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Abstract
Modeling evolving knowledge over temporal001
knowledge graphs (TKGs) has become a heated002
topic. Various methods have been proposed003
to forecast links on TKGs. Most of them are004
embedding-based, where hidden representa-005
tions are learned to represent knowledge graph006
(KG) entities and relations based on the ob-007
served graph contexts. Although these methods008
show strong performance on traditional TKG009
forecasting (TKGF) benchmarks, they face a010
strong challenge in modeling the unseen zero-011
shot relations that have no prior graph context.012
In this paper, we try to mitigate this problem as013
follows. We first input the text descriptions014
of KG relations into large language models015
(LLMs) for generating relation representations,016
and then introduce them into embedding-based017
TKGF methods. LLM-empowered represen-018
tations can capture the semantic information019
in the relation descriptions. This makes the020
relations, whether seen or unseen, with sim-021
ilar semantic meanings stay close in the em-022
bedding space, enabling TKGF models to rec-023
ognize zero-shot relations even without any024
observed graph context. Experimental results025
show that our approach helps TKGF models to026
achieve much better performance in forecast-027
ing the facts with previously unseen relations,028
while still maintaining their ability in link fore-029
casting regarding seen relations.030

1 Introduction031

Knowledge graphs (KGs) represent world knowl-032

edge with a collection of facts in the form of033

(s, r, o) triples, where in each fact, s, o are the034

subject and object entities and r is the relation be-035

tween them. Temporal knowledge graphs (TKGs)036

are introduced by further specifying the time va-037

lidity. Each TKG fact is denoted as a quadruple038

(s, r, o, t), where t (a timestamp or a time period)039

provides temporal constraints. Since world knowl-040

edge is ever-evolving, TKGs are more expressive041

in representing dynamic factual information.042

In recent years, there has been an increasing 043

number of works paying attention to forecasting 044

future facts in TKGs, i.e., TKG forecasting (TKGF) 045

or TKG extrapolated link prediction (LP). Most of 046

them are embedding-based, where entity and re- 047

lation representations are learned with the help of 048

the observed graph contexts. Although traditional 049

embedding-based TKGF methods show impressive 050

performance on current benchmarks, they share a 051

common limitation. In these works, models are 052

trained on the TKG facts regarding a set of rela- 053

tions R, and they are only expected to be evaluated 054

on the facts containing the relations in R. They 055

cannot handle any zero-shot (ZS) unseen relation 056

r /∈ R because no graph context regarding unseen 057

relations exists in the training data and thus no rea- 058

sonable relation representations can be learned. In 059

the forecasting scenario, as time flows, new knowl- 060

edge is constantly introduced into a TKG, making 061

it expand in size. This increases the chance of 062

encountering newly-emerged relations, and there- 063

fore, it is meaningful to improve embedding-based 064

TKGF methods to be more adaptive to ZS relations. 065

With the increasing scale of pre-trained language 066

models (LMs), LMs become large LMs (LLMs). 067

Recent studies find that LLMs have shown emerg- 068

ing abilities in various aspects (Wei et al., 2022) 069

and can be taken as strong semantic knowledge 070

bases (KBs) (Petroni et al., 2019). Inspired by this, 071

we try to enhance the performance of embedding- 072

based TKGF models over ZS relations with an ap- 073

proach consisting of the following three steps: (1) 074

Based on the relation text descriptions provided 075

in TKG datasets, we first use an LLM to produce 076

an enriched relation description (ERD) with more 077

details for each KG relation (Sec. 3.1). (1) We then 078

generate the relation representations by leveraging 079

another LLM, i.e., T5-11B (Raffel et al., 2020). 080

We input ERDs into T5’s encoder and transform 081

its output into relation representations of TKGF 082

models (Sec. 3.1). (3) We design a relation history 083
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learner (RHL) to capture historical relation patterns,084

where we leverage LLM-empowered relation rep-085

resentations to better reason over ZS relations (Sec.086

3.2). With these steps, we align the natural lan-087

guage space provided by LLMs to the embedding088

space of TKGF models, rather than letting mod-089

els learn relation representations solely from ob-090

served graph contexts. Even without any observed091

associated facts, ZS relations can be represented092

with LLM-empowered representations that contain093

semantic information. We term our approach as094

zrLLM since it is used to enhance ZS relational095

learning on TKGF models by using LLMs.096

We experiment zrLLM on seven recent097

embedding-based TKGF models and evaluate them098

on three new datasets constructed specifically for099

studying TKGF regarding ZS relations. Our con-100

tribution is three-folded: (1) To the best of our101

knowledge, this is the first work trying to study102

ZS relational learning in TKGF. (2) We design an103

LLM-empowered approach zrLLM and manage to104

enhance various recent embedding-based TKGF105

models in reasoning over ZS relations. (3) Ex-106

perimental results show that zrLLM helps to sub-107

stantially improve all considered TKGF models’108

abilities in forecasting the facts containing unseen109

ZS relations, while still maintaining their ability in110

link forecasting regarding seen relations.111

2 Preliminaries112

2.1 Related Work113

Due to page limit, see App. J for more details.114

Traditional TKG Forecasting Methods. Tradi-115

tional TKGF methods are trained to forecast the116

facts containing the KG relations (and entities) seen117

in the training data, regardless of the case where118

ZS relations (or entities) appear as new knowl-119

edge arrives. These methods can be categorized120

into two types: embedding-based and rule-based.121

Embedding-based methods learn hidden represen-122

tations of KG relations and entities, and perform123

link forecasting based on them. Most existing124

embedding-based methods, e.g., (Jin et al., 2020;125

Han et al., 2021b; Li et al., 2021b, 2022; Liu et al.,126

2023), learn evolutional entity and relation repre-127

sentations from the historical TKG information by128

jointly employing graph neural networks (Kipf and129

Welling, 2017) and recurrent neural structures, e.g.,130

GRU (Cho et al., 2014). Some other approaches131

(Han et al., 2021a; Sun et al., 2021; Li et al., 2021a)132

start from each LP query1 and traverse the tem- 133

poral history in a TKG to search for the predic- 134

tion answer. There also exist some methods, e.g., 135

(Zhu et al., 2021; Xu et al., 2023b), that achieve 136

forecasting based on the appearance of historical 137

facts. Compared with embedding-based TKGF 138

approaches, rule-based TKGF has still not been ex- 139

tensively explored. One popular rule-based TKGF 140

method is TLogic (Liu et al., 2022). It extracts tem- 141

poral logic rules from TKGs and uses a symbolic 142

reasoning module for LP. Based on it, ALRE-IR 143

(Mei et al., 2022) proposes an adaptive logical rule 144

embedding model to encode temporal logical rules 145

into rule representations. This makes ALRE-IR 146

both a rule-based and an embedding-based method. 147

Rule-based TKGF methods have strong ability in 148

reasoning over ZS unseen entities connected by the 149

seen relations, however, they are not able to handle 150

unseen relations since the learned rules are strongly 151

bounded by the observed relations. 152

Inductive Learning on TKGs. Inductive learn- 153

ing on TKGs refers to developing models that can 154

handle the relations and entities unseen in the train- 155

ing data. Most of TKG inductive learning methods 156

are based on few-shot learning (FSL), e.g., (Ding 157

et al., 2022; Zhang et al., 2019; Ding et al., 2023b; 158

Mirtaheri et al., 2021; Ding et al., 2023a,a; Ma 159

et al., 2023). They first compute inductive repre- 160

sentations of newly-emerged entities or relations 161

based on K-associated facts (K is a small number, 162

e.g., 1 or 3), and then use them to predict other 163

facts regarding few-shot elements. One limitation 164

of these works is that the inductive representations 165

cannot be learned without the K-shot examples, 166

making them hard to solve the ZS problems. Dif- 167

ferent from FSL methods, SST-BERT (Chen et al., 168

2023a) pre-trains a time-enhanced BERT (Devlin 169

et al., 2019) and proves its inductive power over 170

unseen entities but has not shown its ability in rea- 171

soning ZS relations. Another recent work MTKGE 172

(Chen et al., 2023b) is able to concurrently deal 173

with both unseen entities and relations. However, 174

it requires a support graph containing a substantial 175

number of data examples related to the unseen enti- 176

ties and relations, which is far from the ZS setting. 177

TKG Reasoning with Language Models. Re- 178

cently, more and more works have introduced LMs 179

into TKG reasoning. SST-BERT pre-trains an LM 180

1A TKG LP query is denoted as (s, r, ?, t) (object predic-
tion query) or (?, r, o, t) (subject prediction query).

