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Abstract

Figuring out which Pre-Trained Model (PTM) from a model zoo fits the target task
is essential to take advantage of plentiful model resources. With the availability of
numerous heterogeneous PTMs from diverse fields, efficiently selecting the most
suitable one is challenging due to the time-consuming costs of carrying out forward
or backward passes over all PTMs. In this paper, we propose MODEL SPIDER,
which tokenizes both PTMs and tasks by summarizing their characteristics into vec-
tors to enable efficient PTM selection. By leveraging the approximated performance
of PTMs on a separate set of training tasks, MODEL SPIDER learns to construct
representation and measure the fitness score between a model-task pair via their
representation. The ability to rank relevant PTMs higher than others generalizes to
new tasks. With the top-ranked PTM candidates, we further learn to enrich task repr.
with their PTM-specific semantics to re-rank the PTMs for better selection. MODEL
SPIDER balances efficiency and selection ability, making PTM selection like a
spider preying on a web. MODEL SPIDER exhibits promising performance across
diverse model zoos, including visual models and Large Language Models (LLMs).
Code is available at https://github.com/zhangyikaii/Model-Spider.

1 Introduction

Fine-tuning Pre-Trained Models (PTMs) on downstream tasks has shown remarkable improvements
in various fields [35, 26, 75, 42, 16], making “pre-training → fine-tuning” the de-facto paradigm in
many real-world applications. A model zoo contains diverse PTMs in their architectures and func-
tionalities [1, 12], but a randomly selected PTM makes their helpfulness for a particular downstream
task vary unpredictably [80, 70, 102]. One important step to take advantage of PTM resources is to
identify the most helpful PTM in a model zoo — estimating and ranking the transferabilities of PTMs
— with the downstream task’s data accurately and efficiently.

Which PTM is the most helpful? A direct answer is to enumerate all PTMs and evaluate the
performance of their corresponding fine-tuned models. However, the high computational cost of
the backward steps in fine-tuning makes this solution impractical. Some existing methods estimate
proxies of transferability with only forward passes based on the target task’s features extracted by
PTMs [9, 97, 66, 55, 113, 27, 71, 25, 93]. Nowadays, a public model zoo often contains hundreds
and thousands of PTMs [104]. Then, the computational burden of forward passes will be amplified,
let alone for the time-consuming forward passes of some complicated PTMs. Therefore, the efficiency
of searching helpful PTMs and estimating the transferability should be further emphasized.

In this paper, we propose MODEL SPIDER, the SPecification InDuced Expression and Ranking of
PTMs, for accurate and efficient PTM selection. In detail, we tokenize all PTMs and tasks into
vectors that capture their general properties and their relationship with each other. For example,
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Figure 1: (a) Two strategies for PTM selection. Related works utilize forward-based features and
corresponding proxies on the target dataset to evaluate transferability. The representation/specification-
based approach with learned model-task pair reduces the requirement for forwarding pass on each
PTM. (b) The average efficiency (wall-clock time) vs performance (correlation τw, the higher, the
better) comparison of PTM selection. The circle sizes indicate the memory footprint. Red circles are
MODEL SPIDER with different values of the number of PTM-specific features k, while others are
comparison methods. MODEL SPIDER balances efficiency and accuracy well.

two models pre-trained on NABirds [37] and Caltech-UCSD Birds [100] datasets may have similar
abilities in bird recognition. The comprehension abilities of two models pre-trained on XSum [64]
dataset, Ax-b, and Ax-g datasets of SuperGLUE benchmark [101] may also be mutually transferable.
We can then associate them with similar representation. Then the transferability from a PTM to a
task could be approximated by the distance of their repr. without requiring per-PTM forward pass
over the downstream task. The success of MODEL SPIDER depends on two key factors. First, how do
we obtain representation for tasks and PTMs? The representation of the most helpful PTM should
be close to the task one w.r.t. some similarity measures. Then, will a general task repr. weaken the
selection ability since it may ignore specific characteristics of a PTM?

In MODEL SPIDER, we learn to construct representation with a general encoder and measure the
similarity between them with a Transformer module [98] in a supervised learning manner. We
estimate the rankings of PTMs in the model zoo for some historical tasks using rank aggregation.
By leveraging the approximated supervision, we pull task representation close to the top-ranked
PTM repr. and push unhelpful PTM repr. away based on the transformer-measured similarity. We
expect that the ability to tokenize and measure similarity could be generalized to unseen tasks.
The difference between MODEL SPIDER’s representation-based PTM selection with forward-based
strategy is illustrated in Figure 1.

The representation generated by general encoders significantly reduces the PTM search time and
improves the search performance. If the budget allows, we can extract features of the downstream
task by carrying out forward passes over a part of (the top-k ranked) PTMs, revealing the specific
relationship between PTMs and the task. We equip our MODEL SPIDER with the ability to incorporate
PTM-specific representation, which re-ranks the PTMs and further improves the selection results.
In summary, MODEL SPIDER is suitable for different budget requirements, where the general and
task-specific repr. makes a flexible trade-off between efficiency and accuracy, given various forward
passes. Figure 1 illustrates a comparison of PTM selection methods w.r.t. both efficiency and accuracy.
Our contributions are

• We propose a novel approach MODEL SPIDER to tokenize tasks and PTMs, which is able to rank
PTMs in a model zoo given a downstream task efficiently and accurately.

• MODEL SPIDER learns to tokenize and rank PTMs on a separate training set of tasks, and it can
incorporate task-specific forward results of some PTMs when resource budgets allow.

• The experiments demonstrate that MODEL SPIDER effectively ranks PTMs and achieves significant
improvements on the visual models and the Large Language Models (LLMs).

2 Related Works

Efficient PTM Search with Transferability Assessment. Whether a selected PTM is helpful could
be formulated as the problem measuring transferability from source data pre-training the PTM to
the target downstream task [111, 13, 41, 4, 78]. The current evaluation of transferability relies on a
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forward pass of the PTM on the target task, which generates the PTM-specific features on the target
task. For example, NCE [97], LEEP [66], LogME [113, 114], PACTran [27], and TransRate [39]
estimate negative conditional entropy, log expectation, marginalized likelihood, PAC-Bayesian
bound, mutual information to obtain proxy metric of transferability, respectively. Several extensions
including N -LEEP [55] with Gaussian mixture model on top of PTM features, H-Score [9] utilizing
divergence transition matrix to approximate the transferred log-likelihood, and [25, 71, 84] exploring
correlations between categories of target task. Auxiliary information such as source clues [6, 93] and
gradients of PTMs when back propagating with few steps [85, 74] are also investigated. Although
the transferability assessment methods avoid the time-consuming fine-tuning, the forward costs over
PTMs also become heavier given diverse and complicated pre-trained model zoos.

Relatedness of Task. Whether a PTM gains improvements after fine-tuning on the downstream
task has been verified to depend on the relatedness between tasks both theoretically [10, 11, 60]
and empirically [102, 58, 112]. The relatedness could be measured through various ways, such as
fully fine-tuning [115], task vectors [2], example-based graphs [48, 29, 86], representation-level
similarities [30, 3], and human prior knowledge [44, 76]. Instead of utilizing a pre-defined strategy
to measure the relatedness, MODEL SPIDER constructs the representation of PTMs/tasks in vector
forms and learns a similarity between them on historical tasks.

Learning to rank predicts the orders of objects usually with a score function [43], and the experience
on a training set could be generalized to unseen data [5, 63]. Additional learned metrics or embeddings
further improve the ranking ability [62, 110, 15]. The task relatedness can also be modeled as a
learning-to-rank problem, where the preference over one PTM over another could be learned from
historical rankings of PTMs. However, obtaining the supervision on the training set requires complete
fine-tuning over a large number of historical tasks, which either come from a time-consuming transfer
learning experience [103] or the output from some specially selected transferability assessment
methods [28]. We propose a strong and efficient approximation of the PTM ranking supervision on
the training set tasks, and a novel representation-based similarity is applied.

3 Preliminary

We describe the PTM selection problem by assuming all PTMs are classifiers, and the description
could be easily extended to PTMs for other tasks, e.g., regression. Then we discuss several solutions.

3.1 Selecting PTMs from a Model Zoo

Consider we have a target classification task T = {(xi, yi)}Ni=1 with N labeled examples, where the
label yi of each instance xi comes from one of the CT classes. Instead of learning on T directly,
we assume there is a model zoo M = {fm = Wm ◦ ϕm}Mm=1 containing M PTMs. A PTM fm
could be decomposed into two components. ϕm is the feature extraction network producing dm-
dimensional features. Wm ∈ Rdm×Cm is the top-layer classifier which maps a dm-dimensional
feature to the confidence score over Cm classes.1 PTMs in M are trained on source data across
various domains. Their feature extractors ϕm have diverse architectures, and the corresponding
classifiers are pre-trained for different sets of objects. In other words, dm and Cm′ may differ for a
certain pair of m and m′. A widely-used way to take advantage of a PTM fm = Wm ◦ ϕm in the
target task is to fine-tune the feature extractor together with a randomly initialized classifier over T .
In detail, we minimize the following objective

f̂ = Ŵ ◦ ϕ̂ = argmin
f=W◦ϕ

N∑
i=1

ℓ(W⊤ϕ(xi), yi | ϕm) , (1)

where ϕ is initialized with ϕm. The fine-tuned f makes prediction with argmaxc∈[C]ŵ
⊤
c ϕ̂ (x).

[C] = {1, . . . , C} and ŵc is the cth column of Ŵ . Then, we can rank the helpfulness of PTMs based
on the performance of their fine-tuned models. In other words, we obtain f̂m following Equation 1
based on the mth PTM fm, then we calculate the averaged accuracy when predicting over an unseen
test set of T (the higher, the better), i.e.,

tϕm→T = E
[
I
(
y = argmaxc∈[C] f̂m(x)

)]
. (2)

1We omit the bias term for simplicity.

3



tϕm→T is also named as the transferability, measuring if the feature extractor ϕm in a PTM could
be transferred well to the target task with fine-tuning [97, 39]. I(·) is the indicator function, which
outputs 1 if the condition is satisfied. Given tT = {tϕm→T }Mm=1, i.e., the transferability for all
PTMs, then we can obtain the ground-truth ranking of all PTMs in the model zoo for task T and
select the top-ranked one. In the PTM selection problem, the goal is to estimate the ranking of all
PTMs for a task T using t̂T = {t̂ϕm→T }Mm=1. The evaluation criterion is the similarity between the
predicted t̂T and the ground-truth tT , typically measured by weighted Kendall’s τw [45]. We omit
the subscript T when it is clear from the context.

3.2 Efficiency Matters in PTM Selection

One direct solution to PTM selection is approximating the ground truth tT by fine-tuning all the
PTMs over T , where a validation set should be split from T to estimate Equation 2. Since fine-tuning
PTM contains multiple forward and backward passes, the computation burden is astronomical.

