LEARNING TOWARDS EMERGENCE: PAVING THE WAY TO INDUCE EMERGENCE BY INHIBITING MONOSE MANTIC NEURONS ON PRE-TRAINED MODELS

Anonymous authors

006

008 009 010

011

013

014

015

016

017

018

019

021

023

024

025

026

027

028

029

031

032

Paper under double-blind review

ABSTRACT

Emergence, the phenomenon of a rapid performance increase once the model scale reaches a threshold, has achieved widespread attention recently. The literature has observed that monosemantic neurons in neural networks gradually diminish as the model scale increases. Subsequently, Learning From Emergence is proposed to actively inhibit monosemantic neurons in relatively small neural networks (e.g., BERT and Swin-Transformer) for promoting model performance with fine-tuning. However, to ultimately achieve emergence, it is demanding to support the monosemantic neuron inhibition in the pretraining phase of large-scale models. Thus, this work further pushes the boundary of this research direction to be Learning Towards Emergence (L2E) and enables the training and validating of the impact of inhibiting monosemantic neurons on larger pre-trained neural networks (e.g., Pythia-70M, 410M, and 2.8B). More specifically, to bridge the gap in current research, we first conduct experiments on models of various scales (up to 6.9B) to validate the monosemantic ideas. Then, we present a novel method L2E to address the inefficient monosemantic neuron retrieval and ineffective monosemantic neuron inhibition when existing methods are applied in the pretraining phase of large-scale models. It employs an adjustable thresholding technique for efficient neuron retrieval, incorporates a False Killing Rate metric to assess inhibition effects, and proposes a regularization-style inhibition approach, which addresses the limitations of previous approaches in both efficiency and effectiveness. Experimental results demonstrate the effectiveness of L2E's monosemantic neuron inhibition and its efficiency in implementation with large-scale models.

034 035 1 INTRODUCTION

The success of large-scale pretraining models, such as GPT-3.5 (Ouyang et al., 2022), has drawn 037 widespread attention in understanding their dynamics across different scales. Studies on Scaling Laws (Henighan et al., 2020; Kaplan et al., 2020) have analyzed the relationship between scale and performance, which typically follows a mild power law. However, recent research has observed dra-040 matic performance improvements that defy these scaling laws when the model scales reach certain 041 thresholds—a phenomenon termed *Emergence* (Wei et al., 2022). The resulting emergent abili-042 ties of these models are somehow recognized as a key factor in their success, prompting numerous 043 follow-up investigations (Hu et al., 2024). Some studies suggest that the impressive emergence 044 phenomenon may simply caused by deficiencies in observing and evaluating the accumulation of abilities (Schaeffer et al., 2023; Lu et al., 2024). But such deficiencies may persist for a long time because the commonly used unsupervised losses and weakly labeled datasets. Subsequently, a series 046 of studies try to predict (Hu et al., 2024) and induce (Wang et al., 2024; Yan et al., 2024) emergence. 047

In earlier years, researchers propose the concept of monosemantic neurons to interpret model functionality (Bau et al., 2020; Elhage et al., 2022). These neurons form 1-to-1 mappings with humanfriendly features (such as "dog" in images (Olah et al., 2020) or "Python" in code languages as
shown in Figure 1(a)). In contrast, polysemantic neurons are activated for multiple features (Goh
et al., 2021; Bricken et al., 2023) (see Figure 1(b)). The discovery of monosemantic neurons, especially when visualizing impressively (Olah et al., 2020), greatly excite researchers when neural networks are considered as black-box. However, following the favor of monosemantic neurons in

(a) The output statistics of monosemantic "Python"
neuron on Code Language dataset. The neuron is in
the layer 16, number 3519 of the Pythia 2.8B model.

Figure 1: A demonstration of the concept "monosemantic". The left figure shows the output statistics of a monosemantic neuron, which is activated only by the feature "Python". This contrasts with a randomly selected neuron in the right figure. We use sparse probing (Gurnee et al., 2023) on Pythia models (Biderman et al., 2023) to detect monosemantic neurons.

explanation, it has become harder to detect monosemanticity as model scale increases (Huben et al., 2024; Gurnee et al., 2023; Bricken et al., 2023). Existing works also find that monosemantic neurons have less impact on model performance of larger models (Gurnee et al., 2023).

075 Based on these observations, Wang et al. (2024) hypothesize that the decrease of monosemantic 076 neurons as a key factor towards better performance behind the increasing model scale, then propose 077 Learning From Emergence to improve performance by actively inhibiting monosemantic neurons 078 during the fine-tuning stage of relatively small models (\leq 88M). To achieve that, Monosemanticity 079 Score (MS) has been devised to quantify monosemanticity throughout the model training, which contrasts with literature that depend on specially labeled detection datasets and can only detect monosemantic neurons after training on frozen models (Gurnee et al., 2023; Huben et al., 2024). 081 But Learning From Emergence is still in its early stages of exploration and has unresolved limitations (Yan et al., 2024). The validity of the MS metric and the above monosemanticity hypothesis 083 lacks thorough investigation, as existing studies have not provided abundant experimental support. 084 Moreover, the inhibition method faces challenges in effectiveness and efficiency when inhibiting 085 monosemantic neurons in large-scale neural networks during the pretraining phase.

To explore the impact of inhibiting monosemantic neurons on the model performance, we further push the boundary of Learning From Emergence to *Learning Towards Emergence (L2E)* to induce emergence by inhibiting monosemantic neurons during pretraining on larger (\times 30) models.

090 In this work, we first conduct an analysis to facilitate the understanding of monosemanticity. As 091 monosemanticity is difficult to define explicitly (Olah et al., 2020; Elhage et al., 2022), we crossvalidate the effectiveness of MS using carefully selected monosemantic neurons (Gurnee et al., 092 2023). Additionally, we perform an in-depth analysis of monosemanticity across different scales of models (from 70M to 6.9B). After validating the monosemantic idea, we propose L2E to en-094 able monosemanticity inhibition for large-scale pretraining. More specifically, we first apply an 095 adjustable thresholding technique to enable efficient monosemantic neuron retrieval. Then, we in-096 troduce the False Killing Rate as a metric to quantify the side effects of different inhibition levels and capture consistent patterns for guidance across scales. Finally, we propose a regularization-style 098 inhibition approach, which addresses the ineffectiveness of existing work when applied to pretrain-099 ing tasks. Experiments conducted on various tasks and scales using Pythia models (Biderman et al., 100 2023) (from 70M to 2.8B), validating the effectiveness and efficiency of L2E.

101 102

054

071

2 BACKGROUND

103 104

105 2.1 NEURON, AND ACTIVATED NEURON

107 A neural network can be viewed as multiple layers connected in series and parallel. Subsequent layers are computed as functions of previous layers, contributing to a differentiable and updatable

108 output. To understand the dynamics of networks, existing works zoom into individual layers and 109 further study their "neurons" (Olah et al., 2020; Gurnee et al., 2023). Specifically, each layer consists 110 of a set of neurons $\Theta = \{\theta\}$, where each neuron θ is a function that maps input x to an output value $z = \theta(\mathbf{x})$, where $\mathbf{x} \in \mathbb{R}^d$ 111

112 Within a neural network, the nonlinearity of neu-113 rons is primarily based on activation functions. 114 $\operatorname{ReLU}(z) = \max(z, 0)$ has become one of the 115 most popular activation functions due to its sim-116 plicity and effectiveness (Glorot et al., 2011). 117 While it outputs a constant 0 for negative inputs, 118 its (largely) positive output is commonly recognized as "activated" (Mirzadeh et al., 2024). As 119 research on activated neurons progressed, the con-120 cept is generalized, referring to any neuron out-121 put that significantly differs from its typical value, 122 e.g., the neuron in Figure 2 for English. Be-123 sides, the position of studied neurons are no longer 124 restricted, such as pre-activations (Gurnee et al., 125 2023) and class logits (Olah et al., 2017). Such an 126 extension is useful for studying the dynamics of the whole networks (Wang et al., 2024).

Figure 2: A monosemantic neuron with a negative mean difference. The average value of the neuron is also much larger than 0.

