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Abstract001

Reasoning is one of the fundamental human002
abilities, central to problem-solving, decision-003
making, and planning. With the development004
of large language models (LLMs), significant005
attention has been given to enhancing and un-006
derstanding their reasoning capabilities. Most007
existing works attempt to directly apply LLMs008
to natural-language-based reasoning. However,009
due to the inherent semantic ambiguity and010
grammatical complexity of natural language,011
LLMs often struggle with complex problems,012
leading to challenges such as hallucinations and013
inconsistent reasoning. Therefore, methods for014
constructing formal language representations,015
most of which are symbolic languages, have016
emerged to obtain more reliable solutions re-017
cently. In this work, we focus on symbolic018
reasoning in LLMs and provide a comprehen-019
sive review of the related research. This in-020
cludes examining the applications of symbolic021
reasoning, types of symbolic languages used,022
techniques for enhancing LLMs’ symbolic rea-023
soning abilities, and benchmarks employed to024
evaluate their performance. Our goal is to of-025
fer a thorough review of symbolic reasoning026
in LLMs, highlighting key findings and chal-027
lenges while providing a reference for future028
research in this area.029

1 Introduction030

Reasoning involves deriving conclusions or solu-031

tions from limited information by applying logical032

analysis, pattern recognition, and knowledge inte-033

gration. Researchers have found that once large lan-034

guage models (LLMs) reach a certain threshold in035

terms of parameters and training data, they can ex-036

hibit reasoning capabilities (Wei et al., 2022), lead-037

ing researchers to explore a variety of methods to038

enhance the reasoning capabilities of LLMs (Zhang039

et al., 2022; Yao et al., 2024; Ning et al., 2023).040

However, LLMs encounter substantial challenges041

in their reasoning processes, most notably the is-042

sue of hallucination. This issue becomes espe-043

cially prominent in complex reasoning tasks, where044

LLMs may fail to account for all relevant factors, 045

omit key information, or fall into logical traps. 046

To address these challenges and further enhance 047

the reasoning capabilities of LLMs, researchers 048

have begun to explore an innovative framework 049

that enables LLMs to focus on question compre- 050

hension and symbolic representation generation, 051

while delegating the execution of reasoning steps 052

to external solvers (Olausson et al., 2023; Pan et al., 053

2023; Gao et al., 2023).This approach helps allevi- 054

ate the limitations of LLMs in reasoning tasks by 055

combining the strengths of both symbolic represen- 056

tation and specialized solvers. 057

As long as LLMs generate accurate symbolic 058

representations, external solvers can take over and 059

efficiently solve complex reasoning tasks based on 060

these representations. This strategy not only re- 061

duces the burden on the language model itself but 062

also fully leverages the professional advantages of 063

the external solver in dealing with specific prob- 064

lems, achieving complementary advantages and 065

collaborative work between the two. Symbolic 066

language, with its precision, interpretability, and 067

logicality, brings significant advantages to the rea- 068

soning process. (Olausson et al., 2023; Lyu et al., 069

2023; Chen et al., 2022) have demonstrated signifi- 070

cant improvements in accuracy through the imple- 071

mentation of symbolic reasoning approaches. 072

Research on LLMs reasoning has progressed sig- 073

nificantly, and numerous review articles have dis- 074

cussed it from different perspectives. Some papers 075

provide an overall review of reasoning tasks (Plaat 076

et al., 2024; Xu et al., 2025; Huang and Chang, 077

2022). Others focus on specific reasoning tasks 078

and deeply analyze the technological advancements 079

within particular fields (Lu et al., 2022). (Yu et al., 080

2024) conducts a comprehensive review of natural 081

language reasoning. However, despite its poten- 082

tial to greatly enhance LLMs reasoning, symbolic 083

reasoning remains underexplored in terms of sys- 084

tematic review and analysis, leaving a gap in un- 085

derstanding its full impact and utility in complex 086
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Enhancing LLMs with
Symbolic Reasoning

Symbolic Languages
(Sec. 2)

Logical Symbolic
Languages (Sec. 2.1)

(Borazjanizadeh and Piantadosi, 2024) (Yang et al., 2023a)
LINC (Olausson et al., 2023) ChatLogic (Wang et al., 2024c)
THOUGHT-LIKE-PRO (Tan et al., 2024)
LogiCoT (Liu et al., 2023b)

Programming Symbolic
Languages (Sec. 2.2)

POT (Chen et al., 2022) Pal (Gao et al., 2023)
ViperGPT (Surís et al., 2023) MultiLingPoT (Li et al., 2024a)

Mathematical Symbolic
Language (Sec. 2.3)

(He-Yueya et al., 2023) (Wang et al., 2023a)

Others (Sec. 2.4)

BINDER (Cheng et al., 2022) (Wang et al., 2024a)
LLM+P (Liu et al., 2023a) (Guan et al., 2023)
LLM+AL (Ishay and Lee, 2025) (Ye et al., 2023)
NormTab (Nahid and Rafiei, 2024a) (Yang et al., 2023c)

Tasks (Sec. 3)

Logical Reasoning
(Sec. 3.1)

LINC (Olausson et al., 2023) Logic-LM (Pan et al., 2023)
SymbCOT (Xu et al., 2024) Faithful CoT (Lyu et al., 2023)
THOUGHT-LIKE-PRO (Tan et al., 2024)
SatLM (Ye et al., 2024) (Wang et al., 2023c)

Mathematical Reasoning
(Sec. 3.2)

MultiLingPoT (Li et al., 2024a) (Zhou et al., 2023)
MathCoder (Wang et al., 2023b) POT (Chen et al., 2022)
(He-Yueya et al., 2023) (Wang et al., 2023a)

Table Reasoning
(Sec. 3.3)

ReAcTable (Zhang et al., 2023) TaPERA (Zhao et al., 2024)
TabSQLify (Nahid and Rafiei, 2024b) (Ye et al., 2023)
Alter (Zhang et al., 2024) NormTab (Nahid and Rafiei, 2024a)

Spatial Reasoning
(Sec. 3.4)

(Yang et al., 2023c) (Wang et al., 2024a) (Wu et al., 2023)
VAP (Xiao et al., 2025) CoS (Hu et al., 2024a)

Planning (Sec. 3.5)
LLM+P (Liu et al., 2023a) (Guan et al., 2023)
LLM+AL (Ishay and Lee, 2025)

Others (Sec. 3.6)
VISPROG (Gupta and Kembhavi, 2023)
CodeVQA (Subramanian et al., 2023)
ViperGPT (Surís et al., 2023) VPD (Hu et al., 2024b)

Methods (Sec. 5)

Fine-tuning (Sec. 5.1)
THOUGHT-LIKE-PRO (Tan et al., 2024) (Yang et al., 2023b)
MathCoder (Wang et al., 2023b) Symbol-LLM (Xu et al., 2023)