2



on a corpus of training TKGs for fact reasoning.181

ECOLA (Han et al., 2023) aligns facts with addi-182

tional fact-related texts and enhances TKG reason-183

ing with BERT-encoded language representations.184

PPT (Xu et al., 2023a) converts TKGF into the185

pre-trained LM masked token prediction task and186

finetunes a BERT for TKGF. Apart from them, one187

recent work (Lee et al., 2023) explores in-context188

learning (ICL) (Brown et al., 2020) with LLMs to189

predict future facts without finetuning. Another190

recent work GenTKG (Liao et al., 2023) finetunes191

Llama2-7B (Touvron et al., 2023), and let it directly192

generate the LP answer in TKGF.193

Although previous works have shown success194

of LMs in TKG reasoning, they have limitations:195

(1) None of them has studied whether LMs, in196

particular LLMs, can be used to better reason ZS197

relations. (2) By only using ICL, LLMs are beaten198

by traditional TKGF methods in performance (Lee199

et al., 2023). The performance can be greatly im-200

proved by finetuning LLMs (Liao et al., 2023),201

but finetuning LLMs requires huge computational202

resources. (3) Since LMs are pre-trained with a203

huge corpus originating from diverse information204

sources, it is inevitable that they have already seen205

the world knowledge before they are used to solve206

TKG reasoning tasks. Most popular TKGF bench-207

marks are constructed with the facts before 2020208

(ICEWS14/18/05-15 (Jin et al., 2020)). The facts209

inside are based on the world knowledge before210

2019, which means LMs might have encountered211

them in their training corpus, posing a threat of212

information leak to the LM-driven TKG reason-213

ing models. To this end, we (1) draw attention214

to studying the impact of LLMs on ZS relational215

learning in TKGs; (2) make a compromise between216

performance and computational efficiency by not217

finetuning LMs or LLMs but adapting the LLM-218

provided semantic information to non-LM-based219

TKGF methods; (3) construct new benchmarks220

whose facts are all happening from 2021 to 2023,221

which avoids the threat of information leak when222

we utilize T5-11B that was released in 2020.223

2.2 Definitions and Task Formulation224

Definition 1 (TKG). Let E , R, T denote a set of225

entities, relations and timestamps, respectively. A226

TKG G = {(s, r, o, t)} ⊆ E×R×E×T is a set of227

temporal facts where each fact is represented with228

a fact quadruple (s, r, o, t).229

Definition 2 (TKG Forecasting). Assume we230

have a ground truth TKG Ggt that contains all the231

true facts. Given an LP query (sq, rq, ?, tq) (or 232

(oq, rq, ?, tq)), TKGF requires the models to pre- 233

dict the missing object oq (or subject sq) based on 234

the facts observed before the query timestamp tq, 235

i.e., O = {(s, r, o, ti) ∈ Ggt|ti < tq}. 236

Definition 3 (Zero-Shot TKG Forecasting). As- 237

sume we have a ground truth TKG Ggt ⊆ E × 238

R × E × T , where R can be split into seen 239

Rse and unseen Run relations (R = Rse ∪ 240

Run,Rse ∩ Run = ∅). Given an LP query 241

(sq, rq, ?, tq) (or (oq, rq, ?, tq)) whose query rela- 242

tion rq ∈ Run, models are asked to predict the 243

missing object oq (or subject sq) based on the facts 244

O = {(s, ri, o, ti) ∈ Ggt|ti < tq, ri ∈ Rse} con- 245

taining seen relations and happening before tq. 246

3 zrLLM 247

zrLLM is coupled with TKGF models to enhance 248

ZS ability. It uses GPT-3.5 to generate enriched 249

relation descriptions (ERDs) based on the relation 250

texts provided by TKG datasets. It further inputs 251

the ERDs into the encoder of T5-11B and aligns 252

its output to TKG embedding space. zrLLM also 253

employs a relation history learner (RHL) to capture 254

the temporal relation patterns based on the LLM- 255

empowered relation representations. See Fig. 1 for 256

illustration of zrLLM-enhanced TKGF models. 257

3.1 Represent KG Relations with LLMs 258

Generate Text Representations with ERDs. We 259

generate text representations with T5-11B based 260

on the textual descriptions of KG relations. Since 261

the relation texts provided by TKG datasets are 262

short and concise, we use GPT-3.52 to enrich them 263

for more comprehensive semantics. Our prompt 264

for description enrichment is depicted in Fig. 2. 265

For each relation, we treat the combination of its 266

relation text and LLM-generated explanation as its 267

ERD. See Table 1 for two enrichment examples.

KG Relation Text Enriched Relation Description

Engage in negotiation Engage in negotiation: This indicates a willingness to participate in discussions or
dialogues with the aim of reaching agreements or settlements on various issues.

Praise or endorse Praise or endorse: This signifies a positive evaluation or approval of another entity’s
actions, policies, or behavior. It is a form of expressing support or admiration.

Table 1: Relation description enrichment examples.

268
We then input the ERDs into T5-11B. T5 is with 269

an encoder-decoder architecture, where its encoder 270

can be taken as a module that helps to understand 271

the text input and the decoder is solely used for 272

2https://platform.openai.com/docs/model-index-for-
researchers
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(a) Training pipeline of zrLLM-enhanced model. (b) Evaluation pipeline of zrLLM-enhanced model.

Figure 1: Illustration of zrLLM-enhanced TKGF models. RHL-related components are marked in blue. RHL works
differently in training and evaluation. During training, since we know both entities (s, o in 1a) in the training fact, we
can find the ground truth historical relations between them over time. We train a history prediction network (HPN)
that aims to generate the relation history between two entities given their current relation (r). During evaluation, we
directly use the trained HPN to infer the relation history. See Sec. 3 for details.

Figure 2: Prompting GPT-3.5 for ERDs. [REL_0], ...,
[REL_n] are the dataset provided relation texts for a
batch of n KG relations. [EXP_0], ..., [EXP_n] are the
LLM-generated explanations. [REL:_0]: [EXP_0], ...,
[REL:_n]: [EXP_n] are taken as ERDs.

text generation. We take the output of T5-11B’s en-273

coder, i.e., the hidden representations, for our down-274

stream task. Note that although ERDs are produced275

by GPT-3.5 who is trained with the corpus until the276

end of 2021, the representations used for TKGF are277

generated only with T5-11B, preventing informa-278

tion leak. Also, through our prompt, GPT-3.5 does279

not know our underlying task of TKGF. We man-280

ually check the ERDs generated by GPT-3.5 and281

make sure that no factual information regarding282

entities after 2020 is included.283

Align Text Representations to TKG Embed-284

ding Space. For each KG relation r, the T5-285

generated text representation is a parameter matrix286

H̄r ∈ RL×dw . L is the length of the Transformers287

(Vaswani et al., 2017) in T5 and dw is the embed-288

ding size of each word output from T5 encoder.289

The lth row in H̄r is the T5 encoded hidden repre-290

sentation wl ∈ Rdw of the lth word in the enriched291

description. To align H̄r to an embedding-based292

TKGF model, we first use a multi-layer perceptron293

(MLP) to map each wl to the dimension of the 294

TKGF model’s relation representation. 295

w′
l = MLP(wl),where w′

l ∈ Rd. (1) 296

Then we learn a representation of r’s ERD h̄r using 297

a GRU. 298

h̄(l)
r = GRU(w′

l, h̄
(l−1)
r ); h̄(0)

r = w′
0,

h̄r = h̄(L−1)
r .

(2) 299

l ∈ [1, L − 1]. h̄r contains semantic information 300

from ERD, and therefore, we can view it as an 301

LM-based relation representation. We substitute 302

the relation representations of TKGF models with 303

LM-based representations for semantics integra- 304

tion. Note that we fix the values of every H̄r 305

to keep the LLM-provided semantic information 306

intact. This is because we do not want the rela- 307

tion representations to lay excessive emphasis on 308

the training data where ZS relations never appear. 309

We want the models to maximally benefit from 310

the semantic information for better generalization 311

power. The textual descriptions of the relations 312

with close meanings will show similar semantics. 313

Since for each relation r, H̄r is generated based on 314

r’s ERD, the relations with close meanings will nat- 315

urally lead to highly correlated text representations, 316

building connections on top of the natural language 317

space regardless of the observed TKG data. 318

3.2 Relation History Learner 319

As the relationship between two entities evolves 320

through time, it follows certain temporal pat- 321

terns. For example, the fact (China, Sign formal 322

agreement, Nicaragua, 2022-01-10) happens after 323
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(China, Grant diplomatic recognition, Nicaragua,324

2022-01-04), implying that an agreement will be325

signed after showing diplomatic recognition. These326

temporal patterns are entity-agnostic and can re-327

flect the dynamic relationship between any two328

entities over time. To this end, we develop RHL,329

aiming to capture such patterns. Assume we have330

a training fact (s, r, o, t), we search for the his-331

torical facts G<t
s,o containing s and o before t, and332

group these facts according to their timestamps,333

i.e., G<t
s,o = {G0

s,o, ...,Gt−1
s,o }. The searched facts334

with the same timestamp are put into the same335

group. For each group, we pick out the relations336

of all its facts and form a relation set, e.g., R0
s,o337

is derived from G0
s,o. s and o’s relationship at ti338

(ti ∈ [0, t− 1]) is computed with an aggregator339

hti
s,o =

∑
m amh̄rm ; am = softmax(h̄⊤

rmMLPagg(h̄r)). (3)340

rm ∈ Rti
s,o denotes a relation bridging s and o at ti.341

If Rti
s,o = ∅, we set hti

s,o to a dummy embedding342

hdum. To capture the historical relation dynamics,343

we use another GRU, i.e., GRURHL.344

hti
hist = GRURHL(h

ti
s,o,h

ti−1
hist ); h0

hist = h0
s,o,

hhist = ht−1
hist .

(4)345

hhist is taken as the encoded relation history until346

t − 1. Note that during evaluation, TKGF asks347

models to predict the missing object of each LP348

query (sq, rq, ?, tq), which means we do not know349

which two entities should be used for historical fact350

searching3. To solve this problem, during training,351

we train another history prediction network (HPN)352

that aims to directly infer the relation history given353

the training fact relation r.354

h̃hist = αMLPhist(h̄r) + h̄r. (5)355

Here, α is a hyperparameter scalar and MLPhist is356

an MLP. h̃hist is the predicted relation history given357

r. Since we want h̃hist to represent the ground truth358

relation history, we use a mean square error (MSE)359

loss to constrain it to be close to hhist.360

Lhist = MSE(h̃hist,hhist). (6)361

In this way, during evaluation, we can directly use362

Eq. 5 to generate a meaningful h̃hist for further363

computation. Given h̃hist, we do one more step in364

GRURHL to capture the r-related relation pattern.365

hpat = GRURHL(h̄r, h̃hist). (7)366

3We can indeed couple sq with every candidate entity e ∈
E and search for their historical facts. But it requires huge
computational resources and greatly harms model’s scalability.

hpat can be viewed as a hidden representation con- 367

taining comprehensive information of temporal re- 368

lation patterns. Inspired by TuckER (Balazevic 369

et al., 2019), we compute an RHL-based score for 370

the training target (s, r, o, t) as 371

ϕ((s, r, o, t)) = W ×1 h(s,t) ×2 hpat ×3 h(o,t), (8) 372

where W ∈ Rd×d×d is a learnable core tensor and 373

×1,×2,×3 are three operators indicating the tensor 374

product in three different modes (details in (Bal- 375

azevic et al., 2019)). h(s,t) and h(o,t) are the time- 376

aware entity representations of s and o computed 377

by TKGF model, respectively. RHL-based score 378

can be viewed as measuring how much two entities 379

match the relation pattern generated by the relation 380

history. We couple this score with the score com- 381

puted by the original TKGF model ϕ′((s, r, o, t)) 382

and use the total score for LP. 383

ϕtotal((s, r, o, t)) = ϕ′ ((s, r, o, t)) + γϕ((s, r, o, t)) . (9) 384

γ is a hyperparameter. RHL enables models to 385

make decisions by additionally considering the 386

temporal relation patterns. Note that patterns are 387

captured with LLM-empowered relation represen- 388

tations that contain rich semantic information. This 389

guarantees RHL to generalize well to ZS relations. 390

See App. H for explanations. 391

3.3 Parameter Learning and Evaluation 392

We let zrLLM be co-trained with TKGF model. 393

Assume f is a TKGF model’s loss function, e.g., 394

cross-entropy, where f takes a fact quadruple’s 395

score computed by model’s score function ϕ′ and 396

returns a loss for this fact. We input the quadruple 397

score computed with Eq. 9 into f to let TKGF 398

models better learn the parameters in RHL. 399

LTKGF = 1
|Gtrain|

∑
λ∈Gtrain

f(ϕtotal(λ)), (10) 400

where λ denotes a fact quadruple (s, r, o, t) ∈ Gtrain 401

in the training set Gtrain. Besides, we also employ 402

an additional binary cross-entropy loss LRHL di- 403

rectly on the RHL-based score 404

LRHL =
1

N

∑
λ

∑
e∈E

Lλ,e
RHL;

Lλ,e
RHL = −yλ′ log(ϕ(λ′))− (1− yλ′) log(1− ϕ(λ′)).

