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Abstract

Recently, the attention mechanism has shown outstanding competence in capturing
global structure information and long-range relationships within data, thus enhanc-
ing the performance of deep vision models on various computer vision tasks. In this
work, we propose a novel alternative dictionary learning-based attention (Dic-Attn)
module, which models this issue as a decomposition and reconstruction problem
with the sparsity prior, inspired by sparse coding in the human visual perception
system. The proposed Dic-Attn module decomposes the input into a dictionary
and corresponding sparse representations, allowing for the disentanglement of
underlying nonlinear structural information in visual data and the reconstruction
of an attention embedding. By applying transformation operations in the spatial
and channel domains, the module dynamically selects the dictionary’s atoms and
sparse representations. Finally, the updated dictionary and sparse representations
capture the global contextual information and reconstruct the attention maps. The
proposed Dic-Attn module is designed with plug-and-play compatibility and fa-
cilitates integration into deep attention encoders. Our approach offers an intuitive
and elegant means to exploit the discriminative information from data, promoting
visual attention construction. Extensive experimental results on various computer
vision tasks, e.g., image and point cloud classification, validate that our method
achieves promising performance, and shows a strong competitive comparison with
state-of-the-art attention methods.

1 Introduction

Visual perception plays a critical role in obtaining external information. However, processing massive
visual information in the real world is challenging for both human brains and computers. Modern
psychology and cognitive neuroscience find that the visual attention mechanism is one of the essential
keys to a human’s good cognitive ability [43], enabling selective and sparse activation of neurons in
response to input. In the field of computer vision (CV), various attention methods have also been
developed, with successful applications in lots of Convolutional Neural Networks and Transformers,
revealing great potential in visual tasks [4, 32, 5, 48, 46, 15]. CV attention methods utilize various
calculation functions to generate attention maps, but they can be seen as a general form (refer to
Sec. 3.1) [11, 41, 10]. Researchers have recognized several advantages of the attention mechanism,
e.g., capturing global long-term information and extracting hierarchical data structures [6]. Moreover,
recent research has also highlighted the potential of leveraging sparsity to develop attention algorithms
[31, 62, 23]. However, there are still pending questions regarding the efficiency and effectiveness of
current attention methods when dealing with regular image features and non-Euclidean point cloud
data [57, 35, 9]. Considering the significant memory costs and time complexity [42] associated with
current attention methods, it is crucial to explore possibilities of optimizing their internal operations
or re-evaluating the current form, especially in the view of sparsity.
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In this context, recalling the previous works and considering the original motivation behind in-
troducing attention methods remind us of the dictionary learning/sparse coding algorithm, which
holds importance but is often overlooked in present discussions. The dictionary learning algorithm
decomposes visual data into a dictionary basis and their corresponding sparse representations/codes.
Under different conditions, the sparsity of sparse code can be adapted: code with higher sparsity
(more zero elements) mostly corresponds to features of smaller scale, higher roughness, or higher
hierarchy. Furthermore, this process echoes the nonlinear effects in complex cells and the sparse
coding strategies for sensory information in the primary visual cortex and advanced visual region
[34, 1, 19, 56]. It has been observed that the structure in a sparse domain could make the hidden
patterns more prominent and easier to be captured [29, 52, 55, 60]. All these motivate us to develop
an alternative novel attention form, i.e. Dictionary learning-based Attention (Dic-Attn), that offers
a visual focus for deep neural networks (DNNs). The Dic-Attn module can be conveniently used to
replace existing attention modules, and compatibly explain their working principles.

The Dic-Attn module employs two selection matrices to exploit channel and spatial attention from
dictionary atoms. By selecting the appropriate basis and re-locating the coordinates, we can uncover
hidden visual attention information by reconstructing the attention map using the updated basis
(dictionary) and coordinates (corresponding sparse representations). Note that, the sparse represen-
tations in our proposed module originate from the non-linear decomposition of visual data and are
subsequently reconstructed into the attention matrix. The sparsity property of the attention matrix is
induced naturally by the sparse prior [52, 50, 60] and is related to the visual attention area within the
images. The main contributions of this paper are summarized as follows:

1. We propose a novel visual attention module, namely, the Dictionary learning-based At-
tention (Dic-Attn) module, which is based on dictionary learning and provides better
interpretability of providing contextual information.

