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ABSTRACT

Emergence, the phenomenon of a rapid performance increase once the model scale
reaches a threshold, has achieved widespread attention recently. The literature has
observed that monosemantic neurons in neural networks gradually diminish as
the model scale increases. Subsequently, Learning From Emergence is proposed
to actively inhibit monosemantic neurons in relatively small neural networks (e.g.,
BERT and Swin-Transformer) for promoting model performance with fine-tuning.
However, to ultimately achieve emergence, it is demanding to support the monose-
mantic neuron inhibition in the pretraining phase of large-scale models. Thus,
this work further pushes the boundary of this research direction to be Learning
Towards Emergence (L2E) and enables the training and validating of the impact
of inhibiting monosemantic neurons on larger pre-trained neural networks (e.g.,
Pythia-70M, 410M, and 2.8B). More specifically, to bridge the gap in current re-
search, we first conduct experiments on models of various scales (up to 6.9B) to
validate the monosemantic ideas. Then, we present a novel method L2E to ad-
dress the inefficient monosemantic neuron retrieval and ineffective monosemantic
neuron inhibition when existing methods are applied in the pretraining phase of
large-scale models. It employs an adjustable thresholding technique for efficient
neuron retrieval, incorporates a False Killing Rate metric to assess inhibition ef-
fects, and proposes a regularization-style inhibition approach, which addresses
the limitations of previous approaches in both efficiency and effectiveness. Ex-
perimental results demonstrate the effectiveness of L2E’s monosemantic neuron
inhibition and its efficiency in implementation with large-scale models.

1 INTRODUCTION

The success of large-scale pretraining models, such as GPT-3.5 (Ouyang et al., 2022), has drawn
widespread attention in understanding their dynamics across different scales. Studies on Scaling
Laws (Henighan et al., 2020; Kaplan et al., 2020) have analyzed the relationship between scale and
performance, which typically follows a mild power law. However, recent research has observed dra-
matic performance improvements that defy these scaling laws when the model scales reach certain
thresholds—a phenomenon termed Emergence (Wei et al., 2022). The resulting emergent abili-
ties of these models are somehow recognized as a key factor in their success, prompting numerous
follow-up investigations (Hu et al., 2024). Some studies suggest that the impressive emergence
phenomenon may simply caused by deficiencies in observing and evaluating the accumulation of
abilities (Schaeffer et al., 2023; Lu et al., 2024). But such deficiencies may persist for a long time
because the commonly used unsupervised losses and weakly labeled datasets. Subsequently, a series
of studies try to predict (Hu et al., 2024) and induce (Wang et al., 2024; Yan et al., 2024) emergence.

In earlier years, researchers propose the concept of monosemantic neurons to interpret model func-
tionality (Bau et al., 2020; Elhage et al., 2022). These neurons form 1-to-1 mappings with human-
friendly features (such as “dog” in images (Olah et al., 2020) or “Python” in code languages as
shown in Figure 1(a)). In contrast, polysemantic neurons are activated for multiple features (Goh
et al., 2021; Bricken et al., 2023) (see Figure 1(b)). The discovery of monosemantic neurons, es-
pecially when visualizing impressively (Olah et al., 2020), greatly excite researchers when neural
networks are considered as black-box. However, following the favor of monosemantic neurons in
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Features from Code Language
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(a) The output statistics of monosemantic “Python”
neuron on Code Language dataset. The neuron is in
the layer 16, number 3519 of the Pythia 2.8B model.
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410M.L6.N666 pre-activation

(b) The output statistics of randomly selected neuron
on Data Subset dataset. The neuron is in the layer 6,
number 666 of the Pythia 410M model.

Figure 1: A demonstration of the concept “monosemantic”. The left figure shows the output statistics
of a monosemantic neuron, which is activated only by the feature “Python”. This contrasts with a
randomly selected neuron in the right figure. We use sparse probing (Gurnee et al., 2023) on Pythia
models (Biderman et al., 2023) to detect monosemantic neurons.

explanation, it has become harder to detect monosemanticity as model scale increases (Huben et al.,
2024; Gurnee et al., 2023; Bricken et al., 2023). Existing works also find that monosemantic neurons
have less impact on model performance of larger models (Gurnee et al., 2023).

Based on these observations, Wang et al. (2024) hypothesize that the decrease of monosemantic
neurons as a key factor towards better performance behind the increasing model scale, then propose
Learning From Emergence to improve performance by actively inhibiting monosemantic neurons
during the fine-tuning stage of relatively small models (≤88M). To achieve that, Monosemanticity
Score (MS) has been devised to quantify monosemanticity throughout the model training, which
contrasts with literature that depend on specially labeled detection datasets and can only detect
monosemantic neurons after training on frozen models (Gurnee et al., 2023; Huben et al., 2024).
But Learning From Emergence is still in its early stages of exploration and has unresolved limita-
tions (Yan et al., 2024). The validity of the MS metric and the above monosemanticity hypothesis
lacks thorough investigation, as existing studies have not provided abundant experimental support.
Moreover, the inhibition method faces challenges in effectiveness and efficiency when inhibiting
monosemantic neurons in large-scale neural networks during the pretraining phase.

To explore the impact of inhibiting monosemantic neurons on the model performance, we further
push the boundary of Learning From Emergence to Learning Towards Emergence (L2E) to induce
emergence by inhibiting monosemantic neurons during pretraining on larger (×30) models.

In this work, we first conduct an analysis to facilitate the understanding of monosemanticity. As
monosemanticity is difficult to define explicitly (Olah et al., 2020; Elhage et al., 2022), we cross-
validate the effectiveness of MS using carefully selected monosemantic neurons (Gurnee et al.,
2023). Additionally, we perform an in-depth analysis of monosemanticity across different scales
of models (from 70M to 6.9B). After validating the monosemantic idea, we propose L2E to en-
able monosemanticity inhibition for large-scale pretraining. More specifically, we first apply an
adjustable thresholding technique to enable efficient monosemantic neuron retrieval. Then, we in-
troduce the False Killing Rate as a metric to quantify the side effects of different inhibition levels
and capture consistent patterns for guidance across scales. Finally, we propose a regularization-style
inhibition approach, which addresses the ineffectiveness of existing work when applied to pretrain-
ing tasks. Experiments conducted on various tasks and scales using Pythia models (Biderman et al.,
2023) (from 70M to 2.8B), validating the effectiveness and efficiency of L2E.

2 BACKGROUND

2.1 NEURON, AND ACTIVATED NEURON

A neural network can be viewed as multiple layers connected in series and parallel. Subsequent
layers are computed as functions of previous layers, contributing to a differentiable and updatable
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output. To understand the dynamics of networks, existing works zoom into individual layers and
further study their “neurons” (Olah et al., 2020; Gurnee et al., 2023). Specifically, each layer consists
of a set of neurons Θ = {θ}, where each neuron θ is a function that maps input x to an output value
z = θ(x), where x ∈ Rd.