However, despite its widespread use as an intuitive concept, "activated neuron" remains challenging 128 to define explicitly (Gurnee et al., 2023; Belinkov, 2022; Wang et al., 2024). Given a set of inputs 129 $X = {\mathbf{x}^{[i]}}$, a neuron θ is considered activated for an input $\mathbf{x}^{[i]}$ if $z^{[i]} = \theta(\mathbf{x}^{[i]})$ has a significant 130 deviation from its mean $\bar{z} = 1/|X| \sum_i z^{[i]} = 1/|X| \sum_i \theta(\mathbf{x}^{[i]})$, where it is hard to reach a consensus on the "significant" or the "deviation". Fortunately, to help understand and interpret the network, it 131 132 is a reasonable and impressive approach to collect and demonstrate the statistics of neuron outputs. 133

134 STUDIES ON MONOSEMANTICITY 2.2135

127

143

156 157

136 To conduct analysis for the monosemanticity of neurons, researchers propose human-friendly feature 137 datasets. Formally, labeled feature datasets collect sets of input instances $X = {x^{[i]}}$, each input 138 is mapped to one of several labeled features $L = \{\ell^{[i]}\}$ (Gurnee et al., 2023; Bricken et al., 2023). 139 For example, the natural language of Europarl documents contains > 28k instances belonging to 9 140 labeled features (Gurnee et al., 2023). Given a neuron θ , by feeding input x into the model, one can 141 obtain the statistics of neuron values labeled by features. Specifically, we denote the output values 142 zs with input of feature ℓ as:

$$C(\theta, \ell) = \{\theta(\mathbf{x}) : \mathbf{x}'s \text{ label is } \ell\}.$$

144 Based on the statistics or further transformations of the values, one can analyze the monosemanticity 145 of each neuron. For example, a monosemantic neuron is expected to have a large mean difference 146 for a feature. Additionally, when using sparse autoencoders as probing classifiers, it should achieve 147 a high autointerpretability score or a high F1 score in predicting a feature (Gurnee et al., 2023; 148 Bricken et al., 2023; Huben et al., 2024). Sparse probing is used as a tool for analysis in this paper.

149 However, probing experiments are time-consuming, making it crucial to develop alternative methods 150 to boost the study of monosemanticity. Gurnee et al. (2023) first proposed estimating the neuron 151 monosemanticity based on input weight norm and bias term, which is non-universal as not all models 152 have bias terms (Yan et al., 2024). Further, Monosemanticity Score (MS) is proposed to dynamically 153 analyze the monosemanticity based on sparsity (Wang et al., 2024). To be more specific, given a set of inputs $\{\mathbf{x}^{[i]}\}_{i=1}^{n}$ and the corresponding outputs of a neuron $\{z^{[i]}\}_{i=1}^{n}$, MS is defined as: 154 155

$$\phi(z^{[i]}) = \frac{(z^{[i]} - \bar{z})^2}{S^2},\tag{1}$$

where \bar{z} is the mean of $\{z^{[i]}\}$, and S^2 is the sample variance. During model training, only sam-158 ples before $z^{[i]}$ are observable. In this case, the MS can be calculated incrementally in linear time 159 complexity (Wang et al., 2024). Given these advantages, Wang et al. (2024) proactively inhibited 160 monosemanticity based on the MS. However, the effectiveness of the MS metric lacks experimental 161 validation (Yan et al., 2024).

(a) Given the most monosemantic neurons, the aver- (b) 173 age MS scores when the input contains monosemantic (blue) given corresponding features ϕ_{ℓ} compared with 174 features ϕ_{ℓ} (blue) or does not contain monosemantic randomly selected neurons (orange) given relatively features ϕ_{ℓ}^{-} (orange). 175

The average MS of monosemantic neurons monosemantic features ϕ_{ℓ^*} .

Figure 3: Validation of the effectiveness of MS. We probe neurons in Pythia models (Biderman et al., 2023) based on feature datasets Code Language (a) and Data Subset (b) (Gurnee et al., 2023).

178 179 180

181

189

176

177

162

3 METRIC VALIDATION AND ANALYSIS

The MS evaluation metric is proposed to analyze monosemanticity efficiently and dynami-183 cally (Wang et al., 2024; Yan et al., 2024). However, its effectiveness has not been throughly verified experimentally. The hypothesis that monosemanticity is negatively correlated with increasing 185 scale has been only tentatively validated by deactivating monosemantics neurons and examining increased losses (Gurnee et al., 2023; Wang et al., 2024). Therefore, we i) cross-validate MS using monosemantic neurons detected by probing method (Belinkov, 2022), and ii) conduct analysis on 187 monosemanticity based on MS in this section. 188

3.1 VALIDATION OF MONOSEMANTICITY SCORE 190

(

191 As introduced in Section 2, it is hard to explicitly define monosemanticity (Wang et al., 2024; Yan 192 et al., 2024). To validate that the MS metric can indeed reflect the monosemanticity of neurons, 193 we choose the sparse probing (Gurnee et al., 2023) as a cross-validation for evaluating MS from 194 two perspectives: i) For monosemantic neurons, their MS values differ significantly when given 195 inputs with specific features compared to other inputs; ii) When considering the most monosemantic 196 feature, MS can effectively distinguish monosemantic neurons from others.

197 MS Can Detect Activated Monosemantic Neurons. Firstly, we compare the MS values of monosemantic neurons when given and not given the corresponding features. The top 10 monosemantic 199 neurons are selected by sparse probing (Gurnee et al., 2023) on Pythia models across scales (70M 200 to 6.9B) (Biderman et al., 2023). To be more specific, given a set of inputs $\{\mathbf{x}^{[i]}\}_{i=1}^{n}$ and a monose-201 mantic neuron θ with corresponding feature ℓ , its output values $Z = \{z^{[i]}\}_{i=1}^n = \{\theta(\mathbf{x}^{[i]})\}_{i=1}^n$ can 202 be partitioned as $C_{\ell} = C(\theta, \ell)$ and $C_{\ell}^{-} = \bigcup_{\ell' \neq \ell} C(\theta, \ell')$. We can calculate the MS values of Z 203 within C_{ℓ} and C_{ℓ}^{-} respectively, denoting the mean of each set as ϕ_{ℓ} and ϕ_{ℓ}^{-} :

$$\phi_{\ell} = \frac{\sum_{z \in C_{\ell}} (z - \bar{z})^2}{|C_{\ell}|S^2}, \phi_{\ell}^- = \frac{\sum_{z \in C_{\ell}^-} (z - \bar{z})^2}{|C_{\ell}^-|S^2}.$$
(2)

Intuitively, a monosemantic neuron should be activated when given the inputs from corresponding 208 feature, thus a larger ϕ_{ℓ} if MS is effective. Based on the top-10 monosemantic neurons, we derive 209 ϕ_{ℓ} and ϕ_{ℓ}^{-} based on the Code Language feature dataset (Figure 3(a)), where results for two more 210 datasets are provided in Figure 7 in the Appendix. It is clear that the MS values of neurons with 211 monosemantic featuress are significantly different from those without monosemantic features. This 212 indicates that MS is sensitive to monosemanticity when the corrsponding features are given. 213

MS is Non-sensitive to Non-monosemantic Neurons. As MS is effective for monosemantic neu-214 rons, it is also important that MS should be insensitive to non-monosemantic neurons. To vali-215 date this, across different scales, we randomly select 10 neurons in addition to the monoseman-

- 204
- 205
- 206 207

tic neurons. To compared with the score ϕ_{ℓ} calculated for monosemantic neurons, we calculate the MS for those randomly selected neurons and mine their statistically more monosemantic features instead. Mathematically, for each feature $\ell^{[i]} \in L$, we calculate its average MS score $\phi_{\ell[i]} = \sum_{z \in C_{\ell[i]}} (z-\bar{z})^2 / |C_{\ell[i]}| S^2$, where monosemanticity is higher when the score is higher. Thus, we denotes the feature ℓ^* with the highest $\phi_{\ell[i]}$ as its relatively monosemantic feature, that is:

$$\ell^* = \max_{\ell \in L} \frac{\sum_{z \in C_\ell} (z - \bar{z})^2}{|C_\ell| S^2}.$$
(3)

The corresponding ϕ_{ℓ^*} is used to compare with ϕ_{ℓ} for monosemantic neurons. The results are shown in Figure 3(b), where ϕ_{ℓ} and ϕ_{ℓ^*} are derived from the Data Subset feature dataset. Additional results are given in Figure 8 in the Appendix. It is clear that the MS values of neurons with monosemantic features are significantly different from those from random neurons. This indicates that MS can effectively distinguish monosemantic neurons from other neurons.

3.2 ANALYSIS OF MONOSEMANTICITY BASED ON MS

Recall the assumption that monosemanticity is negatively correlated with increasing scale. It is proposed by existing work and preliminarily validated by turning off monosemantic neurons and observing the increased loss (Gurnee et al., 2023; Wang et al., 2024). In this subsection, we conduct further analysis using a fine grid of both scales (6 scales from 70M to 6.9B) and layers.

235 First, we use the Kolmogorov-Smirnov (K-S) 236 Test to compare how outstanding the influence of the most monosemantic features ℓ^* are 237 across models of different sizes. We randomly 238 select 1000 neurons per scale of model. For 239 each neuron, we provide inputs of different fea-240 tures and records their MS values. Based on 241 this, we calculate the average score for each 242 feature. Similar to equation 3, as monosemantic 243 feature is unavailable for a randomly selected 244 neuron, we treat the feature with the highest av-245 erage score as the relatively monosemantic fea-246 ture of the neuron ℓ^* . For each scale of model, 247 we can treat the MS scores from inputs in feature ℓ^* as a set of monosemantic samples ϕ_{ℓ^*} , 248 which contrasts with the universal set, i.e., the 249

Figure 4: K-S test for the monosemanticity levels across model scales on 3 feature datasets.

