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Abstract

Reasoning is one of the fundamental human
abilities, central to problem-solving, decision-
making, and planning. With the development
of large language models (LLMs), significant
attention has been given to enhancing and un-
derstanding their reasoning capabilities. Most
existing works attempt to directly apply LLMs
to natural-language-based reasoning. However,
due to the inherent semantic ambiguity and
grammatical complexity of natural language,
LLMs often struggle with complex problems,
leading to challenges such as hallucinations and
inconsistent reasoning. Therefore, methods for
constructing formal language representations,
most of which are symbolic languages, have
emerged to obtain more reliable solutions re-
cently. In this work, we focus on symbolic
reasoning in LLMs and provide a comprehen-
sive review of the related research. This in-
cludes examining the applications of symbolic
reasoning, types of symbolic languages used,
techniques for enhancing LLMs’ symbolic rea-
soning abilities, and benchmarks employed to
evaluate their performance. Our goal is to of-
fer a thorough review of symbolic reasoning
in LLMs, highlighting key findings and chal-
lenges while providing a reference for future
research in this area.

1 Introduction

Reasoning involves deriving conclusions or solu-
tions from limited information by applying logical
analysis, pattern recognition, and knowledge inte-
gration. Researchers have found that once large lan-
guage models (LLMs) reach a certain threshold in
terms of parameters and training data, they can ex-
hibit reasoning capabilities (Wei et al., 2022), lead-
ing researchers to explore a variety of methods to
enhance the reasoning capabilities of LLMs (Zhang
et al., 2022; Yao et al., 2024; Ning et al., 2023).
However, LLMs encounter substantial challenges
in their reasoning processes, most notably the is-
sue of hallucination. This issue becomes espe-
cially prominent in complex reasoning tasks, where

LLMs may fail to account for all relevant factors,
omit key information, or fall into logical traps.

To address these challenges and further enhance
the reasoning capabilities of LLMs, researchers
have begun to explore an innovative framework
that enables LLMs to focus on question compre-
hension and symbolic representation generation,
while delegating the execution of reasoning steps
to external solvers (Olausson et al., 2023; Pan et al.,
2023; Gao et al., 2023).This approach helps allevi-
ate the limitations of LLMs in reasoning tasks by
combining the strengths of both symbolic represen-
tation and specialized solvers.

As long as LLMs generate accurate symbolic
representations, external solvers can take over and
efficiently solve complex reasoning tasks based on
these representations. This strategy not only re-
duces the burden on the language model itself but
also fully leverages the professional advantages of
the external solver in dealing with specific prob-
lems, achieving complementary advantages and
collaborative work between the two. Symbolic
language, with its precision, interpretability, and
logicality, brings significant advantages to the rea-
soning process. (Olausson et al., 2023; Lyu et al.,
2023; Chen et al., 2022) have demonstrated signifi-
cant improvements in accuracy through the imple-
mentation of symbolic reasoning approaches.

Research on LLMs reasoning has progressed sig-
nificantly, and numerous review articles have dis-
cussed it from different perspectives. Some papers
provide an overall review of reasoning tasks (Plaat
et al., 2024; Xu et al., 2025; Huang and Chang,
2022). Others focus on specific reasoning tasks
and deeply analyze the technological advancements
within particular fields (Lu et al., 2022). (Yu et al.,
2024) conducts a comprehensive review of natural
language reasoning. However, despite its poten-
tial to greatly enhance LLMs reasoning, symbolic
reasoning remains underexplored in terms of sys-
tematic review and analysis, leaving a gap in un-
derstanding its full impact and utility in complex
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Figure 1: The structure of this survey.

reasoning tasks.

To address this research gap, we present this
comprehensive survey that systematically exam-
ines the roles, mechanisms, and evolutionary tra-
jectories of symbolic language in LLMs reasoning.
As illustrated in Figure 1, we systematically orga-
nize these studies along three dimensions: tasks,
symbolic languages, and methods. Through an
extensive synthesis and forward-looking analysis
of existing research, this paper aims to establish a
clear conceptual framework and provide valuable
reference points for future researchers, thereby fa-
cilitating further advancements and breakthroughs
in the application of symbolic language for LLMs
reasoning.