(11) 405

N = |Gtrain| × |E|. λ′ is a perturbed fact by switch- 406

ing the object of λ to any e ∈ E and yλ′ is its label. 407

If λ′ ∈ Gtrain, then yλ′ = 1, otherwise yλ′ = 0. 408

Finally, we define the total loss Ltotal as 409

Ltotal = LTKGF + Lhist + ηLRHL. (12) 410
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η is a hyperparameter deciding LRHL’s magnitude.411

During evaluation, for each LP query (sq, rq, ?, tq),412

we compute scores {ϕtotal((sq, rq, e, tq))}|e ∈ E}413

and take the entity with maximum score as the pre-414

dicted answer. We provide algorithms of training415

and evaluation in App. A.416

4 Experiments417

We give details of our new ZS TKGF datasets in418

Sec. 4.1. In Sec. 4.3, we (1) do a comparative419

study to show how zrLLM improves TKGF models,420

(2) do ablation studies, (3) compare zrLLM with421

recent LM-enhanced TKGF models, and (4) do a422

case study to prove RHL’s effectiveness.

Dataset |E| |R| |Ttrain| |Teval| |Rse| |Run| |Gtrain| |Gvalid| |Gtest|
ACLED-zero 621 23 20 11 9 14 2,118 931 146

ICEWS21-zero 18,205 253 181 62 130 123 247,764 77,195 1,395
ICEWS22-zero 999 248 181 62 93 155 171,013 47,784 1,956

Table 2: Dataset statistics. Dataset timestamps consist
of both training and evaluation timestamps, i.e., T =
Ttrain ∪Teval, Ttrain ∩Teval = ∅, max(Ttrain) < min(Teval).

423

4.1 Datasets for Zero-Shot TKGF424

As discussed in Sec. 2.1, LM-enhanced TKGF425

models experience the risk of information leak.426

To exclude this concern, we construct new bench-427

mark datasets on top of the facts happening af-428

ter the publication date of T5-11B. We first con-429

struct two datasets ICEWS21-zero and ICEWS22-430

zero based on the Integrated Crisis Early Warn-431

ing System (ICEWS) (Boschee et al., 2015) KB.432

ICEWS21-zero contains the facts happening from433

2021-01-01 to 2021-08-31, while all the facts in434

ICEWS22-zero happen from 2022-01-01 to 2022-435

08-31. Besides, we also construct another dataset436

ACLED-zero based on a newer KB: The Armed437

Conflict Location & Event Data Project (ACLED)438

(Raleigh et al., 2010). Facts in ACLED-zero take439

place from 2023-08-01 to 2023-08-31. All the facts440

in all three datasets are based on social-political441

events described in English. Inspired by (Mirtaheri442

et al., 2021), our dataset construction process con-443

sists of the following steps. (1) For each dataset, we444

first collect all the facts within the time period of in-445

terest from the associated KB and then sort them in446

the temporal order. (2) Then we split the collected447

facts into two splits, where the first split contains448

the facts for model training and the second one449

has all the facts for evaluation. Any fact from the450

evaluation split happens later than the maximum451

timestamp of all the facts from the training split.452

Since we are studying ZS relations, we exclude the 453

facts in the evaluation split whose entities do not 454

appear in the training split, to avoid the potential 455

impact of unseen entities. (3) We compute the fre- 456

quencies of all relations in the evaluation split, and 457

set a frequency threshold (40 for ACLED-zero and 458

ICEWS21-zero, 60 for ICEWS22-zero). (4) We 459

take each relation whose frequency is lower than 460

the threshold as a ZS relation, and treat every fact 461

containing it in the evaluation split as ZS evaluation 462

data Gtest. We exclude the facts associated with ZS 463

relations from the training split to ensure that mod- 464

els cannot see these relations during training, and 465

take the rest as the training set Gtrain. The rest of 466

facts in the evaluation split are taken as the regular 467

evaluation data Gvalid. We do validation over Gvalid 468

and test over Gtest because we want to study how 469

models perform over ZS relations when they reach 470

the best performance over seen relations. See Table 471

2 and App. B for dataset statistics. 472

4.2 Experimental Setup 473

Training and Evaluation for Zero-Shot TKGF. 474

All TKGF models are trained on Gtrain. We take 475

the model checkpoint achieving the best validation 476

result on Gvalid as the best model checkpoint, and 477

report their test result on Gtest to study the ZS infer- 478

ence ability. To keep ZS relations "always unseen" 479

during the whole test process, we constrain all mod- 480

els to do LP only based on the training set as several 481

popular TKGF methods, e.g., RE-GCN (Zhu et al., 482

2021). Some TKGF models, e.g., TiRGN (Li et al., 483

2022), allow using the ground truth TKG data until 484

the LP query timestamp, including the facts in eval- 485

uation sets. This will violate the ZS setting because 486

every unseen relation will occur multiple times in 487

the evaluation data and is no longer ZS after mod- 488

els observe any fact of it. We prevent them from 489

observing evaluation data to maintain the ZS set- 490

ting. See App. C.5 for detailed explanation. Note 491

that in our work, Gvalid and Gtest share the same 492

time period. This is because we want to make sure 493

that zrLLM can enhance ZS reasoning and simul- 494

taneously maintain TKGF models’ performance 495

on the facts with seen relations. Improving ZS in- 496

ference ability at the cost of sacrificing too much 497

performance over seen relations is undesired. 498

Baselines and Evaluation Metrics. We consider 499

seven recent embedding-based TKGF methods as 500

baselines, i.e., CyGNet (Zhu et al., 2021), TANGO- 501

TuckER/Distmult (Han et al., 2021b), RE-GCN (Li 502
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Datasets ACLED-zero ICEWS21-zero ICEWS22-zero
Zero-Shot Relations Seen Relations Overall Zero-Shot Relations Seen Relations Overall Zero-Shot Relations Seen Relations Overall

Model MRR Hits@1 Hits@10 MRR Hits@1 Hits@10 MRR MRR Hits@1 Hits@10 MRR Hits@1 Hits@10 MRR MRR Hits@1 Hits@10 MRR Hits@1 Hits@10 MRR

CyGNet 0.487 0.349 0.791 0.751 0.663 0.903 0.717 0.120 0.046 0.270 0.254 0.165 0.432 0.252 0.211 0.098 0.459 0.315 0.198 0.540 0.311
CyGNet+ 0.533 0.418 0.753 0.751 0.664 0.906 0.723 0.201 0.103 0.415 0.258 0.162 0.447 0.257 0.286 0.167 0.542 0.315 0.200 0.545 0.314

TANGO-T 0.052 0.021 0.101 0.774 0.701 0.900 0.681 0.067 0.031 0.132 0.283 0.190 0.470 0.279 0.092 0.042 0.187 0.363 0.250 0.579 0.352
TANGO-T+ 0.525 0.393 0.764 0.775 0.702 0.901 0.743 0.216 0.125 0.395 0.280 0.186 0.466 0.279 0.326 0.198 0.578 0.363 0.251 0.585 0.362

TANGO-D 0.021 0.003 0.049 0.777 0.701 0.907 0.679 0.012 0.005 0.023 0.266 0.178 0.439 0.261 0.011 0.002 0.018 0.350 0.227 0.569 0.337
TANGO-D+ 0.491 0.348 0.791 0.760 0.678 0.901 0.725 0.212 0.122 0.400 0.268 0.175 0.453 0.267 0.311 0.186 0.574 0.350 0.239 0.570 0.348

RE-GCN 0.441 0.332 0.718 0.730 0.653 0.865 0.693 0.200 0.104 0.379 0.277 0.185 0.456 0.276 0.280 0.162 0.616 0.354 0.243 0.567 0.351
RE-GCN+ 0.529 0.393 0.784 0.731 0.650 0.876 0.705 0.214 0.117 0.406 0.280 0.188 0.456 0.279 0.324 0.194 0.595 0.357 0.244 0.573 0.356

TiRGN 0.478 0.330 0.745 0.754 0.678 0.886 0.718 0.189 0.101 0.368 0.275 0.182 0.457 0.273 0.299 0.169 0.570 0.352 0.239 0.575 0.350
TiRGN+ 0.548 0.436 0.750 0.754 0.679 0.885 0.727 0.221 0.130 0.410 0.279 0.185 0.464 0.278 0.333 0.203 0.602 0.353 0.240 0.577 0.352

RETIA 0.499 0.360 0.795 0.782 0.701 0.924 0.745 » 120 Hours Timeout 0.302 0.166 0.566 0.356 0.245 0.577 0.354
RETIA+ 0.557 0.408 0.814 0.783 0.703 0.925 0.754 0.331 0.201 0.597 0.358 0.247 0.578 0.357

CENET 0.419 0.297 0.593 0.753 0.682 0.869 0.710 0.205 0.101 0.411 0.288 0.196 0.468 0.287 0.270 0.134 0.544 0.379 0.268 0.599 0.375
CENET+ 0.591 0.451 0.844 0.779 0.692 0.912 0.755 0.335 0.162 0.659 0.396 0.239 0.688 0.395 0.564 0.432 0.801 0.571 0.451 0.773 0.570

