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ABSTRACT

Images of general objects are often composed of three hidden factors: category
(e.g., car or chair), shape (e.g., particular car form), and view (e.g., 3D orienta-
tion). While there have been many disentangling models that can discover either
a category or shape factor separately from a view factor, such models typically
cannot capture the structure of general objects that the diversity of shapes is much
larger across categories than within a category. Here, we propose a novel gen-
erative model called CIGMO, which can learn to represent the category, shape,
and view factors at once only with weak supervision. Concretely, we develop
mixture of disentangling deep generative models, where the mixture components
correspond to object categories and each component model represents shape and
view in a category-specific and mutually invariant manner. We devise a learning
method based on variational autoencoders that does not explicitly use label infor-
mation but uses only grouping information that links together different views of
the same object. Using several datasets of 3D objects including ShapeNet, we
demonstrate that our model often outperforms previous relevant models including
state-of-the-art methods in invariant clustering and one-shot classification tasks,
in a manner exposing the importance of categorical invariant representation.

1 INTRODUCTION

In everyday life, we see objects in a great variety. Categories of objects are numerous and their shape
variations are tremendously rich; different views make an object look totally different (Figure 1(A)).
Recent neuroscientific studies have revealed how the primate brain organizes representation of com-
plex objects in the higher visual cortex (Freiwald & Tsao, 2010; Srihasam et al., 2014; Bao et al.,
2020). According to these, it comprises multi-stream networks, each of which is specialized to a
particular object category, encodes category-specific visual features, and undergoes multiple stages
with increasing view invariance. These biological findings inspire us a new form of learning model
that has multiple modules of category-specific invariant feature representations.

More specifically, our goal is, given an image dataset of general objects, to learn a generative model
representing three latent factors: (1) category (e.g., cars, chairs), (2) shape (e.g., particular car or
chair types), and (3) view (e.g., 3D orientation). A similar problem has been addressed by recent
disentangling models that discover complex factors of input variations in a way invariant to each
other (Tenenbaum & Freeman, 2000; Kingma et al., 2014; Chen et al., 2016; Higgins et al., 2016;
Bouchacourt et al., 2018; Hosoya, 2019). However, although these models can effectively infer a
category or shape factor separately from a view factor, these typically cannot capture the structure
in general object images that the diversity of shapes is much larger across categories than within a
category.

In this study, we propose a novel model called CIGMO (Categorical Invariant Generative MOdel),
which can learn to represent all the three factors (category, shape, and view) at once only with
weak supervision. Our model has the form of mixture of deep generative models, where the mixture
components correspond to categories and each component model gives a disentangled representation
of shape and view for a particular category. We develop a learning algorithm based on variational
autoencoders (VAE) method (Kingma & Welling, 2014) that does not use explicit labels, but uses
only grouping information that links together different views of the same object (Bouchacourt et al.,
2018; Chen et al., 2018; Hosoya, 2019).
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Figure 1: (A) Examples of general object images. These include two categories (car and chair) each
with two shape variations. In addition, the object of each shape is shown in three different views.
(B) The graphical model. Each instance xk in a data group is generated from a category c, a shape
z, and a view yk. Round boxes are discrete variables and circles are continuous variables. (C) The
inference flow. Each hidden variable is inferred from the set of incoming variables.

Using two image datasets of 3D objects (one derived from ShapeNet (Chang et al., 2015)), we
demonstrate that CIGMO can solve multiple unconventional visual tasks on objects that are unseen
during training. These include invariant clustering, i.e., clustering of objects regardless of the view,
one-shot classification, i.e., object recognition given one example per class, and other various feature
manipulations using the disentangled representation. Quantitative comparison indicates that our
model often outperforms many existing approaches including state-of-the-art methods.

Our key contributions are (1) development of the new deep generative model CIGMO, together with
the VAE-based weakly supervised learning algorithm, (2) experiments of the model on two datasets
with quantitative comparisons that show performance advantages over several existing models, and
(3) empirical exposition of the importance of separate representation of category, shape, and view
factors in modeling general object images.