2. We demonstrate that the proposed module has great potential in disentangling non-linear
structural information by employing a masked dictionary and transformed sparse repre-
sentations. We construct a deep attention stage composed of the proposed modules. Each
module at different depths, ranging from shallow to deep, dynamically updates dictionar-
ies and sparse representations through spatial and channel transformations, step-wise-ly
reconstructing the final attention map.

3. We apply the proposed module to various visual models since it is designed to be plug-
and-play, achieving better performance than various existing attention modules on image
classification, semantic segmentation, and point cloud classification, with fewer parameters
and faster computation.
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Figure 1: The pipeline of our proposed Dic-Attn block. First, input features X̂ into the Dic-Attn
block. Within the Dic-Attn block, the inner Dic-Attn module decomposes the normalized input X
into a dictionary and corresponding sparse representations, which will be transformed in the spatial
and channel domains. The Dic-Attn module can dynamically adjust the weights to promote the
visual focus on influential elements. This process is both data and task-driven, thereby enhancing the
effectiveness of the attention mechanism. Finally, the output of the Dic-Attn block is obtained by
summing the input with the Attention Output. The Dic-Attn block can be stacked layer by layer to
form a deep attention model, enabling capturing and integrating visual attention hierarchically across
multiple levels.
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2 Related Work

Attention Mechanism in Computer Vision Tasks. CV Attention methods simulate the phe-
nomenon of the human visual system, where selective attention helps neural system analyze and
understand complex scenes more efficiently. Recurrent Model [32] is a pioneering work that develops
the attention mechanism in DNNs. Later, various attention methods are proposed. Some of them try
to improve the pre-processing method of the input images [8, 54], while others modify the way of
obtaining the attention matrix, resulting in a series of variants, e.g., spatial transformer network (STN)
[16], self-attention (SA) [46], squeeze-and-excitation network (SENet) [14], dual attention (DA)
module [5], double attention (A2) module [4], hamburger (HAM) module [6], etc. [21, 10, 48, 25, 39].
The SA module is proposed in [46] and first introduced to computer vision in [49]. It achieved great
success in various vision tasks and made the Vision Transformer (ViT) successful in academia. [6]
constructs the long-term global context learning as a low-rank recovery problem and proposes the
matrix decomposition (MD) module, focusing only on the low-rank property prior assumption of
feature representations. It may have limitations in fully capturing the complexity and richness of
global structure information in the data. Most recent related work [39] was inspired by the two promi-
nent features of the human visual attention mechanism, i.e., recurrency and sparsity. The so-called
recurrency attribute in [39] naturally comes from the ordinary differential equation description of
the sparse coding update process, which is actually inside the attention module and the sparse repre-
sentations require a multi-step update. It also lacks the analysis of attention modules with different
depths. Moreover, the residual connections between multi-layer attention modules still remain under
explanation. [23] measures sparsity as the percentage of nonzero entries in the activation maps of
each layer. It finds that sparsity emerges in the parameters of all layers of the Transformer. However,
it does not explicitly state whether the output of the attention module exhibits sparsity or not. Some
studies [37, 51, 17, 33] have tried to post-hoc-interpret these developed attention methods, and utilize
white-box approaches to do the analysis [13, 41, 58, 31].

Dictionary Learning in Computer Vision Tasks. Sparsity is an important and noticeable prior
in the field of computer vision, e.g., the statistically redundant property of natural images is served
for dictionary learning. Hence, image sample x is reconstructed with the dictionary D and its
corresponding sparse code ϕ, i.e., samples can be decomposed into a dictionary and corresponding
sparse representations. The dictionary D captures representative and critical features from the inputs
and reveals the interference of insignificant information. Dictionary learning has been extensively
studied and verified to be an outstanding approach for exploiting the underlying sparse structures
hidden in images [29, 52, 50, 55, 60], efficiently transferring and expressing information from high-
dimensional image data into sparse space. It plays an important role in various computer vision
tasks, e.g., image reconstruction [1, 29, 3, 38, 64], image classification[52, 47, 55, 24, 60], visual
tracking [61] and others.[39]. Note that, compared with non-negative matrix factorization and vector
quantization applied in MD module [6] mentioned above, the dictionary learning algorithm performs
better in the case of natural images [26]. Technical details about how we learn the dictionary is shown
in Sec. 3.2.