Prompting (Sec. 5.2)
(Yang et al., 2023c) Faithful CoT (Lyu et al., 2023)
LINC (Olausson et al., 2023) Pal (Gao et al., 2023)
CoS (Hu et al., 2024a) (Chae et al., 2024)

Hybrid Method
(Sec. 5.3)

AMR-LDA (Bao et al., 2023) CodeSteer (Chen et al., 2025)

Figure 1: The structure of this survey.

reasoning tasks.087

To address this research gap, we present this088

comprehensive survey that systematically exam-089

ines the roles, mechanisms, and evolutionary tra-090

jectories of symbolic language in LLMs reasoning.091

As illustrated in Figure 1, we systematically orga-092

nize these studies along three dimensions: tasks,093

symbolic languages, and methods. Through an094

extensive synthesis and forward-looking analysis095

of existing research, this paper aims to establish a096

clear conceptual framework and provide valuable097

reference points for future researchers, thereby fa-098

cilitating further advancements and breakthroughs099

in the application of symbolic language for LLMs100

reasoning.101

2 Symbolic Languages102

Symbolic languages serve as vital tools within the103

realms of artificial intelligence and logic. When104

faced with a variety of reasoning tasks, selecting 105

the appropriate symbolic language becomes partic- 106

ularly crucial. Below, we have summarized several 107

commonly used symbolic languages. 108

2.1 Logical Symbolic Languages 109

In (Newton, 1934), the language of logical symbols 110

is rigorously defined, encompassing both the sym- 111

bols themselves and the rules for their use. Com- 112

mon logical symbols include conjunction (∧), dis- 113

junction (∨), negation (¬), and quantifiers (∀, ∃). 114

These symbols form the foundation of logical ex- 115

pressions and, through precise rules, ensure the 116

rigor and consistency of logical reasoning. Com- 117

pared to natural language, the language of logical 118

symbols adheres to strict rules of reasoning. As 119

long as the premises are correct, it ensures that the 120

derivation of conclusions is error-free. 121

It is pointed out in (Olausson et al., 2023; Liu 122
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et al., 2023b) that utilizing LLMs to transform123

natural language into first-order logic and then124

processing them with Prover9 can achieve signifi-125

cant results in reasoning tasks. The programming126

language Prolog, based on first-order logic and127

known for its powerful logical reasoning capabili-128

ties, is also widely applied in reasoning tasks (Bo-129

razjanizadeh and Piantadosi, 2024; Yang et al.,130

2023a; Tan et al., 2024; Wang et al., 2024c).131

2.2 Programming Symbolic Languages132

A programming language is a formal language133

specifically designed for writing computer pro-134

grams, aimed at enabling computers to execute135

tasks with precision and efficiency. Today, a wide136

variety of symbolic languages exist worldwide, and137

they exhibit several shared traits. First, program-138

ming languages establish rigorous syntactic rules.139

Moreover, they commonly incorporate fundamen-140

tal logical constructs, including selection and loop141

structures. The advantage of programming lan-142

guages lies in their comprehensive support for data143

structures and efficient algorithms, enabling them144

to excel at handling a wide range of complex rea-145

soning tasks.146

Python, renowned for its concise and clear syn-147

tax and robust library support, is widely used to148

address reasoning problems (Chen et al., 2022; Gao149

et al., 2023; Surís et al., 2023). In the view of (Li150

et al., 2024a), the capacity of LLMs to select the151

best-suited programming language (such as Java,152

Matlab, and others) for diverse tasks is essential,153

especially since different programming languages154

have their own areas of expertise.155

2.3 Mathematical Symbolic Language156

Mathematical Symbolic Language is the corner-157

stone of mathematical expression and communi-158

cation. It utilizes a standardized set of symbols159

(such as +, −, ×, ÷) and rules to precisely de-160

scribe mathematical concepts, relationships, and161

operations (Newton, 1934). Mathematical Sym-162

bolic Language is characterized by its exceptional163

conciseness and precision, making it highly effec-164

tive in enhancing the accuracy of LLMs when tack-165

ling reasoning tasks, particularly those involving166

mathematical reasoning.167

When faced with mathematical problems, (He-168

Yueya et al., 2023; Wang et al., 2023a) advocate169

LLMs should transform these problems into math-170

ematical equations and subsequently solve them171

using external solvers.172

2.4 Others 173

There are other symbolic languages specifically tai- 174

lored for specialized domains. Answer Set Pro- 175

gramming (ASP) is a declarative programming 176

paradigm. (Yang et al., 2023c) uses prompts to 177

guide LLMs to convert natural language into ASP 178

code and then invokes a solver to obtain faithful 179

results. (Wang et al., 2024a) introduces DSPy to 180

conduct self-refinement on the prompts to better 181

obtain the ASP code. 182

Planning Domain Definition Language (PDDL) 183

is a formal language for describing planning prob- 184

lems. Proposed by (Liu et al., 2023a), the approach 185

uses PDDL to formally describe planning tasks and 186

relies on prompts to generate the problem code. 187

(Guan et al., 2023) takes the LLMs as an inter- 188

mediate layer. It also brings in human experts to 189

modify the generated PDDL code. The limitations 190

of PDDL are described by (Ishay and Lee, 2025), 191

who propose Action Language (AL) as a replace- 192

ment with clear syntactic and semantic rules for 193

describing and changing the state of the world. 194

SQL is a declarative language specifically de- 195

signed for managing and manipulating relational 196

databases, wildly used in table reasoning (Nahid 197

and Rafiei, 2024a; Ye et al., 2023; Cheng et al., 198

2022). 199

3 Tasks 200

In this section, we will introduce LLMs reason- 201

ing combined with symbolic languages in different 202

tasks, each task with unique challenges and specific 203

requirements. 204

3.1 Logical Reasoning 205

Logical reasoning tasks require LLMs to derive 206

conclusions or verify their accuracy based on given 207

information, such as rules and facts (Olausson et al., 208

2023). This critically depends on the LLMs’ ca- 209

pability to understand logical rules and conditions 210

while consistently upholding rigor throughout the 211

reasoning process. However, due to the ambigu- 212

ity and complexity of natural language, LLMs are 213

prone to generating hallucinations and errors. Sym- 214

bolic reasoning effectively mitigates this ambiguity 215

by employing precise symbolic representations and 216

formal rules to express concepts and relationships. 217

There are three main strategies used to integrate 218

symbolic languages into the reasoning process. 219

The first strategy is decomposition, which in- 220

volves breaking a problem into smaller subprob- 221

lems or dividing the reasoning process into multi- 222
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ple steps, followed by the deployment of symbolic223