2 RELATED WORK

The present work is closely related to recently proposed disentangling models for discovering mutu-
ally invariant factors of variation in the input. In one direction, some models have used unsupervised
learning with certain constraints on the latent variable, though these seem to be effective only in lim-
ited cases (Higgins et al., 2016; Chen et al., 2016). Thus, more practical approaches have made use
of explicit labels, such as semi-supervised learning for a part of dataset (Kingma et al., 2014; Sid-
dharth et al., 2017) or adversarial learning to promote disentanglement (Lample et al., 2017; Mathieu
et al., 2016). However, labels are often expensive.

To find out a good compromise, weaker forms of supervision have been investigated. One such
direction is group-based learning, which assumes inputs with the same shape to be grouped together
(Bouchacourt et al., 2018; Chen et al., 2018; Hosoya, 2019). In particular, our study here is techni-
cally much influenced by Group-based VAE (GVAE) (Hosoya, 2019) in the algorithm construction
(Section 3). However, these existing group-based methods are fundamentally limited in that the fac-
tors that can be separated are two—a group-common factor (shape) and an instance-specific factor
(view)—and there is no obvious way to extend it to more than two. Thus, our novelty here is to in-
troduce a mixture model comprising multiple GVAE models (each with shape and view variables) so
that fitting the mixture model to a grouped dataset can give rise to the third factor, categories, as mix-
ture components. In Section 4, we examine the empirical merits of this technique in several tasks.
Note that grouping information can most naturally be found in temporal data (like videos) since the
object identity is often stable over time, cf. classical temporal coherence principle (Földiák, 1991).
Indeed, some weakly supervised disentangling approaches have explicitly used such temporal struc-
ture (Yang et al., 2015).

Some recent work has used deep nets for clustering of complex object images. The most typical
approach is a simple combination of a deep generative model (e.g., VAE) and a conventional clus-
tering method (e.g., Gaussian mixture), although such approach seems to be limited in capturing
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large object view variation (Jiang et al., 2017). A latest approach proposes a feedforward approach
that takes pairs of image data, similarly to ours, and maximizes the mutual information between
the categorical posterior probability distributions for such paired image; this has shown remarkable
clustering performance on natural images under various view variation (Ji et al., 2019). In Sec-
tion 4, we experimentally compare their method with ours. Note, however, that these methods are
specialized to clustering and throw away all information other than the category.

3 CIGMO: CATEGORICAL INVARIANT GENERATIVE MODEL

3.1 MODEL

In our framework, we assume a grouped dataset

D = {(x(n)
1 , . . . ,x

(n)
K ) | x(n)

k ∈ RD, n = 1, . . . , N} (1)

where each data point is a group (tuple) ofK data instances (e.g., images); we assume independence
between groups but not instances within a group. For a data group (x1, . . . ,xK), we consider three
types of hidden variables: category c ∈ {1, . . . , C}, shape z ∈ RM , and views y1, . . . ,yK ∈
RL (eliding the superscript (n) for brevity), where the category and shape are common for the
group while the views are specific to each instance. We consider the following generative model
(Figure 1(B)):

p(c) = πc (2)
p(z) = NM (0, I) (3)
p(yk) = NL(0, I) (4)

p(xk|yk, z, c) = ND(fc(yk, z), I) (5)

for c = 1, . . . , C and k = 1, . . . ,K. Here, fc is a decoder deep net defined for each category c and πc
is a category prior with

∑C
c=1 πc = 1. In the generative process, first, the category c is drawn from

the categorical distribution (π1, . . . , πC), while the shape z and views yk are drawn from standard
Gaussian priors. Then, each data instance xk is generated by the decoder deep net fc for category c
applied to the group-common shape z and the instance-specific view yk (added with Gaussian noise
of unit variance). In other words, the decoder fc generates different data instances in a group from
the same shape and different views. Having defined a mixture of deep generative models as above,
we expect that, after fitting it to a view-grouped object image dataset, object categories will arise as
mixture components and category-specific shapes and views will be represented in each component
model.