2 Symbolic Languages

Symbolic languages serve as vital tools within the
realms of artificial intelligence and logic. When

faced with a variety of reasoning tasks, selecting
the appropriate symbolic language becomes partic-
ularly crucial. Below, we have summarized several
commonly used symbolic languages.

2.1 Logical Symbolic Languages

In (Newton, 1934), the language of logical symbols
is rigorously defined, encompassing both the sym-
bols themselves and the rules for their use. Com-
mon logical symbols include conjunction (A), dis-
junction (V), negation (—), and quantifiers (V, J).
These symbols form the foundation of logical ex-
pressions and, through precise rules, ensure the
rigor and consistency of logical reasoning. Com-
pared to natural language, the language of logical
symbols adheres to strict rules of reasoning. As
long as the premises are correct, it ensures that the
derivation of conclusions is error-free.

It is pointed out in (Olausson et al., 2023; Liu



et al., 2023b) that utilizing LLMs to transform
natural language into first-order logic and then
processing them with Prover9 can achieve signifi-
cant results in reasoning tasks. The programming
language Prolog, based on first-order logic and
known for its powerful logical reasoning capabili-
ties, is also widely applied in reasoning tasks (Bo-
razjanizadeh and Piantadosi, 2024; Yang et al.,
2023a; Tan et al., 2024; Wang et al., 2024c).

2.2 Programming Symbolic Languages

A programming language is a formal language
specifically designed for writing computer pro-
grams, aimed at enabling computers to execute
tasks with precision and efficiency. Today, a wide
variety of symbolic languages exist worldwide, and
they exhibit several shared traits. First, program-
ming languages establish rigorous syntactic rules.
Moreover, they commonly incorporate fundamen-
tal logical constructs, including selection and loop
structures. The advantage of programming lan-
guages lies in their comprehensive support for data
structures and efficient algorithms, enabling them
to excel at handling a wide range of complex rea-
soning tasks.

Python, renowned for its concise and clear syn-
tax and robust library support, is widely used to
address reasoning problems (Chen et al., 2022; Gao
et al., 2023; Suris et al., 2023). In the view of (Li
et al., 2024a), the capacity of LLMs to select the
best-suited programming language (such as Java,
Matlab, and others) for diverse tasks is essential,
especially since different programming languages
have their own areas of expertise.

2.3 Mathematical Symbolic Language

Mathematical Symbolic Language is the corner-
stone of mathematical expression and communi-
cation. It utilizes a standardized set of symbols
(such as 4+, —, x, +) and rules to precisely de-
scribe mathematical concepts, relationships, and
operations (Newton, 1934). Mathematical Sym-
bolic Language is characterized by its exceptional
conciseness and precision, making it highly effec-
tive in enhancing the accuracy of LLMs when tack-
ling reasoning tasks, particularly those involving
mathematical reasoning.

When faced with mathematical problems, (He-
Yueya et al., 2023; Wang et al., 2023a) advocate
LLMs should transform these problems into math-
ematical equations and subsequently solve them
using external solvers.

2.4 Others

There are other symbolic languages specifically tai-
lored for specialized domains. Answer Set Pro-
gramming (ASP) is a declarative programming
paradigm. (Yang et al., 2023c) uses prompts to
guide LLMs to convert natural language into ASP
code and then invokes a solver to obtain faithful
results. (Wang et al., 2024a) introduces DSPy to
conduct self-refinement on the prompts to better
obtain the ASP code.

Planning Domain Definition Language (PDDL)
is a formal language for describing planning prob-
lems. Proposed by (Liu et al., 2023a), the approach
uses PDDL to formally describe planning tasks and
relies on prompts to generate the problem code.
(Guan et al., 2023) takes the LLMs as an inter-
mediate layer. It also brings in human experts to
modify the generated PDDL code. The limitations
of PDDL are described by (Ishay and Lee, 2025),
who propose Action Language (AL) as a replace-
ment with clear syntactic and semantic rules for
describing and changing the state of the world.