Table 3: LP results. The best results between each baseline and its zrLLM-enhanced version (model name with "+")
are marked in bold. TANGO-T and TANGO-D denote TANGO with TuckER (Balazevic et al., 2019) and Distmult
(Yang et al., 2015), respectively. RETIA cannot be trained before 120 hours timeout on ICEWS21-zero. Complete
results with Hits@3 are presented in App. E.

et al., 2021b), TiRGN (Li et al., 2022), CENET (Xu503

et al., 2023b) and RETIA (Liu et al., 2023). We cou-504

ple them with zrLLM and show their improvement505

in ZS relational learning on TKGs (implementa-506

tion details in App. C). We employ two evalua-507

tion metrics, i.e., mean reciprocal rank (MRR) and508

Hits@1/3/10. See App. F for detailed definitions.509

As suggested in (Gastinger et al., 2023), we use the510

time-aware filtering setting (Han et al., 2021a) for511

fairer evaluation.512

4.3 Comparative Study and Further Analysis513

Comparative Study. We report the LP results of514

all baselines and their zrLLM-enhanced versions in515

Table 3. We have two findings: (1) zrLLM greatly516

helps TKGF models in forecasting the facts with517

unseen ZS relations. (2) In most cases, zrLLM even518

improves models in predicting the facts with seen519

relations. The zrLLM-enhanced models whose per-520

formance drops over seen relations still achieve521

better overall performance. These findings prove522

that embedding-based TKGF models benefit from523

the semantic information extracted from LLMs,524

especially when they are dealing with ZS relations.525

Ablation Study. We conduct ablation studies526

from three aspects. (1) First, we directly input527

the dataset provided relation texts into T5-11B en-528

coder, ignoring the relation explanations generated529

by GPT-3.5. From Table 4 (-ERD), we observe that530

in most cases, models’ performance drops on the531

facts with both seen and ZS relations, which proves532

the usefulness of ERDs. (2) Next, we remove the533

RHL from all zrLLM-enhanced models. From Ta-534

ble 4 (-RHL), we find that all the considered TKGF535

models can benefit from RHL, especially CENET.536

See App. I for more discussion about CENET per-537

formance gain. (3) We switch T5-11B to T5-3B 538

to see the impact of LM size on zrLLM. We ob- 539

serve from Table 4 that decreasing the size of T5 540

harms model performance. This proves that using 541

larger scale LMs can provide semantic information 542

of higher quality, and can be more beneficial to 543

downstream TKGF (whether ZS or not).

Datasets ACLED-zero ICEWS21-zero ICEWS22-zero
MRR MRR MRR

Model Zero Seen Overall Zero Seen Overall Zero Seen Overall

CyGNet+ 0.533 0.751 0.723 0.201 0.258 0.257 0.286 0.315 0.314
- ERD 0.502 0.748 0.716 0.198 0.252 0.251 0.250 0.314 0.311
- RHL 0.503 0.752 0.720 0.199 0.256 0.255 0.268 0.297 0.296
T5-3B 0.511 0.752 0.721 0.117 0.204 0.202 0.257 0.315 0.313

TANGO-T+ 0.525 0.775 0.743 0.216 0.280 0.279 0.326 0.363 0.362
- ERD 0.533 0.772 0.741 0.214 0.280 0.279 0.320 0.362 0.360
- RHL 0.506 0.755 0.740 0.213 0.277 0.276 0.309 0.363 0.361
T5-3B 0.544 0.771 0.742 0.206 0.274 0.273 0.323 0.359 0.358

TANGO-D+ 0.491 0.760 0.725 0.212 0.268 0.267 0.311 0.350 0.348
- ERD 0.491 0.702 0.675 0.205 0.267 0.266 0.285 0.328 0.326
- RHL 0.490 0.725 0.695 0.197 0.224 0.224 0.296 0.324 0.323
T5-3B 0.490 0.701 0.674 0.204 0.223 0.222 0.308 0.284 0.285

RE-GCN+ 0.529 0.731 0.705 0.214 0.280 0.279 0.324 0.357 0.356
- ERD 0.489 0.730 0.699 0.211 0.277 0.276 0.294 0.354 0.352
- RHL 0.519 0.726 0.699 0.213 0.277 0.276 0.317 0.350 0.349
T5-3B 0.504 0.721 0.693 0.211 0.259 0.258 0.301 0.354 0.352

TiRGN+ 0.548 0.754 0.727 0.221 0.279 0.278 0.333 0.353 0.352
- ERD 0.480 0.747 0.713 0.211 0.275 0.274 0.282 0.353 0.350
- RHL 0.515 0.752 0.721 0.215 0.277 0.276 0.320 0.350 0.349
T5-3B 0.498 0.749 0.717 0.208 0.271 0.270 0.325 0.345 0.344

RETIA+ 0.557 0.783 0.754

» 120 Hours Timeout

0.331 0.358 0.357
- ERD 0.519 0.777 0.744 0.292 0.354 0.352
- RHL 0.529 0.782 0.749 0.318 0.357 0.355
T5-3B 0.512 0.776 0.742 0.330 0.353 0.352

CENET+ 0.591 0.779 0.755 0.335 0.396 0.395 0.564 0.571 0.570
- ERD 0.526 0.737 0.710 0.321 0.374 0.373 0.542 0.570 0.568
- RHL 0.445 0.754 0.714 0.232 0.290 0.289 0.295 0.370 0.367
T5-3B 0.568 0.736 0.714 0.303 0.330 0.329 0.550 0.555 0.554

Table 4: Ablation study (complete results in App. F).

544

Compare with Previous LM-Enhanced Model. 545

We benchmark two recent LM-enhanced TKGF 546

models PPT (Xu et al., 2023a) and ICL + GPT- 547

NeoX-20B (Lee et al., 2023; Black et al., 2022) 548

(Table 5). PPT finetunes BERT for TKGF. We find 549

that although PPT achieves strong ZS results, it is 550

beaten by several zrLLM-enhanced models. This 551

proves that aligning language space to TKGF is 552

helpful for ZS relational learning and LMs with 553
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(a) (b) (c)

Figure 3: (a) Ground truth and changed relation histories between United States and African Union. Changed
relations are marked in red. Only the histories nearest to 2021-07-03 are shown. (b) t-SNE of encoded GTH, CH1,
CH2 (computed with Eq. 4), and predicted history PRH. Numbers beside dashed lines denote point distances (L2
norm). (c) Ground truth relation histories between United States and Afghanistan.

larger size can be more contributive. ICL shows554

inferior results. This proves that without finetuning555

or alignment, LLMs are unable to optimally solve556

TKGF. zrLLM not only benefits from a large LM557

but also enables efficient alignment from language558

to TKG embedding space, which leads to superior559

performance. See App. G for further discussion.

Datasets ACLED-zero ICEWS21-zero ICEWS22-zero
MRR MRR MRR

Model Zero Seen Overall Zero Seen Overall Zero Seen Overall

PPT 0.532 0.782 0.748 0.212 0.269 0.268 0.323 0.332 0.331
ICL 0.537 0.736 0.709 0.156 0.178 0.177 0.255 0.229 0.230

Table 5: PPT and ICL performance. Implementation
details and complete results in App. C.3 and G.

560

Case Study of RHL We do a case study to show:561

(1) RHL’s HPN is able to capture ground truth rela-562

tion history (GTH). (2) By capturing temporal rela-563

tion patterns, RHL helps for better ZS TKGF. We564

ask zrLLM-enhanced CENET to predict the miss-565

ing object of the test query q = (sq, rq, ?, tq) =566

(United States, Reduce or stop military assistance,567

?, 2021-07-03) (answer is oq = African Union)568

taken from ICEWS21-zero. The GTH of sq and569

oq (Fig. 3a, left) shows a pattern indicating their570

recent worsening relationship. It can serve as a571

clue in LP over q because it can be viewed as a572

"cause" to the query relation rq which also implies573

a negative relationship. In other words, the entities574

with a worsening historical relationship are more575

likely to be connected with a relation showing their576

bad relationship currently. Since RHL uses HPN577

to infer GTH during test, we wish to study whether578

HPN can achieve reasonable inference to support579

LP. Based on GTH, we first change all three re-580

lations on 2021-06-17 to randomly sampled posi-581

tive relations seen in the training data and form a582

changed history 1 (CH1, Fig. 3a, middle). Then583

we further modify the relations on 2021-06-24 in584

the same way and form a changed history 2 (CH2,585

Fig. 3a, right). We use Eq. 4 to encode GTH, 586

CH1, CH2, and visualize them together with the 587

predicted history (PRH) computed with HPN by 588

using t-SNE (van der Maaten and Hinton, 2008) 589

in Fig. 3b. We find that PRH is the closest to 590

GTH and CH1 is closer than CH2 to GTH. The 591

reason why CH2 is much farther from GTH is that 592

CH2 changes more negative relations to positive, 593

greatly changing the semantic meaning stored in 594

GTH. CH1 only introduces changes on 2021-06-17, 595

making it less deviated from GTH. HPN takes the 596

rq and can keep PRH close to GTH, making zrLLM 597

able to maximally capture the temporal patterns in- 598

dicated by GTH, while preventing the scalability 599

problem incurred by searching relation histories of 600

all candidate entities. By using RHL, the zrLLM- 601

enhanced CENET can correctly predict oq, while 602

the model without RHL takes o′ = Afghanistan 603

as the predicted answer. We present the nearest 604

GTH between sq and o′ in Fig. 3c and find that it 605

indicates a positive relationship which is unlikely 606

to cause rq right after. During training, RHL learns 607

patterns and matches entity pairs with them (Eq. 8). 608

This enables RHL to exclude the entities that do 609

not fit into the learned patterns from the answer set 610

and make more accurate predictions. 611

5 Conclusion 612

We study zero-shot relational learning in TKGF 613

and design an LLM-empowered approach, i.e., zr- 614

LLM. zrLLM extracts the semantic information 615

of KG relations from LLMs and introduces it into 616

TKG representation learning. It also uses an RHL 617

module to capture the temporal relation patterns 618

for better reasoning. We couple zrLLM with sev- 619

eral embedding-based TKGF models and find that 620

zrLLM provides huge help in forecasting the facts 621

with zero-shot relations, and moreover, it maintains 622

models’ performance over seen relations. 623
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6 Limitations624