3.2 LEARNING

We construct a learning algorithm following the VAE approach (Kingma & Welling, 2014). As
the most important step, we specify inference models to encode approximate posterior distributions
(Figure 1(C)). First, we estimate the posterior probability for category c as follows:

q(c|x1, . . . ,xK) =
1

K

K∑
k=1

u(c)(xk) (6)

Here, u is a classifier deep net that takes an individual instance x and outputs a probability distribu-
tion over the categories (

∑C
c=1 u

(c)(x) = 1), similarly to (Kingma et al., 2014). We then take the
average over the instance-specific probability distributions and use it as the group-common distribu-
tion. This is a simple approach to make the instance-specific distributions converge to equal values,
i.e., u(x1) ≈ u(x2). This is an adaptation of a key technique of GVAE used for computing the
group-common shape representation (Hosoya, 2019); see below.

Then, given the estimated category c, we infer each instance-specific view yk from the input xk as
follows:

q(yk|xk, c) = NL (gc(xk),diag(rc(xk))) (7)
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where gc and rc are encoder deep nets that are defined for each category c to specify the mean and
variance, respectively. To estimate shape z, we compute the following:

q(z|x1, . . . ,xK , c) = NM

(
1

K

K∑
k=1

hc(xk),
1

K

K∑
k=1

diag(sc(xk))

)
(8)

Here, again, encoder deep nets hc and sc are defined for each category c. These compute the mean
and variance, respectively, of the posterior distribution for the individual shape for each instance xk.
Then, the group-common shape z is obtained as the average over all the individual shapes. In this
way, again, the instance-specific shape representations are expected to converge to an equal value in
the course of training, i.e., hc(x1) ≈ hc(x2) (Hosoya, 2019). Note that the way the view and shape
are inferred here is mostly borrowed from Hosoya (2019).

For training, we define the following variational lower bound of the marginal log likelihood for a
data point:

L(φ;x1, . . . ,xK) = Lrecon + LKL (9)

where

Lrecon = Eq(y1,...,yK ,z,c|x1,...,xK)

[
K∑
k=1

log p(xk|yk, z, c)

]
(10)

LKL = −DKL(q(y1, . . . ,yK , z, c|x1, . . . ,xK)‖p(y1, . . . ,yK , z, c)) (11)

with the set φ of all weight parameters in the classifier, encoder, and decoder deep nets. We compute
the reconstruction term Lrecon as follows:

Lrecon =

C∑
c=1

q(c|x1, . . . ,xK)Eq(y1,...,yK ,z|x1,...,xK ,c)

[
K∑
k=1

log p(xk|yk, z, c)

]
(12)

≈
C∑
c=1

q(c|x1, . . . ,xK)

K∑
k=1

log p(xk|yk, z, c) (13)

where we approximate the expectation using one sample z ∼ q(z|x1, . . . ,xK , c) and yk ∼
q(yk|xk, c) for each k, but directly use the probability value q(c|x1, . . . ,xK) for c. The KL term
LKL is computed as follows:

LKL = −DKL(q(c|x1, . . . ,xK)‖p(c))

−
C∑
c=1

q(c|x1, . . . ,xK)

K∑
k=1

DKL(q(yk|xk, c)‖p(yk))

−
C∑
c=1

q(c|x1, . . . ,xK)DKL(q(z|x1, . . . ,xK , c)‖p(z)) (14)

Finally, our training procedure is to maximize the lower bound for the entire dataset with respect to
the weight parameters: φ̂ = argmaxφ

1
N

∑N
n=1 L(φ;x

(n)
1 , . . . ,x

(n)
K ). A diagrammatic outline of

the algorithm is given in Figure 2.

