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Abstract— We present a method for detecting and localizing
contact on legged robots using distributed low-cost strain-gauge
joint torque sensors and a single hip-mounted force-torque
(FT) sensor within a momentum-based observer framework.
Our custom designed low-cost strain-gauge-based joint torque
sensors provide direct measurements at the motor output shaft,
bypassing drivetrain friction and eliminating the need for
friction models and motor current estimation. Simulation and
hardware experiments on a 2-DOF planar test leg demonstrate
sub-centimeter contact localization accuracy and force errors
below 0.2 N. Torque estimates from our sensors achieved an
average 96.4% fidelity to ground truth measurements.

I. INTRODUCTION

Safe and reliable operation of legged robots in com-
plex environments requires comprehensive contact awareness
and accurate sensing of environmental interactions [1], [2].
Contact force sensing at the foot has enabled quadruped
robots such as ANYmal [3] and the MIT Cheetah series [4]
to achieve impressive mobility on challenging terrain by
adapting gait timing and force control to measured ground
reaction forces. However, end-effector-only sensing cannot
detect off-foot collisions on the thigh or shank, potentially
leading to undetected impacts and compromised stability.
Moreover, ground contact during dynamic motion is transient
– stance phases often last only 50–200 ms [5] – so any
collision detection must run with low latency and high
precision within that interval. Existing joint-level contact
sensing strategies fall into three primary categories.

First, researchers have employed motor current as a
surrogate for joint torque [1], [6], [7]; this is viable on
high–gear-ratio QDD motors because current and torque
are roughly proportional, but drivetrain friction, gearbox
nonlinearities, and calibration drift introduce bias unless
detailed per-joint friction models are maintained.

Second, momentum observers [1], [8] and probabilistic ap-
proaches [6], [9] create residual signals to detect unexpected
external wrenches, yet localizing the contact point along a
serial chain requires either accurate friction compensation or
computationally intensive estimation schemes.

Third, external sensing modalities such as tactile
skins [10], [11], distributed FT-sensor arrays, or vision-based
systems [12], [13] can directly measure contact events, but
deploying multiple sensors across every link incurs cost
wiring complexity, and vulnerability to damage.

In this work, we combine direct joint torque sensors with a
single hip-mounted FT sensor to enable whole-body contact
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Fig. 1: (Left) Fabricated sensor with strain gauges. (Right) Finite-Element
Analysis (FEA) of the custom joint torque sensor under 0.4 Nm load.

detection. Our strain-gauge-based sensors measure torque
directly at the actuator output shafts, bypassing drivetrain
friction entirely. This configuration, integrated with a mo-
mentum observer, allows to detect and locate impacts on any
leg segment without requiring friction modeling or relying
on motor-current-estimated torque.

II. BACKGROUND: MOMENTUM-BASED OBSERVER

A. Robot Dynamics Formulation

For legged robotic systems, which are underactuated sys-
tems unlike fully-actuated manipulators, the dynamics can
be described by the equation of motion:

M(q) q̈ + C
(
q, q̇

)
q̇ + G

(
q
)
+ τexternal = τsensor, (1)

where q ∈ RNtotal collects the generalized coordinates
(floating-base {x, z} plus N actuated joints), q̇, q̈ are ve-
locity and acceleration, M the inertia matrix, Cq̇ the Cori-
olis/centrifugal term, G the gravity vector, and τexternal any
external torque/force mapped into joint space. On the right-
hand side, τsensor is our directly measured joint torque (post-
gearbox), thereby excluding friction effects in the dynamics.

B. Generalized Momentum

Instead of explicitly solving for q̈, we adopt the
momentum-based observer framework from [1], [8]. Define
the generalized momentum

P = M(q) q̇. (2)

Taking the time derivative and rearranging [1], [8] yields
a residual:

r(t) = K
[
P(t) − pint(t) − P0

]
, (3)

where K is a gain matrix, pint is an integrator state, and P0

the initial momentum. Discretizing in time yields

pint(t+∆t) = pint(t) +
[
u + r(t)

]
∆t. (4)



Fig. 2: System schematic depicting data flow for contact detection: (a) motor hardware with joint torque sensors, data acquisition system, and encoders,
which feed into (b) a generalized momentum observer sensing algorithm, subsequently input with a 6-DOF force-torque (FT) sensor data for contact
detection that outputs estimated contact force and location.

with u(t) accounting for Cq̇, G, and the measured τsensor.
When no external torque is present, r(t) ≈ 0. A sufficiently
large ∥r(t)∥ indicates the presence of unexpected external
forces.