MS scores of all the samples $\{\phi(z^{[i]})\}_{i=1}^n$. When a neuron is more monosemantic, the difference between the two sets of samples should be greater.

To obtain statistical significance, we apply the K-S test (Peacock, 1983) on the set of MS scores from relatively monosemantic features and the universal set. The K-S test, a widely used nonparametric hypothesis test, determines whether two sample sets originate from different distributions. In our experiment, we compare the K-S statistics, which is positive related the difference between the 2 sets. The results are shown in Figure 4, shown the results on 3 feature datasets Natural Language, Data Subset, and Code Language (Gurnee et al., 2023). The K-S statistics decrease as the scale increases, indicating that the prominence of the monosemantic set diminishes. These results validate that monosemanticity is negatively correlated with larger-scale models.

Additionally, we investigate monosemanticity across layers. With 1,000 randomly selected neurons for each scale, we calculate the MS values for each neuron and record the mean scores of its most monosemantic feature ϕ_{ℓ^*} according to equation 3. As shown Figure 5 and 9, a clear drop in MS, indicating lower monosemanticity, can be observed as the scale increases.

264 265

266

221 222

229

230

4 LEARNING TOWARDS EMERGENCE

Recall that to inhibit monosemanticity for large scale models, current method lacks insightful design
 for effectiveness and is inefficient. In this section, we first dig into the dynamic of monosemanticity
 and propose an upgrade version named L2E to support effective pretraining with reasonable config urations. Then, we introduce an adjustable module to solve the efficiency bottleneck.

Figure 5: Statistics of MS across scales and layers. The results are obtained on Natural Language feature dataset (Gurnee et al., 2023). Larger models are of deeper colors, which can be clearly observed that their scores are smaller, indicating lower monosemanticity.

4.1 RECALL OF MEMEL

279

281

282

283 284

299

300

306

As discussed in Section 2, Wang et al. (2024) introduces the MEmeL method to first detect monose-285 mantic neurons and retrieve them, then inhibit them to promote the relatively small neural networks. However, the current method is limited by following 3 limitations. First, monosemantic neuron 287 detection is an O(1) operation based on MS. Values of neurons z in a layer are ranked by their 288 monosemantic scores $(\phi(\mathbf{z}))$. Then, the top-k neurons are selected for inhibition, where k is a 289 relatively small number (≤ 100). But this setting of k lacks solid justification. A deeper insight 290 into the dynamics of monosemanticity is needed for high-quality detection. Secondly, top-k neu-291 rons retrieval becomes inefficient when the number of neurons in a layer is large and k increases. 292 Specifically, the time complexity O(kN) of comparing N neurons in the layer increases to sorting 293 with $O(N \log N)$. This creates a significant bottleneck as the scale increases, necessitating a more efficient method. Thirdly, after obtaining the neurons to deactivate, MEmeL proposed Reverse Deactivation to inhibit the selected neurons with theoretical guarantees. However, this method assumes 295 that neuron activation is a well-trained result rather than a mistake due to insufficient training. This 296 assumption is not always valid, especially when applied at the beginning of pretraining. Therefore, 297 we propose L2E to address the 3 limitations of existing works on inhibiting monosemantic neurons. 298

4.2 L2E: LEARNING TOWARDS EMERGENCE

False Killing Rate: Determines How Many Neurons to Inhibit. Recall that the previous method majorly tried to validate the assumption of the influence of monosemanticity, which only inhibited no more than 100 most monosemantic neurons (Wang et al., 2024). However, large models has a great number of neurons in a single layer, e.g., 5,242,880 for the 2.8B pythia model, where the influence of inhibiting dozens of neurons is neglegable.

Here we discuss the intuition behind the setting of k. From the perspective of memorization and 307 reasoning, monosemantic and polysemantic neurons are assumed to play different roles. To prevent 308 the model from overfitting-style rote memory, we aim to keep the polysemantic neurons and inhibit 309 the monosemantic ones. This is achieved by filtering out the neurons with top-k MS values. A small 310 k will lead to weak inhibition, while a large k may also inhibit polysemantic neurons, which impairs 311 functionality. To quantify the impairment, we propose the False Killing Rate (FKR) to measure 312 the proportion of unexpected inhibitions where the inputs are not from monosemantic features. To 313 be more specific, given a dataset with n input instances $X = {\mathbf{x}^{[i]}}_{i=1}^n$ and a layer of N neurons 314 $\mathbf{z} = \{z_j\}_{j=1}^N$, the FKR is defined as:

315 316 317

$$FKR = \frac{\sum_{i=1}^{n} \sum_{j=1}^{N} \mathbb{1}\left(\mathbf{x}^{[i]} \notin \ell_{j}^{*}\right) \cdot \mathbb{1}\left(\phi(z_{j}^{[i]}) \ge \tau_{k}\right)}{\sum_{i=1}^{n} \sum_{j=1}^{N} \mathbb{1}\left(\phi(z_{j}^{[i]}) \ge \tau_{k}\right)},$$
(4)

318 319

where z_j is the *j*-th neuron in the layer and ℓ_j^* is its relatively monosemantic feature as defined in equation 3. $\mathbb{1}(\cdot)$ is the indicator function and τ_k is the *k*-th largest MS value. The FKR measures the proportion of unexpected inhibitions $(\mathbf{x}^{[i]} \notin \ell_j^*)$ when the inputs are not from monosemantic features. Ideally, we aim to reduce monosemantic neurons while preserving polysemantic ones. Therefore, we must balance between achieving sufficient inhibition and maintaining a low FKR.

326

327 328

330 331

332

333 334

335

336

337

370 371 372

376

70M 410M False Killing Rate %07 %07 2.8B 6.9B 160M 1B 0% 0.5%1% 2% 5% 7% 10% 3% 4% 6% 8% 9% Percentage of Total Neurons Inhibited

Figure 6: The False Killing Rate across 6 scales of Pythia models (Biderman et al., 2023) on Natural Language, where analysis on other feature datasets are given in Appendix B.1. The x-axis represents the percentage of neurons inhibited. The red line marks the empirical optimal k with the lowest FKR.

To meet our goal, we conduct experiments on Pythia models of different scales (Biderman et al., 2023). Interestingly, despite the overall positive relationship, the FKR initially decreases as the number of inhibited neurons increases. We find a consistent trend when the number of inhibited neurons is determined based on percentage, as shown in Figure 6. One can easily observe an ideal k (i.e., 2% of the total number of neurons) that minimizes the FKR. This empirical setting remains consistent across different scales, which is a promising result for large-scale models. We further validated this setting with experiments in Appendix B.3.

Moreover, the FKR is increasing when the scales of the models increase. This further validate the proposation that larger models are more polysemantic, so that inhibiting neurons will more likely lead to false killing. A more insight analysis is given in Appendix B.2.

Efficient Neuron Retrieval. When the inhibition level comes to several percentages (e.g., 2%) of neurons in a layer, efficiency becomes a bottleneck. Originally, finding the largest MS value costs $\Theta(N)$ times for a layer of N neurons, which will be extended to $\Theta(kN) \sim \Theta(N^2)$ for the top-k inhibition. Using special data structures such as heap can reduce the cost to $O(N \log(k)) \sim O(N \log(k))$, which is still expensive for large scale models.

353 Here, we design a moving threshold to circumvent the calculation of precise top-k value. Being 354 inspired while conducting monosemanticity analysis, we found that the inhibition should be better 355 as a global percentage rather than an in-batch ranking. For example, a single batch of inputs may 356 activate fewer monosemantic neurons, which should be given a lower level of inhibition. Therefore, 357 we maintain a moving threshold to inhibit the most monosemantic neurons globally. The detailed 358 implementation, primarily an engineering design, is provided in Appendix A. Our design involves 359 only an element-wise comparison per batch with an O(1) update to converge the threshold to the 360 global value of the 2%-th highest MS, achieving efficient inhibition.