4 EXPERIMENTS

We have applied the model described in Section 3 to two image datasets: ShapeNet (general objects)
and MultiPie (natural faces). Below, we outline the experimental set-up and show the results.

4.1 SHAPENET

For the first set of experiment, we created a dataset of multi-viewed object images derived from 3D
models in ShapeNet database (Chang et al., 2015). We selected 10, out of 55, pre-defined object
classes that each have a relatively large number of object identities (car, chair, table, airplane, lamp,
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Figure 2: A diagrammatic outline of CIGMO learning algorithm. The structure of the entire work-
flow consists of C modules (light-gray boxes) of group-based VAE corresponding to C categories
and a classifier network (right-most). An input is a group of data instances xk (bottom). Given such
input, each module c estimates an instance-specific view yk from each data instance xk using the
encoders gc/rc. The module also estimates a group-common shape z by first estimating individual
shapes for instances xk using the encoders hc/sc and then by taking their average. Then, new data
instances are generated by the decoder fc from the views and shape, and compared with the original
input data for obtaining the reconstruction error (loss). This process is repeated for all modules. In
parallel, the posterior probability for category c is computed by the classifier u on each data instance
xk and then by averaging over the instances. Each computed probability is multiplied with the re-
construction error for the corresponding module. Other probabilistic mechanisms (e.g., priors) are
omitted here for brevity.

boat, box, display, truck, and vase); we avoided heavily overlapping classes with many visually
similar objects, e.g., chair, sofa, and bench. We then rendered each object in 30 views in a single
lighting condition. We split the training and test sets, which consisted of 21888 and 6210 object
identities, respectively. We also created subset versions with 2, 3, or 5 object classes. For training
data, we formed groups of images of the same object in random 3 views (K = 3). We used object
identity labels (not class labels) for forming grouped data, but, after this step, we never used any
label during the training. We converted all images to gray-scale to make the model concentrate
on shape information rather than color information, as the latter easily becomes obvious clues for
clustering (Ji et al., 2019). See Appendix A for more detail on the dataset.

To train a CIGMO model, we used the following architecture. First, we set the number of categories
in the model to the number of classes in the data (C = 2, 3, 5, or 10). We set the shape dimension
M = 100 and the view dimension L = 3. Here, using a very low view dimension was crucial
since otherwise the view variable yk would take over all the information in the input and the shape
variable z would become degenerate (Hosoya, 2019). The classifier deep net u consisted of three
convolutional layers and two fully connected layers and ended with a Softmax layer. The shape
and view encoder deep nets had a similar architecture, except that the last layer was linear for mean
encoding (gc and hc) and ended with Softplus for variance encoding (rc and sc). The decoder deep
nets fc had an inverse architecture ending with Sigmoid. Since the model had so many deep nets,
a large part of the networks was shared to save the memory space. See Appendix B for details of
the architecture. For simplicity, we fixed the category prior πc = 1/C. For optimization, we used
Adam (Kingma & Ba, 2015) with mini-batches of size 100.

In addition to CIGMO models, we trained a number of related models for comparison. To in-
vestigate the effect of decoupled representation of category and shape, we trained GVAE models
(Hosoya, 2019), which can be obtained as a special case of CIGMO with a single category (C = 1).
To examine the effect of disentangling of shape and view, we trained mixture of VAEs, again ob-
tained as CIGMO with no grouping (K = 1; the shape and view variables are integrated). We also
trained plain VAEs for basic comparison (C = K = 1). For a part of evaluation below, since GVAE
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Figure 3: Examples of invariant clustering from (A) a CIGMO, (B) a mixture of VAEs, (C) a GVAE
with k-means, and (D) an IIC, in the case of 3 categories. Random 24 images belonging to each
estimated category are shown in a box. Note that the categories quite precisely correspond to the car,
chair, and table image classes in (A), whereas such correspondence is less clear in the other models
(B–D; in particular, cars are mixed with many other objects).