A forward pass of a certain PTM’s extractor ϕm over T generates the features Φm
T = {ϕm(xi) ∈

Rdm}(xi,yi)∈T , which is lightweight compared with the backward step. The feature reveals how
examples in T are distributed from the selected PTM’s view, and a more discriminative feature may
have a higher transfer potential. As mentioned in section 2, the existing transferability assessment
methods estimate tϕm→T based on the PTM-specific feature Φm

T and target labels {yi}Ni=1 [66, 113,
55, 114]. Precise estimation requires a large N , which means we need to collect enough examples to
identify the most helpful PTMs from a model zoo.

While the previous forward-based transferability assessment methods reduce the time cost, selecting
among M PTMs in the model zoo multiplies the forward cost M times, making the estimation of
t̂ computationally expensive. Moreover, since forward passes for complicated PTMs take longer,
selecting a PTM efficiently, especially given a large model zoo, is crucial.

4 MODEL SPIDER

In MODEL SPIDER, we propose to tokenize PTMs and tasks regardless of their complexity, allowing us
to efficiently calculate their relatedness based on a certain similarity measure over their representation,
which capture general properties and serve as a specification of a model or task, demonstrating which
kinds of tasks a model performs well on or what kind of models a task requires. In this section, we
first introduce the process of obtaining repr. by learning from a training set of tasks, and the ability to
rank PTMs could be generalized to downstream tasks. We then describe the encoder, the similarity
measure, and an efficient way to generate supervision during representation learning. Finally, we
discuss how MODEL SPIDER can be flexible in incorporating forward pass results of top-ranked
PTMs to further improve the representation’s semantics and the ranking’s quality.

4.1 Learning to Rank PTMs with Representation

In MODEL SPIDER, we learn the model repr. {θm}Mm=1, task repr. µ (T ), and the similarity measure
sim(·, ·) in a supervised learning manner based on a separate training set D. The training set D does
not contain overlapping classes with the downstream task T .

Specifically, we randomly sample training tasks {Ti} from D. For a given training task Ti, we assume
that we can obtain the ground-truth ranking tTi = {tϕm→Ti}Mm=1 over the M PTMs, indicating the
helpfulness of each PTM. We will discuss the details of obtaining the supervision tTi later. We then
select PTMs for Ti based on the similarity between the task repr. µ (Ti) and those M PTM repr.
{θm}Mm=1. We expect the higher the similarity, the more helpful a PTM is for the given task. We
use Θ to denote all learnable parameters and optimize Θ with a ranking loss, which minimizes the
discrepancy between the rank t̂Ti predicted by the similarity function and the ground-truth tTi :

min
Θ

∑
Ti∼D

ℓrank

(
t̂Ti = {sim(θm,µ (Ti))}Mm=1 , tTi

)
. (3)

Given t ∈ RM , we use an operator dsc(·) to index the elements of t in a descending order, i.e.,
∀m < l, we have tdsc(m) ⩾ tdsc(l). dsc (m) is exactly the index of the PTM with mth largest
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Figure 2: An illustration of MODEL SPIDER. The middle part (b) shows the workflow of MODEL
SPIDER, which involves tokenizing both PTMs and tasks into a shared space. Plot (c) demonstrates
how the model-task similarity calculated based on the representation helps rank PTMs for a given
task. In plot (a), when the budget allows, MODEL SPIDER can take advantage of PTM-specific
features obtained by performing forward passes of the top-k ranked PTMs on some selected tasks.
This improves the quality of task repr. as well as the PTM ranking.

ground-truth score. Based on this, we use the following ranking loss:

ℓrank(t̂, t) =

M∑
m=1

− log

(
exp

(
t̂dsc(m)

)∑M
l=m exp

(
t̂dsc(l)

)) . (4)

Equation 4 aims to make the whole order of the predicted t̂Ti
similar to the ground-truth tTi

. So the
similarity between the task repr. and that of a higher-ranked PTM indicated by tTi

should be larger
than the similarity with lower-ranked PTM representation. The underlying intuition is that if a PTM
performs well on certain tasks, it is likely to generalize its ability to related tasks. For example, if a
PTM excels at bird recognition, it may effectively recognize other flying animals.

For a downstream task T , we generate its task repr. with µ(T ), and identify the close PTM ones
with the learned sim(·, ·). Objective Equation 3 also works when the number of examples in a task
is small. By learning to rank PTMs for sampled few-shot tasks, MODEL SPIDER can rank helpful
models even with limited training data. We will show this ability of MODEL SPIDER in section 5.

4.2 Model and Task Representation for PTM Selection

We encode the general characteristics of tasks and PTMs via two types of representation.

Model Representation. Given a model zoo with M PTMs, we associate a PTM fm with a form
θm ∈ Rd encoding rich semantics about the aspects in which fm excels. Models pre-trained from
related datasets or those with similar functionalities are expected to have similar representation.

Task Representation. A CT -class task T = {(xi, yi)}Ni=1 contains a set of instances and labels. We
would like to tokenize a task with a mapping µ(·), which outputs a set of vectors µ (T ) ∈ Rd×CT ,
one for each class. We implement µ with one additional frozen encoder ψ with an equivalent
parameter magnitude as the PTMs in the model zoo. ψ is pre-trained by self-supervised learning
methods [17, 33, 53] and captures the semantics of a broad range of classes. In detail, we extract the
features of all instances in the task T and take the class centers as the task repr.:

µ (T ) =

 1

|I (yi = c) |
∑

(xi,yi)∈T

[ψ (xi) · I (yi = c)]


c∈[C]

. (5)

The task repr. expresses the characteristics of a task, e.g., those tasks with semantically similar classes
may have similar sets of representation.

Model-Task Similarity. The helpfulness of a PTM w.r.t. a task, i.e., the transferability score, could
be estimated based on the similarity of the model-task pairs t̂ϕm→T = sim(θm,µ (T )), and the
PTM selection is complemented by embedding the model and tasks into a space and then identifying
close PTM repr. for a task. In MODEL SPIDER, the sim(·, ·) is implemented with a one-layer
Transformer [98], a self-attention module that enables various inputs. The Transformer consists of
alternating layers of multi-head self-attention, multi-layer perceptron, and layer norm blocks. We set
the input of the Transformer as the union set of model and task repr. z = [θm,µ (T )] ∈ Rd×(1+C),
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then the similarity t̂ϕm→T between model and task ones is:

sim(θm,µ (T )) = FC (transformer (z) [0]) , (6)

where [0] is the first output of the Transformer, i.e., the corresponding output of the model representa-
tion. We add a Fully Connected (FC) layer to project the intermediate result to a scalar. Learnable
parameters Θ, including {θm}Mm=1, FC, and weights of the Transformer, are trained via objective
in Equation 3.

4.3 Accelerating Training for MODEL SPIDER

The training of MODEL SPIDER in Equation 3 requires a large number of (task Ti, PTM ranking
tTi

) pairs. Although we could collect enough data for each task, obtaining the ground-truth PTMs
rankings, i.e., the helpfulness order of PTMs for each task, is computationally expensive. In addition,
using some proxies of tTi

may weaken the ability of the MODEL SPIDER. We propose a closer
approximation of the ground-truth tTi

, which efficiently supervises sampled tasks from D.

Approximated Training Supervision. We take advantage of the fact that existing PTM selection
methods rely on the PTM-specific features Φm

Ti
to estimate the transferability score w.r.t. Ti and

produce diverse scores. In other words, a PTM will be placed in different positions based on the
scores provided by various methods such as NCE [97], LEEP [66], and LogME [113, 114]. Based on
their “relatively good but diverse” ranking results, an intuitive approach to estimate the ground-truth
tTi

is to ensemble their multiple ranking results into a stronger single order.

Given {t̂1Ti
, t̂2Ti

, . . .} as multiple predicted rankings overM PTMs for a sampled task Ti, i.e., the order
sorted by the estimations of transferability via various methods, we take advantage of Copeland’s ag-
gregation method [7, 82] to ensemble the orders: t̄Ti = {t̄ϕm→Ti}

M
m=1 = RankAgg({t̂1Ti

, t̂2Ti
, . . .}).

Copeland’s aggregation compares each pair of ranking candidates and considers all preferences
to determine which of the two is more preferred. The output t̄Ti

acts as a good estimation of the
ground-truth supervision tTi

. The aggregated t̄Ti
is more accurate than a particular transferability

assessment method, which improves the quality of the supervision in ranking loss in Equation 4.

Sampling Tasks for Training. We assume that the training data D contains a large number of
classes with sufficient data. To sample tasks for training, we randomly select a set of classes from D
and choose a subset of their corresponding examples. Benefiting from the supervision estimation
approach RankAgg, we are able to obtain the aggregated ranking t̄ for any sampled task.

Training Complexity. The training phase in MODEL SPIDER is efficient. First, we pre-extract
features {Φm

D}Mm=1 for D with all PTMs in advance. Then only the computational burden of base
transferability assessment methods, rank aggregation methods, and the optimization of top-layer
parameters are involved. Furthermore, training tasks with the same set of classes share the same t̄Ti .

4.4 Re-ranking with Efficiency-Accuracy Trade-off

The learnable model representation captures the PTM’s empirical performance on various fields of
training tasks, which decouples the task repr. from the PTM. Each model repr. implicitly expresses
the field in which the PTM excels, so the PTM selection only requires a task repr. to express the
field in which the task is. In contrast to the general task repr. µ(Ti), PTM-specific features Φm

Ti
for a

subset of PTMs provide rich clues about how those PTMs fit the target examples, which are also used
in related transferability assessment approaches [25, 71]. We claim that given specific features with a
subset of PTMs when the budget is available, our MODEL SPIDER can re-rank the estimated PTM
order and further improve performance.

Specifically, we extract the PTM-specific task repr. µm (T ) ∈ Rdm×CT with the specific features
Φm

T of the mth PTM as Equation 5. To take account of different values of dm due to the heterogeneity
of PTMs, we learn a projection P ∈ Rdm×d for the mth PTM to align the dimensionality of µm (T )
with the model representation. We then replace the general task repr. µ (T ) via the specific one
P⊤

m µm (T ) when calculating the similarity with the repr. θm of the mth PTM. The specific task
repr. may facilitate obtaining more accurate estimations. During the training process, we dynamically
select a partial set of PTMs and incorporate the specific repr. into the sampled tasks. Thus, the same
Transformer module in Equation 6 can deal with the new type of representation. To differentiate the
general and specific representation, we learn two additional d-dimensional embeddings as prompts.
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Table 2: Performance comparisons of 10 baseline approaches and MODEL SPIDER on a model zoo
with 10 PTMs [113]. We measure the performance with Kendall’s [45] weighted τw. The downstream
tasks from diverse fields (8 datasets) are evaluated in a standard manner (all training examples) and a
few-shot manner (10 examples per class and 30 trials). Specific features of top-3 ranked PTMs are
used in MODEL SPIDER. We denote the best-performing results in bold.