C. Collision Link Identification

In a serial chain of n links, only the first c joints carry
the external force if the collision occurs on link c. Thus,
the corresponding observer residual components r1, . . . , rc
become nonzero [1], [8]. Formally,

ri(t) ̸= 0 for i = 1, . . . , c; rj(t) = 0 for j = c+1, . . . , n.
(5)

Hence, we identify c by checking which set of consecutive
residuals is nonzero.

III. CONTACT DETECTION USING BASE WRENCH AND
JOINT TORQUE SENSING

Building on the momentum observer described above,
we now present our approach to whole-body contact sens-
ing that combines direct joint torque measurements with
a hip-mounted FT sensor. This section details the sensing
algorithm for contact localization and force estimation and
hardware components.

A. Base Wrench Sensing

To localize a collision along the contact link, we leverage
a hip-mounted force-torque (FT) sensor that measures the
net base wrench Fbase =

[
F base
x , F base

z , Mbase
y

]⊤
. We first

compute the residual dynamics term

R = C(q, q̇) q̇ + G(q) − B τsensor, (6)

where B maps the 2D actuated joints into the full coordinate
space RNtotal . Subtracting the measured base wrench from the
portion of R associated with the base DOFs, we obtain the
net unexpected wrench:

F unexp
i = R(i)− F base

i , i ∈ {x, z, y} (7)

The planar contact force is

Fc = −
[
F unexp
x , F unexp

z

]⊤
, (8)

and imposing zero net moment about the base DOFs gives
an algebraic solution for the collision location α ∈ [0, 1]:

α =
−Munexp

y −
[
p1(1)F

unexp
z − p1(2)F

unexp
x

][
∆xF unexp

z − ∆z F unexp
x

] ,

(9)
where ∆x = p2(1)− p1(1) and ∆z = p2(2)− p1(2) are for
the link endpoints p1,p2. If 0 ≤ α ≤ 1, the contact is on the
link; otherwise, we conclude the force lies out-of-bounds.

B. Joint Torque Sensing

Each joint output shaft is equipped with a strain-gauge-
based torque sensor, using a full Wheatstone bridge (1 kΩ
gauges at 5 V excitation) on a 6061 aluminum flexure. We
model the strain-gauge sensitivity based on:

∆R

R
= GF ϵ, Vo = Vex ×

∆R/R

4
(quarter-bridge),

(10)
where GF = 2 is the gauge factor, ϵ is the strain, and
Vex = 5V is the excitation. The sensor’s bridge sensitivity
is S = Vo/ϵ. We employ a 24-bit ADC with a reference
voltage of Vref = 2.5V. Although it has a nominal resolution
of LSB = Vref/2

24, practical noise considerations yield an
effective number of bits (ENOB) around 16. Consequently,
the theoretical minimal detectable strain becomes

ϵmin =
4Vref

GFVex 2N
≈ 5.96× 10−8 (ideal), (11)

but rises to ∼ 1.53 × 10−5 when accounting for ENOB.
Finite-Element Analysis (FEA) of the aluminum disc shows
that expected strains under typical torques of (ideal = 0.001;
ENOB = 0.4 Nm) comfortably fall within this detectable
range.



Fig. 3: Comparison of joint torque sensor (blue) versus motor current
estimation (red) against ground truth torque. The joint torque sensor provides
higher accuracy (R2 = 0.9998, MAE = 0.0286 Nm) compared to motor
current estimates (R2 = 0.9609, MAE = 0.1319 Nm).