and VAE themselves have no clustering capability, we performed k-means on the shape variable of
GVAE or the latent variable of VAE. In addition, we incorporated two completely different methods:
Multi-Level VAE (MLVAE) (Bouchacourt et al., 2018), another group-based generative model, and
Invariant Information Clustering (IIC) (Ji et al., 2019), a method specialized to invariant clustering.
We tested two versions of IIC, with and without regularization using 5-times overclustering (Ji et al.,
2019). For each method, we trained 10 model instances from the scratch.

We evaluated the trained models using test data, which were ungrouped and contained objects of
the same classes as training data but of different identities. The evaluation involved three tasks: (1)
invariant clustering, (2) one-shot classification, and (3) feature manipulation.

4.1.1 INVARIANT CLUSTERING

In this task, we simply inferred the most probable category from a given image, ĉ =
argmaxc q(c|x). Figure 3(A) illustrates results from a CIGMO model with 3 categories, where
each box shows random images belonging to each estimated category. This demonstrates a very
precise clustering of objects achieved by the model, which is quite remarkable given the large view
variation and no category label used during training. Figure 3(B–D) shows analogous examples
for alternative models (mixture of VAEs, GVAE with k-means, and IIC). The result shows a clear
degrade of performance.

6



Under review as a conference paper at ICLR 2021

# of categories 2 3 5 10
chance level 50.00 33.33 20.00 10.00

IIC 95.12 ± 5.70 85.25 ± 13.74 81.10 ± 7.33 60.84 ± 1.45
IIC (overcluster.) 93.93 ± 6.44 79.86 ± 13.78 81.87 ± 4.57 59.73 ± 1.49
VAE + k-means 71.98 ± 7.04 66.41 ± 5.69 50.83 ± 3.85 37.07 ± 1.00
Mix. of VAEs 81.56 ± 10.91 82.35 ± 5.66 65.73 ± 6.24 40.86 ± 3.58

MLVAE + k-means 90.56 ± 6.86 82.04 ± 7.78 70.68 ± 5.04 54.47 ± 1.92
GVAE + k-means 90.07 ± 4.97 73.20 ± 10.93 69.42 ± 3.47 52.55 ± 2.74

CIGMO 98.41 ± 0.50 94.83 ± 6.06 89.36 ± 4.53 68.53 ± 4.24

Table 1: Invariant clustering accuracy (%). The mean and SD over 10 model instances are shown.

For comparison of the methods, we quantified the performance of invariant clustering in terms of
classification accuracy. Here, we used the best category-to-class assignment computed by the Hun-
garian algorithm (Munkres, 1957). Table 1 summarizes the results. Generally, CIGMO outper-
formed the other methods in all cases with a large margin. More specifically, first, CIGMO always
performed better than mixture of VAEs, showing the importance of shape-view disentangling. Sec-
ond, CIGMO was also always better than GVAE (and MLVAE) plus k-means, also showing the
importance of category-shape decoupling. In other words, if shapes of all categories were packed
into a single latent variable, category information could not be clearly represented. These two points,
taken together, emphasize the categorical and invariant nature of our model. Third, CIGMO gave
performance superior to IIC, surpassing the state-of-the-art method for this task. This was the case
both with and without overclustering; in fact, we could not find a consistent improvement by over-
clustering in IIC, contrary to the claim by Ji et al. (2019).

4.1.2 ONE-SHOT CLASSIFICATION

In this task, we split test data into gallery and probe, where gallery holds one image for each object
and probe the rest, and then identify the object of each probe image. Note that our purpose here
is not to infer the class but the object identity, unlike invariant clustering. Note also that, since
the test objects are disjoint from the training objects, both gallery and probe images contain only
unseen objects for the model. We used this task here since its performance can serve as a criterion
for evaluating disentangled representations (Hosoya, 2019). The rationale is that, if shape code is
perfectly invariant in view, then all images of the same object should be mapped to an identical point
in the shape space.