Features from Natural Language
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Figure 2: A monosemantic neuron with a nega-
tive mean difference. The average value of the
neuron is also much larger than 0.

Within a neural network, the nonlinearity of neu-
rons is primarily based on activation functions.
ReLU(z) = max(z, 0) has become one of the
most popular activation functions due to its sim-
plicity and effectiveness (Glorot et al., 2011).
While it outputs a constant 0 for negative inputs,
its (largely) positive output is commonly recog-
nized as “activated” (Mirzadeh et al., 2024). As
research on activated neurons progressed, the con-
cept is generalized, referring to any neuron out-
put that significantly differs from its typical value,
e.g., the neuron in Figure 2 for English. Be-
sides, the position of studied neurons are no longer
restricted, such as pre-activations (Gurnee et al.,
2023) and class logits (Olah et al., 2017). Such an
extension is useful for studying the dynamics of the whole networks (Wang et al., 2024).

However, despite its widespread use as an intuitive concept, “activated neuron” remains challenging
to define explicitly (Gurnee et al., 2023; Belinkov, 2022; Wang et al., 2024). Given a set of inputs
X = {x[i]}, a neuron θ is considered activated for an input x[i] if z[i] = θ(x[i]) has a significant
deviation from its mean z̄ = 1/|X|

∑
i z

[i] = 1/|X|
∑

i θ(x
[i]), where it is hard to reach a consensus

on the “significant” or the “deviation”. Fortunately, to help understand and interpret the network, it
is a reasonable and impressive approach to collect and demonstrate the statistics of neuron outputs.

2.2 STUDIES ON MONOSEMANTICITY

To conduct analysis for the monosemanticity of neurons, researchers propose human-friendly feature
datasets. Formally, labeled feature datasets collect sets of input instances X =

{
x[i]

}
, each input

is mapped to one of several labeled features L = {ℓ[i]} (Gurnee et al., 2023; Bricken et al., 2023).
For example, the natural language of Europarl documents contains > 28k instances belonging to 9
labeled features (Gurnee et al., 2023). Given a neuron θ, by feeding input x into the model, one can
obtain the statistics of neuron values labeled by features. Specifically, we denote the output values
zs with input of feature ℓ as:

C(θ, ℓ) = {θ(x) : x′s label is ℓ}.
Based on the statistics or further transformations of the values, one can analyze the monosemanticity
of each neuron. For example, a monosemantic neuron is expected to have a large mean difference
for a feature. Additionally, when using sparse autoencoders as probing classifiers, it should achieve
a high autointerpretability score or a high F1 score in predicting a feature (Gurnee et al., 2023;
Bricken et al., 2023; Huben et al., 2024). Sparse probing is used as a tool for analysis in this paper.

However, probing experiments are time-consuming, making it crucial to develop alternative methods
to boost the study of monosemanticity. Gurnee et al. (2023) first proposed estimating the neuron
monosemanticity based on input weight norm and bias term, which is non-universal as not all models
have bias terms (Yan et al., 2024). Further, Monosemanticity Score (MS) is proposed to dynamically
analyze the monosemanticity based on sparsity (Wang et al., 2024). To be more specific, given a set
of inputs

{
x[i]

}n

i=1
and the corresponding outputs of a neuron

{
z[i]

}n

i=1
, MS is defined as:

ϕ(z[i]) =
(z[i] − z̄)2

S2
, (1)

where z̄ is the mean of
{
z[i]

}
, and S2 is the sample variance. During model training, only sam-

ples before z[i] are observable. In this case, the MS can be calculated incrementally in linear time
complexity (Wang et al., 2024). Given these advantages, Wang et al. (2024) proactively inhibited
monosemanticity based on the MS. However, the effectiveness of the MS metric lacks experimental
validation (Yan et al., 2024).
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(a) Given the most monosemantic neurons, the aver-
age MS scores when the input contains monosemantic
features ϕℓ (blue) or does not contain monosemantic
features ϕ−

ℓ (orange).
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(b) The average MS of monosemantic neurons
(blue) given corresponding features ϕℓ compared with
randomly selected neurons (orange) given relatively
monosemantic features ϕℓ∗ .

Figure 3: Validation of the effectiveness of MS. We probe neurons in Pythia models (Biderman
et al., 2023) based on feature datasets Code Language (a) and Data Subset (b) (Gurnee et al., 2023).

3 METRIC VALIDATION AND ANALYSIS

The MS evaluation metric is proposed to analyze monosemanticity efficiently and dynami-
cally (Wang et al., 2024; Yan et al., 2024). However, its effectiveness has not been throughly veri-
fied experimentally. The hypothesis that monosemanticity is negatively correlated with increasing
scale has been only tentatively validated by deactivating monosemantics neurons and examining in-
creased losses (Gurnee et al., 2023; Wang et al., 2024). Therefore, we i) cross-validate MS using
monosemantic neurons detected by probing method (Belinkov, 2022), and ii) conduct analysis on
monosemanticity based on MS in this section.

3.1 VALIDATION OF MONOSEMANTICITY SCORE

As introduced in Section 2, it is hard to explicitly define monosemanticity (Wang et al., 2024; Yan
et al., 2024). To validate that the MS metric can indeed reflect the monosemanticity of neurons,
we choose the sparse probing (Gurnee et al., 2023) as a cross-validation for evaluating MS from
two perspectives: i) For monosemantic neurons, their MS values differ significantly when given
inputs with specific features compared to other inputs; ii) When considering the most monosemantic
feature, MS can effectively distinguish monosemantic neurons from others.

MS Can Detect Activated Monosemantic Neurons. Firstly, we compare the MS values of monose-
mantic neurons when given and not given the corresponding features. The top 10 monosemantic
neurons are selected by sparse probing (Gurnee et al., 2023) on Pythia models across scales (70M
to 6.9B) (Biderman et al., 2023). To be more specific, given a set of inputs {x[i]}ni=1 and a monose-
mantic neuron θ with corresponding feature ℓ, its output values Z = {z[i]}ni=1 = {θ(x[i])}ni=1 can
be partitioned as Cℓ = C(θ, ℓ) and C−

ℓ = ∪ℓ′ ̸=ℓC(θ, ℓ′). We can calculate the MS values of Z
within Cℓ and C−

ℓ respectively, denoting the mean of each set as ϕℓ and ϕ−
ℓ :

ϕℓ =

∑
z∈Cℓ

(z − z̄)2

|Cℓ|S2
, ϕ−

ℓ =

∑
z∈C−

ℓ
(z − z̄)2

|C−
ℓ |S2

. (2)

Intuitively, a monosemantic neuron should be activated when given the inputs from corresponding
feature, thus a larger ϕℓ if MS is effective. Based on the top-10 monosemantic neurons, we derive
ϕℓ and ϕ−

ℓ based on the Code Language feature dataset (Figure 3(a)), where results for two more
datasets are provided in Figure 7 in the Appendix. It is clear that the MS values of neurons with
monosemantic featuress are significantly different from those without monosemantic features. This
indicates that MS is sensitive to monosemanticity when the corrsponding features are given.