3 Method

In this section, we present the proposed dictionary learning-based visual attention (Dic-Attn) method.
First, we give a brief review and summary of the CV attention form and dictionary learning. Then,
we describe the main idea of the Dic-Attn module to obtain visual attention. Finally, we analyze the
core concept behind the Dic-Attn module. The overall structure of the proposed Dic-Attn method is
illustrated in Fig. 1.

3.1 Attention Form

Generally speaking, we can summarize a CV attention form [11, 41].

Input :X,
Attention Module :f(X).

Attention Block :g(f(X),X).
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The input features X are firstly pre-processed. Subsequently, the attention module obtains an attention
map of the input. Finally, g(·) is introduced to further connect attention map and input features, e.g.,
the normalization operation, drop operation, skip-connection, etc.. All these constitute an Attention
Block. Among them, the function f(X) : X 7→ Attention Output in the attention module is the
most critical mapping. Attention blocks can be added to the middle of the network, or form a
feed-forward network. For example, in the ViT encoder with depth N , there will be N attention
blocks. Take ViT as an example, suppose there is a feature tensor Z with shape b × n × h × w,
where n denotes the number of channels. The feature tensor is vectorized in the spatial domain
and the last two dimensions are transposed. Hence, the attention block takes a sequence of image
features as input, i.e., X ∈ Rb×s×n, where s = h × w. The Self-Attention module is introduced
and subsequently outputs a spatial attention map, essentially operating in the spatial domain. The
formulation of the standard Self-Attention module in ViT [46] is as follows:

[Q,K,V] = [WQX,WKX,WVX],

A = softmax(Wscale(QKT )),

Attention Output = AV,

(1)

where X ∈ Rb×s×n is the input, Q ∈ Rb×s×n, K ∈ Rb×s×n and V ∈ Rb×s×n denote the query
matrix, the key matrix, and the value matrix, respectively. They are obtained by full-connected layers.
WQ,WK and WV are all square matrices with the shape n× n. A represents the attention matrix.
Finally, through the residual structure, i.e. skip-connection, attention blocks have the final output
result, i.e., Attention Output +X.

The implicit variables or the spatial attention map results of these attention modules can be visualized,
e.g., traditional SA blocks in ViT [46], and External-Attention (EA) blocks [10]. These works
indicate that the attention module focuses on the discriminative regions of each image. Recalling
the CV attention form we summarized at the beginning of this section, we can find that f(·) is the
most important function when obtaining visual attention in DNNs. In this paper, f(·) contains the
process of dictionary learning, the transformation of both learned dictionary & corresponding sparse
representations, as well as reconstruction, which is to be introduced in Sec. 3.2.

3.2 Dictionary Learning

Formally, given data X := [x1, ..., xn] ∈ Rn×s, the standard dictionary learning algorithm is to find
a dictionary D and the corresponding sparse code Φ. The dictionary D = [d1, ...,dk] has a shape of
n× k, the sparse code Φ = [ϕ1, ...,ϕk] ∈ Rk×s selects atoms from the dictionary to reconstruct the
input X . The objective function of dictionary learning can be formulated as follows:

argmin
D,ϕi

h(D) +

s∑
i=1

1

2
∥xi −Dϕi∥

2
2 + g(ϕi),

s.t. D ∈ S(n, k),ϕi ∈ Rk,

(2)

where h(D) = α
∑

i ̸=j

∥∥dT
i dj

∥∥2
F

denotes the regularization term of the dictionary. It leads
to mutual incoherence between pair atoms in the dictionary. Besides, D ∈ S(n, k) :={
D ∈ Rn×k

∗ : diag(DTD) = Ik
}

. Namely, the set of dictionaries is a product manifold of s times
the (k − 1)-dimensional unit sphere, i.e., S(n, k) restrict all atoms di ∈ Rk to have unit norm.
g(ϕi) usually utilizes norm constraint to control the sparsity of the sparse code ϕi. The l1 norm
regularization is a popular way to replace l0-norm by l1-norm convex relaxation, known as the Lasso
[44] regression. It has numerous variants, e.g., elastic net. Elastic net inherits the stability of Ridge
and the sparsity brought by Lasso, for combining both regularization terms of l1 norm and l2 norm.
Hence in this paper, we have g(ϕi) = β ∥ϕi∥1 +

λ
2 ∥ϕi∥

2
2. β and λ are regularization weights.