Thus, we compared overall accuracy of one-shot classification for CIGMO and other models. For
this, we performed a nearest-neighbor method according to cosine distance in the shape space. Here,
the shape space was defined depending on the method. For GVAE (or MLVAE), the shape variable
z = h(x) directly defined the shape space. For CIGMO, since the shape representation depended
on the category, we first constructed a C ×M matrix Z such that Zc,∗ = hc(x) for c = ĉ and
Zc,∗ = 0 otherwise, and then flattened the matrix to a vector. This gave us category-dependent
shape vectors that could be directly compared and, in particular, those of different categories would
give cosine distance 1, the maximum value. For VAE or mixture of VAEs, we used a similar scheme
except that we used the entire latent variable in place of shape variable.

Table 2 summarizes the results. Overall, CIGMO performed the best among the compared methods
in all cases. In particular, it outperformed, by far, mixture of VAEs, showing the success of shape in-
formation disentangled from view. Further, CIGMO also performed significantly better than GVAE
and MLVAE, which indicates that shapes can be represented more efficiently with category spe-
cialization than without. These results, again, reveal the advantage of the categorical and invariant
representations in modeling general object images. (Note also that the scores were remarkably high
even for up to 6210-way classification by one shot.)

4.1.3 FEATURE MANIPULATION

CIGMO provides various ways of manipulating latent feature representations and generating new
images. These include (1) swapping, to generate an image from the view of one image and the
shape of another, (2) interpolation, to generate an image from the shape and view that linearly
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# of categories 2 3 5 10
chance level 0.05 0.03 0.02 0.02

VAE 1.29 ± 0.03 1.81 ± 0.04 3.09 ± 0.05 2.97 ± 0.02
Mix. of VAEs 1.40 ± 0.07 1.91 ± 0.06 3.30 ± 0.07 3.15 ± 0.06

MLVAE 20.00 ± 0.77 20.56 ± 0.50 17.69 ± 0.28 15.68 ± 0.28
GVAE 19.71 ± 0.87 21.44 ± 0.54 17.85 ± 0.28 15.93 ± 0.18

CIGMO 22.10 ± 0.99 23.95 ± 0.52 21.66 ± 0.79 19.49 ± 0.71

Table 2: One-shot classification accuracy (%). The mean and SD over 10 model instances are shown.

# of categories 2 3 5 10
MLVAE 54.80 ± 1.37 53.59 ± 0.57 47.37 ± 0.85 42.99 ± 0.63
GVAE 55.35 ± 1.35 55.17 ± 0.80 48.23 ± 0.58 43.85 ± 0.29

CIGMO 55.33 ± 1.47 57.69 ± 0.94 51.00 ± 0.89 46.30 ± 0.93
MLVAE 0.21 ± 0.02 0.24 ± 0.02 0.62 ± 0.04 0.53 ± 0.09
GVAE 0.21 ± 0.02 0.23 ± 0.04 0.55 ± 0.05 0.48 ± 0.05

CIGMO 0.27 ± 0.03 0.26 ± 0.04 0.65 ± 0.05 0.66 ± 0.08

Table 3: Quality of shape-view disentanglement, measured as neural network classification accuracy
(%) for object identity from the shape (top rows) or view variable (bottom rows); weighted average
over categories. The mean and SD over 10 model instances are shown.

interpolates those of two images, and (3) random generation, to generate an image from shape and
view randomly drawn from Gaussian distributions. Analogous manipulations have commonly been
used in previous studies (Mathieu et al., 2016; Bouchacourt et al., 2018; Hosoya, 2019), but our cases
are conditioned on a category. Appendix C gives examples of these feature manipulations, in which
we can qualitatively confirm that our model performed these tasks as intended, e.g., reasonably
clear alignment of views in rows and shapes in columns in swapping. Although generating sharp
images was not the focus here, improvement in this direction could be done, e.g., by incorporating
adversarial learning for regularization (Mathieu et al., 2016).