To validate our sensor design, we performed calibration
(10 g to 1000 g load range) and verified linearity of the
sensors’ responses:

y = 0.0115x+ 5.0069, with R2 = 0.9991, (12)

y = −0.0108x− 2.3260, with R2 = 0.9999, (13)

confirming minimal hysteresis and good repeatability, and
maximum gauge differential amplitude output of ∼10 mV.
Figure 1 shows the sensor design and FEA results under
0.4 Nm.

Compared to motor current estimates from a QDD motor,
our direct joint torque sensing avoids frictional uncertainties
and achieves 96.4% fidelity to ground truth measurements,
see Figure 3. While both approaches work for moderate loads
(0–2 Nm), direct torque sensing yields both lower average
errors and smaller variance.

Base Force-Torque Sensor: A six-axis PixONE FT
sensor (Bota Systems) is mounted at the hip, using only its
planar components (Fx, Fz,My) to measure the net external
wrench on the 2-DOF limb.

C. Summary of Estimation Procedure

In real-time operation, we compute the momentum-based
residual r (3) and detect a collision once ∥r(t)∥ crosses a
threshold. We then identify the impacted link by checking
which residual components are nonzero (5). Next, we form
the “unexpected” wrench from (7) and solve (9) to find
the contact location α along that link. This yields both the
contact force Fc and the point pc. In our 2-link setup, if
|r2(t)| is small while |r1(t)| is large, the collision is on link
1; otherwise, if both are large, it is on link 2.

IV. SIMULATION STUDY

We tested our multi-link contact detection framework in
a planar simulation to quantify force and location estima-

tion errors under controlled conditions before proceeding to
hardware validation.

1) Performance Metrics: We compare the true contact
force/location (Ftrue, αtrue) to the estimated (Fest, αest).
We report force error ∥Fest − Ftrue∥ and location error
|αest − αtrue|.

2) Representative Results: We tested two collision sce-
narios:

• a 5 N force on link 1 at α = 0.5, oriented at −π/3;
• a 7 N force on link 2 at α = 0.8, also at −π/3;
Tables I and II summarize the robot’s physical constants

(e.g., link lengths/masses) and simulation parameters (e.g.,
spring-damper gains, PD gains, sensor noise, and momentum
threshold). The threshold ϵres = 0.06 was chosen empirically
from no-contact data in hardware tests.

TABLE I: Physical constants of the robot

Constant Value Unit
l [0.205, 0.215] m
r [0.171, 0.031] m
m [0.351, 0.080] kg
I [0.00207, 0.00030] kg·m2

mbase 0.738 kg
µ 0.3 \

TABLE II: Simulation and control parameters

Parameter Value Unit
Kb [5000, 5000, 500] N/m
Db [50, 50, 20] Ns/m
KP 500 \
KD 10 \
σFT [0.1, 0.1, 0.01] [N, N, Nm]
ϵres 0.06 \

A. Floating-Base Simulation
We validate our collision detection algorithm in a floating-

base 2-DOF simulation (Fig. 4c) using ode45 with a 1 kHz
PD controller. Collisions of 5–7 N are introduced at vari-
ous link locations and times, as shown in Figures 4a, 4b.
The method achieves 2–5 mm localization error and 0.121–
0.162 N force error, see Table III.

TABLE III: Error Metrics During Collision Phase in Floating-Base Simu-
lation

Scenario Force Errors (N) Position Errors (m)
Fx Fz |F| px pz |p|

Test 1 Mean -0.033 0.051 0.162 -0.001 0.000 0.005
STD 0.340 0.379 0.486 0.008 0.002 0.007
Test 2 Mean -0.036 0.050 0.121 -0.001 0.000 0.002
STD 0.313 0.236 0.378 0.004 0.001 0.003

V. HARDWARE EXPERIMENTS

Expanding on our simulation results under real-world
conditions, we implemented our contact detection approach
on physical hardware. This section describes the experimen-
tal setup and presents results comparing estimated versus
ground-truth contact forces and locations.

A. Fixed-Base Experiment
To verify the system’s collision-estimation accuracy under

real-world conditions, we implement our approach on a
physical fixed-base 2-DOF planar linkage equipped with joint
torque sensors and a hip-mounted FT sensor, as shown in
Figure 5.