MS is Non-sensitive to Non-monosemantic Neurons. As MS is effective for monosemantic neu-
rons, it is also important that MS should be insensitive to non-monosemantic neurons. To vali-
date this, across different scales, we randomly select 10 neurons in addition to the monoseman-
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tic neurons. To compared with the score ϕℓ calculated for monosemantic neurons, we calcu-
late the MS for those randomly selected neurons and mine their statistically more monosemantic
features instead. Mathematically, for each feature ℓ[i] ∈ L, we calculate its average MS score
ϕℓ[i] =

∑
z∈C

ℓ[i]
(z−z̄)2/|Cℓ[i] |S2, where monosemanticity is higher when the score is higher. Thus,

we denotes the feature ℓ∗ with the highest ϕℓ[i] as its relatively monosemantic feature, that is:

ℓ∗ = max
ℓ∈L

∑
z∈Cℓ

(z − z̄)2

|Cℓ|S2
. (3)

The corresponding ϕℓ∗ is used to compare with ϕℓ for monosemantic neurons. The results are shown
in Figure 3(b), where ϕℓ and ϕℓ∗ are derived from the Data Subset feature dataset. Additional results
are given in Figure 8 in the Appendix. It is clear that the MS values of neurons with monosemantic
features are significantly different from those from random neurons. This indicates that MS can
effectively distinguish monosemantic neurons from other neurons.

3.2 ANALYSIS OF MONOSEMANTICITY BASED ON MS

Recall the assumption that monosemanticity is negatively correlated with increasing scale. It is
proposed by existing work and preliminarily validated by turning off monosemantic neurons and
observing the increased loss (Gurnee et al., 2023; Wang et al., 2024). In this subsection, we conduct
further analysis using a fine grid of both scales (6 scales from 70M to 6.9B) and layers.

70M 160M 410M 1B 2.8B 6.9B
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Figure 4: K-S test for the monosemanticity levels
across model scales on 3 feature datasets.

First, we use the Kolmogorov-Smirnov (K-S)
Test to compare how outstanding the influ-
ence of the most monosemantic features ℓ∗ are
across models of different sizes. We randomly
select 1000 neurons per scale of model. For
each neuron, we provide inputs of different fea-
tures and records their MS values. Based on
this, we calculate the average score for each
feature. Similar to equation 3, as monosemantic
feature is unavailable for a randomly selected
neuron, we treat the feature with the highest av-
erage score as the relatively monosemantic fea-
ture of the neuron ℓ∗. For each scale of model,
we can treat the MS scores from inputs in fea-
ture ℓ∗ as a set of monosemantic samples ϕℓ∗ ,
which contrasts with the universal set, i.e., the
MS scores of all the samples {ϕ(z[i])}ni=1. When a neuron is more monosemantic, the difference
between the two sets of samples should be greater.

To obtain statistical significance, we apply the K-S test (Peacock, 1983) on the set of MS scores from
relatively monosemantic features and the universal set. The K-S test, a widely used nonparametric
hypothesis test, determines whether two sample sets originate from different distributions. In our
experiment, we compare the K-S statistics, which is positive related the difference between the 2
sets. The results are shown in Figure 4, shown the results on 3 feature datasets Natural Language,
Data Subset, and Code Language (Gurnee et al., 2023). The K-S statistics decrease as the scale
increases, indicating that the prominence of the monosemantic set diminishes. These results validate
that monosemanticity is negatively correlated with larger-scale models.

Additionally, we investigate monosemanticity across layers. With 1,000 randomly selected neurons
for each scale, we calculate the MS values for each neuron and record the mean scores of its most
monosemantic feature ϕℓ∗ according to equation 3. As shown Figure 5 and 9, a clear drop in MS,
indicating lower monosemanticity, can be observed as the scale increases.

4 LEARNING TOWARDS EMERGENCE

Recall that to inhibit monosemanticity for large scale models, current method lacks insightful design
for effectiveness and is inefficient. In this section, we first dig into the dynamic of monosemanticity
and propose an upgrade version named L2E to support effective pretraining with reasonable config-
urations. Then, we introduce an adjustable module to solve the efficiency bottleneck.
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Figure 5: Statistics of MS across scales and layers. The results are obtained on Natural Language
feature dataset (Gurnee et al., 2023). Larger models are of deeper colors, which can be clearly
observed that their scores are smaller, indicating lower monosemanticity.

4.1 RECALL OF MEMEL

As discussed in Section 2, Wang et al. (2024) introduces the MEmeL method to first detect monose-
mantic neurons and retrieve them, then inhibit them to promote the relatively small neural networks.
However, the current method is limited by following 3 limitations. First, monosemantic neuron
detection is an O(1) operation based on MS. Values of neurons z in a layer are ranked by their
monosemantic scores (ϕ(z)). Then, the top-k neurons are selected for inhibition, where k is a
relatively small number (≤ 100). But this setting of k lacks solid justification. A deeper insight
into the dynamics of monosemanticity is needed for high-quality detection. Secondly, top-k neu-
rons retrieval becomes inefficient when the number of neurons in a layer is large and k increases.
Specifically, the time complexity O(kN) of comparing N neurons in the layer increases to sorting
with O(N logN). This creates a significant bottleneck as the scale increases, necessitating a more
efficient method. Thirdly, after obtaining the neurons to deactivate, MEmeL proposed Reverse De-
activation to inhibit the selected neurons with theoretical guarantees. However, this method assumes
that neuron activation is a well-trained result rather than a mistake due to insufficient training. This
assumption is not always valid, especially when applied at the beginning of pretraining. Therefore,
we propose L2E to address the 3 limitations of existing works on inhibiting monosemantic neurons.

4.2 L2E: LEARNING TOWARDS EMERGENCE

False Killing Rate: Determines How Many Neurons to Inhibit. Recall that the previous method
majorly tried to validate the assumption of the influence of monosemanticity, which only inhibited
no more than 100 most monosemantic neurons (Wang et al., 2024). However, large models has
a great number of neurons in a single layer, e.g., 5,242,880 for the 2.8B pythia model, where the
influence of inhibiting dozens of neurons is neglegable.

