DSR measures evaluated on the ALN data set for the convSSM, the standard SSM, and the
convSSM trained without generalized teacher forcing by setting α = 0. Measures were evaluated on
the ground truth latent space and the noisy observation space on the different created test sets.

metric ConvSSM Standard SSM No GTF (α = 0) White noise Fixed point

ob
se

rv
at

io
na

l

full pseudo-
empirical

time series

Dstsp 2.35± 1.01 2.16± 0.86 4.97± 1.48 3.49 5.15
DPSE 0.28± 0.04 0.3± 0.04 0.41± 0.15 0.79 -
10-step PE 0.98± 0.23 0.54± 0.13 1.11± 0.29 - -

pseudo-
empirical

test set

Dstsp 4.49± 1.49 3.82± 1.19 5.37± 1.98 3.68 4.81
DPSE 0.22± 0.02 0.22± 0.03 0.29± 0.1 0.76 -
10-step PE 1.46± 0.47 1.91± 0.51 1.12± 0.41 - -

Ground
truth

test set

Dstsp 2.52± 1.53 3.13± 1.7 5.19± 0.59 2.77 4.89
DPSE 0.37± 0.11 0.43± 0.1 0.54± 0.23 0.81 -
10-step PE 1.55± 0.2 1.86± 0.22 1.2± 0.19 - -

la
te

nt

full pseudo-
empirical

time series

Dstsp 6.17± 1.75 7.26± 1.53 15.03± 2.4 9.84 15.2
DPSE 0.45± 0.04 0.55± 0.03 0.48± 0.18 0.58 -
10-step PE 3.97± 0.61 3.31± 0.48 2.76± 0.43 - -

pseudo-
empirical

test set

Dstsp 9.25± 3.08 9.98± 2.99 15.67± 4.4 11.71 15.27
DPSE 0.41± 0.04 0.5± 0.05 0.42± 0.13 0.56 -
10-step PE 4.47± 0.87 3.7± 0.75 2.85± 0.73 - -

Ground
truth

test set

Dstsp 5.86± 2.13 7.64± 2.19 14.99± 0.94 7.35 14.76
DPSE 0.5± 0.08 0.62± 0.05 0.56± 0.25 0.58 -
10-step PE 4.41± 0.47 3.65± 0.3 2.81± 0.26 - -

23

A

B

C

Figure 5: A: Agreement in DSR measures assessed on the observed (x-axis) vs. latent (y-axis)
space of the short pseudo-empirical test set (top) and the full pseudo-empirical time series (bottom).
Correlations between Dstsp (left), DPSE (middle), and PE10 (right) are displayed, respectively. B:
Top: Agreement in DSR measures assessed on the pseudo-empirical test set (short) vs. GT test set
(long). Bottom: Same for full pseudo-empirical time series (short) vs. GT test set (long). Correlations
between Dstsp (left), DPSE (middle), and PE10 (right) are displayed, respectively. C: Correlations
between DSR measures between pseudo-empirical test set and full pseudo-empirical time series,
same order as in B.

24

B.3 LEMON data set

For the LEMON data set, we observed non-stationarity in the data that partly resulted in performance
degradation. We therefore only included participants with nearly constant variance over time. To
remove non-stationary data sets, we assessed the moving average of the variance over time (window
size w = 40 time steps). We then discarded data sets in which the variance changed with time
(assessed by computing the correlation with time, with threshold set to |r| > .16).

The LEMON dataset can be found at https://ftp.gwdg.de/pub/misc/MPI-Leipzig_
Mind-Brain-Body-LEMON/.

B.4 Hyperparameter settings for the different experiments

Table 4: Hyperparameter settings for the experiments conducted. ‘Varies’ means the respective
hyperparameter was varied in the experiment.

Hyperparameter Lorenz benchmark ALN benchmark LEMON data set
latent_dim 3 16 16
gaussian_noise_level 0.05 0.05 0.05
optimizer RADAM RADAM RADAM
start_lr 0.001 0.001 0.001
batch_size 16 16 16
model shPLRNN cshPLRNN cshPLRNN
batches_per_epoch 50 50 50
observation_model Identity Identity Regressor
lat_model_regularization 0.0001 0.0 0.0
end_lr 1e-06 1e-06 1e-06
device cpu cpu cpu
gradient_clipping_norm 10.0 10.0 0.0
hidden_dim 50 50 Varies
sequence_length 500 200 200
MAR_ratio 0.0 0.0 0.0
obs_model_regularization 0.0 0.0 0.0
epochs 1,000 1,000 1,000
MAR_lambda 0.005 0.0 0.01
weak_tf_alpha 0.1 0.2 Varies
min_conv_noise 1.0e-5 5e-06 1.0e-5
train_test_split 50,000 0.75 0.75
TR Varies 0.5 1.4
cut_l 0 0.25 0.25
cut_r 0 0.5 0.5

All experiments were run on a system with a Xeon Gold 6248 CPU and 768 GB of RAM.