361 Efficient Neuron Inhibition. Given the identified monosemantic neurons, the previous method 362 developed Reverse Deactivation to inhibit them (Wang et al., 2024). This approach makes use of 363 the model's reliance on monosemanticity to naturally deactivate neurons. In short, it assumes that a 364 monosemantic neuron is well-trained and effective, such that reducing its activation would lead to an 365 increase in loss. However, the assumption is more valid for a well-trained model but less prevalent in the pretraining stage, particularly at its very beginning. To handle the problem, we propose a 366 regularization-style method to encourage the inhibition. Specifically, we introduce a new term to the 367 loss function to penalize the MS values of the monosemantic neurons directly, that is, to minimize 368 equation 1 for each selected neuron θ and input $\mathbf{x}^{[i]}$: 369

$$\min_{\boldsymbol{\omega}} \frac{(\theta_{\boldsymbol{\omega}}(\mathbf{x}^{[i]}) - \bar{z})^2}{S^2}$$

where ω are the trainable parameters of neuron θ . However, during implementation, we discovered that the denominator term S^2 could become extremely small, leading to unstable gradients. We turn to a logarithmic transformation to stabilize the gradients, minimizing the following term instead:

377
$$\min_{\boldsymbol{\omega}} \log \frac{(\theta_{\boldsymbol{\omega}}(\mathbf{x}^{[i]}) - \bar{z})^2}{S^2} = \min_{\boldsymbol{\omega}} \log (\theta_{\boldsymbol{\omega}}(\mathbf{x}^{[i]}) - \bar{z})^2 - 2\log S,$$

Setting		0-shot				5-shot			
Datasets		ARC-C	PIQA	SciQ	\uparrow	ARC-C	PIQA	SciQ	\uparrow
70M	Pythia Dropout L2E	0.1706 0.1681 0.1877	0.5887 0.5930 0.5963	0.6430 0.6350 0.6510	-0.4% 2.3%	0.1834 0.1741 0.1860	0.5843 0.5925 0.6034	0.4050 0.4110 0.4380	- 0.4% 4.7%
410M	Pythia Dropout L2E	0.1852 0.2090 0.2031	0.6376 0.6289 0.6398	0.7400 0.7520 0.7470	- 1.7% 1.7%	0.1988 0.2056 0.2039	0.6415 0.6344 0.6518	0.4850 0.4820 0.4870	-0.2% 1.3%
2.8B	Pythia Dropout L2E	0.2253 0.2167 0.2304	0.6768 0.6763 0.6795	0.7910 0.8130 0.8150	- 0.8% 1.9%	0.2346 0.2355 0.2415	0.6844 0.6768 0.6817	0.4810 0.4910 0.4910	- 0.2% 1.0%

Table 1: The main results of applying L2E to inhibit 2% neurons of 2 middle layers of each Pythia models, where best results are in bold font.

where the second term is a constant and can be ignored. So that:

$$\min \mathcal{L}_{MS} = \min \log \left(\theta_{\boldsymbol{\omega}}(\mathbf{x}^{[i]}) - \bar{z}\right)^2, \tag{5}$$

where the term \mathcal{L}_{MS} can be added to the loss function. It offers a straightforward approach to reducing monosemanticity and is general to models at any stage of training.

In summary, L2E is designed for effectiveness and efficiency monosemanticity inhibition for pre training in large-scale models. It builds on the dynamics of monosemanticity and introduces the
 False Killing Rate, which guides us in determining the optimal number of neurons to inhibit. A mov ing threshold is proposed for efficient identification of the most monosemantic neurons. Besides,
 it develops a regularization-style approach to encourage the inhibition of monosemantic neurons,
 addressing previous shortcomings in pretraining.

5 EXPERIMENT

In this section, we evaluate the effectiveness and efficiency of L2E on large-scale pretraining tasks.
First, we introduce the experimental settings. Then, we compare L2E's performance with baseline methods. Finally, we discuss the limitations of our study.

413 5.1 EXPERIMENTAL SETTINGS

Backbone Model. Limited by our computational resources $(3 \times 8 \text{ H}100 \text{ GPUs})$, we choose Pythia (Biderman et al., 2023) as the backbone model in this paper. Pythia is proposed across various sizes, targeting research for scaling understanding—which perfectly fits our requirements. For configura-tion details, we adopt the same hyperparameters as the original Pythia models, including learning rate, batch size, and optimizer. We also use the deduplicated Pile training data (Gao et al., 2021a) that is indexed and available on the repository of Pythia for consistency. The only difference is that our total training steps are 10 percent of the original paper (14.3k versus 143k), trying to demonstrate the empirical results within accessible GPUs. We test three model scales: 70M, 410M, and 2.8B to capture MEmeL's impact across different sizes. Because of our limited resources, other sizes will be included in the future. We use the widely used evaluation tools for large models, LM Evaluation Harness (Gao et al., 2021b), to test multiple datasets on our model.

L2E Settings. The following main experiments, we inhibit neurons within the middle two layers, which are previously hypothesized and analyzed to be more polysemantic (see discussions in Section 3.1 and Appendix B.2). In each layer, we apply L2E at the output of each transformer block. More discussions of inhibiting other layers are presented in Appendix B.5. The MEmeL loss term is added to the original loss function with weights of 1e-9, 1e-10, and 1e-11 for Pythia 2.8b, 410m, and 70m, respectively, to prevent it from dominating the overall loss. Following the analysis in Section 4.2, we set the number of neurons to inhibit at 2% of the total neurons in each layer. More experiments on different inhibition rates are discussed in Appendix B.3.

432 5.2 MAIN EXPERIMENT RESULTS

434 In Table 1, we report the accuracy of applying L2E to inhibit monosemantic neurons in three scales 435 of Pythia models. We evaluate the models on three datasets: ARC-Challenge (arc_c) (Clark et al., 2018), PIQA (Bisk et al., 2020), and SciQ (Welbl et al., 2017). Both 0-shot and 5-shot results 436 are reported. We also add a Dropout baseline with 0.2 randomly drop. Our findings show that 437 L2E consistently outperforms the original models across all datasets and scales. In the zero-shot 438 setting, L2E achieves 2.0% higher accuracy than Pythia and 1.3% than Dropout on average. On 439 the other hand, L2E shows better average improvements in the few-shot scenario (2.3% and 2.3% 440 higher accuracy). These results clearly demonstrate L2E's effectiveness in enhancing large-scale 441 pretraining models. More experimental results are provided in Appendix B.4B.6. 442

443 444 5.3 Efficiency Analysis

445 Here, we compare the efficiency of 446 L2E with the MEmeL method and 447 the original Pythia model. Table 2 448 shows the results, recorded as the av-449 erage time cost per step. At the 70M 450 scale, both MEmeL and L2E show 451 mild cost increases, consistent with (Wang et al., 2024). However, as dis-452 cussed in Section 4.2, with a com-453 plexity of $O(N \log N)$, the time cost 454 escalates significantly as the scale in-455

Table 2: The time cost (ms) of Pythia, MEmeL, and L2E. # Param records the number of parameters per layer.

Scales # Param	70M 1,048,576		410 2,097)M 7,152	2.8B 5,242,880		
Models	Time	\uparrow	Time	\uparrow	Time	\uparrow	
Pythia MEmeL L2E	605.8 664.8 626.5	- 9.7% 3.4%	2383.1 2727.3 2432.2	- 14.4% 2.1%	11285.1 14330.8 11451.7	- 27.0% 1.48%	

creases. When a scale of 2.8B (\times 5 parameters per layer), the additional time cost ratio for MEmeL jumps from 9.7% to 27.0%. In contrast, our L2E's ratio even decreases from 3.4% to 1.5%. This reduction is due to L2E's element-wise operations being amortized by the superlinear cost of the Attention framework as the number of parameters increases, aligning with our analysis in Section 4.2.

460 461 5.4 LIMITATIONS

There is still work to be done to fully validate the effectiveness of L2E, especially its potential to
induce Emergence. Current experiments are limited to Pythia models, with the largest size being
2.8B and training steps at 10% of full pretraining. This limitation is an unavoidable trade-off at this
trial stage, where detailed analysis is required with our resources fully utilized.

Additionally, monosemantic analysis relies heavily on feature datasets, which significantly influence
the results. Our analyses show particular consistency with the Natural Language feature dataset, a
high-quality set where different languages are clearly distinguished. For each language, identifying
its context neurons is straightforward, with an inference accuracy of 100% (Gurnee et al., 2023).
However, there's no consensus on how to properly define feature datasets, which hinders comprehensive monosemanticity analysis. To validate the universality of our findings, one need to conduct
analysis using more high-quality datasets. See Appendix B.1 for more results and discussions.

473 474

6 CONCLUSION

475 476

Our paper addresses the challenges in understanding and improving large-scale pretraining models 477 through the lens of monosemanticity. We experimentally validate the metric Monosemanticity Scale 478 for quantifying monosemantic levels, which further enables a comprehensive analysis of monose-479 manticity dynamics across different model scales. Our main contribution, L2E (Learning Towards 480 Emergence), offers a novel approach to inhibiting monosemantic neurons in large-scale pretrain-481 ing models. By incorporating the False Killing Rate metric, employing an adjustable thresholding 482 technique, and proposing a regularization-style inhibition approach, L2E addresses the limitations 483 of previous methods in both efficiency and effectiveness. Experimental results on Pythia models across various tasks and scales demonstrate the potential of L2E in enhancing model performance 484 during pretraining. This work contributes to the ongoing research on understanding and inducing 485 emergence in large language models, paving the way for future advancements in the field.