Method Downstream Target Dataset MeanAircraft Caltech101 Cars CIFAR10 CIFAR100 DTD Pets SUN397

Standard Evaluation
H-Score [9] 0.328 0.738 0.616 0.797 0.784 0.395 0.610 0.918 0.648
NCE [97] 0.501 0.752 0.771 0.694 0.617 0.403 0.696 0.892 0.666
LEEP [66] 0.244 0.014 0.704 0.601 0.620 -0.111 0.680 0.509 0.408
N -LEEP [55] -0.725 0.599 0.622 0.768 0.776 0.074 0.787 0.730 0.454
LogME [113] 0.540 0.666 0.677 0.802 0.798 0.429 0.628 0.870 0.676
PACTran [27] 0.031 0.200 0.665 0.717 0.620 -0.236 0.616 0.565 0.397
OTCE [93] -0.241 -0.011 -0.157 0.569 0.573 -0.165 0.402 0.218 0.149
LFC [25] 0.279 -0.165 0.243 0.346 0.418 -0.722 0.215 -0.344 0.034
GBC [71] -0.744 -0.055 -0.265 0.758 0.544 -0.102 0.163 0.457 0.095

MODEL SPIDER 0.506 0.761 0.785 0.909 1.000 0.695 0.788 0.954 0.800

Few-Shot Evaluation (10-example per class)
H-Score [9] -0.014 0.078 0.375 0.018 0.005 -0.028 -0.006 0.853 0.160
NCE [97] 0.273 0.534 0.597 0.267 0.232 0.362 0.352 0.793 0.426
LEEP [66] 0.069 -0.038 0.476 0.530 0.471 -0.111 0.567 0.468 0.304
N -LEEP [55] -0.559 0.476 0.743 0.515 0.707 0.027 0.713 0.812 0.429
LogME [113] 0.341 0.453 0.497 0.718 0.698 0.407 0.657 0.817 0.574
PACTran [27] 0.136 0.262 0.484 0.631 0.614 -0.227 0.701 0.477 0.385
OTCE [93] -0.316 -0.050 -0.127 0.515 0.505 -0.168 0.406 0.210 0.123
LFC [25] 0.226 -0.226 -0.235 0.330 0.271 -0.669 -0.059 -0.151 -0.064

MODEL SPIDER 0.382 0.711 0.727 0.870 0.977 0.686 0.717 0.933 0.750

The prompts are added to the input repr., allowing the transformer to utilize represented-type context
for a better ranking process. Notably, µm (T ) depends on Φm

T , and the pre-extracted PTM-specific
features for all training tasks make the construction of these specific representation efficient.

4.5 A Brief Summary of MODEL SPIDER

MODEL SPIDER learns to rank PTMs based on the model-task pair, balancing efficiency and accuracy.
During the training, we sample tasks where PTM representation and transformer-based similarity
are learned. In particular, to enable the model-task similarity to incorporate PTM-specific features,
we replace some of the inputs to the transformer with enriched representations. We pre-extract
PTM-specific features for all training tasks, and then the estimated ground-truth and the specific
repr. could be constructed efficiently. During deployment, we first employ a coarse-grained PTM
search with a general representation. Then we carry out forward passes over the target task only for
top-k ranked PTMs, where the obtained PTM-specific task repr. will re-rank the PTMs by taking the
distributed examples with PTM’s features into account.

5 Experiments

Table 1: Performance comparison of regression-
conducted approaches with the same model zoo
and weighted τw measurement as in Table 2.
The downstream task is dSprites and UTKFace.

Dataset Methods for Regression Tasks
H-Score LogME GBC Ours

dSprites 0.106 0.612 -0.283 0.679
UTKFace 0.075 -0.156 0.052 0.364

We evaluate MODEL SPIDER on three benchmarks:
the PTM zoo comprising heterogeneous models
from the single-source, multi-source datasets, or
composed of large language models. We analyze
the influence of key components in MODEL SPI-
DER and visualize the ability of a PTM using spider
charts based on the learned representation.

5.1 Evaluation on a Single-Source Model Zoo

Setups. We follow [113] and construct a model zoo with 10 PTMs pre-trained on ImageNet [81]
across five architecture families, i.e. Inception [88], ResNet [35], DenseNet [38], MobileNet [83],
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Figure 3: Visualizations when selecting PTMs from a multi-source heterogeneous model zoo (w/ 42
PTMs) on three downstream datasets. Rows represent approaches, and columns represent datasets.
Correlations (τw) are shown above each subfigure. The horizontal axis denotes transferred accuracy
(w/ fine-tuning), while the vertical axis is the output ranking score. The PTM architectures are
drawn in red, yellow, and green. The bold line and the gray area show the fitted straight line and the
confidence interval for all PTMs. The strong linear correlation suggests superior performance.

and MNASNet [90]. We evaluate various methods on 9 downstream datasets, i.e. Aircraft [59],
Caltech101 [32], Cars [47], CIFAR10 [49], CIFAR100 [49], DTD [19], Pet [73], and SUN397 [107]
for classification, UTKFace [118] and dSprites [61] for regression.

Baselines. There are three groups of comparison methods. First are creating a proxy between PTM-
specific features and downstream labels, such as H-Score [9], NCE [97], LEEP [66], N -LEEP [55],
LogME [113], and PACTran [27]. The second are based on the downstream inter-categories features
like OTCE [93], Label-Feature Correlation (LFC) [25], and GBC [71]. Following [66] and [113], we
equivalently modify NCE and H-Score to the general model selection application.

Evaluations. For the standard evaluation, we follow the official train-test split of each downstream
dataset and utilize all the training samples. In few-shot evaluation, we consider if MODEL SPIDER
can select useful models with limited labeled examples under privacy and resource constraints. We
sample 10 examples per class from the training set as a “probe set” and report the average results
over 30 trials. The full results, along with 95% confidence intervals, are presented in the appendix.

Training Details of MODEL SPIDER. We implement the ψ with the pre-trained Swin-B [57, 53]
to extract the task representation. MODEL SPIDER is trained on 832 sampled tasks from the mix
of 6 datasets, i.e., EuroSAT [36], OfficeHome [99], PACS [54], SmallNORB [51], STL10 [22] and
VLCS [31]. MODEL SPIDER utilizes specific features from the top-3 ranked PTMs (out of 10) for
downstream tasks, resulting in a 3-4 times speedup.

Results of Standard and Few-Shot Evaluation. For the standard evaluation shown in Table 2 and
Table 1, MODEL SPIDER outperforms other baselines across datasets, except for Aircraft, which
ranks top-2. It also demonstrates superior stability and outperforms all the existing approaches in
few-shot scenarios, as displayed in the lower part of Table 2. Consistently ranking and selecting the
correct PTMs, MODEL SPIDER achieves the highest mean performance among all methods.

5.2 Evaluation on a Multi-Source Model Zoo

We construct a large model zoo where 42 heterogeneous PTMs are pre-trained from multiple datasets.

Setups. PTMs with 3 similar magnitude architectures, i.e., Inception V3, ResNet 50, and DenseNet
201, are pre-trained on 14 datasets, including animals [37, 46], general and 3D objects [32, 51, 49, 47,
14], plants [68], scene-based [107], remote sensing [106, 18, 36] and multi-domain recognition [54].
We evaluate the ability of PTM selection on Aircraft [59], DTD [19], and Pet [73] datasets.

Training Details. We use the same task representation extractor as in subsection 5.1 with 4352
training tasks sampled from the mix of the above datasets for pre-training the model zoo.

Analysis of Multi-Source Model Zoo. With many PTMs in the model zoo, we first set k = 0
and select PTMs based on general representation. We visualize the results in Figure 3, with each
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Table 3: Top-1 ranked Large Language Model (LLM) performance comparisons against LLM
evaluation results [94, 116, 96, 119, 69], which includes 2 directly baselines and our MODEL SPIDER,
ranking on a pre-trained model zoo of 9 LLMs. The 10 downstream tasks are construct based
on the OpenCompass [23] benchmark from 5 diverse fields as examination, language, knowledge,
understanding, reasoning. We denote the best-performing results in bold.

Method Downstream Target Dataset MeanExam. Language Knowledge Understand. Reason.

LLM Evaluations
Alpaca-7B [94] 24.30 67.20 41.95 33.30 51.70 43.69
ChatGLM2-6B [116] 39.00 67.30 44.35 40.25 68.67 51.91
LLaMA2-7B [96] 31.30 67.40 55.90 40.30 52.93 49.57
Vicuna-7B [119] 29.10 66.70 49.45 34.70 52.67 46.52
ChatGPT [69] 39.90 60.90 57.10 55.40 69.90 56.64

Top-1 Results of LLM Ranking Methods, Selected by
Self-assessed Confidence 34.60 67.40 45.10 37.45 62.60 49.43
Perf. on Similar Tasks 29.10 67.20 44.35 53.45 63.03 51.43

MODEL SPIDER 41.30 67.65 55.90 56.80 70.07 58.34

subfigure showing the transferred accuracy using the selected PTM with fine-tuning and the predicted
ranking score. A better-performing method will show a more obvious linear correlation. The
results demonstrate that MODEL SPIDER achieves the optimum in all three datasets. Furthermore,
a visualization of efficiency, the averaged performance over all datasets, and model size on this
benchmark with standard evaluation is shown in Figure 1. The different configurations of k balance
the efficiency and performance in PTM selection, which “envelope” the results of other methods.
These results confirm that MODEL SPIDER performs well in complex scenarios, highlighting its
ability to select heterogeneous PTMs in a large model zoo.

5.3 Evaluation on a Zoo of Large Language Models

We introduce 9 open-source Large Language Models (LLMs) to construct our LLM zoo and deploy
the MODEL SPIDER framework. We conduct a comparative analysis of the performance of the
selected top-1 model against ChatGPT [69].

Setups. The LLM zoo involves Alpaca-7B [94], Baichuan-7B [109], Baichuan2-7B [109],
ChatGLM2-6B [116], InternLM-7B [95], LLaMA2-7B [96], Vicuna-7B [119], Qwen-7B [8] and
its chat fine-tuned version. We assess their zero-shot performance on diverse target tasks using the
OpenCompass [23] LLM evaluation benchmark. We then focus on unseen tasks from the examination
to language, knowledge, understanding, and reasoning datasets as the target tasks. For more details,
please see appendix subsection B.3. We report the performance of the top-1 model recommended by
each LLM ranking method and compare it with existing LLM evaluation results.

Training Details. For task representation, we employ a general Sentence-T5 [67] to obtain task
representation. We extract answers from 10 instruction samples as a representative task for a dataset.
We initialize the corresponding model repr. to encode the capabilities of LLMs on instruction data.

Analysis of Ranking on the Zoo of LLMs. Given that LLMs are computationally intensive in PTMs,
we rank LLMs based on their general task representation. Intuitive methods for LLM ranking, like
proxy measures relying on self-assessed confidence scores from generated answers or few-shot tasks
in related domains, often fall short in assessing target task performance. The results indicate that
while ChatGPT-3.5 demonstrates impressive performance in terms of universal performance across
all diverse target tasks, as shown in Table 3 being 56.64, the top-1 ranked of MODEL SPIDER can
surpass ChatGPT when efficiently choosing the appropriate LLM for each specific task. Our method
achieves the average best and excels in the 4 out of 5 major fields of target tasks.

5.4 Ablation Studies

We analyze the properties of MODEL SPIDER on some downstream datasets, following the evaluation
of a single-source model zoo in subsection 5.1.