25

https://ftp.gwdg.de/pub/misc/MPI-Leipzig_Mind-Brain-Body-LEMON/
https://ftp.gwdg.de/pub/misc/MPI-Leipzig_Mind-Brain-Body-LEMON/

C Further Details

C.1 Illustration of reconstruction measures

A B

Figure 6: A. Ground truth Lorenz trajectory sampled with noise (black), a good reconstruction with
low Dstsp (orange) that accurately recovers the attractor, and a poor reconstruction with high Dstsp
(green) that represents the attractor inaccurately, yielding an oscillatory (limit cycle) instead of a
chaotic solution. B. Trajectories of systems in A. unfolded in time. The inaccurate reconstruction (top)
achieves a lower prediction error (PE) than the accurate reconstruction (bottom), due to trajectory
divergence in chaotic systems. This example illustrates that PEs are inadequate to capture the
reconstruction of chaotic DS.

C.2 Comparison methods

MINDy: For MINDy [62] we used the implementation at https://github.com/singhmf/MINDy.
We trained models for each subject with the settings provided by the authors for fMRI data. To obtain
trajectories for calculating PE10, DPSE , and Dstsp, we used the provided deconvolution function
to obtain an initial condition in latent space. We iterated the model forward in time for the latent
trajectory and then applied the authors’ observation function to output a BOLD time series which is
compared with the test data.
LFADS: For LFADS [48], we used the lfads-torch implementation at https://github.com/
arsedler9/lfads-torch, which provides an LFADS re-implementation in the deep learning
library Pytorch [61]. The default hyperparameters provided are optimized for neural spiking data.
We changed the observation model (in the framework this is referred to as reconstruction target) to a
Gaussian, and changed the start and stop learning rates from lrstart = 4 · 10−3, lrend = 1 · 10−5,
to lrstart = 4 · 10−4, lrend = 1 · 10−6, which improved the fit to our data. To obtain trajectories,
we iterated the trained models forward in time with initial conditions from the test dataset using the
provided model.predict_step function.
rSLDS: For rSLDS [44], we used the implementation at https://github.com/lindermanlab/
ssm. We trained the rSLDS with the Laplace-EM method with the Structured Mean-Field Posterior,
as recommended by the authors, with diagonal_Gaussian dynamics and Gaussian_id emissions.
For a fair comparison, we used the same number of latent dimensions as for the observations (same
as for the cshPLRNN). We determined the rSLDS training parameters α = 0.9 and K = 2 via
grid search over α ∈ [0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0] and K ∈ [[2, 15]] by inferring
systems using a subset of the data and assessing the performance on the held-out set [6]. To generate
trajectories for the model comparison, we first approximated the posterior of the test data and then
sampled with model.sample using the approximated posteriors x and z and the test data as prefix
input for the model.

C.3 History dependence

To illustrate the difference in “history dependence" for latent time series {zt} and convolved counter-
parts {xt}, an illustrative example was created: A latent time series {zt} was produced stochastically

26

https://github.com/singhmf/MINDy
https://github.com/arsedler9/lfads-torch
https://github.com/arsedler9/lfads-torch
https://github.com/lindermanlab/ssm
https://github.com/lindermanlab/ssm

A

B

Figure 7: A: Full (solid) and residual (dashed) average (across dimensions) auto-correlation functions
for the latent (left) and observed (right) time series. For the residual auto-correlation, the immediately
preceding time step was regressed out. For the dotted curve, cshPLRNN(zt−1) instead of zt−1 was
regressed out. B: Same as A for the mutual information as a function of time lag.

by using a cshPLRNN equipped with a process noise term ϵt, i.e.

zt = cshPLRNN(zt−1) + ϵt, ϵt ∼ N (0, diag(σ, σ, σ)).

The cshPLRNN employed here was trained to become a surrogate model for the Lorenz63 system,
and ϵt is Gaussian white noise with standard deviation σ = 0.1 on each dimension. Note that there
are no correlations between noise terms at different time points. A time series of length T = 105 was
simulated. The corresponding observation time series {xt} was created by convolving {zt} with the
hemodynamic response function hrf0.5 for TR = 0.5 s.

We then computed auto-correlation functions for the actual and a residual time series, where for the
latter the linear effect of zt−1 on zt (and, likewise, xt−1 on xt) was removed (similar to a partial
auto-correlation). As Figure 7A shows, the autocorrelation of the residual time series drops much
faster, instantaneously at first, for the latent states (left) as compared to the observed/convolved
variables on the right, illustrating the convolution effect is removed in the model’s latent space. It is
not completely gone if only linear dependencies are removed – if the model forwarded-iterated states
cshPLRNN(zt−1) are regressed out instead, the auto-correlation immediately drops to zero for the
latent states (dotted lines in Figure 7, left), as it should by model definition. Likewise, the (nonlinear)
mutual information (Figure 7B) shows there are no temporal dependencies left in the residual latent
series, while still present in the residual observed series, ‘empirically’ confirming our approach does
what it is supposed to do.