languages.224

(Pan et al., 2023) decomposes logical reason-225

ing problems into three stages: problem formu-226

lation, symbolic reasoning, and result interpreta-227

tion. The framework, which integrates four mod-228

ules—Translator, Planner, Solver, and Verifier—is229

introduced by (Xu et al., 2024) to ensure faithful230

logical reasoning.231

Secondly, seeking the assistance of external tools232

to solve formal symbolic expressions and having233

LLMs only undertake translation tasks is also a234

strategy to enhance the reliability of reasoning.235

LLMs are utilized as semantic parsers by (Olaus-236

son et al., 2023), converting natural language into237

first-order logic and employing an external theo-238

rem prover to determine the truth value of conclu-239

sions. (Lyu et al., 2023) enhances the faithfulness240

of Chain of Thought (CoT) by incorporating exter-241

nal solvers.242

Thirdly, logical expansion based on symbolic243

representation provides a more complete semantic244

expression, reducing the risk of semantic conver-245

sion errors in LLMs (Liu et al., 2023b). (Liu et al.,246

2024) utilizes LLMs to extract sentences contain-247

ing conditional reasoning relationships from the in-248

put and implement logical expansion using Python.249

According to (Bao et al., 2023), the Abstract Mean-250

ing Representation (AMR) graph is used to carry251

out logical expansion by applying the principle of252

logical equivalence. Imitation learning has been253

leveraged by (Tan et al., 2024) to enable LLMs to254

mimic the reasoning trajectories generated by the255

Prolog logic engine.256

Several methods mentioned above are typi-257

cally applied comprehensively in practical work258

to achieve a higher level of reasoning ability.259

3.2 Mathematical Reasoning260

Mathematical tasks encompass a wide range of261

problems, including algebra, geometry, calculus,262

and more. During the reasoning process, pre-263

cise analysis of mathematical conditions is essen-264

tial, often accompanied by extensive computations.265

This poses significant challenges to LLMs, de-266

manding both strong analytical understanding and267

accurate computational capabilities (Chen et al.,268

2022). Therefore, a viable strategy involves direct-269

ing LLMs to focus on generating symbolic repre-270

sentations, such as mathematical formulations or271

Python code, and utilizing these representations to272

delegate specific computational tasks to external273

solvers, which significantly improves the accuracy274

of mathematical reasoning (Wang et al., 2023b). 275

Python code is generated by prompting LLMs, and 276

the execution of this code is used to solve prob- 277

lems, a method proposed by (Chen et al., 2022) 278

that effectively improves result accuracy. 279

The introduction of external solvers has effec- 280

tively addressed the limitations of large language 281

models in terms of precise computation. Currently, 282

the core challenge in the field of mathematical rea- 283

soning lies in ensuring that large language models 284

can accurately generate standardized symbolic ex- 285

pressions. Just as humans can verify the correct- 286

ness of their answers to mathematical problems 287

by substituting them back into the original ques- 288

tion, (Zhou et al., 2023) proposes a method called 289

"code-based explicit self-verification", which in- 290

troduces an additional verification stage. When 291

the verification result is "False", the model can 292

automatically correct the solution. Emphasizing 293

the importance of programming language selection, 294

(Li et al., 2024a) notes that different mathemati- 295

cal problems are best addressed by different pro- 296

gramming languages, thereby reducing the burden 297

on LLMs to generate accurate code. Mathemati- 298

cal equations, as highlighted by (He-Yueya et al., 299

2023; Wang et al., 2023a), provide a more accurate 300

representation of problems and are more reliably 301

generated by LLMs compared to programming lan- 302

guages. 303

3.3 Table Reasoning 304

The task of table reasoning aims to enable mod- 305

els to generate corresponding results as answers 306

based on specific task requirements when receiving 307

one or more tables as input (Wang et al., 2024d). 308

The complexity and huge volume of information 309

in table reasoning may obscure key details, po- 310

tentially weakening the decision-making ability of 311

LLMs (Liu et al., 2023c). 312

To address the challenges posed by large table 313

data, researchers have proposed that LLMs focus 314

exclusively on sub-tables relevant to the problem at 315

hand. SQL queries are generated using LLMs, and 316

sub-tables containing only the essential information 317

required to answer questions or verify statements 318

are extracted (Nahid and Rafiei, 2024b). Similarly, 319

(Zhang et al., 2023) decomposes large tables into 320

smaller sub-tables and employs Python to perform 321

fine-grained splits of semantically complex rows 322

and columns. 323

When dealing with complex table-related prob- 324

lems that involve multiple tables, decomposing 325

the problem can significantly reduce the burden 326
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on LLMs (Zhao et al., 2024). Some researchers327