Here we discuss the intuition behind the setting of k. From the perspective of memorization and
reasoning, monosemantic and polysemantic neurons are assumed to play different roles. To prevent
the model from overfitting-style rote memory, we aim to keep the polysemantic neurons and inhibit
the monosemantic ones. This is achieved by filtering out the neurons with top-k MS values. A small
k will lead to weak inhibition, while a large k may also inhibit polysemantic neurons, which impairs
functionality. To quantify the impairment, we propose the False Killing Rate (FKR) to measure
the proportion of unexpected inhibitions where the inputs are not from monosemantic features. To
be more specific, given a dataset with n input instances X = {x[i]}ni=1 and a layer of N neurons
z = {zj}Nj=1, the FKR is defined as:

FKR =

∑n
i=1

∑N
j=1 1

(
x[i] /∈ ℓ∗j

)
· 1

(
ϕ(z

[i]
j ) ≥ τk

)
∑n

i=1

∑N
j=1 1

(
ϕ(z

[i]
j ) ≥ τk

) , (4)

where zj is the j-th neuron in the layer and ℓ∗j is its relatively monosemantic feature as defined in
equation 3. 1(·) is the indicator function and τk is the k-th largest MS value. The FKR measures
the proportion of unexpected inhibitions (x[i] /∈ ℓ∗j ) when the inputs are not from monosemantic
features. Ideally, we aim to reduce monosemantic neurons while preserving polysemantic ones.
Therefore, we must balance between achieving sufficient inhibition and maintaining a low FKR.
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Figure 6: The False Killing Rate across 6 scales of Pythia models (Biderman et al., 2023) on Natural
Language, where analysis on other feature datasets are given in Appendix B.1. The x-axis represents
the percentage of neurons inhibited. The red line marks the empirical optimal k with the lowest FKR.

To meet our goal, we conduct experiments on Pythia models of different scales (Biderman et al.,
2023). Interestingly, despite the overall positive relationship, the FKR initially decreases as the
number of inhibited neurons increases. We find a consistent trend when the number of inhibited
neurons is determined based on percentage, as shown in Figure 6. One can easily observe an ideal
k (i.e., 2% of the total number of neurons) that minimizes the FKR. This empirical setting remains
consistent across different scales, which is a promising result for large-scale models. We further
validated this setting with experiments in Appendix B.3.

Moreover, the FKR is increasing when the scales of the models increase. This further validate the
proposation that larger models are more polysemantic, so that inhibiting neurons will more likely
lead to false killing. A more insight analysis is given in Appendix B.2.

Efficient Neuron Retrieval. When the inhibition level comes to several percentages (e.g., 2%)
of neurons in a layer, efficiency becomes a bottleneck. Originally, finding the largest MS value
costs Θ(N) times for a layer of N neurons, which will be extended to Θ(kN) ∼ Θ(N2) for the
top-k inhibition. Using special data structures such as heap can reduce the cost to O(N log(k)) ∼
O(N log(N)), which is still expensive for large scale models.

Here, we design a moving threshold to circumvent the calculation of precise top-k value. Being
inspired while conducting monosemanticity analysis, we found that the inhibition should be better
as a global percentage rather than an in-batch ranking. For example, a single batch of inputs may
activate fewer monosemantic neurons, which should be given a lower level of inhibition. Therefore,
we maintain a moving threshold to inhibit the most monosemantic neurons globally. The detailed
implementation, primarily an engineering design, is provided in Appendix A. Our design involves
only an element-wise comparison per batch with an O(1) update to converge the threshold to the
global value of the 2%-th highest MS, achieving efficient inhibition.

Efficient Neuron Inhibition. Given the identified monosemantic neurons, the previous method
developed Reverse Deactivation to inhibit them (Wang et al., 2024). This approach makes use of
the model’s reliance on monosemanticity to naturally deactivate neurons. In short, it assumes that a
monosemantic neuron is well-trained and effective, such that reducing its activation would lead to an
increase in loss. However, the assumption is more valid for a well-trained model but less prevalent
in the pretraining stage, particularly at its very beginning. To handle the problem, we propose a
regularization-style method to encourage the inhibition. Specifically, we introduce a new term to the
loss function to penalize the MS values of the monosemantic neurons directly, that is, to minimize
equation 1 for each selected neuron θ and input x[i]:

min
ω

(θω(x[i])− z̄)2

S2
,

where ω are the trainable parameters of neuron θ. However, during implementation, we discovered
that the denominator term S2 could become extremely small, leading to unstable gradients. We turn
to a logarithmic transformation to stabilize the gradients, minimizing the following term instead:

min
ω

log
(θω(x[i])− z̄)2

S2
= min

ω
log (θω(x[i])− z̄)2 − 2 logS,
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Table 1: The main results of applying L2E to inhibit 2% neurons of 2 middle layers of each Pythia
models, where best results are in bold font.

Setting 0-shot 5-shot
Datasets ARC-C PIQA SciQ ↑ ARC-C PIQA SciQ ↑

70M
Pythia 0.1706 0.5887 0.6430 - 0.1834 0.5843 0.4050 -
Dropout 0.1681 0.5930 0.6350 -0.4% 0.1741 0.5925 0.4110 0.4%
L2E 0.1877 0.5963 0.6510 2.3% 0.1860 0.6034 0.4380 4.7%

410M
Pythia 0.1852 0.6376 0.7400 - 0.1988 0.6415 0.4850 -
Dropout 0.2090 0.6289 0.7520 1.7% 0.2056 0.6344 0.4820 -0.2%
L2E 0.2031 0.6398 0.7470 1.7% 0.2039 0.6518 0.4870 1.3%

2.8B
Pythia 0.2253 0.6768 0.7910 - 0.2346 0.6844 0.4810 -
Dropout 0.2167 0.6763 0.8130 0.8% 0.2355 0.6768 0.4910 0.2%
L2E 0.2304 0.6795 0.8150 1.9% 0.2415 0.6817 0.4910 1.0%

where the second term is a constant and can be ignored. So that:

min
ω
LMS = min

ω
log (θω(x[i])− z̄)2, (5)

where the term LMS can be added to the loss function. It offers a straightforward approach to
reducing monosemanticity and is general to models at any stage of training.

In summary, L2E is designed for effectiveness and efficiency monosemanticity inhibition for pre-
training in large-scale models. It builds on the dynamics of monosemanticity and introduces the
False Killing Rate, which guides us in determining the optimal number of neurons to inhibit. A mov-
ing threshold is proposed for efficient identification of the most monosemantic neurons. Besides,
it develops a regularization-style approach to encourage the inhibition of monosemantic neurons,
addressing previous shortcomings in pretraining.

5 EXPERIMENT

In this section, we evaluate the effectiveness and efficiency of L2E on large-scale pretraining tasks.
First, we introduce the experimental settings. Then, we compare L2E’s performance with baseline
methods. Finally, we discuss the limitations of our study.

5.1 EXPERIMENTAL SETTINGS

Backbone Model. Limited by our computational resources (3 × 8 H100 GPUs), we choose Pythia
(Biderman et al., 2023) as the backbone model in this paper. Pythia is proposed across various sizes,
targeting research for scaling understanding—which perfectly fits our requirements. For configura-
tion details, we adopt the same hyperparameters as the original Pythia models, including learning
rate, batch size, and optimizer. We also use the deduplicated Pile training data (Gao et al., 2021a)
that is indexed and available on the repository of Pythia for consistency. The only difference is that
our total training steps are 10 percent of the original paper (14.3k versus 143k), trying to demonstrate
the empirical results within accessible GPUs. We test three model scales: 70M, 410M, and 2.8B to
capture MEmeL’s impact across different sizes. Because of our limited resources, other sizes will
be included in the future. We use the widely used evaluation tools for large models, LM Evaluation
Harness (Gao et al., 2021b), to test multiple datasets on our model.