SQL is a declarative language specifically de-
signed for managing and manipulating relational
databases, wildly used in table reasoning (Nahid
and Rafiei, 2024a; Ye et al., 2023; Cheng et al.,
2022).

3 Tasks

In this section, we will introduce LLMs reason-
ing combined with symbolic languages in different
tasks, each task with unique challenges and specific
requirements.

3.1 Logical Reasoning

Logical reasoning tasks require LLMs to derive
conclusions or verify their accuracy based on given
information, such as rules and facts (Olausson et al.,
2023). This critically depends on the LLMs’ ca-
pability to understand logical rules and conditions
while consistently upholding rigor throughout the
reasoning process. However, due to the ambigu-
ity and complexity of natural language, LLMs are
prone to generating hallucinations and errors. Sym-
bolic reasoning effectively mitigates this ambiguity
by employing precise symbolic representations and
formal rules to express concepts and relationships.
There are three main strategies used to integrate
symbolic languages into the reasoning process.
The first strategy is decomposition, which in-
volves breaking a problem into smaller subprob-
lems or dividing the reasoning process into multi-



ple steps, followed by the deployment of symbolic
languages.

(Pan et al., 2023) decomposes logical reason-
ing problems into three stages: problem formu-
lation, symbolic reasoning, and result interpreta-
tion. The framework, which integrates four mod-
ules—Translator, Planner, Solver, and Verifier—is
introduced by (Xu et al., 2024) to ensure faithful
logical reasoning.

Secondly, seeking the assistance of external tools
to solve formal symbolic expressions and having
LLMs only undertake translation tasks is also a
strategy to enhance the reliability of reasoning.
LLMs are utilized as semantic parsers by (Olaus-
son et al., 2023), converting natural language into
first-order logic and employing an external theo-
rem prover to determine the truth value of conclu-
sions. (Lyu et al., 2023) enhances the faithfulness
of Chain of Thought (CoT) by incorporating exter-
nal solvers.

Thirdly, logical expansion based on symbolic
representation provides a more complete semantic
expression, reducing the risk of semantic conver-
sion errors in LLMs (Liu et al., 2023b). (Liu et al.,
2024) utilizes LLLMs to extract sentences contain-
ing conditional reasoning relationships from the in-
put and implement logical expansion using Python.
According to (Bao et al., 2023), the Abstract Mean-
ing Representation (AMR) graph is used to carry
out logical expansion by applying the principle of
logical equivalence. Imitation learning has been
leveraged by (Tan et al., 2024) to enable LLMs to
mimic the reasoning trajectories generated by the
Prolog logic engine.

Several methods mentioned above are typi-
cally applied comprehensively in practical work
to achieve a higher level of reasoning ability.

3.2 Mathematical Reasoning

Mathematical tasks encompass a wide range of
problems, including algebra, geometry, calculus,
and more. During the reasoning process, pre-
cise analysis of mathematical conditions is essen-
tial, often accompanied by extensive computations.
This poses significant challenges to LLMs, de-
manding both strong analytical understanding and
accurate computational capabilities (Chen et al.,
2022). Therefore, a viable strategy involves direct-
ing LLMs to focus on generating symbolic repre-
sentations, such as mathematical formulations or
Python code, and utilizing these representations to
delegate specific computational tasks to external
solvers, which significantly improves the accuracy

of mathematical reasoning (Wang et al., 2023b).
Python code is generated by prompting LLMs, and
the execution of this code is used to solve prob-
lems, a method proposed by (Chen et al., 2022)
that effectively improves result accuracy.

The introduction of external solvers has effec-
tively addressed the limitations of large language
models in terms of precise computation. Currently,
the core challenge in the field of mathematical rea-
soning lies in ensuring that large language models
can accurately generate standardized symbolic ex-
pressions. Just as humans can verify the correct-
ness of their answers to mathematical problems
by substituting them back into the original ques-
tion, (Zhou et al., 2023) proposes a method called
"code-based explicit self-verification", which in-
troduces an additional verification stage. When
the verification result is "False", the model can
automatically correct the solution. Emphasizing
the importance of programming language selection,
(Li et al., 2024a) notes that different mathemati-
cal problems are best addressed by different pro-
gramming languages, thereby reducing the burden
on LLMs to generate accurate code. Mathemati-
cal equations, as highlighted by (He-Yueya et al.,
2023; Wang et al., 2023a), provide a more accurate
representation of problems and are more reliably
generated by LLMs compared to programming lan-
guages.