Eq. (2) can be regarded as an iterative optimization problem, where dictionary D and sparse repre-
sentation alternately updates. Each sparse code is an implicit function about the temporarily fixed
dictionary D. With Eq. (2), the incoherent assumption of dictionary atoms and the sparse prior g(ϕi)
[50], the close solution of sparse representation can be expressed as follows:

ϕ∗
i =

(
DT

ΛDΛ + λI
)−1 (

DT
Λxi + βvΛ

)
, (3)
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where Λ := {i ∈ {1, ..., s}|ϕ∗
ij ̸= 0} denotes the set of indexes of the non-zero entries of the solution

ϕ∗
i = [ϕ∗

i1, ..,ϕ
∗
is]. DΛ is the subset of the dictionary in which the indexes of atoms fall into Λ. |Λ|

denotes the sparsity of ϕ∗
i , vΛ ∈ {±1}|Λ| carries the signs of ϕ∗

i . Technically, it is easy to realize the
calculation of the above polynomial formula and obtain the sparse representations.

Constructing or learning a dictionary is also crucial for achieving the goal of highlighting significant
objects while suppressing distracting or noisy elements. In the early stage, the dictionary is constructed
by Cosine functions, Fourier, Wavelets, Contourlets, Gabor, a set of complete bases, etc. These
approaches were widely employed in signal processing due to their mathematical simplicity. However,
such a fixed dictionary is manually designed under some mathematical constraints and is not flexible
enough to represent complex natural image structures. Recently, researchers have turned to directly
initializing and learning the dictionary from image data, which can also improve the sparsity of Φ
and the performance of downstream tasks [52, 60, 64]. The dictionary contains prototype underlying
features of vision data, based on which each sample can find its unique optimal sparse solution.

3.3 The Proposed Dic-Attn for Visual Attention

3.3.1 Dic-Attn Method

The Dic-Attn module first decomposes the input into a dictionary and sparse representation. Then its
primary objective is to provide visual attention to the model by reconstructing the attention map with
residuals. Its process is as follows,

X = DΦ,

V = DWD,

A = softmax(Wscale(WΦΦ)),

Attention Output = VA,

(4)

where X = [XT
1 ,X

T
2 , ...,X

T
b ] ∈ Rb×s×n. Each atom di ∈ Rn in the dictionary D ∈ Rn×k

will be re-weighted by WD ∈ Rk. The elements of WD ∈ Rk are trainable mask weights for
dictionary atoms. WΦ ∈ Rk×k denotes the selection mask matrix for sparse representations
Φ = [Φ1, ...,Φb] ∈ Rb×k×s. Wscale denotes the scaling matrix. Note that k = αn, α is the
hyper-parameter.

Firstly, the dictionary is learned on the entire training-dataset, aiming to be adaptive to all inputs X.
It contains diverse and important features (in atoms) of the input, so it can solve the sparse coding
problem and obtain the corresponding code Φ. We have:

D = [dc
1 dc

2 · · · dc
k] = [dr

1 dr
2 · · · dr

n]
T
,

therefore,
Φm = [ϕ1 ϕ2 · · · ϕs] = [ψ1 ψ2 · · · ψk]

T
,

Xm =


x11 x12 · · · x1n

x21 x22 · · · x2n

...
...

...
...

xs1 xs2 · · · xsn

 =


dr
1ϕ1 dr

1ϕ2 · · · dr
1ϕn

dr
2ϕ1 dr

2ϕ2 · · · dr
2ϕn

...
...