L2E Settings. The following main experiments, we inhibit neurons within the middle two layers,
which are previously hypothesized and analyzed to be more polysemantic (see discussions in Sec-
tion 3.1 and Appendix B.2). In each layer, we apply L2E at the output of each transformer block.
More discussions of inhibiting other layers are presented in Appendix B.5. The MEmeL loss term
is added to the original loss function with weights of 1e-9, 1e-10, and 1e-11 for Pythia 2.8b, 410m,
and 70m, respectively, to prevent it from dominating the overall loss. Following the analysis in
Section 4.2, we set the number of neurons to inhibit at 2% of the total neurons in each layer. More
experiments on different inhibition rates are discussed in Appendix B.3.
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5.2 MAIN EXPERIMENT RESULTS

In Table 1, we report the accuracy of applying L2E to inhibit monosemantic neurons in three scales
of Pythia models. We evaluate the models on three datasets: ARC-Challenge (arc c) (Clark et al.,
2018), PIQA (Bisk et al., 2020), and SciQ (Welbl et al., 2017). Both 0-shot and 5-shot results
are reported. We also add a Dropout baseline with 0.2 randomly drop. Our findings show that
L2E consistently outperforms the original models across all datasets and scales. In the zero-shot
setting, L2E achieves 2.0% higher accuracy than Pythia and 1.3% than Dropout on average. On
the other hand, L2E shows better average improvements in the few-shot scenario (2.3% and 2.3%
higher accuracy). These results clearly demonstrate L2E’s effectiveness in enhancing large-scale
pretraining models. More experimental results are provided in Appendix B.4B.6.

5.3 EFFICIENCY ANALYSIS

Table 2: The time cost (ms) of Pythia, MEmeL, and L2E.
# Param records the number of parameters per layer.

Scales
# Param

70M 410M 2.8B
1,048,576 2,097,152 5,242,880

Models Time ↑ Time ↑ Time ↑
Pythia 605.8 - 2383.1 - 11285.1 -
MEmeL 664.8 9.7% 2727.3 14.4% 14330.8 27.0%
L2E 626.5 3.4% 2432.2 2.1% 11451.7 1.48%

Here, we compare the efficiency of
L2E with the MEmeL method and
the original Pythia model. Table 2
shows the results, recorded as the av-
erage time cost per step. At the 70M
scale, both MEmeL and L2E show
mild cost increases, consistent with
(Wang et al., 2024). However, as dis-
cussed in Section 4.2, with a com-
plexity of O(N logN), the time cost
escalates significantly as the scale in-
creases. When a scale of 2.8B (×5 parameters per layer), the additional time cost ratio for MEmeL
jumps from 9.7% to 27.0%. In contrast, our L2E’s ratio even decreases from 3.4% to 1.5%. This
reduction is due to L2E’s element-wise operations being amortized by the superlinear cost of the At-
tention framework as the number of parameters increases, aligning with our analysis in Section 4.2.

5.4 LIMITATIONS

There is still work to be done to fully validate the effectiveness of L2E, especially its potential to
induce Emergence. Current experiments are limited to Pythia models, with the largest size being
2.8B and training steps at 10% of full pretraining. This limitation is an unavoidable trade-off at this
trial stage, where detailed analysis is required with our resources fully utilized.

Additionally, monosemantic analysis relies heavily on feature datasets, which significantly influence
the results. Our analyses show particular consistency with the Natural Language feature dataset, a
high-quality set where different languages are clearly distinguished. For each language, identifying
its context neurons is straightforward, with an inference accuracy of 100% (Gurnee et al., 2023).
However, there’s no consensus on how to properly define feature datasets, which hinders compre-
hensive monosemanticity analysis. To validate the universality of our findings, one need to conduct
analysis using more high-quality datasets. See Appendix B.1 for more results and discussions.

6 CONCLUSION

Our paper addresses the challenges in understanding and improving large-scale pretraining models
through the lens of monosemanticity. We experimentally validate the metric Monosemanticity Scale
for quantifying monosemantic levels, which further enables a comprehensive analysis of monose-
manticity dynamics across different model scales. Our main contribution, L2E (Learning Towards
Emergence), offers a novel approach to inhibiting monosemantic neurons in large-scale pretrain-
ing models. By incorporating the False Killing Rate metric, employing an adjustable thresholding
technique, and proposing a regularization-style inhibition approach,L2E addresses the limitations
of previous methods in both efficiency and effectiveness. Experimental results on Pythia models
across various tasks and scales demonstrate the potential of L2E in enhancing model performance
during pretraining. This work contributes to the ongoing research on understanding and inducing
emergence in large language models, paving the way for future advancements in the field.
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(a) Results on Natural Language feature dataset.
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(b) Results on Data Subset feature dataset.

Figure 7: Additional validation results for the effectiveness of MS on monosemantic neurons.

A MOVING THRESHOLD

To enable efficient computation and capture a global impact, we maintain a moving threshold for
the top-k inhibition. To be more specific, in the first several batches, we warm up the threshold τ∗

by precisely calculating the k-th largest MS values and recording the mean. After the warm-up,
for each incoming batch, we inhibit the neurons with MS values larger than τ∗, which is a simple
element-wise comparison. To dynamically update τ∗, we record the number of inhibited neurons k∗
and update it accordingly:

τ∗ ← τ∗ +
k∗ − k

N
, (6)

This will increase τ∗ if the current inhibition level is too high, which has more inhibited neurons
(large k∗), and vice versa. Such a negative feedback will push E[k∗] to k.

B ADDITIONAL EXPERIMENT RESULTS

B.1 ADDITIONAL ANALYSIS RESULTS

Table 3: The statistics of feature datasets.

Dataset Size Length |L|
Natural Language 28084 512 9
Data Subset 8413 512 9
Code Language 5397 512 9

Our experiments are conducted on the Pythia
models (Biderman et al., 2023) with feature
dataset from Gurnee et al. (2023). We use fea-
ture datasets Natural Language, Data Subset,
and Code Language to validate the effective-
ness of MS and the monosemanticity hypoth-
esis. The statistics are given in Table 3, where
Size is the number of inputs in each datasets,
Length is the length of each input, and |L| is the number of features. For more details, please refer
to Gurnee et al. (2023).

In addition to the analysis shown in Section 3, more results are given here. The Figure 7 and Figure 8
are used to verify the effectiveness of MS when applied monosemantic neurons and other neurons.
The Figure 9 demonstrates the MS changes across scales and layers.
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Figure 10: Average F1 scores of the top-10 neu-
rons using sparse probing (Gurnee et al., 2023).