Will RankAgg provide more accurate ground-truth during training? As discussed in subsec-
tion 4.3, MODEL SPIDER is trained on historical tasks and we utilize RankAgg to approximate
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Figure 4: (a): The ablation analysis of how the ranking correlation changes (Y-axis) with more
PTM-specific features (X-axis). (b): Visualization of the PTM’s ability on 6 major semantic clusters
of datasets with spider chart. The score on the vertex of the spider chart is the averaged similarities
between a PTM and the task representation in the cluster. The higher the vertex value, the better a
PTM would perform on that kind of task.

accuracy ranking. We investigate if this approximation offers better supervision and if using previous
model selection methods like H-Score or LogME without aggregation is sufficient. The results
in Table 4 include CIFAR10 and averaged results over eight classification datasets. It is evident that
RankAgg provides stronger supervision during MODEL SPIDER’s training.

Will more PTM-specific features help? As mentioned in subsection 4.4, MODEL SPIDER is able
to incorporate PTM-specific features — the forward pass of a PTM over the downstream task – to
improve the ranking scores. When no specific features (k = 0) exist, we use the general representation
to rank PTMs (most efficient). In Figure 4 (a), we show that τw increases when MODEL SPIDER
receives more PTM-specific features. It balances the efficiency and accuracy trade-off.

5.5 Interpreting MODEL SPIDER by Spider Chart

Table 4: The weighted τw of MODEL SPI-
DER variants when the training supervi-
sion is approximated by different methods.
“Mean” denotes the averaged performance
over 8 downsteam datasets in Table 2.

Method CIFAR10 Mean
w/ H-Score [9] 0.386 0.642

w/ LogME [113] 0.695 0.689
w/ RankAgg (Ours) 0.845 0.765

An interesting by-product of MODEL SPIDER is that we
can visualize the ability of a PTM with a spider chart,
which demonstrates which fields the PTM is good at.
We cluster the datasets in our multi-source model zoo
into six major groups. Then, we approximate a PTM’s
ability on the six types of tasks with the averaged sim-
ilarity between a PTM to the tasks in the cluster. The
larger the similarity, the better the PTM performs on
that task. In Figure 4 (b), we find a PTM pre-trained on
AID [106] dataset works well on medical and remote
sensing tasks, and a PTM pre-trained on NABirds [37] dataset shows strong ability on birds and
animal recognition. The spider charts provide valuable insights into PTM capabilities and assist in
PTM recommendations for specific application scenarios.

6 Conclusion

The proposed MODEL SPIDER learns to rank PTMs for existing tasks and can generalize the
model selection ability to unseen tasks, even with few-shot examples, and is applicable to both
visual and large language models (LLMs). The two-stage pipeline in MODEL SPIDER enables it to
fit the resources adaptively. A task is matched with PTMs efficiently based on their task-agnostic
representation if resource is limited. While there is a sufficient resource budget, limited forward passes
are carried out over the candidates of top-ranked PTMs, which re-ranks candidates via incorporating
the detailed fitness between the task and the selected PTMs. The learned representations help construct
a spider chart for each task, illustrating its relevance with all PTMs. The representation for models and
tasks acts as a kind of specification that matches the main design in Learnware [121, 122, 91, 34, 92].

10



Acknowledgments. This work is partially supported by the National Key R&D Program of China
(2022ZD0114805), NSFC (62250069, 62376118, 62006112, 62206245), Young Elite Scientists
Sponsorship Program of Jiangsu Association for Science and Technology 2021-020, Collaborative
Innovation Center of Novel Software Technology and Industrialization.

References
[1] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean, Matthieu Devin,

Sanjay Ghemawat, Geoffrey Irving, and Michael Isard. Tensorflow: a system for large-scale machine
learning. In OSDI, 2016.

[2] Alessandro Achille, Michael Lam, Rahul Tewari, Avinash Ravichandran, Subhransu Maji, Charless C
Fowlkes, Stefano Soatto, and Pietro Perona. Task2vec: Task embedding for meta-learning. In ICCV,
2019.

[3] Enric Boix Adserà, Hannah Lawrence, George Stepaniants, and Philippe Rigollet. GULP: a prediction-
based metric between representations. In NeurIPS, 2022.

[4] Andrea Agostinelli, Michal Pándy, Jasper R. R. Uijlings, Thomas Mensink, and Vittorio Ferrari. How
stable are transferability metrics evaluations? In ECCV, 2022.

[5] Nir Ailon and Mehryar Mohri. Preference-based learning to rank. Machine Learning, 80(2-3), 2010.

[6] David Alvarez-Melis and Nicolò Fusi. Geometric dataset distances via optimal transport. In NeurIPS,
2020.

[7] Ann Arbor. A reasonable social welfare function. Seminar on Applications of Mathematics to Social
Sciences, 1951.

[8] Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng, Yang Fan, Wenbin Ge, Yu Han,
Fei Huang, Binyuan Hui, Luo Ji, Mei Li, Junyang Lin, Runji Lin, Dayiheng Liu, Gao Liu, Chengqiang Lu,
Keming Lu, Jianxin Ma, Rui Men, Xingzhang Ren, Xuancheng Ren, Chuanqi Tan, Sinan Tan, Jianhong
Tu, Peng Wang, Shijie Wang, Wei Wang, Shengguang Wu, Benfeng Xu, Jin Xu, An Yang, Hao Yang,
Jian Yang, Shusheng Yang, Yang Yao, Bowen Yu, Hongyi Yuan, Zheng Yuan, Jianwei Zhang, Xingxuan
Zhang, Yichang Zhang, Zhenru Zhang, Chang Zhou, Jingren Zhou, Xiaohuan Zhou, and Tianhang Zhu.
Qwen technical report. arXiv preprint arXiv:2309.16609, 2023.

[9] Yajie Bao, Yang Li, Shao-Lun Huang, Lin Zhang, Lizhong Zheng, Amir Zamir, and Leonidas Guibas. An
information-theoretic approach to transferability in task transfer learning. In ICIP, 2019.

[10] Shai Ben-David and Reba Schuller. Exploiting task relatedness for multiple task learning. In COLT,
2003.

[11] Shai Ben-David, John Blitzer, Koby Crammer, and Fernando Pereira. Analysis of representations for
domain adaptation. In NIPS, 2006.

[12] Steiner Benoit, DeVito Zachary, Chintala Soumith, Gross Sam, Paszke Adam, Massa Francisco, Lerer
Adam, Chanan Gregory, Lin Zeming, Yang Edward, Desmaison Alban, Tejani Alykhan, Kopf Andreas,
Bradbury James, Antiga Luca, Raison Martin, Gimelshein Natalia, Chilamkurthy Sasank, Killeen Trevor,
Fang Lu, and Bai Junjie. Pytorch: An imperative style, high-performance deep learning library. In
NeurIPS, 2019.

[13] Daniel Bolya, Rohit Mittapalli, and Judy Hoffman. Scalable diverse model selection for accessible
transfer learning. In NeurIPS 2021, 2021.

[14] Lukas Bossard, Matthieu Guillaumin, and Luc Van Gool. Food-101–mining discriminative components
with random forests. In ECCV, 2014.

[15] Fatih Çakir, Kun He, Xide Xia, Brian Kulis, and Stan Sclaroff. Deep metric learning to rank. In CVPR,
2019.

[16] Wei-Lun Chao, Han-Jia Ye, De-Chuan Zhan, Mark E. Campbell, and Kilian Q. Weinberger. Revisiting
meta-learning as supervised learning. CoRR, abs/2002.00573, 2020.

[17] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for
contrastive learning of visual representations. In ICML, 2020.

11



[18] Gong Cheng, Junwei Han, and Xiaoqiang Lu. Remote sensing image scene classification: Benchmark
and state of the art. Proceedings of IEEE, 105(10), 2017.

[19] Mircea Cimpoi, Subhransu Maji, Iasonas Kokkinos, Sammy Mohamed, and Andrea Vedaldi. Describing
textures in the wild. In CVPR, 2014.

[20] Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski, Michael Collins, and Kristina
Toutanova. Boolq: Exploring the surprising difficulty of natural yes/no questions. In NAACL-HLT, 2019.

[21] Jonathan H. Clark, Jennimaria Palomaki, Vitaly Nikolaev, Eunsol Choi, Dan Garrette, Michael Collins, and
Tom Kwiatkowski. Tydi QA: A benchmark for information-seeking question answering in typologically
diverse languages. Trans. Assoc. Comput. Linguistics, 8, 2020.

[22] Adam Coates, Andrew Y. Ng, and Honglak Lee. An analysis of single-layer networks in unsupervised
feature learning. In AISTATS, 2011.

[23] OpenCompass Contributors. Opencompass: A universal evaluation platform for foundation models.
https://github.com/open-compass/opencompass, 2023.

[24] Ido Dagan, Oren Glickman, and Bernardo Magnini. The pascal recognising textual entailment challenge.
In Machine learning challenges workshop. Springer, 2005.

[25] Aditya Deshpande, Alessandro Achille, Avinash Ravichandran, Hao Li, Luca Zancato, Charless Fowlkes,
Rahul Bhotika, Stefano Soatto, and Pietro Perona. A linearized framework and a new benchmark for
model selection for fine-tuning. CoRR, abs/2102.00084, 2021.

[26] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: pre-training of deep
bidirectional transformers for language understanding. In NAACL-HLT, 2019.

[27] Nan Ding, Xi Chen, Tomer Levinboim, Soravit Changpinyo, and Radu Soricut. Pactran: Pac-bayesian
metrics for estimating the transferability of pretrained models to classification tasks. In ECCV, 2022.

[28] Yao-Xiang Ding, Xi-Zhu Wu, Kun Zhou, and Zhi-Hua Zhou. Pre-trained model reusability evaluation for
small-data transfer learning. In NeurIPS, 2022.

[29] Kshitij Dwivedi and Gemma Roig. Representation similarity analysis for efficient task taxonomy &
transfer learning. In CVPR, 2019.

[30] Kshitij Dwivedi, Jiahui Huang, Radoslaw Martin Cichy, and Gemma Roig. Duality diagram similarity: A
generic framework for initialization selection in task transfer learning. In ECCV, 2020.

[31] Chen Fang, Ye Xu, and Daniel N. Rockmore. Unbiased metric learning: On the utilization of multiple
datasets and web images for softening bias. In ICCV, 2013.

[32] Li Fei-Fei, Rob Fergus, and Pietro Perona. Learning generative visual models from few training examples:
An incremental bayesian approach tested on 101 object categories. In CVPR Workshops, 2004.

[33] Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin Tallec, Pierre H. Richemond, Elena
Buchatskaya, Carl Doersch, Bernardo Ávila Pires, Zhaohan Guo, Mohammad Gheshlaghi Azar, Bi-
lal Piot, Koray Kavukcuoglu, Rémi Munos, and Michal Valko. Bootstrap your own latent - A new
approach to self-supervised learning. In NeurIPS, 2020.

[34] Lan-Zhe Guo, Zhi Zhou, Yu-Feng Li, and Zhi-Hua Zhou. Identifying useful learnwares for heterogeneous
label spaces. In ICML, volume 202 of Proceedings of Machine Learning Research, 2023.

[35] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition.
In CVPR, 2016.