...
...

dr
sϕ1 dr

sϕ2 · · · dr
sϕn,


xij = dr

iϕj =

k∑
t=0

(dc
tψt)ij ,

(5)

where Xm denotes the m-th batch of X, Φm = [ϕ1, ...,ϕn] = [ψ1, ...,ψk]
T ∈ Rk×s, dc

t and dr
i

denotes the t-th column and the i-th row of D. The optimization process of dictionary learning
maximizes the descriptiveness of the atoms dc

t while minimizing the redundancy between original
inputs X and DΦ. Then, transformations WD and WΦ for dictionaries and sparse representations
are introduced, respectively, which facilitate the integration of spatial and channel attention into the
model by assigning weights in both the spatial and channel domains.

The diagonal transformed matrix WD and transformed matrix WΦ are specifically designed to
re-weight the dictionary and transform its corresponding sparse representations, respectively. Through

5



Algorithm 1: Dictionary Learning-Based Attention Module

Input: X ∈ Rb×s×n, depth N ,
Parameter: D ∈ S(n, k),WΦ ∈ Rk×k,WD ∈ Rk,Wscale

Latent Variables: Φ ∈ Rk×s, f(ΦT), V
Output: Attention Output
# Initialize D ∈ S(n, k) by randomly sampling from N (0, 1) and atom-wise normalization;
# Initialize WΦ, WD, Wscale with reference to kaiming-init method [12];
# forward
## Update Φ by Eq. (3);
## Obtain Attention Output by Eq. (4);
# backward
## Update D,WΦ, WD, Wscale by minimizing loss function of the network ;

the transformation of the dictionary, spatial attention is introduced during the reconstruction process,
effectively leveraging the discriminative power of atoms [18, 2, 64, 27]. Different sizes of the diagonal
elements in the WD impose weights on different channels diψi in the reconstruction process. In view
of sparse representations/codes, the Dic-Attn module employs sparse prior and exploits the intrinsic
underlying structure of features. The sparsity involved in the attention module arises spontaneously
from the statistically redundant natural images. The sparse representation serves as the coordinates
of the dictionary. These sparse representations indicate the importance or relevance of each atom
in the dictionary for reconstructing the input features. Importantly, the attention similarity between
different tokens or grid features in X is inherently encoded within the dictionary and the sparse
representation. WΦ modifies individual elements and Wscale applies unified weights within each
column of Φ, respectively. These transformation parameters are driven by the task objective function
and are updated through the backpropagation process.

Algorithm 1 summarizes the algorithm flow of the Dic-Attn module. Furthermore, it is worth noting
that constructing a deep Dic-Attn vision model is feasible. All these transformation matrices are
trained in a back-forward manner and serve as a crucial link in connecting the dictionary, sparse
representations, and reconstructed attention maps. To enhance the stability and effectiveness of the
Dic-Attn module, it is recommended to include a normalization step before the attention module as
[46]. Additionally, a residual connection between the input X and the Attention Ouptut facilitates
the flow of information. This results in the formation of the Dic-Attn block, as illustrated in Fig. 1.

In summary, the Dic-Attn module utilizes a data-initialized and task-driven dictionary strategy,
which captures global information and serves as a comprehensive resource containing essential data
constituents. The process of reconstructing attention maps fully capitalizes on the dictionary learning
sparse coding approach, the ability to extract both channel and spatial information from nonlinear
features. The Dic-Attn module has a simpler structure with fewer parameters and elegant internal
operations while achieving higher performance. Moreover, the Dic-Attn module is a convenient
plug-and-play attention module that can be easily integrated into various vision networks.

3.3.2 General Dic-Attn-Based Vision Transformer

Herein, we give a guide on how to build a Dic-Attn-based Vision Transformer and analyze the role
of the proposed Dic-Attn method. The model architecture can be divided into three main parts: the
preprocessing stage, the deep attention stage, and the post-processing stage for downstream tasks.