3.3 Table Reasoning

The task of table reasoning aims to enable mod-
els to generate corresponding results as answers
based on specific task requirements when receiving
one or more tables as input (Wang et al., 2024d).
The complexity and huge volume of information
in table reasoning may obscure key details, po-
tentially weakening the decision-making ability of
LLMs (Liu et al., 2023c¢).

To address the challenges posed by large table
data, researchers have proposed that LLMs focus
exclusively on sub-tables relevant to the problem at
hand. SQL queries are generated using LL.Ms, and
sub-tables containing only the essential information
required to answer questions or verify statements
are extracted (Nahid and Rafiei, 2024b). Similarly,
(Zhang et al., 2023) decomposes large tables into
smaller sub-tables and employs Python to perform
fine-grained splits of semantically complex rows
and columns.

When dealing with complex table-related prob-
lems that involve multiple tables, decomposing
the problem can significantly reduce the burden



on LLMs (Zhao et al., 2024). Some researchers
have adopted a hybrid approach. (Ye et al., 2023)
uses LLMs to predict the relevant row and column
indices involved in the problem and decomposed
complex problems into numerical, logically related
sub-problems. According to (Zhang et al., 2024),
complex problems are decomposed into multiple
sub-problems, symbolic language sub-tables are
generated, and the answers are integrated to derive
the results.

The structural complexity of tables has also been
addressed. (Nahid and Rafiei, 2024a) enhances
the symbolic reasoning capabilities of LLMs by
normalizing tables into relational structures that
adhere to standard paradigms.

3.4 Spatial Reasoning

Spatial reasoning is a fundamental aspect of human
cognition, enabling us to interact effectively with
our environment. It plays a crucial role in tasks that
involve understanding and reasoning about the spa-
tial relationships between objects and their move-
ments. However, spatial reasoning tasks present a
significant challenge for LLMs. It is usually hard
for LLMs to understand the complex relationship
descriptions formed by natural language in spatial
Reasoning. A common approach is to modify the
CoT with symbols. Chain-of-Symbol Prompting
has been proposed by (Hu et al., 2024a), leveraging
specific symbols to simplify the spatial-relationship
information expressed in natural language in CoT.

Modeling spatial relationships with specially de-
veloped formal expressions helps to obtain faithful
results using solvers. (Yang et al., 2023c) combines
LLMs with ASP programming. Iteratively refin-
ing the generated ASP programs and employing
the DSPy(Declarative Self-improving Language
Programs in Python) framework, (Wang et al.,
2024a) manages complex workflows and optimizes
prompts effectively.

Multi-modal methods can also enhance perfor-
mance. (Xiao et al., 2025) uses LLMs as a planner
to generate plans for problems and Multi-Modal
Large Language Model (MLLM) to invoke exter-
nal image synthesis toolkits. A visual extractor
based on a System-1-like VLM is employed, and
LLMs are used to approximate a symbolic system
with broad-coverage symbols and rational rules, as
proposed by (Wu et al., 2023).

3.5 Planning

At the heart of planning tasks is crafting a viable
path from the initial state to the goal. This involves

starting from the task’s origin and guiding the sys-
tem or environment toward the desired outcome
through a sequence of well-chosen actions. Sym-
bolic languages enable the flexible construction of
planning algorithms tailored to specific needs, al-
lowing for precise definition and optimization of
state transitions. This significantly boosts the over-
all effectiveness of planning tasks, particularly in
ensuring plans are both executable and reliable.

The approach converts natural language into
PDDL using LLMs, and then employs a planner
to generate a plan, as proposed by (Liu et al.,
2023a). (Guan et al., 2023) generates a PDDL
model through prompting and combines the PDDL
verification tool with the feedback from human do-
main experts to correct model errors. (Ishay and
Lee, 2025) points out that PDDL lacks flexibility,
and introduces Action Language (AL) BC+ for ex-
pressing more general forms of knowledge about
actions like indirect effects.