[36] Patrick Helber, Benjamin Bischke, Andreas Dengel, and Damian Borth. Eurosat: A novel dataset and
deep learning benchmark for land use and land cover classification. IEEE Journal of Selected Topics in
Applied Earth Observations and Remote Sensing, 2019.

[37] Grant Van Horn, Steve Branson, Ryan Farrell, Scott Haber, Jessie Barry, Panos Ipeirotis, Pietro Perona,
and Serge J. Belongie. Building a bird recognition app and large scale dataset with citizen scientists: The
fine print in fine-grained dataset collection. In CVPR, 2015.

[38] Gao Huang, Zhuang Liu, Kilian Q. Weinberger, and Laurens van der Maaten. Densely connected
convolutional networks. In CVPR, 2017.

12

https://github.com/open-compass/opencompass


[39] Long-Kai Huang, Junzhou Huang, Yu Rong, Qiang Yang, and Ying Wei. Frustratingly easy transferability
estimation. In ICML, 2022.

[40] Yuzhen Huang, Yuzhuo Bai, Zhihao Zhu, Junlei Zhang, Jinghan Zhang, Tangjun Su, Junteng Liu,
Chuancheng Lv, Yikai Zhang, Jiayi Lei, Yao Fu, Maosong Sun, and Junxian He. C-eval: A multi-level
multi-discipline chinese evaluation suite for foundation models. CoRR, abs/2305.08322, 2023.

[41] Shibal Ibrahim, Natalia Ponomareva, and Rahul Mazumder. Newer is not always better: Rethinking
transferability metrics, their peculiarities, stability and performance. CoRR, abs/2110.06893, 2021.

[42] Menglin Jia, Luming Tang, Bor-Chun Chen, Claire Cardie, Serge J. Belongie, Bharath Hariharan, and
Ser-Nam Lim. Visual prompt tuning. In ECCV, 2022.

[43] Thorsten Joachims. Optimizing search engines using clickthrough data. In SIGKDD, 2002.

[44] Brendan Jou and Shih-Fu Chang. Deep cross residual learning for multitask visual recognition. In ACM
MM, 2016.

[45] Maurice G Kendall. A new measure of rank correlation. Biometrika, 30(1/2), 1938.

[46] Aditya Khosla, Nityananda Jayadevaprakash, Bangpeng Yao, and Fei-Fei Li. Novel dataset for fine-
grained image categorization: Stanford dogs. In CVPR workshop on FGVC, volume 2, 2011.

[47] Jonathan Krause, Michael Stark, Jia Deng, and Li Fei-Fei. 3d object representations for fine-grained
categorization. In 4th International IEEE Workshop on 3D Representation and Recognition (3dRR-13),
2013.

[48] Nikolaus Kriegeskorte. Representational similarity analysis – connecting the branches of systems
neuroscience. Frontiers in Systems Neuroscience, 2008.

[49] Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from tiny images. Technical
report, 2009.

[50] Tom Kwiatkowski, Jennimaria Palomaki, Olivia Redfield, Michael Collins, Ankur P. Parikh, Chris Alberti,
Danielle Epstein, Illia Polosukhin, Jacob Devlin, Kenton Lee, Kristina Toutanova, Llion Jones, Matthew
Kelcey, Ming-Wei Chang, Andrew M. Dai, Jakob Uszkoreit, Quoc Le, and Slav Petrov. Natural questions:
a benchmark for question answering research. Trans. Assoc. Comput. Linguistics, 7, 2019.

[51] Yann LeCun, Fu Jie Huang, and Léon Bottou. Learning methods for generic object recognition with
invariance to pose and lighting. In CVPR, 2004.

[52] Hector J. Levesque, Ernest Davis, and Leora Morgenstern. The winograd schema challenge. In KR, 2012.

[53] Chunyuan Li, Jianwei Yang, Pengchuan Zhang, Mei Gao, Bin Xiao, Xiyang Dai, Lu Yuan, and Jianfeng
Gao. Efficient self-supervised vision transformers for representation learning. In ICLR, 2022.

[54] Da Li, Yongxin Yang, Yi-Zhe Song, and Timothy M. Hospedales. Deeper, broader and artier domain
generalization. In ICCV, 2017.

[55] Yandong Li, Xuhui Jia, Ruoxin Sang, Yukun Zhu, Bradley Green, Liqiang Wang, and Boqing Gong.
Ranking neural checkpoints. In CVPR, 2021.

[56] Percy Liang, Rishi Bommasani, Tony Lee, Dimitris Tsipras, Dilara Soylu, Michihiro Yasunaga, Yian
Zhang, Deepak Narayanan, Yuhuai Wu, Ananya Kumar, Benjamin Newman, Binhang Yuan, Bobby Yan,
Ce Zhang, Christian Cosgrove, Christopher D. Manning, Christopher Ré, Diana Acosta-Navas, Drew A.
Hudson, Eric Zelikman, Esin Durmus, Faisal Ladhak, Frieda Rong, Hongyu Ren, Huaxiu Yao, Jue Wang,
Keshav Santhanam, Laurel J. Orr, Lucia Zheng, Mert Yüksekgönül, Mirac Suzgun, Nathan Kim, Neel
Guha, Niladri S. Chatterji, Omar Khattab, Peter Henderson, Qian Huang, Ryan Chi, Sang Michael Xie,
Shibani Santurkar, Surya Ganguli, Tatsunori Hashimoto, Thomas Icard, Tianyi Zhang, Vishrav Chaudhary,
William Wang, Xuechen Li, Yifan Mai, Yuhui Zhang, and Yuta Koreeda. Holistic evaluation of language
models. CoRR, abs/2211.09110, 2022.

[57] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo. Swin
transformer: Hierarchical vision transformer using shifted windows. In ICCV, 2021.

[58] Su Lu, Han-Jia Ye, and De-Chuan Zhan. Tailoring embedding function to heterogeneous few-shot tasks
by global and local feature adaptors. In AAAI, 2021.

[59] Subhransu Maji, Esa Rahtu, Juho Kannala, Matthew Blaschko, and Andrea Vedaldi. Fine-grained visual
classification of aircraft. CoRR, abs/1306.5151, 2013.

13



[60] Yishay Mansour, Mehryar Mohri, and Afshin Rostamizadeh. Domain adaptation: Learning bounds and
algorithms. In COLT, 2009.

[61] Loic Matthey, Irina Higgins, Demis Hassabis, and Alexander Lerchner. dsprites: Disentanglement testing
sprites dataset. https://github.com/deepmind/dsprites-dataset/, 2017.

[62] Brian McFee and Gert R. G. Lanckriet. Metric learning to rank. In ICML, 2010.

[63] Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar. Foundations of Machine Learning. Adaptive
computation and machine learning. 2012.

[64] Shashi Narayan, Shay B. Cohen, and Mirella Lapata. Don’t give me the details, just the summary!
topic-aware convolutional neural networks for extreme summarization. In EMNLP, 2018.

[65] Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and Andrew Y. Ng. Reading
digits in natural images with unsupervised feature learning. In NIPS Workshop on Deep Learning and
Unsupervised Feature Learning 2011, 2011.

[66] Cuong V Nguyen, Tal Hassner, Cedric Archambeau, and Matthias Seeger. Leep: A new measure to
evaluate transferability of learned representations. In ICML, 2020.

[67] Jianmo Ni, Gustavo Hernández Ábrego, Noah Constant, Ji Ma, Keith B. Hall, Daniel Cer, and Yinfei
Yang. Sentence-t5: Scalable sentence encoders from pre-trained text-to-text models. In Findings of
the Association for Computational Linguistics: ACL 2022, Dublin, Ireland, May 22-27, 2022, pages
1864–1874. Association for Computational Linguistics, 2022.

[68] Maria-Elena Nilsback and Andrew Zisserman. Automated flower classification over a large number of
classes. In ICVGIP, 2008.

[69] OpenAI. GPT-4 technical report. CoRR, abs/2303.08774, 2023.

[70] Sinno Jialin Pan and Qiang Yang. A survey on transfer learning. IEEE Transactions on knowledge and
data engineering, 22(10), 2009.

[71] Michal Pándy, Andrea Agostinelli, Jasper R. R. Uijlings, Vittorio Ferrari, and Thomas Mensink. Transfer-
ability estimation using bhattacharyya class separability. In CVPR, 2022.

[72] Denis Paperno, Germán Kruszewski, Angeliki Lazaridou, Quan Ngoc Pham, Raffaella Bernardi, Sandro
Pezzelle, Marco Baroni, Gemma Boleda, and Raquel Fernández. The LAMBADA dataset: Word
prediction requiring a broad discourse context. In ACL, 2016.

[73] Omkar M. Parkhi, Andrea Vedaldi, Andrew Zisserman, and C. V. Jawahar. Cats and dogs. In CVPR,
2012.

[74] Huiyan Qi, Lechao Cheng, Jingjing Chen, Yue Yu, Zunlei Feng, and Yu-Gang Jiang. Transferability
estimation based on principal gradient expectation. CoRR, abs/2211.16299, 2022.

[75] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish
Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya Sutskever. Learning
transferable visual models from natural language supervision. In ICML, 2021.

[76] Rajeev Ranjan, Vishal M. Patel, and Rama Chellappa. Hyperface: A deep multi-task learning framework
for face detection, landmark localization, pose estimation, and gender recognition. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 41(1), 2019.

[77] Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, Georg Sperl, and Christoph H. Lampert. icarl: Incre-
mental classifier and representation learning. In CVPR, 2017.

[78] Cédric Renggli, André Susano Pinto, Luka Rimanic, Joan Puigcerver, Carlos Riquelme, Ce Zhang, and
Mario Lucic. Which model to transfer? finding the needle in the growing haystack. In CVPR, 2022.

[79] Melissa Roemmele, Cosmin Adrian Bejan, and Andrew S. Gordon. Choice of plausible alternatives: An
evaluation of commonsense causal reasoning. In AAAI Spring Symposium, 2011.

[80] Michael T Rosenstein, Zvika Marx, Leslie Pack Kaelbling, and Thomas G Dietterich. To transfer or not
to transfer. In NIPS Workshop on Transfer Learning, volume 898, 2005.

[81] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang,
Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al. Imagenet large scale visual recognition
challenge. International Journal of Computer Vision, 115(3), 2015.

14



[82] Saari, Donald G., and Vincent R. Merlin. The copeland method: I.: Relationships and the dictionary.
Economic Theory, 8(1), 1996.

[83] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen. Mo-
bileNetV2: inverted residuals and linear bottlenecks. In CVPR, 2018.

[84] Wenqi Shao, Xun Zhao, Yixiao Ge, Zhaoyang Zhang, Lei Yang, Xiaogang Wang, Ying Shan, and Ping
Luo. Not all models are equal: Predicting model transferability in a self-challenging fisher space. In
ECCV, 2022.

[85] Jie Song, Yixin Chen, Xinchao Wang, Chengchao Shen, and Mingli Song. Deep model transferability
from attribution maps. In NeurIPS, 2019.

[86] Jie Song, Yixin Chen, Jingwen Ye, Xinchao Wang, Chengchao Shen, Feng Mao, and Mingli Song. Depara:
Deep attribution graph for deep knowledge transferability. In CVPR, 2020.