Our limitations can be summarized as follows.625

First, zrLLM is developed only for enhancing626

embedding-based TKG forecasting methods. It627

is not directly applicable to the rule-based methods,628

e.g., TLogic. Besides, relation history learner in-629

evitably increases model’s training and evaluation630

time since relation patterns are learned with GRUs631

where recurrent computations are performed along632

the time axis. More GPU memory is also required633

for storing relation histories. This hinders the effi-634

ciency of zrLLM-enhanced models compared with635

the original baselines. In the future, we will ex-636

plore how to generalize our proposed method to637

rule-based models and try to improve model effi-638

ciency. We will also try to experiment zrLLM on639

more TKG forecasting methods and study whether640

we can benefit more of them.641
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Algorithm 1: Generate LLM-based Rela-
tion Representations

Input: Relations R, relation text of all relations provided by the
TKG dataset TEXTR

1 for batch = 1: B do
2 Take a batch of n relations from R
3 Pick out their relation texts from TEXTR
4 Write prompt with the relation texts // Fig. 2
5 Input the prompt into GPT-3.5
6 Extract the ERDs from the output of GPT-3.5
7 Input the ERDs into T5-11B’s encoder
8 Store the output of T5-11B’s encoder

9 return T5-encoded text representation H̄r for every r ∈ R

Algorithm 2: Model Training with zrLLM
Input: Entities E , relations R, timestamps T , T5-encoded text

representations {H̄r} for R, training set Gtrain
1 Align {H̄r} to TKG embedding space and get {h̄r} // Eq. 1, 2
2 for epoch = 1: V do
3 for batch = 1: B do
4 Take a batch of training facts {(s, r, o, t)} ∈ Gtrain
5 Find the relation history of s and o before t for each

(s, r, o, t)
6 Encode relation history until t − 1 // Eq. 4
7 Compute the predicted history with HPN // Eq. 5
8 Compute history-related MSE loss Lhist // Eq. 6
9 Compute the representation of the r-related temporal

relation pattern // Eq. 7
10 Compute the RHL-based score // Eq. 8

11 Input {h̄r} into TKGF baseline and compute LP score
12 Compute total score for the training batch // Eq. 9
13 Compute TKGF model loss LTKGF // Eq. 10
14 Compute RHL-based loss LRHL
15 Compute total loss Ltotal // Eq. 12
16 Update model parameters using gradient of ▽Ltotal

17 return trained zrLLM-enhanced TKGF model

Algorithm 3: Model Evaluation with zr-
LLM

Input: Entities E , relations R, timestamps T , LLM-based relation
representations {h̄r} for R, training set Gtrain, validation set
Gvalid, test set Gtest

1 if evaluation set is Gvalid then
2 Geval = Gvalid
3 else
4 Geval = Gtest

5 for batch = 1: B do
6 Take a batch of evaluation facts {(sq, rq, oq, tq)} ∈ Geval
7 Derive LP queries {(sq, rq, ?, tq)}
8 Input {rq} into HPN and compute the predicted history

// Eq. 5
9 Compute the representation of the rq-related temporal relation

pattern for each LP query // Eq. 7
10 Compute the RHL-based score of each candidate entity e ∈ E

for each LP query // Eq. 8

11 Input {h̄r} into TKGF baseline and compute LP score of each
candidate entity e ∈ E for each LP query

12 Compute total score of each candidate entity e ∈ E for each
LP query in the batch // Eq. 9

13 Rank candidate entities E with their total scores in the
descending order

14 Compute and record the rank of the ground truth missing entity
oq for each LP query

15 Compute MRR and Hits@1/3/10
16 return MRR and Hits@1/3/10

previous few-shot relational TKG learning frame- 962

works, e.g., OAT (Mirtaheri et al., 2021) and MOST 963

(Ding et al., 2023a). The proportion of zero-shot 964

relations for each dataset is high. 14 out of 23; 965

123 out of 253; 155 out of 248 relations in ACLED- 966

zero; ICEWS21-zero; ICEWS22-zero are zero-shot 967

relations. This ensures the diversity of relation 968

types in test sets. 969

C Implementation Details 970

All experiments are implemented with PyTorch 971

(Paszke et al., 2019) on a server equipped with 972

an AMD EPYC 7513 32-Core Processor and a 973

single NVIDIA A40 with 48GB memory. All the 974

experimental results are the average of three runs 975

with different random seeds. 976

C.1 Baseline Implementation Details 977

The details of each TKGF baseline is as follows. 978

• CyGNet. We use the official code of 979

CyGNet4. We search hyperparameters of base- 980

line CyGNet following Table 6. The best hy- 981

perparameters are marked as bold. For each 982

dataset, we do 4 trials to try different hyper- 983

parameter settings. We run 5 epochs for each 984

trail and take the one with the best validation 985

result as the best hyperparameter setting.

Dataset ACLED-zero ICEWS21-zero ICEWS22-zero
Hyperparameter CyGNet CyGNet CyGNet

Embedding Size {100, 200} {100, 200} {100, 200}
Alpha (Eq. 9 in (Zhu et al., 2021)) {0.2, 0.5} {0.2, 0.5} {0.2, 0.5}

Table 6: CyGNet hyperparameter searching strategy.
986

• TANGO-TuckER/Distmult. We use the offi- 987

cial code of TANGO5. We search hyperparam- 988

eters of baseline TANGO-TuckER/Distmult 989

following Table 7. The best hyperparameters 990

are marked as bold. For each dataset, we do 6 991

(TANGO-TuckER) and 9 (TANGO-Distmult) 992

trials to try different hyperparameter settings. 993

We run 10 epochs for each trail and take the 994

one with the best validation result as the best 995

hyperparameter setting.

Dataset ACLED-zero ICEWS21-zero ICEWS22-zero

Hyperparameter TuckER Distmult TuckER Distmult TuckER Distmult

Embedding Size {100, 200} {100, 200, 300} {100, 200} {100, 200, 300} {100, 200} {100, 200, 300}
History Length {4, 6, 10} {4, 6, 10} {4, 6, 10} {4, 6, 10} {4, 6, 10} {4, 6, 10}

Table 7: TANGO hyperparameter searching strategy.
996

4https://github.com/CunchaoZ/CyGNet
5https://github.com/TemporalKGTeam/TANGO
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(a) ACLED-zero. (b) ICEWS21-zero. (c) ICEWS22-zero.

Figure 4: Zero-shot Relation frequency on all zero-shot TKGF datasets. Horizontal axis denotes the appearance
times, i.e., frequency. Vertical axis denotes the number of relations.

• RE-GCN. We use the official code of RE-997

GCN6. We search hyperparameters of base-998

line RE-GCN following Table 8. The best999

hyperparameters are marked as bold. For each1000

dataset, we do 4 trials to try different hyperpa-1001

rameter settings. We run 10 epochs for each1002

trail and take the one with the best validation1003

result as the best hyperparameter setting.

Dataset ACLED-zero ICEWS21-zero ICEWS22-zero
Hyperparameter RE-GCN RE-GCN RE-GCN

Embedding Size {100, 200} {100, 200} {100, 200}
History Length {3, 9} {3, 9} {3, 9}

Table 8: RE-GCN hyperparameter searching strategy.

1004

• TiRGN. We use the official code of TiRGN7.1005

We search hyperparameters of baseline1006

TiRGN following Table 9. The best hyperpa-1007

rameters are marked as bold. For each dataset,1008

we do 12 trials to try different hyperparameter1009

settings. We run 10 epochs for each trail and1010

take the one with the best validation result as1011

the best hyperparameter setting.

Dataset ACLED-zero ICEWS21-zero ICEWS22-zero
Hyperparameter TiRGN TiRGN TiRGN

Embedding Size {100, 200} {100, 200} {100, 200}
History Length {3, 9} {3, 9} {3, 9}
Alpha (Eq. 11 in (Li et al., 2022)) {0.3, 0.5, 0.7} {0.3, 0.5, 0.7} {0.3, 0.5, 0.7}

Table 9: TiRGN hyperparameter searching strategy.

1012

• RETIA. We use the official code of RETIA8.1013

We search hyperparameters of baseline RE-1014

TIA following Table 10. The best hyperpa-1015

rameters are marked as bold. For each dataset,1016

we do 4 trials to try different hyperparameter1017

settings. We run 10 epochs for each trail and1018

take the one with the best validation result as1019

the best hyperparameter setting.1020

6https://github.com/Lee-zix/RE-GCN
7https://github.com/Liyyy2122/TiRGN
8https://github.com/CGCL-codes/RETIA

Dataset ACLED-zero ICEWS21-zero ICEWS22-zero
Hyperparameter RETIA RETIA RETIA

Embedding Size {100, 200} {100, 200} {100, 200}
History Length {3, 9} {3, 9} {3, 9}

Table 10: RETIA hyperparameter searching strategy.

• CENET. We use the official code of CENET9. 1021

We search hyperparameters of baseline 1022

CENET following Table 11. The best hyperpa- 1023

rameters are marked as bold. For each dataset, 1024

we do 4 trials to try different hyperparameter 1025

settings. We run 5 epochs for each trail and 1026

take the one with the best validation result as 1027

the best hyperparameter setting.

Dataset ACLED-zero ICEWS21-zero ICEWS22-zero
Hyperparameter CENET CENET CENET

Embedding Size {100, 200} {100, 200} {100, 200}
Mask Strategy {soft, hard} {soft, hard} {soft, hard}

Table 11: CENET hyperparameter searching strategy.