3.6 Others

Given that multi-modal reasoning tasks typically
span multiple categories discussed previously, they
cannot be strictly classified into a single specific
category. However, considering the unique advan-
tages of multi-modal reasoning in integrating het-
erogeneous information, enhancing model perfor-
mance, and simulating human multisensory cog-
nition, we provide a dedicated discussion on this
topic here. The greatest challenge in multi-modal
reasoning lies in how to efficiently integrate infor-
mation from different modalities while effectively
managing the complexity of the multi-modal rea-
soning process. The use of symbolic languages
offers a promising solution, as it facilitates the de-
velopment of flexible multi-modal data processing
frameworks. These frameworks enable seamless
interaction and collaborative cooperation among
different modalities, thereby enhancing the overall
reasoning capabilities.

(Gupta and Kembhavi, 2023) addresses complex
tasks by decomposing them into multiple modules,
each processed using visual models, Python, and
other tools. Prompts are utilized to guide the LLMs
in generating Python code, and existing visual mod-
els are directly invoked to facilitate the reasoning
process, as described in (Subramanian et al., 2023).
(Surfs et al., 2023) opts for customizing APIs to
more precisely assist Python code in calling visual
models, thereby optimizing for specific require-
ments. The field is advanced by the development
of an efficient model specifically designed for vi-



sual reasoning using symbolic language, and by
employing knowledge distillation techniques, as
presented in (Hu et al., 2024b).

4 Datasets and Benchmarks

In this section, we summarize the datasets and
benchmarks (see details in Table 1) used to evaluate
the symbolic reasoning capabilities of LLMs.

Arithmetic Reasoning. The data of arithmetic
reasoning consists of problem descriptions, ratio-
nales, and answers. GSM8K (Cobbe et al., 2021)
contains approximately 8500 primary-school-level
math word problems and is used to evaluate a
model’s multi-step arithmetic reasoning ability.
Math (Hendrycks et al., 2021) includes various
mathematical problems, and it is used to evaluate a
model’s arithmetic reasoning and problem-solving
skills. AQuA (Ling et al., 2017) contains multiple-
choice math reasoning questions and detailed expla-
nations. SVAMP (Patel et al., 2021) is a collection
of basic math problems with diverse expressions.
ASDiv (Miao et al., 2020) contains a large num-
ber of primary-school-level math division word
problems with different numbers of operation steps
and varying levels of difficulty. MAWPS (Koncel-
Kedziorski et al., 2016) is a benchmark that con-
tains various math word problems and their solu-
tions. ALGEBRA (He-Yueya et al., 2023) mainly
focuses on algebraic problems.

Logical Reasoning. The data of logical reason-
ing includes problem scenarios or premise informa-
tion, conclusions or questions, as well as annotation
information used to evaluate the model’s output.
ProofWriter (Tafjord et al., 2020) is a synthetic
dataset dedicated to multi-step logical reasoning.
PrOntoQA (Saparov and He, 2022) is a logical
reasoning dataset constructed based on formal on-
tology structures. FOLIO (Han et al., 2022) is a
natural language inference benchmark constructed
based on first-order logic. AR-LSAT (Zhong
et al., 2022) serves as a benchmark formulated
around the analytical reasoning questions of the
Law School Admission Test. LogiQA (Liu et al.,
2020) is a logical reasoning question-answering
dataset constructed based on legal and daily sce-
narios. CLUTRR (Sinha et al., 2019) is a dataset
built around the synthetic kinship relation reason-
ing tasks.

Table Reasoning. The data of the table rea-
soning consists of tables, questions, and answers.
WikiTQ (Pasupat and Liang, 2015) is constructed
from Wikipedia tables. FetaQA (Nan et al.,
2022) is built based on multi-source factual ta-

bles. TabFact (Chen et al., 2020) is a fact-checking
dataset constructed from Wikipedia tables. Wik-
iSQL (Zhong et al., 2017) is a large-scale text-to-
SQL dataset built upon Wikipedia tables.