have adopted a hybrid approach. (Ye et al., 2023)328

uses LLMs to predict the relevant row and column329

indices involved in the problem and decomposed330

complex problems into numerical, logically related331

sub-problems. According to (Zhang et al., 2024),332

complex problems are decomposed into multiple333

sub-problems, symbolic language sub-tables are334

generated, and the answers are integrated to derive335

the results.336

The structural complexity of tables has also been337

addressed. (Nahid and Rafiei, 2024a) enhances338

the symbolic reasoning capabilities of LLMs by339

normalizing tables into relational structures that340

adhere to standard paradigms.341

3.4 Spatial Reasoning342

Spatial reasoning is a fundamental aspect of human343

cognition, enabling us to interact effectively with344

our environment. It plays a crucial role in tasks that345

involve understanding and reasoning about the spa-346

tial relationships between objects and their move-347

ments. However, spatial reasoning tasks present a348

significant challenge for LLMs. It is usually hard349

for LLMs to understand the complex relationship350

descriptions formed by natural language in spatial351

Reasoning. A common approach is to modify the352

CoT with symbols. Chain-of-Symbol Prompting353

has been proposed by (Hu et al., 2024a), leveraging354

specific symbols to simplify the spatial-relationship355

information expressed in natural language in CoT.356

Modeling spatial relationships with specially de-357

veloped formal expressions helps to obtain faithful358

results using solvers. (Yang et al., 2023c) combines359

LLMs with ASP programming. Iteratively refin-360

ing the generated ASP programs and employing361

the DSPy(Declarative Self-improving Language362

Programs in Python) framework, (Wang et al.,363

2024a) manages complex workflows and optimizes364

prompts effectively.365

Multi-modal methods can also enhance perfor-366

mance. (Xiao et al., 2025) uses LLMs as a planner367

to generate plans for problems and Multi-Modal368

Large Language Model (MLLM) to invoke exter-369

nal image synthesis toolkits. A visual extractor370

based on a System-1-like VLM is employed, and371

LLMs are used to approximate a symbolic system372

with broad-coverage symbols and rational rules, as373

proposed by (Wu et al., 2023).374

3.5 Planning375

At the heart of planning tasks is crafting a viable376

path from the initial state to the goal. This involves377

starting from the task’s origin and guiding the sys- 378

tem or environment toward the desired outcome 379

through a sequence of well-chosen actions. Sym- 380

bolic languages enable the flexible construction of 381

planning algorithms tailored to specific needs, al- 382

lowing for precise definition and optimization of 383

state transitions. This significantly boosts the over- 384

all effectiveness of planning tasks, particularly in 385

ensuring plans are both executable and reliable. 386

The approach converts natural language into 387

PDDL using LLMs, and then employs a planner 388

to generate a plan, as proposed by (Liu et al., 389

2023a). (Guan et al., 2023) generates a PDDL 390

model through prompting and combines the PDDL 391

verification tool with the feedback from human do- 392

main experts to correct model errors. (Ishay and 393

Lee, 2025) points out that PDDL lacks flexibility, 394

and introduces Action Language (AL) BC+ for ex- 395

pressing more general forms of knowledge about 396

actions like indirect effects. 397

3.6 Others 398

Given that multi-modal reasoning tasks typically 399

span multiple categories discussed previously, they 400

cannot be strictly classified into a single specific 401

category. However, considering the unique advan- 402

tages of multi-modal reasoning in integrating het- 403

erogeneous information, enhancing model perfor- 404

mance, and simulating human multisensory cog- 405

nition, we provide a dedicated discussion on this 406

topic here. The greatest challenge in multi-modal 407

reasoning lies in how to efficiently integrate infor- 408

mation from different modalities while effectively 409

managing the complexity of the multi-modal rea- 410

soning process. The use of symbolic languages 411

offers a promising solution, as it facilitates the de- 412

velopment of flexible multi-modal data processing 413

frameworks. These frameworks enable seamless 414

interaction and collaborative cooperation among 415

different modalities, thereby enhancing the overall 416

reasoning capabilities. 417

(Gupta and Kembhavi, 2023) addresses complex 418

tasks by decomposing them into multiple modules, 419

each processed using visual models, Python, and 420

other tools. Prompts are utilized to guide the LLMs 421

in generating Python code, and existing visual mod- 422

els are directly invoked to facilitate the reasoning 423

process, as described in (Subramanian et al., 2023). 424

(Surís et al., 2023) opts for customizing APIs to 425

more precisely assist Python code in calling visual 426

models, thereby optimizing for specific require- 427

ments. The field is advanced by the development 428

of an efficient model specifically designed for vi- 429
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sual reasoning using symbolic language, and by430

employing knowledge distillation techniques, as431

presented in (Hu et al., 2024b).432

4 Datasets and Benchmarks433

In this section, we summarize the datasets and434

benchmarks (see details in Table 1) used to evaluate435

the symbolic reasoning capabilities of LLMs.436

Arithmetic Reasoning. The data of arithmetic437

reasoning consists of problem descriptions, ratio-438

nales, and answers. GSM8K (Cobbe et al., 2021)439

contains approximately 8500 primary-school-level440

math word problems and is used to evaluate a441

model’s multi-step arithmetic reasoning ability.442

Math (Hendrycks et al., 2021) includes various443

mathematical problems, and it is used to evaluate a444

model’s arithmetic reasoning and problem-solving445

skills. AQuA (Ling et al., 2017) contains multiple-446

choice math reasoning questions and detailed expla-447

nations. SVAMP (Patel et al., 2021) is a collection448

of basic math problems with diverse expressions.449

ASDiv (Miao et al., 2020) contains a large num-450

ber of primary-school-level math division word451

problems with different numbers of operation steps452

and varying levels of difficulty. MAWPS (Koncel-453

Kedziorski et al., 2016) is a benchmark that con-454

tains various math word problems and their solu-455

tions. ALGEBRA (He-Yueya et al., 2023) mainly456

focuses on algebraic problems.457

Logical Reasoning. The data of logical reason-458

ing includes problem scenarios or premise informa-459

tion, conclusions or questions, as well as annotation460

information used to evaluate the model’s output.461

ProofWriter (Tafjord et al., 2020) is a synthetic462

dataset dedicated to multi-step logical reasoning.463

PrOntoQA (Saparov and He, 2022) is a logical464

reasoning dataset constructed based on formal on-465

tology structures. FOLIO (Han et al., 2022) is a466

natural language inference benchmark constructed467

based on first-order logic. AR-LSAT (Zhong468

et al., 2022) serves as a benchmark formulated469

around the analytical reasoning questions of the470

Law School Admission Test. LogiQA (Liu et al.,471

2020) is a logical reasoning question-answering472

dataset constructed based on legal and daily sce-473

narios. CLUTRR (Sinha et al., 2019) is a dataset474

built around the synthetic kinship relation reason-475

ing tasks.476

Table Reasoning. The data of the table rea-477

soning consists of tables, questions, and answers.478

WikiTQ (Pasupat and Liang, 2015) is constructed479

from Wikipedia tables. FetaQA (Nan et al.,480

2022) is built based on multi-source factual ta-481

bles. TabFact (Chen et al., 2020) is a fact-checking 482

dataset constructed from Wikipedia tables. Wik- 483

iSQL (Zhong et al., 2017) is a large-scale text-to- 484

SQL dataset built upon Wikipedia tables. 485

Spatial Reasoning. The data format of the spa- 486

tial reasoning dataset is composed of scene descrip- 487

tions, questions, and answers. StepGame (Shi et al., 488

2022) is designed to test the ability to multi-hop 489

spatial reasoning, SparTUN (Mirzaee and Kord- 490

jamshidi, 2022) is built upon the NLVR (Natural 491

Language for Visual Reasoning) images. 492

Others. Some other benchmarks contain tasks 493

from multiple domains and can test the compre- 494

hensive performance of LLMs. BIG-bench (Sri- 495

vastava et al., 2022) encompasses over 200 tasks 496

designed to test various reasoning capabilities of 497

LLMs. Some benchmarks are designed for testing 498

the performance of the framework they proposed to 499

solve some real-world problems (Hu et al., 2023). 500

There are corresponding datasets available for test- 501

ing some works that apply VLMs (Goyal et al., 502

2017). 503

5 Methods 504

Leveraging LLMs to conduct reasoning tasks di- 505

rectly is subpar. Past work has employed sev- 506

eral methods to enhance the reasoning capabili- 507

ties of LLMs. In general, they mainly adopt one 508

of three methods: fine-tuning, prompting, and hy- 509

brid methods. The main processes of enhancing 510

LLMs with symbolic reasoning through prompting 511

and fine-tuning are shown in Figure 2. The hybrid 512

method incorporates fine-tuning and prompting as 513

sub-structures to form the overall framework. 514

5.1 Fine-tuning 515

Fine-tuning refers to further training the model on 516

the basis of the pre-trained model by using the 517

data of specific reasoning tasks to better adapt 518

it to specific scenarios. Developing a symbolic 519

reasoning-enhanced dataset to fine-tune LLMs al- 520

lows the model to focus on the characteristics of 521

reasoning tasks and learn corresponding behav- 522

ioral patterns. THOUGHT-LIKE-PRO is proposed, 523

where LLMs are fine-tuned with datasets verified 524

by the Prolog engine (Tan et al., 2024). A high- 525

quality dataset has been constructed by (Wang et al., 526

2023b) to improve the mathematical reasoning abil- 527

ity of LLMs through customizing supervised fine- 528

tuning methods. In (Yang et al., 2023b), a dataset 529

constructed from diverse sentence-level NL-FOL 530

pairs is designed to fine-tune LLMs for the transla- 531

tion task from natural language (NL) to first-order 532
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Domains Benchmarks Size Citations