Firstly, multi-layer convolution and linear operations are employed to extract primary visual features
from the natural images. Then, multiple concatenated Dic-Attn blocks form the deep attention stage,
generating the final attention map step by step. To conveniently introduce this process, we further
summarize the Dic-Attn form as follows

Reconstruction(D̃,NL(Φ)), (6)

where NL(·) denotes non-linear scaling function. D̃ is the learned dictionary with re-weighted atoms.
NL(Φ) can be treated as a response prediction model [56]. We assume that the input of (l + 1)-layer
attention block is Attention Outputl +Xl, i.e., the output of the previous layer’s attention block.
Learning-based dictionary D of each Dic-Attn module groups significant features of different objects
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in the input, and the most salient objects are preserved while those irrelevant are suppressed by further
selecting sparse representations. The output of each layer has a common intersection as the input X1

of the first layer, which is a task-independent bias for dictionary learning in Dic-Attn modules of any
depth. Moreover, the output can be further considered as consisting of two components, one of which
is the l-layer module’s attention area, and the other component represents the ignored part. The first
component will affect deep attention modules layer by layer, and adjust the task-driven selection
matrix through backpropagation. Hence, our proposed Dic-Attn module of shallow depth can bring
selective biases with a task-independent impact on deeper attention modules.

The proposed Dic-Attn method, based on feature decomposition and sparse prior, offers a white-box
novel strategy for obtaining visual attention, which may be able to be applied to scenarios with more
stringent security requirements. Generally, in the visual perceptual system, selective attention is
primarily driven by strong stimulus signals and attention to specific regions. Selective attention can
be understood from three main aspects: bottom-up voluntary attention, involuntary attention, and
"selection history" attention. Involuntary attention, similar to the task-driven model in computer
vision, is obtained through top-down rewards. "selection history" refers to the influence of previously
attended regions or objects on future attention allocation. Meanwhile, the selective lingering biases
have a task-independent impact on the subsequent attention priority. In biology, it means that the
nerve has better plasticity. While in the deep neural network, the structure of the multi-layer attention
module is not just capable to acquire features with higher semantics. Shallow-depth attention modules
capture data prototype features and affect deeper attention modules. It will make models with greater
capacity, better generalization, and robustness. The multi-layer attention module structure in the
Dic-Attn module goes beyond acquiring features with higher semantics. Shallow-depth attention
modules capture data prototype features and influence deeper attention modules, resulting in models
with increased capacity, better generalization, and improved robustness.

In summary, we demonstrate the effectiveness of the Dic-Attn module in capturing visual attention,
enhancing visual model performance. We also provide the interpretability for deeper insights into the
attention mechanism.

4 Experiments
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Figure 2: The Dic-Attn module ablation experiments (with ViT
backbone) on CIFAR-10 dataset.

In this section, we evaluate the per-
formance of proposed Dic-Attn on
6 benchmarks. Firstly, we conduct
ablation experiments on CIFAR-10
dataset, as described in Sec. 4.1.
Subsequently, we compare the com-
putational costs. In Sec. 4.2, we
evaluate the performance of the Dic-
Attn module across various visual
tasks, such as point cloud classi-
fication, image segmentation, and
image classification. We compare
the accuracy and robustness of the
proposed method with several no-
table attention modules. More ex-
periments and the code are available
in the Supplementary Material.

4.1 Ablation Study and Computational Costs

We explore the influence of the hyper-parameters, i.e., the second dimension k of the dictionary and
the number l of attention blocks (depth of encoder). Fig. 2 illustrates the significance of selecting
appropriate values for l and k. A dictionary with higher dimension k creates a comprehensive
feature space for images, which enhances the performance of the Vision Transformer. As the depth
l increases, the accuracy initially improves but starts to decline after reaching seven in CIFAR-10.
The phenomenon of rising first can be attributed to the fact that deeper networks have the capability
to capture more intricate relationships between inputs and outputs. However, they are also prone to
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overfitting, particularly when the training dataset is relatively small, such as in the case of training
from scratch using the CIFAR-10 dataset. Therefore, it is important to carefully consider the trade-offs
between depth and complexity when designing a neural network, rather than assuming that deeper is
always better.