486 REFERENCES 487

502

505

506

507

531

538

Ruth Akiva-Hochman, Shahaf E. Finder, Javier S. Turek, and Eran Treister. Searching for N:M fine-488 grained sparsity of weights and activations in neural networks. In ECCV Workshops (7), volume 489 13807 of Lecture Notes in Computer Science, pp. 130–143. Springer, 2022. 490

- 491 David Bau, Jun-Yan Zhu, Hendrik Strobelt, Agata Lapedriza, Bolei Zhou, and Antonio Torralba. 492 Understanding the role of individual units in a deep neural network. Proceedings of the National 493 Academy of Sciences, 117(48):30071-30078, 2020. 494
- Yonatan Belinkov. Probing classifiers: Promises, shortcomings, and advances. Comput. Linguistics, 495 48(1):207-219, 2022. 496
- 497 Stella Biderman, Hailey Schoelkopf, Quentin Gregory Anthony, Herbie Bradley, Kyle O'Brien, 498 Eric Hallahan, Mohammad Aflah Khan, Shivanshu Purohit, USVSN Sai Prashanth, Edward Raff, 499 Aviya Skowron, Lintang Sutawika, and Oskar van der Wal. Pythia: A suite for analyzing large 500 language models across training and scaling. In ICML, volume 202 of Proceedings of Machine 501 Learning Research, pp. 2397–2430. PMLR, 2023.
- Yonatan Bisk, Rowan Zellers, Ronan Le Bras, Jianfeng Gao, and Yejin Choi. PIQA: reasoning about physical commonsense in natural language. In AAAI, pp. 7432-7439. AAAI Press, 2020. 504
- Trenton Bricken, Adly Templeton, Joshua Batson, Brian Chen, Adam Jermyn, Tom Conerly, Nick Turner, Cem Anil, Carson Denison, Amanda Askell, et al. Towards monosemanticity: Decomposing language models with dictionary learning. Transformer Circuits Thread, 2, 2023. 508
- Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and 509 Oyvind Tafjord. Think you have solved question answering? try arc, the AI2 reasoning challenge. 510 CoRR, abs/1803.05457, 2018. 511
- 512 Darshil Doshi, Aritra Das, Tianyu He, and Andrey Gromov. To grok or not to grok: Disentangling 513 generalization and memorization on corrupted algorithmic datasets. In ICLR. OpenReview.net, 514 2024. 515
- Nelson Elhage, Tristan Hume, Catherine Olsson, Neel Nanda, Tom Henighan, Scott Johnston, Sheer 516 ElShowk, Nicholas Joseph, Nova DasSarma, Ben Mann, Danny Hernandez, Amanda Askell, Ka-517 mal Ndousse, Andy Jones, Dawn Drain, Anna Chen, Yuntao Bai, Deep Ganguli, Liane Lovitt, 518 Zac Hatfield-Dodds, Jackson Kernion, Tom Conerly, Shauna Kravec, Stanislav Fort, Saurav Ka-519 davath, Josh Jacobson, Eli Tran-Johnson, Jared Kaplan, Jack Clark, Tom Brown, Sam McCan-520 dlish, Dario Amodei, and Christopher Olah. Softmax linear units. Transformer Circuits Thread, 521 2022. https://transformer-circuits.pub/2022/solu/index.html. 522
- 523 William Fedus, Barret Zoph, and Noam Shazeer. Switch transformers: Scaling to trillion parameter 524 models with simple and efficient sparsity. J. Mach. Learn. Res., 23:120:1-120:39, 2022.
- 525 Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse, trainable neural 526 networks. In ICLR. OpenReview.net, 2019. 527
- 528 Elias Frantar and Dan Alistarh. Sparsegpt: Massive language models can be accurately pruned in 529 one-shot. In ICML, volume 202 of Proceedings of Machine Learning Research, pp. 10323–10337. 530 PMLR, 2023.
- Leo Gao, Stella Biderman, Sid Black, Laurence Golding, Travis Hoppe, Charles Foster, Jason 532 Phang, Horace He, Anish Thite, Noa Nabeshima, Shawn Presser, and Connor Leahy. The pile: 533 An 800gb dataset of diverse text for language modeling. *CoRR*, abs/2101.00027, 2021a. 534
- 535 Leo Gao, Jonathan Tow, Stella Biderman, Sid Black, Anthony DiPofi, Charles Foster, Laurence 536 Golding, Jeffrey Hsu, Kyle McDonell, Niklas Muennighoff, et al. A framework for few-shot 537 language model evaluation. Version v0. 0.1. Sept, 10:8–9, 2021b.
- Xavier Glorot, Antoine Bordes, and Yoshua Bengio. Deep sparse rectifier neural networks. In AISTATS, volume 15 of JMLR Proceedings, pp. 315–323. JMLR.org, 2011.

569

577

578

579 580

581

582

583

587

589

591

540	Gabriel Goh, Nick Cammarata, Chelsea Voss, Shan Carter, Michael Petrov, Ludwig Schubert, Alec
541	Radford, and Chris Olah. Multimodal neurons in artificial neural networks. <i>Distill</i> , 6(3):e30.
542	2021.
543	

- Wes Gurnee, Neel Nanda, Matthew Pauly, Katherine Harvey, Dmitrii Troitskii, and Dimitris Bertsi-544 mas. Finding neurons in a haystack: Case studies with sparse probing. Trans. Mach. Learn. Res., 2023, 2023. 546
- 547 Song Han, Huizi Mao, and William J Dally. Deep compression: Compressing deep neural networks 548 with pruning, trained quantization and huffman coding. arXiv preprint arXiv:1510.00149, 2015a. 549
- 550 Song Han, Jeff Pool, John Tran, and William J. Dally. Learning both weights and connections for 551 efficient neural network. In NIPS, pp. 1135–1143, 2015b.
- Tom Henighan, Jared Kaplan, Mor Katz, Mark Chen, Christopher Hesse, Jacob Jackson, Heewoo 553 Jun, Tom B. Brown, Prafulla Dhariwal, Scott Gray, Chris Hallacy, Benjamin Mann, Alec Rad-554 ford, Aditya Ramesh, Nick Ryder, Daniel M. Ziegler, John Schulman, Dario Amodei, and Sam 555 McCandlish. Scaling laws for autoregressive generative modeling. CoRR, abs/2010.14701, 2020. 556
- Shengding Hu, Xin Liu, Xu Han, Xinrong Zhang, Chaoqun He, Weilin Zhao, Yankai Lin, Ning 558 Ding, Zebin Ou, Guoyang Zeng, Zhiyuan Liu, and Maosong Sun. Predicting emergent abilities 559 with infinite resolution evaluation. In The Twelfth International Conference on Learning Representations, ICLR 2024, Vienna, Austria, May 7-11, 2024. OpenReview.net, 2024. 560
- 561 Robert Huben, Hoagy Cunningham, Logan Riggs, Aidan Ewart, and Lee Sharkey. Sparse autoen-562 coders find highly interpretable features in language models. In ICLR. OpenReview.net, 2024. 563
- 564 Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B. Brown, Benjamin Chess, Rewon Child, 565 Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language 566 models. CoRR, abs/2001.08361, 2020. 567
- Tanishq Kumar, Blake Bordelon, Samuel J. Gershman, and Cengiz Pehlevan. Grokking as the 568 transition from lazy to rich training dynamics. In ICLR. OpenReview.net, 2024.
- 570 Mark Kurtz, Justin Kopinsky, Rati Gelashvili, Alexander Matveev, John Carr, Michael Goin, 571 William M. Leiserson, Sage Moore, Nir Shavit, and Dan Alistarh. Inducing and exploiting acti-572 vation sparsity for fast inference on deep neural networks. In ICML, volume 119 of Proceedings 573 of Machine Learning Research, pp. 5533–5543. PMLR, 2020. 574
- 575 Noam Levi, Alon Beck, and Yohai Bar-Sinai. Grokking in linear estimators - A solvable model that groks without understanding. In ICLR. OpenReview.net, 2024. 576
 - Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and Hans Peter Graf. Pruning filters for efficient convnets. In ICLR (Poster). OpenReview.net, 2017.
 - Shiwei Liu, Tianlong Chen, Xiaohan Chen, Zahra Atashgahi, Lu Yin, Huanyu Kou, Li Shen, Mykola Pechenizkiy, Zhangyang Wang, and Decebal Constantin Mocanu. Sparse training via boosting pruning plasticity with neuroregeneration. In NeurIPS, pp. 9908–9922, 2021.
- Ziming Liu, Eric J Michaud, and Max Tegmark. Omnigrok: Grokking beyond algorithmic data. In 584 The Eleventh International Conference on Learning Representations, ICLR, 2022. 585
- 586 Sheng Lu, Irina Bigoulaeva, Rachneet Sachdeva, Harish Tayyar Madabushi, and Iryna Gurevych. Are emergent abilities in large language models just in-context learning? In Lun-Wei Ku, Andre 588 Martins, and Vivek Srikumar (eds.), Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), ACL 2024, Bangkok, Thailand, August 590 11-16, 2024, pp. 5098–5139. Association for Computational Linguistics, 2024.
- Kaifeng Lyu, Jikai Jin, Zhiyuan Li, Simon Shaolei Du, Jason D. Lee, and Wei Hu. Dichotomy of 592 early and late phase implicit biases can provably induce grokking. In ICLR. OpenReview.net, 2024.