C.4 Acronyms

SSM: State space models
DS: Dynamical systems
DSR: Dynamical systems reconstruction
TF: Teacher forcing
BOLD: Blood oxygenation level dependent
fMRI: Functional magnetic resonance imaging
SLDS): Switching Linear
TVB: The Virtual Brain
DCM: Dynamic Causal Modeling
DL: Deep Learning
ODE: Ordinary Differential Equation

RNN: Recurrent neural network
rSLDS: Recurrent SLDS
LFADS: Latent Factor Analysis via Dynamical
Systems
STF: Sparse TF
GTF: Generalized TF
HRF: Hemodynamic response function
PLRNN: Piecewise linear RNN
shPLRNN: Shallow PLRNN
cshPLRNN: Clipped shallow PLRNN
MSE: Mean squared error

27

SGD: Stochastic gradient descent
EVGP: Exploding-and-vanishing gradients
problem
SOTA: State of the art
TR: Time of repetition
PE: Prediction error
DPSE: Hellinger distance/Power spectrum er-
ror
Dstsp: Kullback Leibler/ State space divergence
ALN: Adaptive linear-nonlinear cascade model

λmax: Maximum Lyapunov exponent GT:
Ground truth
LEMON: "Leipzig Study for Mind-Body-
Emotion Interactions"
rsfMRI: Resting state fMRI EEG: Electroen-
cephalography
LSTM: Long Short-Term Memory
MLP: Multi layer perceptron
BPTT: Backpropagation through time

28

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract accurately states the scope of our paper, the introduction and
validation of a generative model for dynamical systems reconstruction for BOLD time series.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitations of our approach at the end of section 4.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]

29

Justification: Our paper does not include theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide the data preprocessing steps and hyperparameters used to train our
models, the settings to compute the benchmark datasets with open source libraries and we
use a publicly available dataset. We provide code with an implementation of the convSSM
framework.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

30

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: All data used in the paper is generated with open source libraries or taken from
publicly available datasets. We provide public access to our model implementations and
training data.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: All experimental settings are included either in the main manuscript or in the
Appx. subsection B.4, as referenced in the manuscript.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We include error bars in all figures, where appropriate, report standard devia-
tions in all tables, and use statistical tests to back up claims made in the paper.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

31

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We include the system specifications of the machines which were used to
perform all experiments, see Figure 4 and subsection B.4.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The dataset we use containing human subjects was fully anonimized and all
subjects gave consent for the the data to be used. The data acquisition experiments were
carried out in accordance with the Declaration of Helsinki and the experimental protocol
was approved by the ethics committee at the medical faculty of the University of Leipzig
(reference number 154/13-ff), see [4] for details.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [No]

32

https://neurips.cc/public/EthicsGuidelines

Justification: This paper presents a novel algorithm in the context of data-driven dynamical
systems reconstruction, with applications to fields such as neuroscience and psychiatry.
We believe the primary consequences of the intended applications, such as characterizing
human cognition in health and disease, are positive. We therefore point to these applications.
However, we cannot entirely rule out the exploitation of such methods for other, currently
not known to us, potentially unethical, purposes that may arise in the future.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [No]
Justification: We do not release data and we believe our models do not have a high risk for
misuse.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We cite the libraries used to create our benchmarks and the fMRI dataset used
in our experimental section.

33

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: Along with the manuscript, we upload code for training the convSSM model,
as well as evaluation and plotting routines.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [No]

Justification: Full experimental details on acquisition of the human publicly available
LEMON data set are given in [4], and the dataset is properly referenced in the paper. Here,
we only include the information relevant to our analyses and replication. The data set
consists of far more details, beyond the scope of the paper.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects

34

paperswithcode.com/datasets

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [No]
Justification: In this work, we performed data analysis on an anonymized publicly available
dataset of human subjects. The data acquisition was carried out in accordance with the
Declaration of Helsinki and the data acquisition protocol was approved by the ethics
committee at the medical faculty of the University of Leipzig (reference number 154/13-
ff) [4]. An ethics approval in Germany requires study participants to be made aware of
foreseeable risks. The data is specifically made available for research purposes. To the
best of our knowledge, no additional risks were incurred by the analyses presented in this
manuscript.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

35

	Introduction
	Dynamical models in neuroscience
	Dynamical systems reconstruction (DSR)
	Specific contributions

	Convolution SSM model (convSSM)
	Latent DSR model
	Teacher forcing for invertible decoder models
	Teacher forcing for decoder models with signal convolution

	Results
	Performance measures
	convSSM validation & scalability on Lorenz63
	Validating performance measures on short time series
	Application to experimental fMRI data

	Conclusions
	Acknowledgements
	Further methodological details
	Deconvolution algorithm in convSSM
	Scalability
	PLRNNs
	Wiener filter
	Additional details on BOLD observation model
	Additional information on Algorithm 1
	Performance measures
	Prediction Error PE
	State space divergence Lg
	Power spectrum error Lg

	Details on dynamical systems benchmarks
	Lorenz63 system
	ALN model
	LEMON data set
	Hyperparameter settings for the different experiments

	Further Details
	Illustration of reconstruction measures
	Comparison methods
	History dependence
	Acronyms