Arithmetic Reasoning GSM8K (Cobbe et al., 2021) 8.5K (Borazjanizadeh and Piantadosi, 2024; Lyu et al., 2023; Chen et al., 2022; Gao et al., 2023)
Math (Hendrycks et al., 2021) 12.5K (Zhou et al., 2023; Wang et al., 2023b; Li et al., 2024a; Tan et al., 2024)

AQuA (Ling et al., 2017) 100K (Lyu et al., 2023; Chen et al., 2022; Leang et al., 2024)
SVAMP (Patel et al., 2021) 1K (Lyu et al., 2023; Chen et al., 2022; Gao et al., 2023; Leang et al., 2024)
ASDiv (Miao et al., 2020) 2305 (Lyu et al., 2023; Gao et al., 2023)

MAWPS (Koncel-Kedziorski et al., 2016) 3320 (Gao et al., 2023)
ALGEBRA (He-Yueya et al., 2023) 222 (He-Yueya et al., 2023; Wang et al., 2023a)

Logical Reasoning ProofWriter (Tafjord et al., 2020) 500K (Yang et al., 2023a; Lee and Hwang, 2024; Pan et al., 2023; Xu et al., 2024)
PrOntoQA (Saparov and He, 2022) 10K (Pan et al., 2023; Xu et al., 2024; Tan et al., 2024)

FOLIO (Han et al., 2022) 1435 (Li et al., 2024b; Kalyanpur et al., 2024; Liu et al., 2024)
AR-LSAT (Zhong et al., 2022) 2046 (Pan et al., 2023; Xu et al., 2024; Wang et al., 2024b)

LogiQA (Liu et al., 2020) 8678 (Liu et al., 2024; Li et al., 2024b; Bao et al., 2023)
CLUTRR (Sinha et al., 2019) 10K (Ye et al., 2024; Yang et al., 2023c)

Table Reasoning WikiTQ (Pasupat and Liang, 2015) 22033 (Zhang et al., 2023; Nahid and Rafiei, 2024b; Mouravieff et al., 2024; Cheng et al., 2022; Zhang et al., 2024)
FetaQA (Nan et al., 2022) 10K (Ye et al., 2023; Zhang et al., 2023; Nahid and Rafiei, 2024b)
TabFact (Chen et al., 2020) 117854 (Ye et al., 2023; Nahid and Rafiei, 2024b; Wang et al., 2024d; Cheng et al., 2022; Zhang et al., 2024)

WikiSQL (Zhong et al., 2017) 80654 (Nahid and Rafiei, 2024b)

Spatial Reasoning StepGame (Shi et al., 2022) 6.1K (Wang et al., 2024a; Yang et al., 2023c)
SparTUN (Mirzaee and Kordjamshidi, 2022) 50K (Wang et al., 2024a)

Others BIG-bench (Srivastava et al., 2022) - (Borazjanizadeh and Piantadosi, 2024; Gao et al., 2023; Li et al., 2023)
Fruit Shop (Hu et al., 2023) 70 (Hu et al., 2023)
VQAv2 (Goyal et al., 2017) 1105904 (Hu et al., 2024b)

Table 1: Common datasets and benchmarks used to evaluate the symbolic reasoning capabilities of LLMs. We
classify these datasets into different domains, marked their sizes, and noted some representative works that used
them for evaluation.