594 Seyed-Iman Mirzadeh, Keivan Alizadeh-Vahid, Sachin Mehta, Carlo C. del Mundo, Oncel Tuzel, 595 Golnoosh Samei, Mohammad Rastegari, and Mehrdad Farajtabar. Relu strikes back: Exploiting 596 activation sparsity in large language models. In ICLR. OpenReview.net, 2024. 597 Neel Nanda, Lawrence Chan, Tom Lieberum, Jess Smith, and Jacob Steinhardt. Progress measures 598 for grokking via mechanistic interpretability. In ICLR. OpenReview.net, 2023. 600 NVIDIA. Nvidia ampere architecture in-depth. https://developer.nvidia.com/blog/ 601 nvidia-ampere-architecture-in-depth/, 2020. Accessed: 2020-05-14. 602 Chris Olah, Alexander Mordvintsev, and Ludwig Schubert. Feature visualization. Distill, 2(11):e7, 603 2017. 604 605 Chris Olah, Nick Cammarata, Ludwig Schubert, Gabriel Goh, Michael Petrov, and Shan Carter. 606 Zoom in: An introduction to circuits. *Distill*, 5(3):e00024–001, 2020. 607 Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela Mishkin, 608 Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton, Fraser 609 Kelton, Luke Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul F. Christiano, Jan 610 Leike, and Ryan Lowe. Training language models to follow instructions with human feedback. 611 In NeurIPS, 2022. 612 613 John A Peacock. Two-dimensional goodness-of-fit testing in astronomy. Monthly Notices of the Royal Astronomical Society, 202(3):615–627, 1983. 614 615 Adam Pearce, Asma Ghandeharioun, Nada Hussein, Nithum Thain, Martin Wattenberg, and Lucas 616 Dixon. Do machine learning models memorize or generalize. People+ AI Research, 2023. 617 Alethea Power, Yuri Burda, Harri Edwards, Igor Babuschkin, and Vedant Misra. Grokking: Gen-618 eralization beyond overfitting on small algorithmic datasets. arXiv preprint arXiv:2201.02177, 619 2022. 620 621 Noa Rubin, Inbar Seroussi, and Zohar Ringel. Grokking as a first order phase transition in two layer 622 networks. In ICLR. OpenReview.net, 2024. 623 Rylan Schaeffer, Brando Miranda, and Sanmi Koyejo. Are emergent abilities of large language 624 models a mirage? In NeurIPS, 2023. 625 626 Wei Sun, Aojun Zhou, Sander Stuijk, Rob G. J. Wijnhoven, Andrew Nelson, Hongsheng Li, and 627 Henk Corporaal. Dominosearch: Find layer-wise fine-grained N: M sparse schemes from dense 628 neural networks. In NeurIPS, pp. 20721-20732, 2021. 629 Jiachuan Wang, Shimin Di, Lei Chen, and Charles Wang Wai Ng. Learning from emergence: A 630 study on proactively inhibiting the monosemantic neurons of artificial neural networks. In KDD, 631 pp. 3092-3103. ACM, 2024. 632 633 Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel, Barret Zoph, Sebastian Borgeaud, Dani Yo-634 gatama, Maarten Bosma, Denny Zhou, Donald Metzler, Ed H. Chi, Tatsunori Hashimoto, Oriol 635 Vinyals, Percy Liang, Jeff Dean, and William Fedus. Emergent abilities of large language models. Trans. Mach. Learn. Res., 2022, 2022. 636 637 Johannes Welbl, Nelson F. Liu, and Matt Gardner. Crowdsourcing multiple choice science questions. 638 In NUT@EMNLP, 2017. 639 Zhiwei Xu, Yutong Wang, Spencer Frei, Gal Vardi, and Wei Hu. Benign overfitting and grokking in 640 relu networks for XOR cluster data. In ICLR. OpenReview.net, 2024. 641 642 Hanqi Yan, Yanzheng Xiang, Guangyi Chen, Yifei Wang, Lin Gui, and Yulan He. Encourage or 643 inhibit monosemanticity? revisit monosemanticity from a feature decorrelation perspective, 2024. 644 URL https://arxiv.org/abs/2406.17969. 645 Aojun Zhou, Yukun Ma, Junnan Zhu, Jianbo Liu, Zhijie Zhang, Kun Yuan, Wenxiu Sun, and Hong-646 sheng Li. Learning N: M fine-grained structured sparse neural networks from scratch. In ICLR. 647 OpenReview.net, 2021.

A MOVING THRESHOLD

661 662

663 664

665

666

667

668

669

670 671 672

673 674 675

676 677

678

To enable efficient computation and capture a global impact, we maintain a moving threshold for the top-k inhibition. To be more specific, in the first several batches, we warm up the threshold τ^* by precisely calculating the k-th largest MS values and recording the mean. After the warm-up, for each incoming batch, we inhibit the neurons with MS values larger than τ^* , which is a simple element-wise comparison. To dynamically update τ^* , we record the number of inhibited neurons k^* and update it accordingly:

$$\tau^* \leftarrow \tau^* + \frac{k^* - k}{N},\tag{6}$$

This will increase τ^* if the current inhibition level is too high, which has more inhibited neurons (large k^*), and vice versa. Such a negative feedback will push $\mathbb{E}[k^*]$ to k.

B ADDITIONAL EXPERIMENT RESULTS

B.1 ADDITIONAL ANALYSIS RESULTS

679 Our experiments are conducted on the Pythia 680 models (Biderman et al., 2023) with feature dataset from Gurnee et al. (2023). We use fea-681 682 ture datasets Natural Language, Data Subset, and Code Language to validate the effective-683 ness of MS and the monosemanticity hypoth-684 esis. The statistics are given in Table 3, where 685 Size is the number of inputs in each datasets, 686

Table 3: The statistics of feature datasets.

Dataset	Size	Length	L
Natural Language	28084	512	9
Data Subset	8413	512	9
Code Language	5397	512	9

Length is the length of each input, and |L| is the number of features. For more details, please refer to Gurnee et al. (2023).

In addition to the analysis shown in Section 3, more results are given here. The Figure 7 and Figure 8 are used to verify the effectiveness of MS when applied monosemantic neurons and other neurons. The Figure 9 demonstrates the MS changes across scales and layers.

Note that though most of the results are consistent with the main text, we still want to highlight some special outliers. For example, in Figure 8(b), the 70M model on the Code dataset has a lower MS from monosemantic neurons compared with those from others.

To find out the reason, we further analyze the
probing results of these feature datasets. As in
Gurnee et al. (2023), the most monosemantic
neurons are probed based on F1 scores (using
the neuron outputs to predict feature), we dis-

Figure 10: Average F1 scores of the top-10 neurons using sparse probing (Gurnee et al., 2023).

Figure 8: Additional validation results for the effectiveness of MS in distinguishing monosemantic neurons from others.

(a) Results on Data Subset feature dataset.

Figure 9: Additional validation results support the trend of decreasing monosemanticity as model scale increases.

play the average F1 scores of the top-10 neurons in Figure 10. We find that the neurons of the
70M model have significantly lower scores on the Code Language dataset. This suggests that the
probing classifier may not be effective in detecting monosemantic neurons in the 70M model. As
a consequence, the results of 70M model on the Code Language dataset are also abnormal, such as
Figure 8(b), Figure 9(b), and Figure 4.

These patterns further emphasize the importance of reliable feature datasets. According to Figure 10, only Natural Language consistently yields high F1 scores, owing to the inherent distinguishability of different languages. In contrast, when we inspect the results for Code Language with 9 features, 37 neurons have F1 scores > 0.9, with 21 (approximately 57%) being Python-related, while none are associated with HTML or XML. This disparity suggests either a biased distribution of the model's capabilities or a weakness in the feature dataset. In our analysis of inhibition levels (Figure 6 on Natural Language), a 1% inhibition on the 70M model leads to a False Killing Rate of 5.2%. However, when we examine the other two datasets, the FKR rises to 21.8% for Data Subset and even 67% for Code Language, failing to effectively distinguish monosemanticity for analysis. To further boost the study of monosemanticity, high-quality feature datasets are essential.

Figure 11: The False Killing Rate (FKR) varies across different layers in the Pythia models (Biderman et al., 2023) when the inhibition level is set to 2%. Larger models, represented by deeper colors, and middle layers exhibit higher FKR, suggesting they are more polysemantic.

Table 4: The results of applying L2E to 2 middle layers of each Pythia models with different levelsof inhibition. The best results are in **bold** font where the second best are with <u>underline</u>.