We evaluate the performance of the Dic-Attn module, and compare it with the SA module and
notable variants, as presented in Tab. 1. The results show that the proposed Dic-Attn module is
more lightweight and has a lower computational burden. The total number of parameters (Params.)
of the SA module is related to n, which is equal to 3n2. For our proposed Dic-Attn module, the
Params. is counted as k(n+ k + 1), where Params. of D is nk, Params. of WΦ is k2 and Params.
of WV is k. Since k = αn, it can be inferred that k(n + k + 1) is always less than n3 when
α ∈ (0, α1) ∩ (α2,+∞). α1 and α2 are solutions of the quadratic equation nα2 + (n+ 1)α− n2

with variable α. Note that, it always has real number solutions.

Table 1: Comparison of the efficiency of various attention modules. Indicators: Number of
parameters (Params.), multiply-accumulates operations (MACs) and training/inference time cost
compared to Self-Attention and its variants.

Methods/Indicators Params. (M) MACs. (G) GPU Train / Inference Time (ms)

SA [46] 1.00 292.00 242.00 / 82.20
DA [5] 4.82 79.50 72.60 / 64.40
A2 [4] 1.01 25.70 22.90 / 8.00

ACF [59] 0.75 79.5 71.00 / 22.60
HAM [6] 0.50 17.60 15.60 / 7.70

Dic-Attn (Ours) 0.60 20.00 78.00 / 24.70

Input: tensor with shape 1× 512× 128× 128.

4.2 Computer Vision Tasks

We evaluate the performances of our proposed Dic-Attn module on public image datasets and
point cloud datasets, including CIFAR-10, CIFAR-100[20], ModelNet40 [53], ScanObjectNN [45],
and ADE20K [63]. Note that, to mitigate the impact of various complex factors that may arise
from pre-training and fine-tuning processes, all models in this paper were trained from scratch,
without pre-training, and adopted the same data augmentation method. Additionally, unless
explicitly stated, the hyperparameter settings remained consistent across all experiments. More
implementation settings are described in detail in the Supplementary Material.

4.2.1 Image Classification

CIFAR-10 dataset is composed of 10 categories 60000 color images with the size of 32×32. CIFAR-
100 dataset has 100 classes. Both of CIFAR-10 and CIFAR-100 contain 50000 training images and
10000 test images. The number of images in each category is equal, so 6000 images per class in
CIFAR-10 and 600 in CIFAR-100, respectively.

The classification results on image datasets are shown in Tab. 2. The image classification accuracy of
ViT can be improved from 0.64% to 2.12% by changing the SA module to Dic-Attn module.

In Tab. 3, we report the model performance on adversarial robustness under the Fast Gradient Sign
Method (FGSM) [7] and Projected Gradient Descent (PGD) [28]. We set the FGSM attack with
the perturbation magnitude ϵ = 4

255 . For PGD, we set ϵ = 8
255 , iteration numbers t = 10, and step

size α = 2
255 . We evaluate the model performance by using Attack Accuracy, including the FGSM

accuracy and PGD accuracy on classifying images corrupted by adversarial attack FGSM and PGD,
respectively. Note that we do not apply adversarial training here, but only use clean samples to train
RVT networks [30]. In this case, the proposed Dic-Attn module is still competitive.

4.2.2 Point Cloud Classification

ModelNet40 and ScanObjectNN datasets are widely used benchmarks for point cloud analysis.
ModelNet40 dataset comprises 12311 CAD-generated meshes categorized into 40 classes. Among
them, 9843 meshes are used for training, while the remaining 2468 meshes are reserved for testing.
ScanObjectNN is a real-world dataset, that contains 15000 objects, divided into 15 and 2902 unique
object instances. For all experiments conducted, only the coordinates xyz of objects are utilized. In
the case of ModelNet40, all baselines are tested with 1024 input points.
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Table 2: Image Classification Top1-Accuracy
(%). The overall classification accuracy over
all classes is for evaluation metrics.

Model
(From Scrach)

Datasets #Param(M)CIFAR-10 CIFAR-100

ViT (SA) 90.91 66.67 22.74
Swin-S (WSA) 89.74 55.82 22.25
ViT (Dic-Attn) 91.55 68.79 19.33

Table 3: Robustness Evaluation Results on CIFAR-
100 dataset. Comparison of our approach with
backbones and other attention baseline methods,
against various adversarial attacks.