Note that though most of the results are con-
sistent with the main text, we still want to high-
light some special outliers. For example, in Fig-
ure 8(b), the 70M model on the Code dataset
has a lower MS from monosemantic neurons
compared with those from others.

To find out the reason, we further analyze the
probing results of these feature datasets. As in
Gurnee et al. (2023), the most monosemantic
neurons are probed based on F1 scores (using
the neuron outputs to predict feature), we dis-
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(a) Results on Natural Language feature dataset.
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(b) Results on Code Language feature dataset.

Figure 8: Additional validation results for the effectiveness of MS in distinguishing monosemantic
neurons from others.
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(a) Results on Data Subset feature dataset.
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(b) Results on Code Language feature dataset.

Figure 9: Additional validation results support the trend of decreasing monosemanticity as model
scale increases.

play the average F1 scores of the top-10 neurons in Figure 10. We find that the neurons of the
70M model have significantly lower scores on the Code Language dataset. This suggests that the
probing classifier may not be effective in detecting monosemantic neurons in the 70M model. As
a consequence, the results of 70M model on the Code Language dataset are also abnormal, such as
Figure 8(b), Figure 9(b), and Figure 4.

These patterns further emphasize the importance of reliable feature datasets. According to Figure 10,
only Natural Language consistently yields high F1 scores, owing to the inherent distinguishability of
different languages. In contrast, when we inspect the results for Code Language with 9 features, 37
neurons have F1 scores > 0.9, with 21 (approximately 57%) being Python-related, while none are
associated with HTML or XML. This disparity suggests either a biased distribution of the model’s
capabilities or a weakness in the feature dataset. In our analysis of inhibition levels (Figure 6 on
Natural Language), a 1% inhibition on the 70M model leads to a False Killing Rate of 5.2%. How-
ever, when we examine the other two datasets, the FKR rises to 21.8% for Data Subset and even
67% for Code Language, failing to effectively distinguish monosemanticity for analysis. To further
boost the study of monosemanticity, high-quality feature datasets are essential.
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Figure 11: The False Killing Rate (FKR) varies across different layers in the Pythia models (Bi-
derman et al., 2023) when the inhibition level is set to 2%. Larger models, represented by deeper
colors, and middle layers exhibit higher FKR, suggesting they are more polysemantic.

Table 4: The results of applying L2E to 2 middle layers of each Pythia models with different levels
of inhibition. The best results are in bold font where the second best are with underline.

Setting 0-shot 5-shot
Datasets ARC-C PIQA SciQ ↑ ARC-C PIQA SciQ ↑

70M

Pythia 0.1706 0.5887 0.6430 - 0.1834 0.5843 0.4050 -
L2E-1% 0.1903 0.5947 0.6750 4.1% 0.1869 0.5979 0.4350 4.0%
L2E-2% 0.1877 0.5963 0.6510 2.3% 0.1860 0.6034 0.4380 4.7%
L2E-3% 0.1817 0.5849 0.6430 0.5% 0.1834 0.5892 0.4290 2.5%

410M

Pythia 0.1852 0.6376 0.7400 - 0.1988 0.6415 0.4850 -
L2E-1% 0.1928 0.6425 0.7300 0.2% 0.2108 0.6464 0.4690 0.1%
L2E-2% 0.2031 0.6398 0.7470 1.7% 0.2039 0.6518 0.4870 1.3%
L2E-3% 0.2108 0.6409 0.7290 1.2% 0.2099 0.6442 0.4650 -0.5%

2.8B

Pythia 0.2253 0.6768 0.7910 - 0.2346 0.6844 0.4810 -
L2E-1% 0.2295 0.6774 0.7930 0.4% 0.2321 0.6839 0.4880 0.1%
L2E-2% 0.2304 0.6795 0.8150 1.9% 0.2415 0.6817 0.4910 1.0%
L2E-3% 0.2261 0.6763 0.8130 1.3% 0.2517 0.6823 0.4910 1.8%

B.2 ADDITIONAL VALIDATION OF MONOSEMANTICITY HYPOTHESIS

In addition to the analysis given in Subsection 3.2, we further validate the monosemanticity hy-
pothesis by examining the False Killing Rate (FKR) across different layers in the Pythia models
(Biderman et al., 2023). Using the aforementioned setting (2% of the total number of neurons in
each layer), we analyze how FKR varies across layers, as shown in Figure 11. Larger models, rep-
resented by deeper blue colors, are more likely to experience false killing when inhibiting neurons.
This aligns with our hypothesis that larger models are more polysemantic. Besides, middle layers
exhibit higher FKR, suggesting they are more polysemantic. This coincides with their role in ab-
straction and reasoning. In contrast, the top and bottom layers, being closer to specific inputs and
outputs, are inevitably more monosemantic.

B.3 INHIBITING DIFFERENT AMOUNT OF NEURONS

In this section, we further investigate the impact of inhibiting different amounts of neurons on model
performance. We compare our default inhibition level of 2% with 1% and 3% of the total number of
neurons in each layer. The results are shown in Table 4. While all settings of our methods achieve
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Table 5: The results of applying L2E to top and bottom layers (Top-Bot), 1/3 middle layers (Mid-
1/3), and 2 middle layers (Mid-2) as settings in the main experiment. The best results are in bold
font. (*) Note that Mid-2 and Mid-1/3 are the same for 70M model with 6 layers.

Setting 0-shot 5-shot
Datasets ARC-C PIQA SciQ ↑ ARC-C PIQA SciQ ↑

70M

Pythia 0.1706 0.5887 0.6430 - 0.1834 0.5843 0.4050 -
Top-Bot 0.1809 0.5930 0.6530 1.8% 0.1800 0.5996 0.4300 3.1%
Mid-1/3 0.1877 0.5963 0.6510 2.3% 0.1860 0.6034 0.4380 4.7%
Mid-2∗ 0.1877 0.5963 0.6510 2.3% 0.1860 0.6034 0.4380 4.7%

410M

Pythia 0.1852 0.6376 0.7400 - 0.1988 0.6415 0.4850 -
Top-Bot 0.2031 0.6398 0.7370 1.1% 0.2073 0.6464 0.4800 0.6%
Mid-1/3 0.2108 0.6458 0.7400 2.2% 0.2125 0.6420 0.4760 0.4%
Mid-2 0.2031 0.6398 0.7470 1.7% 0.2039 0.6518 0.4870 1.3%

2.8B

Pythia 0.2253 0.6768 0.7910 - 0.2346 0.6844 0.4810 -
Top-Bot 0.2270 0.6806 0.7920 0.4% 0.2321 0.6866 0.5010 1.4%
Mid-1/3 0.2253 0.6899 0.7890 0.7% 0.2381 0.6997 0.5040 3.0%
Mid-2 0.2304 0.6795 0.8150 1.9% 0.2415 0.6817 0.4910 1.0%

better performance compared to the baseline, the 2% inhibition level yields the best results, which
is consistent with the pattern found in Subsection 4.2.