Setting		0-shot				5-shot				
Datasets		ARC-C	PIQA	SciQ	\uparrow	ARC-C	PIQA	SciQ	\uparrow	
	Pythia	0.1706	0.5887	0.6430	-	0.1834	0.5843	0.4050	-	
70M	L2E-1%	0.1903	0.5947	0.6750	4.1%	0.1869	0.5979	0.4350	4.0%	
	L2E-2%	0.1877	0.5963	0.6510	2.3%	0.1860	0.6034	0.4380	4.7%	
	L2E-3%	0.1817	0.5849	0.6430	$\overline{0.5\%}$	0.1834	0.5892	0.4290	2.5%	
	Pythia	0.1852	0.6376	0.7400	-	0.1988	0.6415	0.4850	-	
41014	L2E-1%	0.1928	0.6425	0.7300	0.2%	0.2108	0.6464	0.4690	0.1%	
410101	L2E-2%	0.2031	0.6398	0.7470	1.7%	0.2039	0.6518	0.4870	1.3%	
	L2E-3%	0.2108	<u>0.6409</u>	0.7290	1.2%	0.2099	0.6442	0.4650	-0.5%	
2.8B	Pythia	0.2253	0.6768	0.7910	-	0.2346	0.6844	0.4810	-	
	L2E-1%	0.2295	0.6774	0.7930	0.4%	0.2321	0.6839	0.4880	0.1%	
	L2E-2%	0.2304	0.6795	0.8150	1.9%	0.2415	0.6817	0.4910	1.0%	
	L2E-3%	0.2261	0.6763	0.8130	1.3%	0.2517	0.6823	0.4910	1.8%	

B.2 ADDITIONAL VALIDATION OF MONOSEMANTICITY HYPOTHESIS

In addition to the analysis given in Subsection 3.2, we further validate the monosemanticity hypothesis by examining the False Killing Rate (FKR) across different layers in the Pythia models (Biderman et al., 2023). Using the aforementioned setting (2% of the total number of neurons in each layer), we analyze how FKR varies across layers, as shown in Figure 11. Larger models, represented by deeper blue colors, are more likely to experience false killing when inhibiting neurons. This aligns with our hypothesis that larger models are more polysemantic. Besides, middle layers exhibit higher FKR, suggesting they are more polysemantic. This coincides with their role in abstraction and reasoning. In contrast, the top and bottom layers, being closer to specific inputs and outputs, are inevitably more monosemantic.

B.3 INHIBITING DIFFERENT AMOUNT OF NEURONS

In this section, we further investigate the impact of inhibiting different amounts of neurons on model performance. We compare our default inhibition level of 2% with 1% and 3% of the total number of neurons in each layer. The results are shown in Table 4. While all settings of our methods achieve

Setting			0-sh	ot	5-shot				
Datasets		ARC-C	PIQA	SciQ	\uparrow	ARC-C	PIQA	SciQ	\uparrow
	Pythia	0.1706	0.5887	0.6430	-	0.1834	0.5843	0.4050	-
70M	Top-Bot	0.1809	0.5930	0.6530	1.8%	0.1800	0.5996	0.4300	3.1%
	Mid-1/3	0.1877	0.5963	0.6510	2.3%	0.1860	0.6034	0.4380	4.7%
	Mid-2*	0.1877	0.5963	0.6510	2.3%	0.1860	0.6034	0.4380	4.7%
	Pythia	0.1852	0.6376	0.7400	-	0.1988	0.6415	0.4850	-
41014	Top-Bot	0.2031	0.6398	0.7370	1.1%	0.2073	0.6464	0.4800	0.6%
410101	Mid-1/3	0.2108	0.6458	0.7400	2.2%	0.2125	0.6420	0.4760	0.4%
	Mid-2	0.2031	0.6398	0.7470	1.7%	0.2039	0.6518	0.4870	1.3%
	Pythia	0.2253	0.6768	0.7910	-	0.2346	0.6844	0.4810	-
2.8B	Top-Bot	0.2270	0.6806	0.7920	0.4%	0.2321	0.6866	0.5010	1.4%
	Mid-1/3	0.2253	0.6899	0.7890	0.7%	0.2381	0.6997	0.5040	3.0%
	Mid-2	0.2304	0.6795	0.8150	1.9%	0.2415	0.6817	0.4910	1.0%

Table 5: The results of applying L2E to top and bottom layers (Top-Bot), 1/3 middle layers (Mid-1/3), and 2 middle layers (Mid-2) as settings in the main experiment. The best results are in **bold** font. (*) Note that Mid-2 and Mid-1/3 are the same for 70M model with 6 layers.

better performance compared to the baseline, the 2% inhibition level yields the best results, which is consistent with the pattern found in Subsection 4.2.

Additionally, we observe that a higher level of inhibition is preferred as model scale increases.
Specifically, the 2% inhibition level is optimal for the 410M model, while 1% and 3% are best for
the 70M and 2.8B models, respectively. This aligns with our analysis in Section 3, which suggests
that larger models are more polysemantic and thus require more inhibition to improve performance.

837 B.4 EFFECTIVE IN DECREASINIG MONOSEMANTICITY

To validate our L2E indeed inhibit the monose-839 manticity, we further analyze related dynamics 840 of the Pythia models (Biderman et al., 2023) 841 with and without L2E. Ideally, L2E will re-842 sults in lower monosemanticity, thus smaller 843 MS scores. As we apply L2E in the mid-844 dle 2 layers, we inspect their threshold of top-845 2% MS, shown in Figure 12, where the upper 846 layer is denoted as "Upper" and "Lower" for 847 the lower layer.

848
849
850
850
981
982
983
984
984
984
984
984
984
984
984
984
984
984
984
984
984
984
984
984
984
984
984
984
984
984
984
984
984
984
984
984
984
984
984
984
984
984
984
984
984
984
984
984
984
984
984
984
984
984
984
984
984
984
984
984
984
984
984
984
984
984
984
984
984
984
984
984
984
984
984
984
984
984
984
984
984
984
984
984
984
984
984
984
984
984
984
984
984
984
984
984
984
984
984
984
984
984
984
984
984
984
984
984
984
984
984
984
984
984
984
984
984
984
984
984
984
984
984
984
984
984
984
984
984
984
984
984
984
984
984
984
984
984
984
984
984
984
984
984
984
984
984
984
984
984
984
984
984
984
984
984
984

Figure 12: Threshold of top-2% MS when training with and without L2E (dash lines).

observe that the monosemanticity of the Pythia models decreases as the model scale increases. This
 aligns with our hypothesis that larger models are more polysemantic.

853 854

855

827 828 829

830

831

836

838

B.5 INHIBITION ON DIFFERENT LAYERS

Our in-depth analysis of monosemanticity across layers in Section 3 and Section B.2 suggests that
 middle layers are less monosemantic. These layers are thought to handle complex reasoning by
 processing composed and abstract features. Consequently, our main experiments focus on inhibiting
 these middle layers.

To further investigate the impact of inhibiting different layers on model performance, we conducted additional empirical experiments. Three settings of L2E inhibition are tested on the Pythia models (Biderman et al., 2023): middle 2 layers (Mid-2), top and bottom layers (Top-Bot), and middle 1/3 layers (Mid-1/3). For instance, in the 24-layer 410M model, Mid-2 inhibits the 11th and 12th layers, Top-Bot inhibits the 1st and 24th layers, and Mid-1/3 inhibits the 8th to 16th layers.

Table 6: The results of L2E on ARC (Clark et al., 2018).

Setting			0-shot			5-shot	
Scales		70M	410M	2.8B	70M	410M	2.8B
Arc-Easy	Pythia L2E	0.3880 0.3813	0.4545 0.4423	0.5223 0.5042	0.3708 0.3864	0.4811 0.4798	0.5522 0.5358
Arc-Challenge	Pythia L2E	0.1706 0.1877	0.1852 0.2031	0.2304 0.2304	0.1834 0.1860	0.1988 0.2056	0.2346 0.2415

Table 7: The performance when our Moving Threshold is applied or removed (No-Thr).

Se	Setting		0-shot				5-shot				
Dat	Datasets		PIQA	SciQ	\uparrow	ARC-C	PIQA	SciQ	\uparrow		
70M	Pythia No-Thr L2E	0.1706 0.1792 0.1877	0.5887 0.5914 0.5963	0.6430 0.6430 0.6510	0.8% 2.3%	0.1834 0.1741 0.1860	0.5843 0.5925 0.6034	0.4050 0.4110 0.4380	4.1% 4.7%		
410M	Pythia No-Thr L2E	0.1852 0.2048 0.2031	0.6376 0.6360 0.6398	0.7400 0.7470 0.7470	- 1.6% 1.7%	0.1988 0.2056 0.2039	0.6415 0.6431 0.6518	0.4850 0.4730 0.4870	-0.3% 1.3%		
2.8B	Pythia No-Thr L2E	0.2253 0.2159 0.2304	0.6768 0.6866 0.6795	0.7910 0.8060 0.8150	0.9% 1.9%	0.2346 0.2406 0.2415	0.6844 0.6921 0.6817	0.4810 0.4590 0.4910	-0.6% 1.0%		

Table 5 presents our results. Consistent with our analysis, inhibiting the middle layers yields the best performance improvement, with Mid-2 and Mid-1/3 achieving the highest scores in almost all cases (except for Top-Bot with 70M on 0-shot SciQ). Mid-2 would be the more efficient setting while maintaining similar performance. However, these finding opens up intriguing points for further research. For example, given that different layers may play different roles in a model's capabilities, inhibiting specific layers might benefit particular tasks.