Spatial Reasoning. The data format of the spa-
tial reasoning dataset is composed of scene descrip-
tions, questions, and answers. StepGame (Shi et al.,
2022) is designed to test the ability to multi-hop
spatial reasoning, SparTUN (Mirzaee and Kord-
jamshidi, 2022) is built upon the NLVR (Natural
Language for Visual Reasoning) images.

Others. Some other benchmarks contain tasks
from multiple domains and can test the compre-
hensive performance of LLMs. BIG-bench (Sri-
vastava et al., 2022) encompasses over 200 tasks
designed to test various reasoning capabilities of
LLMs. Some benchmarks are designed for testing
the performance of the framework they proposed to
solve some real-world problems (Hu et al., 2023).
There are corresponding datasets available for test-
ing some works that apply VLMs (Goyal et al.,
2017).

5 Methods

Leveraging LLMs to conduct reasoning tasks di-
rectly is subpar. Past work has employed sev-
eral methods to enhance the reasoning capabili-
ties of LLMs. In general, they mainly adopt one
of three methods: fine-tuning, prompting, and hy-
brid methods. The main processes of enhancing
LLMs with symbolic reasoning through prompting
and fine-tuning are shown in Figure 2. The hybrid
method incorporates fine-tuning and prompting as
sub-structures to form the overall framework.

5.1 Fine-tuning

Fine-tuning refers to further training the model on
the basis of the pre-trained model by using the
data of specific reasoning tasks to better adapt
it to specific scenarios. Developing a symbolic
reasoning-enhanced dataset to fine-tune LLMs al-
lows the model to focus on the characteristics of
reasoning tasks and learn corresponding behav-
ioral patterns. THOUGHT-LIKE-PRO is proposed,
where LLMs are fine-tuned with datasets verified
by the Prolog engine (Tan et al., 2024). A high-
quality dataset has been constructed by (Wang et al.,
2023b) to improve the mathematical reasoning abil-
ity of LLMs through customizing supervised fine-
tuning methods. In (Yang et al., 2023b), a dataset
constructed from diverse sentence-level NL-FOL
pairs is designed to fine-tune LLMs for the transla-
tion task from natural language (NL) to first-order



Domains Benchmarks Size Citations
Arithmetic Reasoning GSMS8K (Cobbe et al., 2021) 8.5K (Borazjanizadeh and Piantadosi, 2024; Lyu et al., 2023; Chen et al., 2022; Gao et al., 2023)
Math (Hendrycks et al., 2021) 12.5K (Zhou et al., 2023; Wang et al., 2023b; Li et al., 2024a; Tan et al., 2024)
AQuA (Ling et al., 2017) 100K (Lyu et al., 2023; Chen et al., 2022; Leang et al., 2024)
SVAMP (Patel et al., 2021) 1K (Lyu et al., 2023; Chen et al., 2022; Gao et al., 2023; Leang et al., 2024)
ASDiv (Miao et al., 2020) 2305 (Lyu et al., 2023; Gao et al., 2023)
MAWPS (Koncel-Kedziorski et al., 2016) 3320 (Gao et al., 2023)
ALGEBRA (He-Yueya et al., 2023) 222 (He-Yueya et al., 2023; Wang et al., 2023a)
Logical Reasoning ProofWriter (Tafjord et al., 2020) 500K (Yang et al., 2023a; Lee and Hwang, 2024; Pan et al., 2023; Xu et al., 2024)
PrOntoQA (Saparov and He, 2022) 10K (Pan et al., 2023; Xu et al., 2024; Tan et al., 2024)
FOLIO (Han et al., 2022) 1435 (Li et al., 2024b; Kalyanpur et al., 2024; Liu et al., 2024)
AR-LSAT (Zhong et al., 2022) 2046 (Pan et al., 2023; Xu et al., 2024; Wang et al., 2024b)
LogiQA (Liu et al., 2020) 8678 (Liu et al., 2024; Li et al., 2024b; Bao et al., 2023)
CLUTRR (Sinha et al., 2019) 10K (Ye et al., 2024; Yang et al., 2023c)
Table Reasoning ‘WikiTQ (Pasupat and Liang, 2015) 22033 (Zhang et al., 2023; Nahid and Rafiei, 2024b; Mouravieff et al., 2024; Cheng et al., 2022; Zhang et al., 2024)
FetaQA (Nan et al., 2022) 10K (Ye et al., 2023; Zhang et al., 2023; Nahid and Rafiei, 2024b)
TabFact (Chen et al., 2020) 117854 (Ye et al., 2023; Nahid and Rafiei, 2024b; Wang et al., 2024d; Cheng et al., 2022; Zhang et al., 2024)
WikiSQL (Zhong et al., 2017) 80654 (Nahid and Rafiei, 2024b)
Spatial Reasoning StepGame (Shi et al., 2022) 6.1K (Wang et al., 2024a; Yang et al., 2023c)
SparTUN (Mirzaee and Kordjamshidi, 2022) ‘ 50K ‘ (Wang et al., 2024a)
Others BIG-bench (Srivastava et al., 2022) - (Borazjanizadeh and Piantadosi, 2024; Gao et al., 2023; Li et al., 2023)
Fruit Shop (Hu et al., 2023) 70 (Hu et al., 2023)
VQAV2 (Goyal et al., 2017) 1105904 (Hu et al., 2024b)