1028

The hyperparameters not discussed above follow 1029

the settings reported in the original papers. 1030

C.2 zrLLM Implementation Details 1031

We fix the hyperparameters searched from the base- 1032

lines and additionally search zrLLM-specifc hyper- 1033

parameters for zrLLM-enhanced models. The hy- 1034

perparameter searching strategy and the best hyper- 1035

parameter settings regarding the zrLLM-enahnced 1036

baselines are reported in Table 12. Note that γ can 1037

be either a learnable parameter or a fixed scalar. 1038

When γ is not fixed, γ Value means the initialized 1039

parameter value during training. For each zrLLM- 1040

enhanced model, in each dataset, we do 36 trials 1041

to try different hyperparameter settings. We run 7 1042

epochs for each trail and take the one with the best 1043

validation result as the best hyperparameter setting. 1044

9https://github.com/xyjigsaw/CENET
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Dataset ACLED-zero ICEWS21-zero ICEWS22-zero

Model α γ Type γ Value η α γ Type γ Value η α γ Type γ Value η

CyGNet+ {1, 0.1} {Fixed, Unfixed} {1, 0.01, 0.001} {1.2, 1} {1, 0.1} {Fixed, Unfixed} {1, 0.01, 0.001} {1.2, 1} {1, 0.1} {Fixed, Unfixed} {1, 0.01, 0.001} {1.2, 1}
TANGO-T+ {1, 0.1} {Fixed, Unfixed} {1, 0.01, 0.001} {1.2, 1} {1, 0.1} {Fixed, Unfixed} {1, 0.01, 0.001} {1.2, 1} {1, 0.1} {Fixed, Unfixed} {1, 0.01, 0.001} {1.2, 1}
TANGO-D+ {1, 0.1} {Fixed, Unfixed} {1, 0.01, 0.001} {1.2, 1} {1, 0.1} {Fixed, Unfixed} {1, 0.01, 0.001} {1.2, 1} {1, 0.1} {Fixed, Unfixed} {1, 0.01, 0.001} {1.2, 1}
RE-GCN+ {1, 0.1} {Fixed, Unfixed} {1, 0.01, 0.001} {1.2, 1} {1, 0.1} {Fixed, Unfixed} {1, 0.01, 0.001} {1.2, 1} {1, 0.1} {Fixed, Unfixed} {1, 0.01, 0.001} {1.2, 1}
TiRGN+ {1, 0.1} {Fixed, Unfixed} {1, 0.01, 0.001} {1.2, 1} {1, 0.1} {Fixed, Unfixed} {1, 0.01, 0.001} {1.2, 1} {1, 0.1} {Fixed, Unfixed} {1, 0.01, 0.001} {1.2, 1}
RETIA+ {1, 0.1} {Fixed, Unfixed} {1, 0.01, 0.001} {2, 1} - - - - {1, 0.1} {Fixed, Unfixed} {1, 0.01, 0.001} {2, 1}
CENET+ {1, 0.1} {Fixed, Unfixed} {1, 0.01, 0.001} {1.2, 1} {1, 0.1} {Fixed, Unfixed} {1, 0.01, 0.001} {1.2, 1} {1, 0.1} {Fixed, Unfixed} {1, 0.01, 0.001} {1.2, 1}

Table 12: zrLLM hyperparameter searching strategy. The best settings are marked as bold.

Dataset ACLED-zero ICEWS21-zero ICEWS22-zero

Model Training Time (h) GPU Memory (MB) Training Time (h) GPU Memory (MB) Training Time (h) GPU Memory (MB)

CyGNet+ 0.03 2,216 17.87 7,470 4.80 9,574
TANGO-T+ 0.05 2,716 8.64 34,186 2.82 20,120
TANGO-D+ 0.11 3,064 10.88 34,034 0.70 19,250
RE-GCN+ 0.06 1,587 14.70 26,420 3.85 19,168
TiRGN+ 0.10 2,654 11.67 36,780 2.40 15,976
RETIA+ 0.13 4,274 - - 9.33 26,328
CENET+ 0.03 1,429 48.94 6,750 12.54 5,639
PPT 0.47 7,654 84.68 9,078 59.35 7,678

Table 13: Computational resources required by zrLLM-enhanced models and PPT.

C.3 Implementation Details of PPT and ICL1045

We use the official code of PPT10 and ICL11. For1046

PPT, we use the default hyperparameter setting1047

used for ICEWS14 when we implement it on all1048

our new datasets. Since PPT only explores object1049

entity prediction in its original implementation, we1050

add the subject entity prediction part and report the1051

overall result. We achieve subject prediction by1052

first deriving the inverse relation texts for each rela-1053

tion in each TKG dataset, e.g., use Inversed Reduce1054

or stop military assistance to represent the inverse1055

relation of the relation Reduce or stop military as-1056

sistance, and then turning each subject prediction1057

query (?, rq, oq, tq) to an object prediction query1058

(oq, r
−1
q , ?, tq), where r−1

q stands for the inverse1059

relation of rq. For ICL, we use the lexical-based1060

prompt because we are dealing with zero-shot re-1061

lations where text information is important. We1062

also employ the unidirectional entity-focused his-1063

tory, which achieves best results on ICEWS14 as1064

reported in ICL’s original paper. We use the default1065

history length of 20 for all datasets.1066

C.4 Computational Resource Usage1067

We report the computational resources for all1068

zrLLM-enhanced models and PPT in Table 13.1069

Training time denotes the period of time a model1070

requires to reach its best validation performance.1071

PPT requires extremely long time for sampling and1072

thus has high time consumption. Note that zrLLM1073

loads T5 to generate LM-based relation represen-1074

tations. This process takes a substantial amount of1075

10https://github.com/JaySaligia/PPT
11https://github.com/usc-isi-i2/isi-tkg-icl

GPU memoery. However, in our work, we store 1076

the output of T5’s encoder as saved parameters and 1077

use them in downstream zero-shot TKGF with any 1078

zrLLM-enhanced model. This prevents from high 1079

memory demand during model training and eval- 1080

uation. We use Fig. 5 to illustrate the direct com- 1081

parison among zrLLM-enhanced models and PPT 1082

regarding their required computational resources 1083

during training. 1084

ICL loads GPT-NeoX-20B that requires huge 1085

memory consumption. We use two NVIDIA A40 1086

for all its experiments. Since ICL does not require 1087

training, we only report its validation and test time 1088

here. For ACLED-zero, GPU memory usage is 1089

90,846 MB. Validation time is 0.63 h and test time 1090

is 0.12 h. For ICEWS21-zero, GPU memory usage 1091

is 90,868 MB. Validation time is 35.48 h and test 1092

time is 0.82 h. For ICEWS22-zero, GPU memory 1093

usage is 91,458 MB. Validation time is 22.98 h and 1094

test time is 1.15 h. 1095

C.5 Zero-Shot Evaluation Setting 1096

Explanation 1097

To keep zero-shot relations "always unseen" during 1098

the whole evaluation process, we constrain all mod- 1099

els to do LP only based on the training set. Among 1100

all TKGF models, TANGO, RE-GCN, TiRGN and 1101

RETIA use recurrent neural structures to model his- 1102

torical TKG information from a short sequence of 1103

timestamps prior to the prediction timestamp. We 1104

constrain them to only use the latest training data, 1105

i.e., from ttrain_max − k to ttrain_max, to encode his- 1106

torical information during evaluation. k is the con- 1107

sidered history length and ttrain_max = max(Ttrain) 1108
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(a) ACLED-zero. (b) ICEWS21-zero. (c) ICEWS22-zero.

Figure 5: Computational resources required during training of zrLLM-enhanced models and PPT.

is the maximum timestamp in the training data.1109

For CyGNet and CENET, they have originally met1110

our restriction of not observing any ground truth1111

evaluation data during evaluation, and thus can1112

be directly implemented in our zero-shot setting.1113

Another point worth noting is that RHL requires1114

ground truth relation history. We restrict zrLLM to1115

only capture the relation history across the whole1116

training time period to prevent from exposing zero-1117

shot relations during evaluation.1118

D Evaluation Metrics Details1119

We employ two evaluation metrics, i.e., mean recip-1120

rocal rank (MRR) and Hits@1/3/10. For every LP1121

query q, we compute the rank θq of the ground truth1122

missing entity. We define MRR as: 1
|Gtest|

∑
q

1
θq

1123

(the definition is similar for Gvalid). Hits@1/3/101124

denote the proportions of the predicted links where1125

ground truth missing entities are ranked as top 1,1126

top3, top10, respectively. As explored and sug-1127

gested in (Gastinger et al., 2023), we also use the1128

time-aware filtering setting proposed in (Han et al.,1129

2021a) for fairer evaluation.1130

E Complete Comparative Study Results1131

We report the complete results of comparative study1132

in Table 14 and 15.1133

F Complete Ablation Study Results1134

We report the complete ablation study results in1135

Table 16.1136

G Complete Results of Previous1137

LM-Enhanced TKGF Model1138

We report the complete results of previous LM-1139

enhanced TKGF models in Table 14 and 15.1140

H Further Discussion about RHL 1141

In RHL, temporal relation patterns are captured 1142

by only using LLM-based relation representations. 1143

Since for all relations (whether zero-shot or not), 1144

their LLM-based representations contain seman- 1145

tic information extracted from the same LLM, the 1146

learned HPN can do reasonable relation history 1147

prediction even with an input of unseen zero-shot 1148

relation. If we learn hidden representations for each 1149

relation based on graph contexts (as most TKGF 1150

models do), zero-shot relations cannot be easily 1151

processed by HPN anymore. In this case, zero-shot 1152

relations will not have a meaningful representation 1153

without any observed associated fact, and therefore, 1154

HPN cannot detect its meaning and will fail to find 1155

reasonable relation history. 1156

I CENET Performance gain with RHL 1157

We find that RHL can greatly increase CENET’s 1158

TKGF performance, whether on zero-shot or not. 1159

We think it is because RHL provides temporal re- 1160

lation patterns that helps CENET to better predict 1161

the entities that are highly-dependent on the histor- 1162

ical TKG information. Assume we have an LP 1163

query (sq, rq, ?, tq), CENET computes for each 1164

entity a query-related historical dependency fea- 1165

ture and a non-historical dependency feature. If 1166

the ground truth missing entity oq is a historical 1167

entity (sq, rq, oq appear frequently in the facts of 1168

previous TKG data), its historical dependency fea- 1169

ture will be dominant in its entity representation. 1170

Meanwhile, CENET uses a binary classifier to rec- 1171

ognize whether the missing object entity of each 1172

query exists in the set of historical entities. This 1173

process helps to greatly decrease the influence of 1174

non-historical entities during inference, making the 1175

prediction easier (because the non-historical enti- 1176

ties are to great extent ignored when model makes 1177

decision and the number of potential candidate be- 1178
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Datasets ICEWS21-zero ICEWS22-zero
Zero-Shot Relations Seen Relations Overall Zero-Shot Relations Seen Relations Overall

Model MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10 MRR MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10 MRR