Model
(From Scrach)

Attacks #Param(M)FGSM PGD Clean

RVT (SA) 0.20 0.10 64.80 8.29
RVT (VARS-D) 10.58 3.80 62.20 7.68
RVT (Dic-Attn) 10.00 4.30 55.93 7.48

The pre-processing of cloud points is performed according to [9]. Note that the point cloud data
is encoded as a fixed-shape feature tensor to input the attention module, which preserves and
incorporates the original point clouds’ position correlation, etc. The classification results on point
cloud datasets are shown in Tab. 4. It is evident that our proposed Dic-Attn module significantly
enhances the classification performance of the Point Cloud Transformer (PCT) model [9]. The
average point cloud classification results achieved with our proposed module are highly competitive
and demonstrate notable improvement over existing approaches. Our proposed Dic-Attn module is
able to compute an attention map for the point cloud Transformer. In addition, all these indicate that
our proposed Dic-Attn module has the advantage of processing complicated data and has the potential
to measure the topological attention relationships of the underlying geometric structure.

Table 4: Point Cloud Classification task Top1-
Accuracy (%). The number of points is set to 1024.

Model
(From Scrach)

Datasets
ModelNet40 ScanObjectNN

PointNet++ [36] 91.90 84.30
PointCNN [22] 91.70 85.50

PCT 92.95 80.60
Point-BERT [57] 93.19 88.10
Point-MAE [35] 93.80 88.30
PCT (Dic-Attn) 94.60 88.96

Point-MAE (Dic-Attn) 94.46 89.41
Figure 3: The comparison of attention maps
generated by SA module and Dic-Attn mod-
ule (with backbone Segmenter, experiment
on ADE20K dataset).

4.2.3 Image Segmentation

ADE20K dataset [63] contains a total of 150 semantic categories, and can be used for scene perception,
parsing, segmentation, multi-object recognition, and semantic understanding, which is one of the
most challenging semantic segmentation datasets. The training set contains 20210 images. There are
about 2000 and 3352 images in the validation and test set, respectively.

The performance of the Dic-Attn module is verified in the semantic segmentation task with the
backbone Segmenter [40], which is a competitive and representative transformer-based semantic
segmentation model. We train Segmenter (SA) and Segmenter (Dic-Attn) from scratch on ADE20K
dataset. Note that, Segmenter (Dic-Attn) denotes the proposed Dic-Attn module replacing the original
SA module in the Segmenter backbone. The mean Intersection over Union (mIoU) and the mean
Pixel Accuracy (mPA) of Segmenter (Dic-Attn) are 1.00% and 1.25% higher than that of Segmenter
(SA), respectively.

Furthermore, the two image examples and their corresponding segmentation attention map results, as
shown in Fig. 3, intuitively indicate that our proposed Dic-Attn module highly promotes the ability of
the segmentation model to distinguish objects. The learned attention maps are also more similar to
human visual attention, which focus on referred objects, e.g., building, sky, door, cabinet, etc. The
learned dictionary in the Dic-Attn module contains more sufficient features, including the underlying
nonlinear structure. All results above indicate that by fully extracting attention information in both
the channel domain and spatial domain of feature space, the attention maps for different labeled
objects can be reconstructed more accurately.
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5 Conclusions

In this work, a novel dictionary learning-based attention module, namely Dic-Attn, was proposed.
Dic-Attn takes the advantage of dictionary learning mechanism, enabling effective exploration
of the underlying nonlinear structure information. By dynamically selecting learned dictionary
atoms and sparse representations through spatial and channel transformations, multi-layer Dic-Attn
modules achieve the accurate reconstruction of attention maps and allow for the extraction of features
at different semantic levels, enhancing the comprehensive representation of visual information.
Experimental results in various visual tasks and vision models showed that the Dic-Attn module can
seamlessly integrate into various vision networks, delivering competitive performance comparable
to state-of-the-art methods. The Dic-Attn module is also a promising solution with competitive
performance, compatibility, and computational efficiency. Further research will be devoted to the
robustness of the module and its applications in more tasks, e.g., temporal prediction tasks in
scientific and engineering fields. Conducting further investigation and validation of the diverse levels
of semantics exhibited by dictionaries learned at different depths in natural language processing
scenarios would also be valuable.
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