Table 1: Common datasets and benchmarks used to evaluate the symbolic reasoning capabilities of LLMs. We
classify these datasets into different domains, marked their sizes, and noted some representative works that used

them for evaluation.

logic (FOL). (Xu et al., 2023) designs a 2-stage
fine-tuning framework aiming at improving the bal-
anced capabilities of LLMs in symbolic tasks and
natural language tasks.

5.2 Prompting

Prompting methods in Large Language Models
(LLMs) encompass a range of techniques for craft-
ing specialized input prompts that direct the model
to produce outputs aligned with users’ specifica-
tions. LLMs can utilize prompting strategies to gen-
erate diverse symbolic languages, which are then
processed by external solvers to execute reason-
ing tasks, thereby enhancing overall accuracy. A
natural idea is to incorporate symbolic expressions
into the Chain of Thought (CoT) prompts, guid-
ing the LLMs to generate symbolic language step
by step, which does not require extensive model
training. A method of optimizing the prompts of
the original CoT has been raised by (Lyu et al.,
2023). They decompose the original problems into
subproblems and generate more refined prompts
consisting of natural language and symbolic lan-
guage. For (Olausson et al., 2023), the prompt
requires the LLMs to convert the premises and con-
clusions into FOL expressions to obtain a formal
representation. The prompt of (Gao et al., 2023)
consists of a natural-language question and interme-
diate reasoning steps combined with programming
symbolic language. (Yang et al., 2023c) designs
the prompt used to guide the LLMs to convert nat-
ural language into atomic facts as symbols that are
suitable for ASP reasoning. (Hu et al., 2024a) con-
structs prompt through self-refinement with objects

and symbols.

5.3 Hybrid Methods

The fine-tuning method requires a carefully de-
signed dataset which consumes substantial time
and expenses. In addition, the fine-tuning approach
usually focuses on specific tasks, which limits the
generalization ability. Leveraging prompts can
guide LLMs in generating optimized rationales.
However, this approach does not improve the ac-
tual capability of LLMs.

The hybrid method integrates their advantages,
enhancing the performance of LLMs while en-
abling them to generate better rationales and an-
swers. (Bao et al., 2023) first adopts Abstract Mean-
ing Representation-Based Logic-Driven Data Aug-
mentation (AMR-LDA) to generate diverse sym-
bolic logical expressions. Then they use Logical-
Equivalence-Identification Contrastive Learning
and fine-tuning methods for discriminative LLMs
and prompts for generative LLMs based on the aug-
mented expressions. A framework for guiding the
generation of LLMs code/text is proposed by (Chen
et al., 2025). They fine-tune a guiding model called
CodeSteerLLM and introduce a symbolic checker
and a self-answer checker (prompting method) to
conduct multi-round interactions with a TaskLLM.