Additionally, we observe that a higher level of inhibition is preferred as model scale increases.
Specifically, the 2% inhibition level is optimal for the 410M model, while 1% and 3% are best for
the 70M and 2.8B models, respectively. This aligns with our analysis in Section 3, which suggests
that larger models are more polysemantic and thus require more inhibition to improve performance.

B.4 EFFECTIVE IN DECREASINIG MONOSEMANTICITY
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Figure 12: Threshold of top-2% MS when training
with and without L2E (dash lines).

To validate our L2E indeed inhibit the monose-
manticity, we further analyze related dynamics
of the Pythia models (Biderman et al., 2023)
with and without L2E. Ideally, L2E will re-
sults in lower monosemanticity, thus smaller
MS scores. As we apply L2E in the mid-
dle 2 layers, we inspect their threshold of top-
2% MS, shown in Figure 12, where the upper
layer is denoted as “Upper” and “Lower” for
the lower layer.

One can observe that the L2E method effec-
tively reduces the monosemanticity of the mod-
els, especially for larger models. Besides, we
observe that the monosemanticity of the Pythia models decreases as the model scale increases. This
aligns with our hypothesis that larger models are more polysemantic.

B.5 INHIBITION ON DIFFERENT LAYERS

Our in-depth analysis of monosemanticity across layers in Section 3 and Section B.2 suggests that
middle layers are less monosemantic. These layers are thought to handle complex reasoning by
processing composed and abstract features. Consequently, our main experiments focus on inhibiting
these middle layers.

To further investigate the impact of inhibiting different layers on model performance, we conducted
additional empirical experiments. Three settings of L2E inhibition are tested on the Pythia models
(Biderman et al., 2023): middle 2 layers (Mid-2), top and bottom layers (Top-Bot), and middle 1/3
layers (Mid-1/3). For instance, in the 24-layer 410M model, Mid-2 inhibits the 11th and 12th layers,
Top-Bot inhibits the 1st and 24th layers, and Mid-1/3 inhibits the 8th to 16th layers.
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Table 6: The results of L2E on ARC (Clark et al., 2018).

Setting 0-shot 5-shot
Scales 70M 410M 2.8B 70M 410M 2.8B

Arc-Easy Pythia 0.3880 0.4545 0.5223 0.3708 0.4811 0.5522
L2E 0.3813 0.4423 0.5042 0.3864 0.4798 0.5358

Arc-Challenge Pythia 0.1706 0.1852 0.2304 0.1834 0.1988 0.2346
L2E 0.1877 0.2031 0.2304 0.1860 0.2056 0.2415

Table 7: The performance when our Moving Threshold is applied or removed (No-Thr).

Setting 0-shot 5-shot
Datasets ARC-C PIQA SciQ ↑ ARC-C PIQA SciQ ↑

70M
Pythia 0.1706 0.5887 0.6430 - 0.1834 0.5843 0.4050 -
No-Thr 0.1792 0.5914 0.6430 0.8% 0.1741 0.5925 0.4110 4.1%
L2E 0.1877 0.5963 0.6510 2.3% 0.1860 0.6034 0.4380 4.7%

410M
Pythia 0.1852 0.6376 0.7400 - 0.1988 0.6415 0.4850 -
No-Thr 0.2048 0.6360 0.7470 1.6% 0.2056 0.6431 0.4730 -0.3%
L2E 0.2031 0.6398 0.7470 1.7% 0.2039 0.6518 0.4870 1.3%

2.8B
Pythia 0.2253 0.6768 0.7910 - 0.2346 0.6844 0.4810 -
No-Thr 0.2159 0.6866 0.8060 0.9% 0.2406 0.6921 0.4590 -0.6%
L2E 0.2304 0.6795 0.8150 1.9% 0.2415 0.6817 0.4910 1.0%

Table 5 presents our results. Consistent with our analysis, inhibiting the middle layers yields the best
performance improvement, with Mid-2 and Mid-1/3 achieving the highest scores in almost all cases
(except for Top-Bot with 70M on 0-shot SciQ). Mid-2 would be the more efficient setting while
maintaining similar performance. However, these finding opens up intriguing points for further
research. For example, given that different layers may play different roles in a model’s capabilities,
inhibiting specific layers might benefit particular tasks.

B.6 SOME SPECIAL RESULTS

Besides the datasets tested in the main experiments, we also obtained some noteworthy results on
other datasets. ARC-Easy and ARC-Challenge are two partitions of data from (Clark et al., 2018),
with ARC-Easy being the simpler set. While conducting experiments, we discovered negative results
on ARC-Easy from L2E, as shown in Table 6. Interestingly, the results were remarkably consistent:
L2E consistently outperformed the original model on ARC-Challenge but rarely improved on ARC-
Easy. This pattern leads to a hypothesis that L2E may be more effective on more challenging tasks.
This aligns with (Wang et al., 2024), which suggests that monosemanticity functions like hard mem-
orization—potentially impairing performance on complex tasks while being beneficial for simpler
ones. Some studies on grokking also treat memorization as a negative pattern when dealing with
complex mathematical problems (Liu et al., 2022), while (Yan et al., 2024) also finds some positive
impacts of monosemanticity. The potential influence of monosemanticity is still in its early stages
of exploration.

B.7 ABLATION STUDY ON MOVING THRESHOLD FOR RETRIEVAL

Recall that we introduced a moving threshold to enable efficient computation and capture a global
impact. As shown in Table 2, this approach nearly eliminates the additional computational cost
introduced by MEmeL.

Here, we further investigate the impact of the moving threshold on model performance. We
conducted an ablation study, replacing the moving threshold with the original sorting method in
MEmeL. The results are presented in Table 7. Our moving threshold consistently outperforms the
fixed threshold, likely due to its ability to obtain global statistics of monosemanticity.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Table 8: The performance of our regularization-style inhibition compared with the Reverse Deacti-
vation (RD) (Wang et al., 2024).

Setting 0-shot 5-shot
Datasets ARC-C PIQA SciQ ↑ ARC-C PIQA SciQ ↑

70M
Pythia 0.1706 0.5887 0.6430 - 0.1834 0.5843 0.4050 -
RD 0.1894 0.5424 0.4460 -16% 0.1928 0.5495 0.3170 -9.7%
L2E 0.1877 0.5963 0.6510 2.3% 0.1860 0.6034 0.4380 4.7%

410M
Pythia 0.1852 0.6376 0.7400 - 0.1988 0.6415 0.4850 -
RD 0.1962 0.6099 0.6430 -7.3% 0.1809 0.6235 0.4480 -5.5%
L2E 0.2031 0.6398 0.7470 1.7% 0.2039 0.6518 0.4870 1.3%

2.8B
Pythia 0.2253 0.6768 0.7910 - 0.2346 0.6844 0.4810 -
RD 0.2133 0.6513 0.7680 -3.6% 0.2244 0.6600 0.4670 -3.5%
L2E 0.2304 0.6795 0.8150 1.9% 0.2415 0.6817 0.4910 1.0%

B.8 ABLATION STUDY ON THE REGULARIZATION-STYLE INHIBITION

To address the potential ineffectiveness of Reverse Deactivation (RD) (Wang et al., 2024) in pre-
training, where its assumptions may not strictly hold, we proposed a regularization-style method to
inhibit selected monosemantic neurons.