[87] Kai Sun, Dian Yu, Dong Yu, and Claire Cardie. Investigating prior knowledge for challenging chinese
machine reading comprehension. Trans. Assoc. Comput. Linguistics, 8, 2020.

[88] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew Wojna. Rethinking the
Inception Architecture for Computer Vision. In CVPR, 2016.

[89] Alon Talmor, Jonathan Herzig, Nicholas Lourie, and Jonathan Berant. Commonsenseqa: A question
answering challenge targeting commonsense knowledge. In NAACL-HLT, 2019.

[90] Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasudevan, Mark Sandler, Andrew Howard, and Quoc V.
Le. Mnasnet: Platform-aware neural architecture search for mobile. In CVPR, 2019.

[91] Peng Tan, Zhi-Hao Tan, Yuan Jiang, and Zhi-Hua Zhou. Towards enabling learnware to handle heteroge-
neous feature spaces. Machine Learning, 2022.

[92] Peng Tan, Zhi-Hao Tan, Yuan Jiang, and Zhi-Hua Zhou. Handling learnwares developed from heteroge-
neous feature spaces without auxiliary data. In IJCAI, 2023.

[93] Yang Tan, Yang Li, and Shao-Lun Huang. OTCE: A transferability metric for cross-domain cross-task
representations. In CVPR, 2021.

[94] Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos Guestrin, Percy Liang,
and Tatsunori B. Hashimoto. Stanford alpaca: An instruction-following llama model. https://github.
com/tatsu-lab/stanford_alpaca, 2023.

[95] InternLM Team. Internlm: A multilingual language model with progressively enhanced capabilities.
https://github.com/InternLM/InternLM, 2023.

[96] Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton
Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller,
Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn, Saghar Hosseini, Rui Hou, Hakan
Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa, Isabel Kloumann, Artem Korenev, Punit Singh
Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Diana Liskovich, Yinghai Lu, Yuning Mao,
Xavier Martinet, Todor Mihaylov, Pushkar Mishra, Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy
Reizenstein, Rashi Rungta, Kalyan Saladi, Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan
Subramanian, Xiaoqing Ellen Tan, Binh Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin
Xu, Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien
Rodriguez, Robert Stojnic, Sergey Edunov, and Thomas Scialom. Llama 2: Open foundation and
fine-tuned chat models, 2023.

[97] Anh Tuan Tran, Cuong V. Nguyen, and Tal Hassner. Transferability and hardness of supervised classifica-
tion tasks. In ICCV, 2019.

[98] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. Attention is all you need. In NIPS, 2017.

[99] Hemanth Venkateswara, Jose Eusebio, Shayok Chakraborty, and Sethuraman Panchanathan. Deep hashing
network for unsupervised domain adaptation. In CVPR, 2017.

[100] C. Wah, S. Branson, P. Welinder, P. Perona, and S. Belongie. The Caltech-UCSD Birds-200-2011 Dataset.
Technical Report CNS-TR-2011-001, California Institute of Technology, 2011.

15

https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca
https://github.com/InternLM/InternLM


[101] Alex Wang, Yada Pruksachatkun, Nikita Nangia, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy,
and Samuel R. Bowman. Superglue: A stickier benchmark for general-purpose language understanding
systems. In NeurIPS, 2019.

[102] Zirui Wang, Zihang Dai, Barnabás Póczos, and Jaime Carbonell. Characterizing and avoiding negative
transfer. In CVPR, 2019.

[103] Ying Wei, Yu Zhang, Junzhou Huang, and Qiang Yang. Transfer learning via learning to transfer. In
ICML, 2018.

[104] Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi, Pierric
Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer, Patrick von Platen, Clara
Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger, Mariama Drame, Quentin
Lhoest, and Alexander M. Rush. Transformers: State-of-the-art natural language processing. In EMNLP,
2020.

[105] Fen Xia, Tie-Yan Liu, Jue Wang, Wensheng Zhang, and Hang Li. Listwise approach to learning to rank:
theory and algorithm. In ICML, volume 307, 2008.

[106] Gui-Song Xia, Jingwen Hu, Fan Hu, Baoguang Shi, Xiang Bai, Yanfei Zhong, and Liangpei Zhang. Aid:
A benchmark dataset for performance evaluation of aerial scene classification. CoRR, abs/1608.05167,
2016.

[107] Jianxiong Xiao, James Hays, Krista A Ehinger, Aude Oliva, and Antonio Torralba. Sun database:
Large-scale scene recognition from abbey to zoo. In CVPR, 2010.

[108] Liang Xu, Hai Hu, Xuanwei Zhang, Lu Li, Chenjie Cao, Yudong Li, Yechen Xu, Kai Sun, Dian Yu, Cong
Yu, Yin Tian, Qianqian Dong, Weitang Liu, Bo Shi, Yiming Cui, Junyi Li, Jun Zeng, Rongzhao Wang,
Weijian Xie, Yanting Li, Yina Patterson, Zuoyu Tian, Yiwen Zhang, He Zhou, Shaoweihua Liu, Zhe Zhao,
Qipeng Zhao, Cong Yue, Xinrui Zhang, Zhengliang Yang, Kyle Richardson, and Zhenzhong Lan. CLUE:
A chinese language understanding evaluation benchmark. In COLING, 2020.

[109] Aiyuan Yang, Bin Xiao, Bingning Wang, Borong Zhang, Ce Bian, Chao Yin, Chenxu Lv, Da Pan, Dian
Wang, Dong Yan, Fan Yang, Fei Deng, Feng Wang, Feng Liu, Guangwei Ai, Guosheng Dong, Haizhou
Zhao, Hang Xu, Haoze Sun, Hongda Zhang, Hui Liu, Jiaming Ji, Jian Xie, JunTao Dai, Kun Fang, Lei
Su, Liang Song, Lifeng Liu, Liyun Ru, Luyao Ma, Mang Wang, Mickel Liu, MingAn Lin, Nuolan Nie,
Peidong Guo, Ruiyang Sun, Tao Zhang, Tianpeng Li, Tianyu Li, Wei Cheng, Weipeng Chen, Xiangrong
Zeng, Xiaochuan Wang, Xiaoxi Chen, Xin Men, Xin Yu, Xuehai Pan, Yanjun Shen, Yiding Wang, Yiyu Li,
Youxin Jiang, Yuchen Gao, Yupeng Zhang, Zenan Zhou, and Zhiying Wu. Baichuan 2: Open large-scale
language models, 2023.

[110] Yang Yang, Han-Jia Ye, De-Chuan Zhan, and Yuan Jiang. Auxiliary information regularized machine for
multiple modality feature learning. In IJCAI, 2015.

[111] Han-Jia Ye, De-Chuan Zhan, Nan Li, and Yuan Jiang. Learning multiple local metrics: Global considera-
tion helps. IEEE Trans. Pattern Anal. Mach. Intell., 42(7), 2020.

[112] Han-Jia Ye, De-Chuan Zhan, Yuan Jiang, and Zhi-Hua Zhou. Heterogeneous few-shot model rectification
with semantic mapping. IEEE Trans. Pattern Anal. Mach. Intell., 43(11), 2021.

[113] Kaichao You, Yong Liu, Jianmin Wang, and Mingsheng Long. Logme: Practical assessment of pre-trained
models for transfer learning. In ICML, 2021.

[114] Kaichao You, Yong Liu, Ziyang Zhang, Jianmin Wang, Michael I Jordan, and Mingsheng Long. Ranking
and tuning pre-trained models: A new paradigm for exploiting model hubs. Journal of Machine Learning
Research, 23, 2022.

[115] Amir R Zamir, Alexander Sax, William Shen, Leonidas J Guibas, Jitendra Malik, and Silvio Savarese.
Taskonomy: Disentangling task transfer learning. In CVPR, 2018.

[116] Aohan Zeng, Xiao Liu, Zhengxiao Du, Zihan Wang, Hanyu Lai, Ming Ding, Zhuoyi Yang, Yifan
Xu, Wendi Zheng, Xiao Xia, et al. Glm-130b: An open bilingual pre-trained model. arXiv preprint
arXiv:2210.02414, 2022.

[117] Xiaotian Zhang, Chunyang Li, Yi Zong, Zhengyu Ying, Liang He, and Xipeng Qiu. Evaluating the
performance of large language models on GAOKAO benchmark. CoRR, abs/2305.12474, 2023.

[118] Zhifei Zhang, Yang Song, and Hairong Qi. Age progression/regression by conditional adversarial
autoencoder. In CVPR, 2017.

16



[119] Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin,
Zhuohan Li, Dacheng Li, Eric. P Xing, Hao Zhang, Joseph E. Gonzalez, and Ion Stoica. Judging
llm-as-a-judge with mt-bench and chatbot arena, 2023.

[120] Wanjun Zhong, Ruixiang Cui, Yiduo Guo, Yaobo Liang, Shuai Lu, Yanlin Wang, Amin Saied, Weizhu
Chen, and Nan Duan. Agieval: A human-centric benchmark for evaluating foundation models. CoRR,
abs/2304.06364, 2023.

[121] Zhi-Hua Zhou. Learnware: on the future of machine learning. Frontiers Computer Science, 10(4), 2016.

[122] Zhi-Hua Zhou and Zhi-Hao Tan. Learnware: Small models do big. CoRR, abs/2210.03647, 2022.

17



Supplementary Material
We provide details omitted in the main paper.

• Appendix A: Workflow of MODEL SPIDER, encompassing the construction of model-task
repr., training, and testing, with the “how to” and “answer” format.

• Appendix B: Experimental setups and implementation details of MODEL SPIDER, especially
the two types of pre-training model zoos utilized in the experimental section.

• Appendix C: Additional experimental results conducted along different dimensions of
robustness analysis.

• Appendix D: Additional datasets descriptions and other details mentioned in the main text.
• Appendix E: Discussions and future exploration of MODEL SPIDER.

A Details and Discussions of MODEL SPIDER

In the method section of the main text, we elucidate the comprehensive workflow for training and
testing the deployment of MODEL SPIDER. This process encompasses three main steps, including
(1) the extraction of task repr., (2) the extraction of model repr., and (3) the construction of a training
scheme that assesses the ranking of matching between model-task repr., thereby establishing the
ground-truth rank of the model zoo for a given task. Once these three steps have been accomplished,
the subsequent phase entails training the MODEL SPIDER by leveraging the extracted repr. in
conjunction with the ranked ground-truth information.

In essence, the testing and deployment strategy employed by the MODEL SPIDER framework
epitomizes a balance between flexibility and efficiency. By employing a fixed feature extractor ψ
to acquire repr. pertaining to downstream target tasks, the trained MODEL SPIDER undergoes a
singular inference pass, generating an output quantifying the similarity between each model and the
downstream task representation. It then accomplishes the task of ranking the PTMs.

In the forthcoming sections, we elaborate on the details in the form of “how to do it” questions. The
training process of MODEL SPIDER is illustrated in Algorithm 1, while the sampling procedure for
training tasks is elaborated in detail in subsection A.2. Additionally, in subsection A.6, we expound
upon the training strategy of PTM-Specific task representation. Analogously, the testing process of
MODEL SPIDER is presented in Algorithm 2, and in subsection A.7, we provide a comprehensive
exposition of the entire deployment workflow for ranking pre-trained models.