logic (FOL). (Xu et al., 2023) designs a 2-stage533

fine-tuning framework aiming at improving the bal-534

anced capabilities of LLMs in symbolic tasks and535

natural language tasks.536

5.2 Prompting537

Prompting methods in Large Language Models538

(LLMs) encompass a range of techniques for craft-539

ing specialized input prompts that direct the model540

to produce outputs aligned with users’ specifica-541

tions. LLMs can utilize prompting strategies to gen-542

erate diverse symbolic languages, which are then543

processed by external solvers to execute reason-544

ing tasks, thereby enhancing overall accuracy. A545

natural idea is to incorporate symbolic expressions546

into the Chain of Thought (CoT) prompts, guid-547

ing the LLMs to generate symbolic language step548

by step, which does not require extensive model549

training. A method of optimizing the prompts of550

the original CoT has been raised by (Lyu et al.,551

2023). They decompose the original problems into552

subproblems and generate more refined prompts553

consisting of natural language and symbolic lan-554

guage. For (Olausson et al., 2023), the prompt555

requires the LLMs to convert the premises and con-556

clusions into FOL expressions to obtain a formal557

representation. The prompt of (Gao et al., 2023)558

consists of a natural-language question and interme-559

diate reasoning steps combined with programming560

symbolic language. (Yang et al., 2023c) designs561

the prompt used to guide the LLMs to convert nat-562

ural language into atomic facts as symbols that are563

suitable for ASP reasoning. (Hu et al., 2024a) con-564

structs prompt through self-refinement with objects565

and symbols. 566

5.3 Hybrid Methods 567

The fine-tuning method requires a carefully de- 568

signed dataset which consumes substantial time 569

and expenses. In addition, the fine-tuning approach 570

usually focuses on specific tasks, which limits the 571

generalization ability. Leveraging prompts can 572

guide LLMs in generating optimized rationales. 573

However, this approach does not improve the ac- 574

tual capability of LLMs. 575

The hybrid method integrates their advantages, 576

enhancing the performance of LLMs while en- 577

abling them to generate better rationales and an- 578

swers. (Bao et al., 2023) first adopts Abstract Mean- 579

ing Representation-Based Logic-Driven Data Aug- 580

mentation (AMR-LDA) to generate diverse sym- 581

bolic logical expressions. Then they use Logical- 582

Equivalence-Identification Contrastive Learning 583

and fine-tuning methods for discriminative LLMs 584

and prompts for generative LLMs based on the aug- 585

mented expressions. A framework for guiding the 586

generation of LLMs code/text is proposed by (Chen 587

et al., 2025). They fine-tune a guiding model called 588

CodeSteerLLM and introduce a symbolic checker 589

and a self-answer checker (prompting method) to 590

conduct multi-round interactions with a TaskLLM. 591

6 Future Directions 592

Customized Symbolic Languages and Solvers. 593

Recent research relies mainly on existing formal 594

symbolic languages to assist in reasoning, without 595

innovating the grammar for specific tasks (Olaus- 596

son et al., 2023; Yang et al., 2023c; Liu et al., 597

7



Natural 
Language
Questions

Subproblem1

Subproblem2

Subproblem3

Symbolic 
Solver

Natural Language 
Explanations

Symbolic 
Expressions

Symbolic 
Expressions

Results

Existing 
Datasets

Existing 
Datasets

Symbolic
Reasoning-
Enhanced 

Dataset

Natural 
Language
Questions

Results

Prompting

Fine-tuning

LLMs LLMs LLMs LLMs

Dataset 
generated 

by LLMsLLMs Fine-tuned 
LLMs

Fine-tuned LLMs

Fine-
tuning

Figure 2: The main processes of enhancing the symbolic reasoning performance of LLMs through prompting and
fine-tuning. The parts enclosed by dashed lines represent the special designs of some works.

2023a). However, these existing formal symbolic598

languages cannot fully cover all application scenar-599

ios in the real world (Ishay and Lee, 2025) and are600

unable to entirely meet the requirements. There-601

fore, customizing language parsers and related sym-602

bolic grammar according to application scenarios603

may be the focus of future work.604

Multilingual Symbolic Languages Integration.605

Reasoning tasks are inherently complex and typi-606

cally cannot be effectively addressed using a sin-607

gle language alone. (Li et al., 2024a; Pan et al.,608

2023) advocate for the use of different symbolic609

languages tailored to various tasks. However, in610

addressing specific problems, they predominantly611

rely on a single symbolic language, which indicates612

that the integration between different symbolic lan-613

guages remains relatively superficial. In contrast,614

(Zhang et al., 2023) demonstrates a more integrated615

approach by utilizing both Python and SQL for616

solving tabular problems. We encourage future617

research to explore more effective multi-language618

integration strategies across a broader range of rea-619

soning tasks, leveraging the strengths of multiple620

symbolic languages to enhance the reasoning capa-621

bilities of LLMs.622

Inherent Structured Languages for LLMs.623

When leveraging symbolic languages for reasoning624

in LLMs, many errors stem from how these models625

generate task-specific symbolic expressions. Vari-626

ous solutions have been proposed—such as using 627

execution feedback, human-like debugging (Zhong 628

et al., 2024), and strategies that avoid generat- 629

ing entire code segments in one go (Zhou et al., 630

2023)—yet none fully resolve the problem. The ap- 631

peal of symbolic languages lies in their structured 632

and rigorous nature. We encourage researchers to 633

explore alternatives that either replace symbolic 634

languages altogether or imbue LLMs with inherent 635

structured and rigorous reasoning capabilities. 636

7 Conclusion 637

In this paper, we conduct a systematic and detailed 638

review of the symbolic reasoning tasks in large 639

language models. We illustrate the applications 640

of LLMs symbolic reasoning in different reason- 641

ing tasks, summarize the types of symbolic lan- 642

guages used in reasoning, discuss the techniques 643

for enhancing and eliciting the symbolic reasoning 644

capabilities of LLMs, as well as the benchmarks 645

employed to evaluate and analyze the symbolic 646

reasoning abilities of LLMs. We also discuss the 647

promising future directions of symbolic reasoning. 648

We hope that this paper can offer a comprehen- 649

sive and valuable overview of the present status of 650

the field and facilitate further advancements in the 651

application of symbolic language for LLM reason- 652

ing. 653
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8 Limitations654

While this survey aims to provide a comprehensive655

overview of the integration of symbolic reason-656

ing with large language models (LLMs), it has its657

limitations, which we acknowledge to provide a658

balanced perspective on our work.659

First, the field of enhancing LLMs with sym-660

bolic reasoning is evolving at an unprecedented661

pace. New methodologies, frameworks, and ap-662

plications are being published frequently, making663

it challenging to capture the most recent advance-664

ments. Despite our rigorous efforts to include the665

latest research up to the submission deadline, some666

cutting-edge developments may have emerged dur-667

ing the final stages of this survey’s preparation.668

Second, in an effort to provide a broad overview669

of the field, this survey categorizes the research670

from three perspectives: tasks, symbolic methods,671

and languages. While this approach offers a struc-672

tured framework for understanding the landscape,673

the breadth of coverage inevitably comes at the674

expense of depth in certain areas. Some technical675

nuances, domain-specific challenges, and emerging676

sub-fields may have been underexplored or over-677

simplified.678

Finally, the majority of reasoning benchmarks679

are collected and categorized from the experimental680

sections of mainstream industry works, potentially681

leading to insufficient coverage of niche or domain-682

specific reasoning tasks.683

Despite these limitations, we believe this survey684

provides a valuable foundation for understanding685

the current state of research and identifying future686

directions in symbolic reasoning with LLMs. We687

encourage researchers to build upon this work and688

address the gaps identified here to further advance689

the field.690
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Kryściński, Hailey Schoelkopf, Riley Kong, Xian-885
gru Tang, Mutethia Mutuma, Ben Rosand, Isabel886
Trindade, Renusree Bandaru, Jacob Cunningham,887
Caiming Xiong, Dragomir Radev, and Dragomir888
Radev. 2022. FeTaQA: Free-form Table Question889
Answering. Transactions of the Association for Com-890
putational Linguistics, 10:35–49.891

Isaac Newton. 1934. Principia mathematica. Book III,892
Lemma V, Case, 1:1687.893

Xuefei Ning, Zinan Lin, Zixuan Zhou, Zifu Wang,894
Huazhong Yang, and Yu Wang. 2023. Skeleton-of-895
Thought: Large Language Models Can Do Parallel896
Decoding. Proceedings ENLSP-III.897

Theo X Olausson, Alex Gu, Benjamin Lipkin, Cede-898
gao E Zhang, Armando Solar-Lezama, Joshua B899
Tenenbaum, and Roger Levy. 2023. LINC: A Neu-900
rosymbolic Approach for Logical Reasoning by Com-901
bining Language Models with First-Order Logic902
Provers. arXiv preprint arXiv:2310.15164.903

Liangming Pan, Alon Albalak, Xinyi Wang, and904
William Yang Wang. 2023. Logic-LM: Empower-905
ing Large Language Models with Symbolic Solvers906
for Faithful Logical Reasoning. arXiv preprint907
arXiv:2305.12295.908