6 Future Directions

Customized Symbolic Languages and Solvers.
Recent research relies mainly on existing formal
symbolic languages to assist in reasoning, without
innovating the grammar for specific tasks (Olaus-
son et al., 2023; Yang et al., 2023c; Liu et al,,
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Figure 2: The main processes of enhancing the symbolic reasoning performance of LLMs through prompting and
fine-tuning. The parts enclosed by dashed lines represent the special designs of some works.

2023a). However, these existing formal symbolic
languages cannot fully cover all application scenar-
ios in the real world (Ishay and Lee, 2025) and are
unable to entirely meet the requirements. There-
fore, customizing language parsers and related sym-
bolic grammar according to application scenarios
may be the focus of future work.

Multilingual Symbolic Languages Integration.
Reasoning tasks are inherently complex and typi-
cally cannot be effectively addressed using a sin-
gle language alone. (Li et al., 2024a; Pan et al.,
2023) advocate for the use of different symbolic
languages tailored to various tasks. However, in
addressing specific problems, they predominantly
rely on a single symbolic language, which indicates
that the integration between different symbolic lan-
guages remains relatively superficial. In contrast,
(Zhang et al., 2023) demonstrates a more integrated
approach by utilizing both Python and SQL for
solving tabular problems. We encourage future
research to explore more effective multi-language
integration strategies across a broader range of rea-
soning tasks, leveraging the strengths of multiple
symbolic languages to enhance the reasoning capa-
bilities of LLMs.

Inherent Structured Languages for LLMs.
When leveraging symbolic languages for reasoning
in LLMs, many errors stem from how these models
generate task-specific symbolic expressions. Vari-

ous solutions have been proposed—such as using
execution feedback, human-like debugging (Zhong
et al., 2024), and strategies that avoid generat-
ing entire code segments in one go (Zhou et al.,
2023)—yet none fully resolve the problem. The ap-
peal of symbolic languages lies in their structured
and rigorous nature. We encourage researchers to
explore alternatives that either replace symbolic
languages altogether or imbue LLMs with inherent
structured and rigorous reasoning capabilities.

7 Conclusion

In this paper, we conduct a systematic and detailed
review of the symbolic reasoning tasks in large
language models. We illustrate the applications
of LLLMs symbolic reasoning in different reason-
ing tasks, summarize the types of symbolic lan-
guages used in reasoning, discuss the techniques
for enhancing and eliciting the symbolic reasoning
capabilities of LLMs, as well as the benchmarks
employed to evaluate and analyze the symbolic
reasoning abilities of LLMs. We also discuss the
promising future directions of symbolic reasoning.
We hope that this paper can offer a comprehen-
sive and valuable overview of the present status of
the field and facilitate further advancements in the
application of symbolic language for LLM reason-

ing.



8 Limitations

While this survey aims to provide a comprehensive
overview of the integration of symbolic reason-
ing with large language models (LLMs), it has its
limitations, which we acknowledge to provide a
balanced perspective on our work.

First, the field of enhancing LLMs with sym-
bolic reasoning is evolving at an unprecedented
pace. New methodologies, frameworks, and ap-
plications are being published frequently, making
it challenging to capture the most recent advance-
ments. Despite our rigorous efforts to include the
latest research up to the submission deadline, some
cutting-edge developments may have emerged dur-
ing the final stages of this survey’s preparation.

Second, in an effort to provide a broad overview
of the field, this survey categorizes the research
from three perspectives: tasks, symbolic methods,
and languages. While this approach offers a struc-
tured framework for understanding the landscape,
the breadth of coverage inevitably comes at the
expense of depth in certain areas. Some technical
nuances, domain-specific challenges, and emerging
sub-fields may have been underexplored or over-
simplified.

Finally, the majority of reasoning benchmarks
are collected and categorized from the experimental
sections of mainstream industry works, potentially
leading to insufficient coverage of niche or domain-
specific reasoning tasks.

Despite these limitations, we believe this survey
provides a valuable foundation for understanding
the current state of research and identifying future
directions in symbolic reasoning with LLMs. We
encourage researchers to build upon this work and
address the gaps identified here to further advance
the field.
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