A.1 How to construct model representations and task ones

This section supplements the details of subsection 4.2 and subsection 4.4, i.e., the construction of the
model-task repr., including the enriched PTM-specific ones.

PTM representation. The dimension of PTM repr., i.e., the d of θ ∈ Rd is implemented as 1024. It
is a learnable parameter that is optimized with the training process.

Task representation. The ψ is implemented by a pre-trained Swin-B-based EsViT [57, 53] (linked
at https://github.com/microsoft/esvit), self-supervised learning on the ImageNet-1K [81] with
batch size 512. In our experiments, this encoder acts as a wide-field feature extractor and is fixed
without updating. The shape of task repr. µ (T ) ∈ Rd×CT varies with the number of categories of
downstream tasks. As mentioned in subsection 4.4, task reprs. enriched by the PTM-specific features
are obtained through the forward pass of a PTM. We use another fully connected layer to project the
PTM-specific feature to align with the model representation.

A.2 How to sample the training tasks of MODEL SPIDER

We sample tasks for training MODEL SPIDER from additional datasets that are disjoint from the
downstream tasks. These additional datasets possess notable differences and encompass diverse
domains. Notably, MODEL SPIDER does not require substantial additional data for training. We
sample the training tasks from a diverse pool of datasets. The number and size of the mixed datasets
are controlled within a certain range. For more details, please see Appendix B.
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Figure 5: An illustration of the rank aggregation approach to ensemble the ranking of PTMs relying
on diverse transferability assessment methods (three methods depicted in the figure). The PTMs that
outperform more other PTMs should be placed ahead.

A.3 How to see the relationship between RankAgg and MODEL SPIDER

We claim that RankAgg proposed by us cannot be considered as a direct baseline method. Firstly,
RankAgg involves a substantial computational overhead when used as a stand-alone method for
ranking PTMs. This is primarily due to the time and memory requirements of computing the base
selection methods. Using RankAgg directly as a baseline would introduce a significant computational
burden. However, we introduce RankAgg as an approximate ground-truth method for pre-computing
in the training part of MODEL SPIDER. It is more efficient compared to full parameter fine-tuning.

Actually, MODEL SPIDER aims to demonstrate its broad generalization capacity by leveraging
RankAgg to process an independent set of mixed data that has no overlap with the test data. This
independent evaluation showcases the effectiveness of MODEL SPIDER in a real-world scenario and
emphasizes its ability to handle diverse data efficiently. RankAgg itself does not play a role during
the test execution of MODEL SPIDER.

A.4 How to efficiently approximate the training ground-truth of MODEL SPIDER

This section complements subsection 4.4, wherein the training and ranking of the model zoo across
multiple datasets are discussed. However, obtaining the ranking for all historical tasks through brute
force is computationally expensive. To mitigate this issue, we introduce a rank aggregation method
denoted as RankAgg, which serves as an approximation of the ground truth ranking.

Existing PTM selection methods rely on the PTM-specific features Φm
T to estimate the transferability

score. Different methods may have diverse score values — a PTM will be placed in different
positions based on the scores provided by various methods. We empirically observe that some popular
approaches such as NCE [97], LEEP [66], and LogME [113, 114] show “good but diverse” PTM
ranking orders, so an intuitive approach to improving the transferability estimation quality is to
ensemble their ranking results to a stronger single order.

As mentioned in subsection 4.3, given {t̂1, t̂2, . . . , t̂A} as multiple rankings over the same set of
M PTMs for a target task T , i.e., the order sorted by the estimations of transferability via various
methods, we take advantage of Copeland’s aggregation method [7, 82] to ensemble the orders.

t̄ = {t̄ϕm→T }Mm=1 = RankAgg
(
{t̂1, t̂2, . . . , t̂A}

)
. (7)

Copeland’s aggregation compares each pair of ranking candidates and considers all preferences to
determine which of the two is more preferred as illustrated in Figure 5.

Taking model m,m′ as an example, we define the majority relation to express the one-on-one
dominance between these two models. Precisely, assuming that Am approaches rank model m above
model m′, i.e., t̂i,m > t̂i,m′ with Am× such t̂i, while the remaining Am′ ones do the opposite. Note
that Am + Am′ = A. The m >M m′ just in case Am > Am′ , and correspondingly m =M m′

indicates Am = Am′ . In summary, we define the aggregation score for model m as:

t̄ϕm→T = # {i |m >M i}+ 1

2
# {i |m =M i} , (8)

where # {·} is the size of the set. The aggregation score for a model is the number of others over
which they have a majority preference plus half the number of models with which they have a
preference tie. In our implementation, we aggregate the results of NCE, LEEP, LogME, and H-Score.
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Algorithm 1 The Training Part of the MODEL SPIDER

1: Input: fixed ψ, learnable parameters Θ, including model repr. {θm}Mm=1, FC for projection, and
parameters of the transformer-based MODEL SPIDER

2: Sample training tasks {Ti} from the additional mixed datasets as in subsection A.2
3: Extract and save all task repr.

⋃
i {µ (Ti)} with ψ.

4: for all sampled task Ti do
5: for m = 1 to M do
6: if the mth PTM-specific features is available (randomly holds) then
7: Derive the PTM-specific task repr. as mentioned in subsection 4.4.
8:

t̂ϕm→Ti
= simΘ

(
θm,P

⊤
m µm (Ti)

)
.

9: else
10: Take model repr. θm and estimate the similarity of model-representation pairs as Eq. 6.
11:

t̂ϕm→Ti
= simΘ(θm,µ (Ti)) .

12: end if
13: end for
14: From above for, the estimation scores of MODEL SPIDER t̂ is conducted.
15: Calculate H-Score, NCE, LEEP, and LogME on Ti.
16: Aggregate on the results of existing approaches to obtain ground-truth t̄ as in subsection 4.3.
17:

t̄ = {t̄ϕm→Ti
}Mm=1 = RankAgg({t̂1, t̂2, . . .}) .

18: Optimize the parameters of MODEL SPIDER with ranking loss ℓrank w.r.t. the ranking of t̄.

ℓrank(t̂, t) =

M∑
m=1

− log

(
exp

(
t̂dsc(m)

)∑M
l=m exp

(
t̂dsc(l)

)) .

19: Compute ∇Θℓrank and update corresponding parameters with the gradients
20: end for
21: Output: learned Θ, including {θm}Mm=1, FC, and parameters of the MODEL SPIDER

RankAgg can become quite time-consuming when calculating PTM ranking scores for the entire
dataset, mainly due to the substantial overhead of computing the base selection methods. In our
experimental setup, we integrate the RankAgg method as a module during the training phase,
enabling us to pre-compute the rankings for each task. The RankAgg may raise the computational
burden if employed directly as a testing baseline. Therefore, we employ RankAgg for the sampled
few-shot tasks to balance ranking accuracy with efficiency and only use it in the training part. Note
that MODEL SPIDER learns based on the RankAgg results, but is deployed independently of it
and other baseline methods. Since RankAgg summarizes the PTM generalization capability on
differentiated tasks spanning multiple domains, our model derived from the pre-aggregated rankings
can learn the PTM ranking ability on a broader range of unseen tasks.

A.5 How to learn the similarity of model-task representation

This section elaborates on subsection 4.1, i.e., the learning process of MODEL SPIDER, especially
the Transformer based estimation. The Transformer-based module of model-task similarity. The
model-task repr. is concatenated as a sequence of features. The Transformer based module naturally
fits and takes such input. Concretely, in operation, transformer (·) is formalized as:

transformer (z) = z +α (Q,K,V=z)

= z + softmax

(
zWQ · (zWK)

⊤
√
d

)
zWV .

(9)

we apply linear projections on the query, key, and values using WQ, WK, and WV, respectively. The
similarity between prototypes is measured by the inner product in the transformed space, which
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Algorithm 2 The Downstream Inference Part of MODEL SPIDER

Input: target task T , fixed ψ, learned Θ
Obtain task repr. µ (T ) with ψ as Eq. 5.
Estimate similarity of model-representation pairs as Eq. 6

t̂ =
{
t̂ϕm→T = simΘ(θm,µ (T ))

}M
m=1

.

Select top-k PTMs via t̂ =
{
t̂ϕm→T

}M
m=1

.
Obtain the indexes in descending order via dsc (·).
for m = dsc (1) to dsc (k) do

Re-construct enriched repr. µm (T ), and update:

t̂ϕm→T = simΘ

(
θm,P

⊤
m µm (T )

)
end for
Output: Rank PTMs with t̂ =

{
t̂ϕm→T

}M
m=1

results in larger weights of the attention head α. Here d is the size of every attention head. The output
of the corresponding position of the model repr. is forwarding passed through a learnable MLP and
then obtains the fitness estimated score of PTM selection.

The learnable parameters in MODEL SPIDER. To learn a PTM ranker, we optimize M model repr.
{θm}Mm=1, the fully connected layer projection heads of the PTM-specific task repr. Φm

Ti
(mentioned

in subsection 4.4) and the transformer-based model-task similarity evaluator sim(·, ·), which is the
main mapping and estimation module (mentioned in subsection 4.2).

A.6 How to re-rank with PTM-specific task representation

As described in subsection 4.4 of the main text, we initially extract generic features using a fixed
ψ and conduct with the invariant task repr. across all PTMs. These features are used to generate a
coarse-grained ranking by comparing the similarity between each task and the model representation.
However, this ranking is solely based on a standardized task representation and does not account for
the specific task-related information for each individual PTM.

Hence, we propose the re-ranking strategy specifically targeted at the top-k PTMs. During the testing
phase, we leverage the coarse-grained ranking and perform inference on the downstream task with
these top-k PTMs. Such PTM-specific task repr. are worked to update their similarity with the
downstream task, as outlined in Algorithm 2. Notably, in the third line of the algorithm, we conduct a
re-ranking based on the revised similarity scores obtained through this process.

A.7 How to deploy MODEL SPIDER for testing

For a novel downstream task, we employ the generic feature extractor ψ to extract the task representa-
tion. We then evaluate the similarity between each PTM in the model zoo and the given downstream
task using the learned model repr. and a transformer-based MODEL SPIDER. If computational
resources are available, we can leverage the results from the previous round to enhance the ranking
process. Specifically, we can select the top-k PTMs from the previous ranking, extract their features,
and apply the re-ranking approach as described in subsection A.6.

B Experimental Setups and Implementation Details

In this section, we introduce the experiment setups and implementation details, including constructing
the pre-trained model zoo and training as well as deploying MODEL SPIDER.
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B.1 Single-source heterogeneous model zoo

Construction of the model zoo. We follow [113] and construct a model zoo with 10 PTMs pre-
trained on ImageNet [81] across 5 families of architectures available from PyTorch. Concretely,
they are Inception V1 [88], Inception V3 [88], ResNet 50 [35], ResNet 101 [35], ResNet 152 [35],
DenseNet 121 [38], DenseNet 169 [38], DenseNet 201 [38], MobileNet V2 [83], and NASNet-A
Mobile [90]. The model zoo spans PTMs of multiple parameter quantities. These pre-training models
cover most of the supervised pre-training models the researchers employ.