Panupong Pasupat and Percy Liang. 2015. Composi-909
tional Semantic Parsing on Semi-Structured Tables.910
In Proceedings of the 53rd Annual Meeting of the As-911
sociation for Computational Linguistics and the 7th912
International Joint Conference on Natural Language913
Processing (Volume 1: Long Papers), pages 1470–914
1480, Beijing, China. Association for Computational915
Linguistics.916

Arkil Patel, Satwik Bhattamishra, and Navin Goyal.917
2021. Are NLP Models really able to Solve Simple918
Math Word Problems? In Proceedings of the 2021919
Conference of the North American Chapter of the920
Association for Computational Linguistics: Human921
Language Technologies, pages 2080–2094, Online.922
Association for Computational Linguistics.923

Aske Plaat, Annie Wong, Suzan Verberne, Joost 924
Broekens, Niki van Stein, and Thomas Back. 2024. 925
Reasoning with large language models, a survey. 926
arXiv preprint arXiv:2407.11511. 927

Abulhair Saparov and He He. 2022. Language models 928
are greedy reasoners: A systematic formal analysis of 929
chain-of-thought. arXiv preprint arXiv:2210.01240. 930

Zhengxiang Shi, Qiang Zhang, and Aldo Lipani. 2022. 931
StepGame: A new benchmark for robust multi-hop 932
spatial reasoning in texts. In Proceedings of the 933
AAAI conference on artificial intelligence, volume 36, 934
pages 11321–11329. 935

Koustuv Sinha, Shagun Sodhani, Jin Dong, Joelle 936
Pineau, and William L Hamilton. 2019. CLUTRR: A 937
diagnostic benchmark for inductive reasoning from 938
text. arXiv preprint arXiv:1908.06177. 939

Aarohi Srivastava, Abhinav Rastogi, Abhishek Rao, 940
Abu Awal Md Shoeb, Abubakar Abid, Adam Fisch, 941
Adam R Brown, Adam Santoro, Aditya Gupta, 942
Adrià Garriga-Alonso, et al. 2022. Beyond the 943
imitation game: Quantifying and extrapolating the 944
capabilities of language models. arXiv preprint 945
arXiv:2206.04615. 946

Sanjay Subramanian, Medhini Narasimhan, Kushal 947
Khangaonkar, Kevin Yang, Arsha Nagrani, Cordelia 948
Schmid, Andy Zeng, Trevor Darrell, and Dan Klein. 949
2023. Modular visual question answering via code 950
generation. arXiv preprint arXiv:2306.05392. 951

Dídac Surís, Sachit Menon, and Carl Vondrick. 2023. 952
ViperGPT: Visual inference via python execution 953
for reasoning. In Proceedings of the IEEE/CVF In- 954
ternational Conference on Computer Vision, pages 955
11888–11898. 956

Oyvind Tafjord, Bhavana Dalvi Mishra, and Peter 957
Clark. 2020. ProofWriter: Generating implications, 958
proofs, and abductive statements over natural lan- 959
guage. arXiv preprint arXiv:2012.13048. 960

Xiaoyu Tan, Yongxin Deng, Xihe Qiu, Weidi Xu, 961
Chao Qu, Wei Chu, Yinghui Xu, and Yuan Qi. 962
2024. THOUGHT-LIKE-PRO: Enhancing Reason- 963
ing of Large Language Models through Self-Driven 964
Prolog-based Chain-of-Thought. arXiv preprint 965
arXiv:2407.14562. 966

Dingzirui Wang, Longxu Dou, Wenbin Zhang, Junyu 967
Zeng, and Wanxiang Che. 2023a. Exploring equa- 968
tion as a better intermediate meaning represen- 969
tation for numerical reasoning. arXiv preprint 970
arXiv:2308.10585. 971

Ke Wang, Houxing Ren, Aojun Zhou, Zimu Lu, Sichun 972
Luo, Weikang Shi, Renrui Zhang, Linqi Song, 973
Mingjie Zhan, and Hongsheng Li. 2023b. Math- 974
Coder: Seamless code integration in llms for en- 975
hanced mathematical reasoning. arXiv preprint 976
arXiv:2310.03731. 977

11

https://doi.org/10.1162/tacl_a_00446
https://doi.org/10.1162/tacl_a_00446
https://doi.org/10.1162/tacl_a_00446
https://doi.org/10.3115/v1/P15-1142
https://doi.org/10.3115/v1/P15-1142
https://doi.org/10.3115/v1/P15-1142
https://doi.org/10.18653/v1/2021.naacl-main.168
https://doi.org/10.18653/v1/2021.naacl-main.168
https://doi.org/10.18653/v1/2021.naacl-main.168


Rong Wang, Kun Sun, and Jonas Kuhn. 2024a. Dspy-978
based neural-symbolic pipeline to enhance spatial979
reasoning in llms. arXiv preprint arXiv:2411.18564.980

Ruocheng Wang, Eric Zelikman, Gabriel Poesia, Yewen981
Pu, Nick Haber, and Noah D Goodman. 2023c. Hy-982
pothesis Search: Inductive reasoning with language983
models. arXiv preprint arXiv:2309.05660.984

Siyuan Wang, Zhongyu Wei, Yejin Choi, and Xiang985
Ren. 2024b. Symbolic working memory enhances986
language models for complex rule application. arXiv987
preprint arXiv:2408.13654.988

Zhongsheng Wang, Jiamou Liu, Qiming Bao, Hongfei989
Rong, and Jingfeng Zhang. 2024c. ChatLogic: Inte-990
grating logic programming with large language mod-991
els for multi-step reasoning. In 2024 International992
Joint Conference on Neural Networks (IJCNN), pages993
1–8. IEEE.994

Zilong Wang, Hao Zhang, Chun-Liang Li, Julian Mar-995
tin Eisenschlos, Vincent Perot, Zifeng Wang, Lesly996
Miculicich, Yasuhisa Fujii, Jingbo Shang, Chen-Yu997
Lee, et al. 2024d. Chain-of-Table: Evolving tables998
in the reasoning chain for table understanding. arXiv999
preprint arXiv:2401.04398.1000

Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel,1001
Barret Zoph, Sebastian Borgeaud, Dani Yogatama,1002
Maarten Bosma, Denny Zhou, Donald Metzler, et al.1003
2022. Emergent abilities of large language models.1004
arXiv preprint arXiv:2206.07682.1005

Xiaoqian Wu, Yong-Lu Li, Jianhua Sun, and Cewu Lu.1006
2023. Symbol-LLM: Leverage language models for1007
symbolic system in visual human activity reason-1008
ing. In Advances in Neural Information Processing1009
Systems, volume 36, pages 29680–29691. Curran As-1010
sociates, Inc.1011