CyGNet 0.120 0.046 0.130 0.270 0.254 0.165 0.293 0.432 0.252 0.211 0.098 0.240 0.459 0.315 0.198 0.373 0.540 0.311
CyGNet+ 0.201 0.103 0.226 0.415 0.258 0.162 0.294 0.447 0.257 0.286 0.167 0.324 0.542 0.315 0.200 0.364 0.545 0.314

TANGO-T 0.067 0.031 0.069 0.132 0.283 0.190 0.319 0.470 0.279 0.092 0.042 0.100 0.187 0.363 0.250 0.407 0.579 0.352
TANGO-T+ 0.216 0.125 0.245 0.395 0.280 0.186 0.313 0.466 0.279 0.326 0.198 0.388 0.578 0.363 0.251 0.409 0.585 0.362

TANGO-D 0.012 0.005 0.011 0.023 0.266 0.178 0.298 0.439 0.261 0.011 0.002 0.007 0.018 0.350 0.227 0.394 0.569 0.337
TANGO-D+ 0.212 0.122 0.237 0.400 0.268 0.175 0.303 0.453 0.267 0.311 0.186 0.374 0.574 0.350 0.239 0.393 0.570 0.348

RE-GCN 0.200 0.104 0.231 0.379 0.277 0.185 0.309 0.456 0.276 0.280 0.162 0.321 0.616 0.354 0.243 0.398 0.567 0.351
RE-GCN+ 0.214 0.117 0.246 0.406 0.280 0.188 0.314 0.456 0.279 0.324 0.194 0.376 0.595 0.357 0.244 0.398 0.573 0.356

TiRGN 0.189 0.101 0.209 0.368 0.275 0.182 0.308 0.457 0.273 0.299 0.169 0.358 0.570 0.352 0.239 0.399 0.575 0.350
TiRGN+ 0.221 0.130 0.246 0.410 0.279 0.185 0.323 0.464 0.278 0.333 0.203 0.383 0.602 0.353 0.240 0.400 0.577 0.352

RETIA » 120 Hours Timeout 0.302 0.166 0.349 0.566 0.356 0.245 0.401 0.577 0.354
RETIA+ 0.331 0.201 0.384 0.597 0.358 0.247 0.402 0.578 0.357

CENET 0.205 0.101 0.232 0.411 0.288 0.196 0.318 0.468 0.287 0.270 0.134 0.318 0.544 0.379 0.268 0.423 0.599 0.375
CENET+ 0.335 0.162 0.455 0.659 0.396 0.239 0.502 0.688 0.395 0.564 0.432 0.649 0.801 0.571 0.451 0.651 0.773 0.571

PPT 0.212 0.120 0.240 0.403 0.269 0.172 0.304 0.462 0.268 0.323 0.191 0.376 0.598 0.332 0.219 0.377 0.556 0.331

ICL 0.156 0.096 0.180 0.300 0.178 0.120 0.206 0.308 0.177 0.255 0.162 0.303 0.460 0.229 0.158 0.264 0.393 0.230

Table 14: Complete LP results on ICEWS21-zero and ICEWS22-zero. We also report PPT and ICL’s performance.

Datasets ACLED-zero
Zero-Shot Relations Seen Relations Overall

Model MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10 MRR

CyGNet 0.487 0.349 0.565 0.791 0.751 0.663 0.827 0.903 0.717
CyGNet+ 0.533 0.418 0.592 0.753 0.751 0.664 0.821 0.906 0.723

TANGO-T 0.052 0.021 0.049 0.101 0.774 0.701 0.826 0.900 0.681
TANGO-T+ 0.525 0.393 0.606 0.746 0.775 0.702 0.827 0.901 0.743

TANGO-D 0.021 0.003 0.017 0.049 0.777 0.701 0.833 0.907 0.679
TANGO-D+ 0.491 0.348 0.560 0.791 0.760 0.678 0.818 0.901 0.725

RE-GCN 0.441 0.332 0.466 0.718 0.730 0.653 0.783 0.865 0.693
RE-GCN+ 0.529 0.393 0.612 0.784 0.731 0.650 0.789 0.876 0.705

TiRGN 0.478 0.330 0.572 0.745 0.754 0.678 0.806 0.886 0.718
TiRGN+ 0.548 0.436 0.607 0.750 0.754 0.679 0.807 0.885 0.727

RETIA 0.499 0.360 0.586 0.795 0.782 0.701 0.844 0.924 0.745
RETIA+ 0.557 0.408 0.676 0.814 0.783 0.703 0.842 0.925 0.754

CENET 0.419 0.297 0.522 0.593 0.753 0.682 0.808 0.869 0.710
CENET+ 0.591 0.451 0.687 0.844 0.779 0.692 0.849 0.912 0.755

PPT 0.532 0.388 0.651 0.787 0.782 0.693 0.842 0.942 0.748

ICL 0.537 0.452 0.620 0.661 0.736 0.668 0.794 0.853 0.709

Table 15: Complete LP results on ACLED-zero. We
also report PPT and ICL’s performance.

comes smaller). Historical entities have abundant1179

relation histories associated with the query sub-1180

ject, and therefore, the temporal relation patterns1181

captured by RHL are highly informative. When1182

zrLLM computes RHL-based score, model can1183

greatly benefit from the relation patterns and better1184

learn the historical dependency features of histor-1185

ical entities. As a result, RHL enables CENET to1186

achieve huge performance gain.1187

J Related Work Details1188

Traditional TKG Forecasting Methods. As dis-1189

cussed in Sec. 1, traditional TKGF methods are1190

trained to forecast the facts containing the KG1191

relations (and entities) seen in the training data,1192

regardless of the case where zero-shot relations1193

(or entities) appear as new knowledge arrives12.1194

12Some works of traditional TKGF methods, e.g., TANGO
(Han et al., 2021b), have discussions about models’ ability
to reason over the facts regarding unseen entities. Note that
this is not their main focus but an additional demonstration to
show their models’ inductive power, i.e., these models are not

These methods can be categorized into two types: 1195

embedding-based and rule-based. Embedding- 1196

based methods learn hidden representations of KG 1197

relations and entities (some also learn time rep- 1198

resentations), and perform link forecasting by in- 1199

putting learned representations into a score func- 1200

tion for computing scores of fact quadruples. Most 1201

existing embedding-based methods, e.g., (Jin et al., 1202

2020; Han et al., 2021b; Li et al., 2021b, 2022; 1203

Liu et al., 2023), learn evolutional entity and re- 1204

lation representations by jointly employing graph 1205

neural networks (Kipf and Welling, 2017) and re- 1206

current neural structures, e.g., GRU (Cho et al., 1207

2014). Historical TKG information are recurrently 1208

encoded by the models to produce the temporal 1209

sequence-aware evolutional representations for fu- 1210

ture prediction. Some other approaches (Han et al., 1211

2021a; Sun et al., 2021; Li et al., 2021a) start 1212

from each LP query13 and traverse the tempo- 1213

ral history in a TKG to search for the prediction 1214

answer. Apart from them, CyGNet (Zhu et al., 1215

2021) achieves forecasting purely based on the ap- 1216

pearance of historical facts. Another recent work 1217

CENET (Xu et al., 2023b) trains contrastive rep- 1218

resentations of LP queries to identify highly corre- 1219

lated entities in either historical or non-historical 1220

facts. Compared with the rapid advancement in 1221

developing embedding-based TKGF methods, rule- 1222

based TKGF has still not been extensively explored. 1223

One popular rule-based TKGF method is TLogic 1224

(Liu et al., 2022). It extracts temporal logic rules 1225

from TKGs and uses a symbolic reasoning module 1226

for LP. Based on it, ALRE-IR (Mei et al., 2022) 1227

proposes an adaptive logical rule embedding model 1228

designed for inductive learning on TKGs.
13A TKG LP query is denoted as (s, r, ?, t) (object predic-

tion query) or (?, r, o, t) (subject prediction query).
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Datasets ACLED-zero ICEWS21-zero ICEWS22-zero
Zero-Shot Relations Seen Relations Overall Zero-Shot Relations Seen Relations Overall Zero-Shot Relations Seen Relations Overall

Model MRR Hits@1 Hits@10 MRR Hits@1 Hits@10 MRR MRR Hits@1 Hits@10 MRR Hits@1 Hits@10 MRR MRR Hits@1 Hits@10 MRR Hits@1 Hits@10 MRR

CyGNet+ 0.533 0.418 0.753 0.751 0.664 0.906 0.723 0.201 0.103 0.415 0.258 0.162 0.447 0.257 0.286 0.167 0.542 0.315 0.200 0.545 0.314
- ERD 0.502 0.386 0.743 0.748 0.660 0.902 0.716 0.198 0.102 0.379 0.252 0.161 0.429 0.251 0.250 0.136 0.503 0.314 0.198 0.546 0.311
- RHL 0.503 0.356 0.751 0.752 0.663 0.901 0.720 0.199 0.100 0.398 0.256 0.159 0.445 0.255 0.268 0.144 0.536 0.297 0.181 0.531 0.296
T5-3B 0.511 0.414 0.684 0.752 0.663 0.905 0.721 0.117 0.068 0.186 0.204 0.127 0.348 0.202 0.257 0.135 0.521 0.315 0.201 0.540 0.313

TANGO-T+ 0.525 0.393 0.764 0.775 0.702 0.901 0.743 0.216 0.125 0.395 0.280 0.186 0.466 0.279 0.326 0.198 0.578 0.363 0.251 0.585 0.362
- ERD 0.533 0.408 0.770 0.772 0.692 0.898 0.741 0.214 0.122 0.389 0.280 0.187 0.465 0.279 0.320 0.193 0.576 0.362 0.250 0.584 0.360
- RHL 0.506 0.374 0.749 0.755 0.704 0.901 0.740 0.213 0.118 0.407 0.277 0.181 0.469 0.276 0.309 0.190 0.574 0.363 0.250 0.584 0.361
T5-3B 0.544 0.425 0.769 0.771 0.697 0.896 0.742 0.206 0.119 0.375 0.274 0.182 0.454 0.273 0.323 0.193 0.576 0.359 0.246 0.579 0.358