(a) Floating Base, Scenario 1: Collision on Link 1 (5N, α = 0.5)

(b) Floating Base, Scenario 2: Collision on Link 2 (7N, α = 0.8)

(c) Simulation setup for the floating-base 2-DOF leg. Red arrow: external poking force
applied to the link; green arrow: ground-contact reaction force at the foot. Both arrows
are uniformly scaled (0.01x) for visualization.

Fig. 4: Floating-base collision detection: (a,b) actual vs. estimated contact
force magnitude and location; (c) setup showing external (red) and ground-
contact (green) forces.

1) Data-Acquisition Pipeline: All torque sensors feed into
a dedicated 24-bit ADC module (ADS127L21EVM-PDK)
via an Arduino Due communicating over SPI. The ADC
transmits the readings at 2 MHz baud rate, yielding a sam-
pling rate of 3–4 kSps. Meanwhile, mjbots controllers supply
encoder data, and a Bota Systems PixONE FT sensor sends
base wrench measurements. All streams are synchronized
in MATLAB for real-time observer computations, with an
mjbots qdd100 (6:1) and mj5208 direct drive for actuation.

2) Static Loading Tests and Accuracy Evaluation: To
quantify force and location estimation, we perform static
loading by placing known masses at specific positions along
each link. Specifically, we tested Link 1 (thigh) with 100 g
and 500 g loads and Link 2 (shank) with 50 g and 100 g
loads, each at 25%, 50%, 75%, and 100% of link length.
Link 1 errors ranged from 7–9 mm, while Link 2 errors
stayed around 4–5 mm. Force errors remained below 0.2 N,
shown in Table IV.

For comparison, we also test the fixed base system in
simulation, where we emulate a FT sensor by modeling
the planar robot’s floating base with virtual spring-damper

Fig. 5: Experimental 2-DOF planar leg testbed with integrated joint torque
sensors, data acquisition boards, a hip-mounted Bota Systems PixONE FT
sensor, and power distribution board.

TABLE IV: Error Metrics in Hardware Experiments

Configuration Load Location Error Force Error
(g) RMS (mm) RMS (N)

Link 1 100 8.89 0.129
500 7.91 0.174

Link 2 50 4.09 0.045
100 4.87 0.106

elements in (x, z, θ). This test yield similarly low errors (Ta-
ble V), confirming the observer’s consistency. The floating-
base simulation in Section IV appears to result in higher
variance measurements, which could be caused by the system
stabilizing after the contact occurred.
TABLE V: Error Metrics During Collision Phase in Fixed-Base Simulation

Scenario Force Errors (N) Position Errors (m)
Fx Fz |F| px pz |p|

Test 1 Mean -0.008 -0.008 0.112 0.001 0.000 0.003
STD 0.089 0.090 0.058 0.004 0.001 0.002
Test 2 Mean 0.002 -0.006 0.142 0.000 0.002 0.002
STD 0.108 0.111 0.059 0.002 0.001 0.001

To evaluate robustness across different leg configurations,
we swept joint angles (q1, q2) over a 10×10 grid in [0, π]×
[0, π], placing contacts at four points along each link. Across
all configurations, the collision location error stayed below
13.5mm (about 7% of the link length) and force error under
0.15N (∼ 2%). Thus, our observer consistently maintains
sub-centimeter precision regardless of leg posture.

VI. DISCUSSION AND CONCLUSION

Our simulation and 2-DOF hardware tests confirm com-
bining direct joint torque sensing with a single hip-mounted
FT sensor enables multi-link collision detection and local-
ization, even under friction and gearbox uncertainties. Key
findings include: Torque estimates achieving 96.4% fidelity
to ground truth compared to motor-current methods, sub-
centimeter contact localization precision in fixed-base and
floating-base scenarios, and force measurement errors below
0.2 N across varied scenarios.

Future work will embed this sensing architecture into 3D,
higher-DOF legged robots and dynamics gaits, paving the
way for low-latency, whole-body collision awareness on fast,
agile platforms.
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