Ziyang Xiao, Dongxiang Zhang, Xiongwei Han, Xi-1012
aojin Fu, Wing Yin Yu, Tao Zhong, Sai Wu, Yuan1013
Wang, Jianwei Yin, and Gang Chen. 2025. Enhanc-1014
ing llm reasoning via vision-augmented prompting.1015
Advances in Neural Information Processing Systems,1016
37:28772–28797.1017

Fangzhi Xu, Zhiyong Wu, Qiushi Sun, Siyu Ren, Fei1018
Yuan, Shuai Yuan, Qika Lin, Yu Qiao, and Jun Liu.1019
2023. Symbol-LLM: Towards foundational symbol-1020
centric interface for large language models. arXiv1021
preprint arXiv:2311.09278.1022

Fengli Xu, Qianyue Hao, Zefang Zong, Jingwei Wang,1023
Yunke Zhang, Jingyi Wang, Xiaochong Lan, Jiahui1024
Gong, Tianjian Ouyang, Fanjin Meng, et al. 2025.1025
Towards large reasoning models: A survey of rein-1026
forced reasoning with large language models. arXiv1027
preprint arXiv:2501.09686.1028

Jundong Xu, Hao Fei, Liangming Pan, Qian Liu, Mong-1029
Li Lee, and Wynne Hsu. 2024. Faithful logical rea-1030
soning via symbolic chain-of-thought. arXiv preprint1031
arXiv:2405.18357.1032

Sen Yang, Xin Li, Leyang Cui, Lidong Bing, and Wai 1033
Lam. 2023a. Neuro-symbolic integration brings 1034
causal and reliable reasoning proofs. arXiv preprint 1035
arXiv:2311.09802. 1036

Yuan Yang, Siheng Xiong, Ali Payani, Ehsan Shareghi, 1037
and Faramarz Fekri. 2023b. Harnessing the power 1038
of large language models for natural language 1039
to first-order logic translation. arXiv preprint 1040
arXiv:2305.15541. 1041

Zhun Yang, Adam Ishay, and Joohyung Lee. 2023c. 1042
Coupling large language models with logic program- 1043
ming for robust and general reasoning from text. 1044
arXiv preprint arXiv:2307.07696. 1045

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, 1046
Tom Griffiths, Yuan Cao, and Karthik Narasimhan. 1047
2024. Tree of Thoughts: Deliberate problem solving 1048
with large language models. Advances in Neural 1049
Information Processing Systems, 36. 1050

Xi Ye, Qiaochu Chen, Isil Dillig, and Greg Durrett. 1051
2024. SatLM: Satisfiability-aided language models 1052
using declarative prompting. Advances in Neural 1053
Information Processing Systems, 36. 1054

Yunhu Ye, Binyuan Hui, Min Yang, Binhua Li, Fei 1055
Huang, and Yongbin Li. 2023. Large Language Mod- 1056
els are Versatile Decomposers: Decomposing evi- 1057
dence and questions for table-based reasoning. In 1058
Proceedings of the 46th International ACM SIGIR 1059
Conference on Research and Development in Infor- 1060
mation Retrieval, pages 174–184. 1061

Fei Yu, Hongbo Zhang, Prayag Tiwari, and Benyou 1062
Wang. 2024. Natural language reasoning, a survey. 1063
ACM Computing Surveys, 56(12):1–39. 1064

Han Zhang, Yuheng Ma, and Hanfang Yang. 2024. Al- 1065
ter: Augmentation for large-table-based reasoning. 1066
arXiv preprint arXiv:2407.03061. 1067

Yunjia Zhang, Jordan Henkel, Avrilia Floratou, Joyce 1068
Cahoon, Shaleen Deep, and Jignesh M Patel. 2023. 1069
ReAcTable: Enhancing react for table question an- 1070
swering. arXiv preprint arXiv:2310.00815. 1071

Zhuosheng Zhang, Aston Zhang, Mu Li, and Alex 1072
Smola. 2022. Automatic chain of thought prompt- 1073
ing in large language models. arXiv preprint 1074
arXiv:2210.03493. 1075

Yilun Zhao, Lyuhao Chen, Arman Cohan, and Chen 1076
Zhao. 2024. TaPERA: enhancing faithfulness and 1077
interpretability in long-form table qa by content plan- 1078
ning and execution-based reasoning. In Proceedings 1079
of the 62nd Annual Meeting of the Association for 1080
Computational Linguistics (Volume 1: Long Papers), 1081
pages 12824–12840. 1082

Li Zhong, Zilong Wang, and Jingbo Shang. 2024. 1083
Ldb: A large language model debugger via verify- 1084
ing runtime execution step-by-step. arXiv preprint 1085
arXiv:2402.16906. 1086

12

https://proceedings.neurips.cc/paper_files/paper/2023/file/5edb57c05c81d04beb716ef1d542fe9e-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/5edb57c05c81d04beb716ef1d542fe9e-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/5edb57c05c81d04beb716ef1d542fe9e-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/5edb57c05c81d04beb716ef1d542fe9e-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/5edb57c05c81d04beb716ef1d542fe9e-Paper-Conference.pdf


Victor Zhong, Caiming Xiong, and Richard Socher.1087
2017. Seq2SQL: Generating structured queries from1088
natural language using reinforcement learning. arXiv1089
preprint arXiv:1709.00103.1090

Wanjun Zhong, Siyuan Wang, Duyu Tang, Zenan Xu,1091
Daya Guo, Yining Chen, Jiahai Wang, Jian Yin, Ming1092
Zhou, and Nan Duan. 2022. Analytical reasoning of1093
text. In Findings of the Association for Computa-1094
tional Linguistics: NAACL 2022, pages 2306–2319,1095
Seattle, United States. Association for Computational1096
Linguistics.1097

Aojun Zhou, Ke Wang, Zimu Lu, Weikang Shi, Sichun1098
Luo, Zipeng Qin, Shaoqing Lu, Anya Jia, Linqi1099
Song, Mingjie Zhan, et al. 2023. Solving challenging1100
math word problems using gpt-4 code interpreter1101
with code-based self-verification. arXiv preprint1102
arXiv:2308.07921.1103

13

https://doi.org/10.18653/v1/2022.findings-naacl.177
https://doi.org/10.18653/v1/2022.findings-naacl.177
https://doi.org/10.18653/v1/2022.findings-naacl.177

	Introduction
	Symbolic Languages
	Logical Symbolic Languages
	Programming Symbolic Languages
	Mathematical Symbolic Language
	Others

	Tasks
	Logical Reasoning
	Mathematical Reasoning
	Table Reasoning
	Spatial Reasoning
	Planning
	Others

	Datasets and Benchmarks
	Methods
	Fine-tuning
	Prompting
	Hybrid Methods

	Future Directions
	Conclusion
	Limitations