In this subsection, we conducted an ablation study comparing our method with RD, with results
shown in Table 8. Our method outperformed RD, which is consistent with our analysis.

However, it’s important to note that our current experiments only train the model for 10% of the
total steps, which is a setting that favors our approach. As the model becomes well-trained, RD’s
assumptions may become valid, potentially increasing its effectiveness. The optimal selection or
combination of inhibition methods remains an area for further exploration.

C DISCUSSION

In addition to the discussions on mechanistic interpretability, information bottleneck, existence of
emergence, biological perspectives, and brain-inspired learning in Wang et al. (2024), we present
further discussions on related important deep learning topics in this section.

C.1 RELATIONSHIP WITH GROKKING

While monosemanticity functions like rote memorization in neural networks, a phenomenon called
“grokking” also explores the negative impact of neuron memorization. The initial study by Power
et al. (2022) observed grokking in very small models, where the test loss dramatically decreased
after the training loss had converged for a long time. The authors highlighted an under-explored
area: how neural networks generalize beyond mere memorization? Unlike studies on emergence,
their research meticulously examined very small models (with only 2 layers). Interestingly, their
analysis on algorithmic datasets aligns with our findings, hypothesizing that memorization hinders
more complex reasoning.

To investigate the reason of grokking, Liu et al. (2022) examines multiple datasets using models
with fixed L2 norm of weight wc. They find that a large wc leads to poor representation and impairs
generalization in grokking. On the other hand, Nanda et al. (2023) focuses on the modular addi-
tion task and reverse engineering the model weights. They summarize the training process leading
to grokking in 3 stages: memorization, circuit formation, and memorization component removal.
Notably, both papers highlight grokking’s potential to aid in understanding emergence. However,
unlike our work, their studies were limited to very small models.

Subsequent research has conducted case studies to explore the benefits of grokking (Xu et al., 2024)
and gain deeper understanding (Rubin et al., 2024; Levi et al., 2024; Kumar et al., 2024). Notably,
Levi et al. (2024) raises doubts about whether the occurrence of grokking might be due to the accu-
racy measure used, a concern similar to that raised about Emergence (Schaeffer et al., 2023).
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To conclude, complementing our research, grokking-related studies provide highly detailed analyses
of small models (Liu et al., 2022; Doshi et al., 2024; Pearce et al., 2023), similar to observing particle
motion through a microscope. Hopefully, these two research directions could yield discoveries
from different perspectives and potentially combine to further enhance model performance, such
as interchanging techniques for inducing grokking and emergence (Wang et al., 2024; Lyu et al.,
2024). Besides, we highlight an interesting example from their experiments, where an extremely
small model (with only 5 neurons) is incapable of even memorizing (Pearce et al., 2023). This raises
a question: for current challenging tasks, where do our models stand? Are they at the stage of partial
memorization awaiting generalization, or have they not even reached the point of memorization?

C.2 RELATIONSHIP WITH SPARSITY

When we introduce the idea of inhibiting monosemanticity, many readers express concern about its
influence on sparsity, which is useful for efficient computation and model compression, especially
in large models. In this section, we provide a concise review of sparsity and its potential conflicts
and cooperation with our proposition.

As models grow larger, researchers have observed that many weights become near-zero or insignif-
icant, forming sparse connections between neurons (Han et al., 2015b; Li et al., 2017; Han et al.,
2015a). Leveraging this sparsity, various pruning strategies for weights and neurons have been de-
veloped to compress models while maintaining performance. Although weight-based pruning is
theoretically efficient (Frankle & Carbin, 2019), it presents practical challenges (Sun et al., 2021),
often resulting in irregular networks that are difficult to deploy. To address this, new GPU architec-
tures have been proposed to support sparse computation (NVIDIA, 2020), alongside methodological
improvements (Zhou et al., 2021; Liu et al., 2021; Frantar & Alistarh, 2023).

In addition to weight sparsity, researchers also focus on activation sparsity in neural networks (Kurtz
et al., 2020; Akiva-Hochman et al., 2022). As discussed in Section 2, when using the ReLU acti-
vation function, neuron outputs ≤ 0 are naturally considered inactive, creating a form of sparsity.
Researchers leverage this sparsity to reduce computation and enhance it further by setting values
below a higher threshold to 0 (Kurtz et al., 2020). Combining both weight and activation sparsity
can improve model efficiency (Akiva-Hochman et al., 2022). Unlike static weight sparsity, utiliz-
ing activation sparsity requires monitoring dynamic flow (i.e., each input has a different sparsity
pattern), which is more challenging and functionally similar to our L2E.

In recent years, as large language models have grown, high-level designs supporting activation spar-
sity have emerged, such as the Mixture-of-Experts (MoE) layer (Fedus et al., 2022). While pruning
based on activation values induces sparsity at irregular positions, MoE activates only one expert for
each input, creating physical continuity on the GPU. This approach is more hardware-friendly and
thus preferred in industrial pipelines.

The main conflict between sparsity and our method lies in the functional assumption of activation.
Monosemanticity forms a 1-to-1 correlation, which is considered similar to rote memorization and
may hinder complex reasoning abilities. However, this 1-to-1 mapping is favored in sparsity studies.
When we reduce monosemanticity, a single input would activate multiple neurons, rendering pruning
based on sparsity ineffective. If both approaches are proved valid, balancing L2E and sparsity will
become a trade-off between effectiveness and efficiency.

Neuron Value Distribution
0

0 values 
pruned by 

sparsity

We inhibit a 
small portion of 

most Mono-
semantic neurons

Other activated neurons

Figure 13: Ideal distribution of neuron val-
ues. Pruning based on sparsity and inhibiting
monosemanticity can coexist.

Fortunately, our current studies focus on the in-
hibition of extremely monosemantic neurons,
which can potentially co-exist with sparsity.
We demonstrate the ideal case in Figure 13,
where highly monosemantic neurons are inhib-
ited (brown), while a large number of inactive
neurons can be pruned (green) using sparsity
methods. Besides, when using MoE, pruning oc-
curs during expert selection, while each expert
can be further enhanced with our method (i.e.,
made more polysemantic). Additionally, the MS
metric could serve as a supervisor for pruning
unimportant neurons to achieve sparsity. These potential collaborations await future research.
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