B.6 SOME SPECIAL RESULTS

Besides the datasets tested in the main experiments, we also obtained some noteworthy results on other datasets. ARC-Easy and ARC-Challenge are two partitions of data from (Clark et al., 2018), with ARC-Easy being the simpler set. While conducting experiments, we discovered negative results on ARC-Easy from L2E, as shown in Table 6. Interestingly, the results were remarkably consistent: L2E consistently outperformed the original model on ARC-Challenge but rarely improved on ARC-Easy. This pattern leads to a hypothesis that L2E may be more effective on more challenging tasks. This aligns with (Wang et al., 2024), which suggests that monosemanticity functions like hard mem-orization—potentially impairing performance on complex tasks while being beneficial for simpler ones. Some studies on grokking also treat memorization as a negative pattern when dealing with complex mathematical problems (Liu et al., 2022), while (Yan et al., 2024) also finds some positive impacts of monosemanticity. The potential influence of monosemanticity is still in its early stages of exploration.

B.7 ABLATION STUDY ON MOVING THRESHOLD FOR RETRIEVAL

Recall that we introduced a moving threshold to enable efficient computation and capture a global impact. As shown in Table 2, this approach nearly eliminates the additional computational cost introduced by MEmeL.

Here, we further investigate the impact of the moving threshold on model performance. We
conducted an ablation study, replacing the moving threshold with the original sorting method in
MEmeL. The results are presented in Table 7. Our moving threshold consistently outperforms the fixed threshold, likely due to its ability to obtain global statistics of monosemanticity.

Setting		0-shot				5-shot				
Datasets		ARC-C	PIQA	SciQ	\uparrow	ARC-C	PIQA	SciQ	\uparrow	
70M	Pythia RD L2E	0.1706 0.1894 0.1877	0.5887 0.5424 0.5963	0.6430 0.4460 0.6510	-16% 2.3%	0.1834 0.1928 0.1860	0.5843 0.5495 0.6034	0.4050 0.3170 0.4380	- -9.7% 4.7%	
410M	Pythia RD L2E	0.1852 0.1962 0.2031	0.6376 0.6099 0.6398	0.7400 0.6430 0.7470	- -7.3% 1.7%	0.1988 0.1809 0.2039	0.6415 0.6235 0.6518	0.4850 0.4480 0.4870	- -5.5% 1.3%	
2.8B	Pythia RD L2E	0.2253 0.2133 0.2304	0.6768 0.6513 0.6795	0.7910 0.7680 0.8150	- -3.6% 1.9%	0.2346 0.2244 0.2415	0.6844 0.6600 0.6817	0.4810 0.4670 0.4910	-3.5% 1.0%	

918 Table 8: The performance of our regularization-style inhibition compared with the Reverse Deacti-919 vation (RD) (Wang et al., 2024).

B.8 ABLATION STUDY ON THE REGULARIZATION-STYLE INHIBITION

935 To address the potential ineffectiveness of Reverse Deactivation (RD) (Wang et al., 2024) in pre-936 training, where its assumptions may not strictly hold, we proposed a regularization-style method to 937 inhibit selected monosemantic neurons. 938

In this subsection, we conducted an ablation study comparing our method with RD, with results 939 shown in Table 8. Our method outperformed RD, which is consistent with our analysis. 940

941 However, it's important to note that our current experiments only train the model for 10% of the 942 total steps, which is a setting that favors our approach. As the model becomes well-trained, RD's 943 assumptions may become valid, potentially increasing its effectiveness. The optimal selection or combination of inhibition methods remains an area for further exploration. 944

- С
- 946 947 948 949

945

934

DISCUSSION

In addition to the discussions on mechanistic interpretability, information bottleneck, existence of emergence, biological perspectives, and brain-inspired learning in Wang et al. (2024), we present further discussions on related important deep learning topics in this section.

- 950 951 952 953
- **RELATIONSHIP WITH GROKKING** C.1

954 While monosemanticity functions like rote memorization in neural networks, a phenomenon called 955 "grokking" also explores the negative impact of neuron memorization. The initial study by Power 956 et al. (2022) observed grokking in very small models, where the test loss dramatically decreased after the training loss had converged for a long time. The authors highlighted an under-explored 957 area: how neural networks generalize beyond mere memorization? Unlike studies on emergence, 958 their research meticulously examined very small models (with only 2 layers). Interestingly, their 959 analysis on algorithmic datasets aligns with our findings, hypothesizing that memorization hinders 960 more complex reasoning. 961

962 To investigate the reason of grokking, Liu et al. (2022) examines multiple datasets using models with fixed L2 norm of weight w_c . They find that a large w_c leads to poor representation and impairs 963 generalization in grokking. On the other hand, Nanda et al. (2023) focuses on the modular addi-964 tion task and reverse engineering the model weights. They summarize the training process leading 965 to grokking in 3 stages: memorization, circuit formation, and memorization component removal. 966 Notably, both papers highlight grokking's potential to aid in understanding emergence. However, 967 unlike our work, their studies were limited to very small models. 968

Subsequent research has conducted case studies to explore the benefits of grokking (Xu et al., 2024) 969 and gain deeper understanding (Rubin et al., 2024; Levi et al., 2024; Kumar et al., 2024). Notably, 970 Levi et al. (2024) raises doubts about whether the occurrence of grokking might be due to the accu-971

972 To conclude, complementing our research, grokking-related studies provide highly detailed analyses 973 of small models (Liu et al., 2022; Doshi et al., 2024; Pearce et al., 2023), similar to observing particle 974 motion through a microscope. Hopefully, these two research directions could yield discoveries 975 from different perspectives and potentially combine to further enhance model performance, such 976 as interchanging techniques for inducing grokking and emergence (Wang et al., 2024; Lyu et al., 2024). Besides, we highlight an interesting example from their experiments, where an extremely 977 small model (with only 5 neurons) is incapable of even memorizing (Pearce et al., 2023). This raises 978 a question: for current challenging tasks, where do our models stand? Are they at the stage of partial 979 memorization awaiting generalization, or have they not even reached the point of memorization? 980

981 982

C.2 RELATIONSHIP WITH SPARSITY

When we introduce the idea of inhibiting monosemanticity, many readers express concern about its influence on sparsity, which is useful for efficient computation and model compression, especially in large models. In this section, we provide a concise review of sparsity and its potential conflicts and cooperation with our proposition.

As models grow larger, researchers have observed that many weights become near-zero or insignificant, forming sparse connections between neurons (Han et al., 2015b; Li et al., 2017; Han et al., 2015a). Leveraging this sparsity, various pruning strategies for weights and neurons have been developed to compress models while maintaining performance. Although weight-based pruning is theoretically efficient (Frankle & Carbin, 2019), it presents practical challenges (Sun et al., 2021), often resulting in irregular networks that are difficult to deploy. To address this, new GPU architectures have been proposed to support sparse computation (NVIDIA, 2020), alongside methodological improvements (Zhou et al., 2021; Liu et al., 2021; Frantar & Alistarh, 2023).

995 In addition to weight sparsity, researchers also focus on activation sparsity in neural networks (Kurtz 996 et al., 2020; Akiva-Hochman et al., 2022). As discussed in Section 2, when using the ReLU acti-997 vation function, neuron outputs ≤ 0 are naturally considered inactive, creating a form of sparsity. 998 Researchers leverage this sparsity to reduce computation and enhance it further by setting values 999 below a higher threshold to 0 (Kurtz et al., 2020). Combining both weight and activation sparsity 1000 can improve model efficiency (Akiva-Hochman et al., 2022). Unlike static weight sparsity, utilizing activation sparsity requires monitoring dynamic flow (i.e., each input has a different sparsity 1001 pattern), which is more challenging and functionally similar to our L2E. 1002

In recent years, as large language models have grown, high-level designs supporting activation spar sity have emerged, such as the Mixture-of-Experts (MoE) layer (Fedus et al., 2022). While pruning
 based on activation values induces sparsity at irregular positions, MoE activates only one expert for
 each input, creating physical continuity on the GPU. This approach is more hardware-friendly and
 thus preferred in industrial pipelines.

The main conflict between sparsity and our method lies in the functional assumption of activation.
Monosemanticity forms a 1-to-1 correlation, which is considered similar to rote memorization and may hinder complex reasoning abilities. However, this 1-to-1 mapping is favored in sparsity studies.
When we reduce monosemanticity, a single input would activate multiple neurons, rendering pruning based on sparsity ineffective. If both approaches are proved valid, balancing L2E and sparsity will become a trade-off between effectiveness and efficiency.

1014 Fortunately, our current studies focus on the in-1015 hibition of extremely monosemantic neurons, 1016 which can potentially co-exist with sparsity. 1017 We demonstrate the ideal case in Figure 13, 1018 where highly monosemantic neurons are inhib-1019 ited (brown), while a large number of inactive neurons can be pruned (green) using sparsity 1020 methods. Besides, when using MoE, pruning oc-1021 curs during expert selection, while each expert 1022 can be further enhanced with our method (i.e., 1023 made more polysemantic). Additionally, the MS 1024 metric could serve as a supervisor for pruning 1025

Figure 13: Ideal distribution of neuron values. Pruning based on sparsity and inhibiting monosemanticity can coexist.

unimportant neurons to achieve sparsity. These potential collaborations await future research.