TANGO-D+ 0.491 0.348 0.791 0.760 0.678 0.901 0.725 0.212 0.122 0.400 0.268 0.175 0.453 0.267 0.311 0.186 0.574 0.350 0.239 0.570 0.348
- ERD 0.491 0.350 0.771 0.702 0.578 0.898 0.675 0.205 0.111 0.398 0.267 0.174 0.449 0.266 0.285 0.159 0.541 0.328 0.213 0.550 0.326
- RHL 0.490 0.344 0.772 0.725 0.628 0.890 0.695 0.197 0.107 0.390 0.224 0.132 0.412 0.224 0.296 0.175 0.552 0.324 0.212 0.547 0.323
T5-3B 0.490 0.341 0.786 0.701 0.576 0.897 0.674 0.204 0.109 0.393 0.223 0.131 0.408 0.222 0.308 0.177 0.582 0.284 0.173 0.510 0.285

RE-GCN+ 0.529 0.393 0.784 0.731 0.650 0.876 0.705 0.214 0.117 0.406 0.280 0.188 0.456 0.279 0.324 0.194 0.595 0.357 0.244 0.573 0.356
- ERD 0.489 0.375 0.724 0.730 0.650 0.865 0.699 0.211 0.119 0.397 0.277 0.185 0.454 0.276 0.294 0.168 0.560 0.354 0.242 0.571 0.352
- RHL 0.519 0.396 0.757 0.726 0.646 0.836 0.699 0.213 0.119 0.405 0.277 0.185 0.455 0.276 0.317 0.184 0.589 0.350 0.241 0.562 0.349
T5-3B 0.504 0.361 0.767 0.721 0.638 0.864 0.693 0.211 0.121 0.384 0.259 0.171 0.427 0.258 0.301 0.174 0.577 0.354 0.243 0.570 0.352

TiRGN+ 0.548 0.436 0.750 0.754 0.679 0.885 0.727 0.221 0.130 0.410 0.279 0.185 0.463 0.278 0.333 0.203 0.602 0.353 0.240 0.577 0.352
- ERD 0.480 0.387 0.673 0.747 0.669 0.882 0.713 0.211 0.120 0.387 0.275 0.181 0.460 0.274 0.282 0.157 0.544 0.353 0.240 0.576 0.350
- RHL 0.515 0.400 0.753 0.752 0.675 0.887 0.721 0.215 0.124 0.391 0.277 0.183 0.461 0.276 0.320 0.190 0.593 0.350 0.239 0.569 0.349
T5-3B 0.498 0.389 0.722 0.749 0.675 0.879 0.717 0.208 0.118 0.392 0.271 0.180 0.448 0.270 0.325 0.189 0.594 0.345 0.233 0.565 0.344

RETIA+ 0.557 0.408 0.814 0.783 0.703 0.925 0.754

» 120 Hours Timeout

0.331 0.201 0.597 0.358 0.247 0.578 0.357
- ERD 0.519 0.391 0.765 0.777 0.692 0.917 0.744 0.292 0.163 0.562 0.354 0.242 0.576 0.352
- RHL 0.529 0.368 0.796 0.782 0.701 0.923 0.749 0.318 0.191 0.583 0.357 0.244 0.580 0.355
T5-3B 0.512 0.385 0.766 0.776 0.690 0.917 0.742 0.330 0.200 0.595 0.353 0.242 0.573 0.352

CENET+ 0.591 0.451 0.844 0.779 0.692 0.912 0.755 0.335 0.162 0.659 0.396 0.239 0.688 0.395 0.564 0.432 0.801 0.571 0.451 0.773 0.570
- ERD 0.526 0.373 0.785 0.737 0.653 0.870 0.710 0.321 0.156 0.665 0.374 0.216 0.683 0.373 0.542 0.388 0.799 0.570 0.448 0.774 0.568
- RHL 0.445 0.367 0.565 0.754 0.685 0.862 0.714 0.232 0.128 0.446 0.290 0.202 0.469 0.289 0.295 0.168 0.560 0.370 0.262 0.588 0.367
T5-3B 0.568 0.426 0.819 0.736 0.646 0.900 0.714 0.303 0.158 0.568 0.330 0.203 0.712 0.329 0.550 0.413 0.798 0.555 0.431 0.765 0.554

Table 16: Complete results of ablation studies.

to encode temporal logical rules into rule represen-1229

tations. This makes ALRE-IR both a rule-based1230

and an embedding-based method. Experiments in1231

TLogic and ALRE-IR have proven that rule-based1232

TKGF methods have strong ability in reasoning1233

over zero-shot unseen entities connected by the1234

seen relations, however, they are not able to handle1235

unseen relations since the learned rules are strongly1236

bounded by the observed relations. In our work,1237

we implement zrLLM on embedding-based TKGF1238

models because (1) embedding-based methods are1239

much more popular; (2) zrLLM utilizes LLM to1240

generate relation representations, which is more1241

compatible with embedding-based methods.1242

Inductive Learning on TKGs. Inductive learn-1243

ing on TKGs has gained increasing interest. It1244

refers to developing models that can handle the1245

relations and entities unseen in the training data.1246

TKG inductive learning methods can be catego-1247

rized into two types. The first type of works fo-1248

cuses on reasoning over unseen entities (Ding et al.,1249

2022; Wang et al., 2022; Ding et al., 2023b; Chen1250

et al., 2023a), while the second type of methods1251

aims to deal with the unseen relations (Mirtaheri1252

et al., 2021; Ding et al., 2023a; Ma et al., 2023).1253

Most of inductive learning methods are based on1254

few-shot learning (FSL) (e.g., FILT (Ding et al.,1255

2022), MetaTKGR (Zhang et al., 2019), FITCARL1256

(Ding et al., 2023b), OAT (Mirtaheri et al., 2021),1257

MOST (Ding et al., 2023a) and OSLT (Ma et al.,1258

2023)). They first compute inductive representa-1259

tions of newly-emerged entities or relations based1260

on K-associated facts (K is a small number, e.g., 11261

or 3) observed during inference, and then use them 1262

to predict the facts regarding few-shot elements. 1263

One limitation of these works is that the induc- 1264

tive representations cannot be learned without the 1265

K-shot examples, making them hard to solve the 1266

zero-shot problems. Different from FSL methods, 1267

SST-BERT (Chen et al., 2023a) pre-trains a time- 1268

enhanced BERT (Devlin et al., 2019) for TKG rea- 1269

soning. It achieves inductive learning over unseen 1270

entities but has not shown its ability in reasoning 1271

zero-shot relations. Another recent work MTKGE 1272

(Chen et al., 2023b) is able to concurrently deal 1273

with both unseen entities and relations. However, 1274

it requires a support graph containing a substantial 1275

number of data examples related to the unseen en- 1276

tities and relations, which is far from the zero-shot 1277

problem that we focus on. 1278

TKG Reasoning with Language Models. Re- 1279

cently, more and more works have introduced LMs 1280

into TKG reasoning. SST-BERT (Chen et al., 1281

2023a) generates a small-scale pre-training corpus 1282

based on the training TKGs and pre-trains an LM 1283

for encoding TKG facts. The encoded facts are then 1284

fed into a scoring module for LP. ECOLA (Han 1285

et al., 2023) aligns facts with additional fact-related 1286

texts and proposes a joint training framework that 1287

enhances TKG reasoning with BERT-encoded lan- 1288

guage representations. PPT (Xu et al., 2023a) con- 1289

verts TKGF into the pre-trained LM masked token 1290

prediction task and finetunes a BERT for TKGF. It 1291

directly input TKG facts into the LM for answer 1292

prediction. Apart from them, one recent work (Lee 1293

et al., 2023) explores the possibility of using in- 1294
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context learning (ICL) (Brown et al., 2020) with1295

LLMs to make predictions about future facts with-1296

out fintuning. Another recent work GenTKG (Liao1297

et al., 2023) finetunes an LLM, i.e., Llama2-7B1298

(Touvron et al., 2023), and let the LLM directly1299

generate the LP answer in TKGF. It mines tempo-1300

ral logical rules and uses them to retrieve historical1301

facts for prompt generation.1302

Although the above-mentioned works have1303

shown success of LMs in TKG reasoning, they1304

have limitations: (1) None of these works has1305

studied whether LMs can be used to better rea-1306

son the zero-shot relations. (2) By only using ICL,1307

LLMs are beaten by traditional TKG reasoning1308

methods in performance (Lee et al., 2023). The1309

performance can be greatly improved by finetun-1310

ing LLMs (as in GenTKG (Liao et al., 2023)), but1311

finetuning LLMs requires huge computational re-1312

sources. (3) Since LMs, e.g., BERT and Llama2,1313

are pre-trained with a huge corpus originating from1314

diverse information sources, it is inevitable that1315

they have already seen the world knowledge before1316

they are used to solve TKG reasoning tasks. Most1317

popular TKGF benchmarks are extracted from the1318

TKGs constructed before 2020, e.g., ICEWS14,1319

ICEWS18 and ICEWS05-15 (Jin et al., 2020). The1320

facts inside are based on the world knowledge be-1321

fore 2019, which means LMs might have encoun-1322

tered them in their training corpus, posing a threat1323

of information leak to the LM-driven TKG reason-1324

ing models. To this end, we (1) draw attention1325

to studying the impact of LMs on zero-shot rela-1326

tional learning in TKGs; (2) make a compromise1327

between performance and computational efficiency1328

by not fintuning LMs or LLMs but adapting the1329

LLM-provided semantic information to non-LM-1330

based TKGF methods; (3) construct new bench-1331

marks where the facts are all happening from 20211332

to 2023, which avoids the possibility of informa-1333

tion leak when we utilize T5-11B that was released1334

in 2020.1335

18


	Introduction
	Preliminaries
	Related Work
	Definitions and Task Formulation

	zrLLM
	Represent KG Relations with LLMs
	Relation History Learner
	Parameter Learning and Evaluation

	Experiments
	Datasets for Zero-Shot TKGF
	Experimental Setup
	Comparative Study and Further Analysis

	Conclusion
	Limitations
	Algorithm
	Further Details of Zero-Shot Datasets
	Implementation Details
	Baseline Implementation Details
	zrLLM Implementation Details
	Implementation Details of PPT and ICL
	Computational Resource Usage
	Zero-Shot Evaluation Setting Explanation

	Evaluation Metrics Details
	Complete Comparative Study Results
	Complete Ablation Study Results
	Complete Results of Previous LM-Enhanced TKGF Model
	Further Discussion about RHL
	CENET Performance gain with RHL
	Related Work Details