Relevant to these, we quantitatively evaluated the quality of shape-view disentanglement in each
category. Specifically, we measured how much information the shape or view variable contained
on object identity and, for this purpose, we trained two-layer neural networks on either variable for
classification (Mathieu et al., 2016; Bouchacourt et al., 2018). A better disentangled representation
was expected to give a higher accuracy from the shape variable and a lower accuracy from the
view variable. We performed this for each category using the belonging test images and took the
average accuracy weighted by the number of those images. Table 3 summarizes the results. Overall,
CIGMO gives fairly comparable quality to the existing disentangling methods.

4.2 MULTIPIE

For the second set of experiment, we used a dataset of multi-viewed face images derived from
MultiPie dataset (Gross et al., 2010). We followed the same data preparation as Hosoya (2019),
except that we included the images in all lighting conditions and converted them to gray-scale. We
split the training and test sets consisting of disjoint 795 and 126 identities, and grouped together
the training images that have the same identity, hair/cloth style, and expression. For this dataset,
there was no pre-defined class unlike ShapeNet, so we arbitrarily set the number of categories to 5
in CIGMO models. Otherwise, the training condition was the same as before.

Figure 4 illustrates the results from a CIGMO model on (A) invariant clustering and (B) category-
wise swapping, where only 3 categories were shown as the other 2 categories were degenerate to
which no input belonged. By inspection, the 3 effective categories seemed to represent faces with
long hair, round faces with short hair, and oval faces with short hair, respectively, in a view-invariant
manner (although this observation was not verified since the dataset lacked relevant labels). Other
CIGMO model instances trained in the same way had 1 to 3 effective categories and seemed to
have slightly different categorization strategies, but generally based on hair length, hair color, facial
aspect ratio, beard, or skin color; we could not find categorization by expression. We also measured
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Figure 4: Results from a CIGMO model trained for MultiPie dataset. (A) Invariant clustering.
Random 25 images belonging to each estimated category are shown in a box. (B) Swapping. For
each category, we generate a matrix of images from two lists of sample images, where each generated
image has the view of an image in the left list and the shape of an image in the top list. Both together
indicate that the model provides a shape-view disentangled representation of specific categories
corresponding to faces with long hair, round faces with short hair, and oval faces with short hair.

one-shot classification accuracy and shape-view disentangling quality. However, CIGMO overall
gave a similar performance to GVAE or MLVAE, indicating a lesser importance of category-shape
decoupling in this task for this dataset. This is understandable since, in a sense, all faces look alike
and therefore, in what way faces are categorized, cross-category diversity would not be so large
compared to within-category diversity.

5 CONCLUSION

In this paper, we have proposed CIGMO as a deep generative model that can discover category,
shape, and view factors from general object images. The model has the form of mixture of disen-
tangling generative models and comes with a VAE-based algorithm that requires no explicit label
but only view-grouping information. By application to two image datasets, we showed that our
model can learn to represent categories in the mixture components and category-specific disentan-
gled information of shape and view in each component model. We demonstrated that our model
can outperform existing methods including state-of-the-art methods in invariant clustering and one-
shot classification tasks, emphasizing the importance of categorical invariant representation. Future
investigation will include improvement on image generation quality, category degeneracy, and scal-
ability, and application to more realistic datasets. Lastly, CIGMO’s biological relationship to the
primate inferotemporal cortex would be interesting to pursue, as our present work was originally
inspired so.
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A DATASET DETAILS

Our object image dataset stemmed from a core subset of ShapeNet database of 3D object models
(Chang et al., 2015) used in SHREC2016 challenge1. The subset contained 55 object classes and did
not include material data. Out of the 55 classes, we selected 10 classes: car, chair, table, airplane,
lamp, boat, box, display, truck, and vase. Our criterion here was to select classes with a large number
of object identities but avoid including visually similar classes, e.g., chair, sofa, and bench. We
rendered each object in 30 views consisting of 15 azimuths (equally dividing 360◦) and 2 elevations
(0◦ and 22.5◦ downward) in a single lighting condition; the images were gray-scale and had size
64× 64 pixels. All the rendering used Blender software2. We divided the data into training and test
following the split given in the original database. We also created versions of the dataset consisting
of the first 2, 3, or 5 object classes listed above.

B ARCHITECTURE DETAILS

In a CIGMO model, the classifier deep net u consisted of three convolutional layers each with
32, 64, and 128 filters (kernel 5 × 5; stride 2; padding 2), followed by two fully connected layers
each with 500 intermediate units and C output units. These layers were each intervened with Batch
Normalization and ReLU nonlinearity, except that the last layer ended with Softmax. The shape and
view encoder deep nets had a similar architecture, except that the last layer was linear for encoding
the mean (gc and hc) or ended with Softplus for encoding the variance (rc and sc). The decoder
deep nets fc had two fully connected layers (103 input units and 500 intermediate units) followed
by three transposed convolutional layers each with 128, 64, and 32 filters (kernel 6 × 6; stride 2;
padding 2). These layers were again intervened with Batch Normalization and ReLU nonlinearity,
but the last layer was Sigmoid.

To save the memory space, the shape encoders shared the first four layers for all categories and for
mean and variance. The view encoders shared the entire architecture for all categories, but with a
separate last layer for mean or variance specification. The decoders shared all but the first layer for
all categories.

In the quantitative comparison, we obtained a mixture of VAEs, a GVAE model, and a VAE model
as a special case of CIGMO model. Namely, a mixture of VAEs was a CIGMO with no grouping
(K = 1), a GVAE was a CIGMO with a single category (C = 1), and a VAE was a CIGMO
with both constraints (K = 1 and C = 1). In the case of no grouping, since no structure could
differentiate the shape and view dimensions, we combined these into a single latent variable of 103
dimensions.

C ADDITIONAL RESULTS

We performed the following feature manipulation tasks introduced in Section 4.1.3.

1https://shapenet.cs.stanford.edu/shrec16/
2https://www.blender.org
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Swapping For a category c and for images x1 and x2 belonging to c, obtain xswap = fc(y1, z2)
where y1 = gc(x1) and z2 = hc(x2).

Interpolation For a category c and for images x1 and x2 belonging to c, obtain xinterp = fc(αy1+
(1− α)y2, βz1 + (1− β)z2) where yi = gc(xi) and zi = hc(xi) with 0 ≤ α, β ≤ 1 and
i = 1, 2.

Random generation For a category c, obtain xrand = fc(y, z) with y ∼ NL(0, I) and z ∼
NM (0, I).

Figure 5 shows examples of these feature manipulations on a 3-category CIGMO model trained on
ShapeNet. As we can see, swapping gives a clear alignment of views in rows and shapes in columns.
Interpolation gives smooth changes of images from one image to another in both shape and view
dimensions. Random generation gives new images most of which are recognizable as each category.

category 1 category 2 category 3

(C) Random generation

(A) Swapping

(B) Interpolation shape

shape

vi
ew

vi
ew

Figure 5: Examples of feature manipulation tasks from a 3-category CIGMO model for ShapeNet
dataset. (A) Swapping. For each category, we generate a matrix of images from two lists of sample
images, where each generated image has the view of an image in the left list and the shape of an
image in the top list. (B) Interpolation. For each category, we generate a matrix of images from
two sample images (corresponding to the top-left and bottom-right images), where each generated
image has the view and shape that linearly interpolates those of the two images. (C) Random gener-
ation. For each category, we generate images from shapes and views that are drawn from Gaussian
distributions.
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