The downstream tasks. There are 9 downstream tasks from various fields, including Aircraft [59],
Caltech101 [32], Cars [47], CIFAR10 [49], CIFAR100 [49], DTD [19], Pets [73], and SUN397 [107]
for classification, UTKFace [118] and dSprites [61] for regression. We use official train-test splits on
each dataset and calculate the estimation scores for the baseline approaches on the training part.

Transferred accuracy ranking of PTMs (ground-truth) after fine-tuning downstream tasks.
We follow You et al. [113] to obtain the ground-truth transferability score as well as the rankings
t = {tϕm→T }Mm=1 (M = 10) with careful grid-search of hyper-parameters. Specifically, we
grid search the learning rates (7 learning rates from 10−1 to 10−4, logarithmically spaced) and
weight decays (7 weight decays from 10−6 to 10−3, logarithmically spaced) to select the best
hyper-parameter on the validation set and compute the accuracy on the downstream test set. The
training and computation of such a ground truth necessitates a substantial investment of over 1K GPU
hours, imposing significant financial and computational burdens. Consequently, the feasibility of
accomplishing this task within the constraints of training MODEL SPIDER is rendered unattainable.

Sampling details of training tasks. We sample the training tasks from a diverse pool of datasets.
The datasets considered for sampling include EuroSAT, OfficeHome, PACS, SmallNORB, STL10,
and VLCS. To ensure a representative training set, we randomly sample 832 tasks from all datasets.
Each task is distributed across 2 to 4 mixed datasets and consists of 100 categories, and for each
category, we randomly select 50 examples. In cases where the number of categories or examples to
be sampled exceeds the specified limits, we select the maximum allowable value.

Discussions. This model zoo covers several classical structures commonly used in deep learning.
The number of model parameters ranges widely, with large application potential. Still, there is also a
situation where PTMs with larger scales tend to perform better in classification tasks and regression
ones, making certain rankings always better on some datasets.

B.2 Multi-source heterogeneous model zoo

Construction of the Model Zoo. As mentioned in the main text, we construct a large model zoo
where 42 heterogeneous PTMs are pre-trained from multiple datasets in different domains, including
animals [37, 46], general and 3D objects [32, 51, 49, 47, 14], plants [68], scene-based [107], remote
sensing [106, 18, 36] and multi-domain recognition [54]. The concrete datasets are Caltech101 [32],
Cars [47], CIFAR10 [49], CIFAR100 [49], SUN397 [107], Dogs [46], EuroSAT [36], Flowers [68],
Food [14], NABirds [37], PACS [54], Resisc45 [18], SmallNORB [51] and SVHN [65]. The models’
structures are 3 similar parameter-magnitude architectures, i.e., Inception V3 [88], ResNet 50 [35] and
DenseNet 201 [38]. The setting of the multi-source heterogeneous model zoo includes significantly
more pre-training data than the single-source heterogeneous one described above. We pre-train the
models with 3 structures on 14 datasets mentioned above (3× 14 = 42, initialized from the weights
of the corresponding ImageNet pre-trained models).

The downstream tasks. We select 3 representative datasets as the downstream test tasks and conduct
the PTM selection methods on them. Concretely, they are Aircraft [59], DTD [19] and Pets [73]. As
outlined in the following description, we obtain the transferred fine-tuning accuracy (ground-truth)
with an equivalent level of hyper-parameters search strategies.

Transferred accuracy ranking (ground-truth). Similarly, we adopt downstream supervised learning
with optimizing by cross-entropy loss. We meticulously conduct a grid-search of hyper-parameters,
such as optimizers, learning rates, and weight decays (2 optimizers as SGD or Adam, 6 learning
rates from 5× 10−2 to 10−4, and 3 weight decay values from 5× 10−4 to 10−5, batch size of 128,
and the maximum epoch of 100). For the multi-domain dataset, like PACS [54], we set the test set
to the same domain as the training set to reveal the in-domain performance. For the rest, we use
the official train-test splits. We build the model zoo with around 5K GPU hours (on NVIDIA V100
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Figure 6: Ablation studies on simpler ψ and less training tasks. We observed a slight decrease in
performance when employing a weakened fixed feature extractor ψ for MODEL SPIDER. Reducing
the diversity of training tasks may result in performance degradation on some datasets.

GPUs). Similarly, when dealing with the expanded model zoo, the utilization of rigorous training
methodologies to acquire the requisite ground truth for training MODEL SPIDER is eschewed.

Sampling details of training tasks. The sampling process for the multi-source heterogeneous model
zoo is consistent with the single-source one mentioned above. In this case, we use the following
datasets as the auxiliary set, i.e., Caltech101, Cars, CIFAR10, CIFAR100, Dogs, EuroSAT, Flowers,
Food, NABirds, PACS, Resisc45, SUN397, and SVHN. We randomly sample 4352 tasks for training.

Discussion. The availability of a multi-source heterogeneous model zoo introduces a wider array
of models with varying structures, effectively covering a broader scope of domain knowledge.
Consequently, this heightened diversity presents an increased difficulty in accurately ranking PTMs.
Particularly, when a substantial gap exists between the characteristics of downstream tasks and the
major PTMs, the ranking accuracy of some baseline methods undergoes a precipitous decline.

B.3 Large language models zoo

Construction of the model zoo. We considered a setting for ranking pre-trained models in natural
language processing, wherein we utilized a library of 9 commonly used open-source Large Language
Models (LLMs). These LLMs include Alpaca-7B [94], Baichuan-7B [109], Baichuan2-7B [109],
ChatGLM2-6B [116], InternLM-7B [95], LLaMA2-7B [96], Vicuna-7B [119], Qwen-7B [8] and its
chat fine-tuned version. These open-source LLMs, trained by academic institutions or companies on
vast corpora, possess robust zero-shot capabilities. However, compared to the performance on general
tasks, LLMs have a domain gap regarding some specific tasks. Some new benchmarks [56, 40, 23]
have been proposed recently to show that while ChatGPT [69] performs well concerning the average
performance of general tasks, it may not consistently outperform other models in certain tasks.
Additionally, the deployment complexity and computational costs of LLMs can vary significantly.
Blindly choosing LLMs with large model sizes or high running expenses may not achieve optimal
accuracy but is more likely to waste resources. Therefore, the urgent challenge is accurately and
efficiently selecting the most suitable LLM for a given task within the available budget and constraints.

The downstream tasks. We focus on unseen tasks, i.e., the examination datasets of AGIEval [120],
as well as language datasets AFQMC [108], WSC [52], knowledge datasets BoolQ [20], NaturalQues-
tions [50], understanding datasets C3 [87], XSum [64], and reasoning datasets RTE [24], AX-b and
AX-g [101] as the target tasks. When constructing tasks, whether for training or testing, we extract
answers from 10 instruction data. During the generation of the final token in sequence generation, we
extract features from the last layer. We calculate the average ranking score for 3 randomly sampled
tasks from the target dataset as the final result.

Sampling details of training tasks. For training tasks, we deliberately choose different data from the
test tasks, containing the remaining datasets in the OpenCompass [23] benchmark evaluation, such as
GAOKAO-Bench [117], TyDiQA [21], CommonSenseQA [89], LAMBADA [72], COPA [79], and
so on. We sample 10 instruction answers for each dataset, forming a task on that dataset. For each
dataset, we sample a maximum of 16 training tasks, with mixed tasks from various datasets used in
the training of MODEL SPIDER.
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Figure 7: Correlation (τw) given various number of examples per class on (a) Aircraft and (b)
Caltech101. MODEL SPIDER shows stable and promising results in the low-shot scenario.

C Additional Experimental Results

C.1 Ablation studies on simpler ψ and less training tasks

We deploy additional experience with weakened conditions to verify the robustness of MODEL
SPIDER. In Figure 6, we first introduce an attenuated simpler ψ, the additional encoder except for the
PTMs in the model zoo. We import the tiny format pre-trained Swin-Transformer from EsViT (about
this, please refer to subsection A.1 for more details). It has about half the number of parameters. The
results show that although attenuated ψ has only half of the parameters, it can still assist MODEL
SPIDER in expressing task representation.

We then halve the training tasks to verify the significance of the training part diversity. We find that
except for the performance degradation of the DTD dataset, the others are still flush with performance.
MODEL SPIDER learns the characteristics of different PTM ability dimensions well despite the
absence of training tasks.

C.2 Ablation studies on the influence of training loss

Table 5: The weighted τw of MODEL SPIDER
variants when the training objective is imple-
mented by different loss functions. “Mean” de-
notes the averaged performance over 8 datasets.

Method CIFAR10 Mean
w/ MSE 0.558 0.526

w/ ListMLE [105] 0.777 0.735
w/ ℓrank (Ours) 0.845 0.765

As stated in the main text, the learning process of
MODEL SPIDER incorporates a ranking loss. To
assess the efficacy of this selection, alternative re-
gression or ranking loss functions, such as mean
square error (MSE) and ListMLE [105], are em-
ployed as replacements. The outcomes, presented
in Table 5, clearly demonstrate that the presented
ranking loss function surpasses the other alterna-
tives in terms of both effectiveness and robustness.
Notably, when alternative loss functions are uti-
lized, the overall performance of MODEL SPIDER
experiences a substantial decline. These findings underscore the indispensable role of the ranking
loss function within the framework of MODEL SPIDER.

C.3 Ablation studies on the different shots of RankAgg and other baselines

We conduct an ablation analysis to compare RankAgg with several baseline methods on Aircraft and
Caltech101 datasets with respect to the τw of the PTM ranking. We examined the variation of these
metrics and their corresponding confidence intervals (in 95%) as the number of samples per class
(shot) increased. The results, depicted in the provided Figure 7, are based on the average values and
confidence intervals obtained from 30 randomly sampled sets for each shot. Due to computational
constraints, certain baseline methods were omitted from the analysis. Notably, our findings reveal
that the rank aggregation strategy effectively consolidates diverse perspectives on PTM ranking and
consistently surpasses the performance of baselines across almost all shots.
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Table 6: Ablation studies on the performance of MODEL SPIDER when the pre-trained model
repository grows dynamically.

MODEL SPIDER Aircraft Caltech101 Cars CIFAR10 CIFAR100 DTD Pets SUN397 Mean

When the number of PTMs increases
w/ number of 3 0.545 1.000 1.000 1.000 0.182 1.000 1.000 1.000 0.841
increase to 6 0.573 0.627 0.818 0.905 0.839 0.445 0.888 0.336 0.679
increase to 10 0.568 0.637 0.576 0.797 0.695 0.796 0.573 0.436 0.635

C.4 Ablation studies on the dynamically incremental model zoo

When encountering new PTMs during the model selection task, the previously trained model repr.
in MODEL SPIDER can be dynamically learned and updated. We employ an incremental learning
approach [77] to address this challenge. Specifically, we sample 25% target tasks where the PTM
ranking is closest to the average of all and insert the approximated accuracy of the new PTMs on
them. This newly constructed ranking ground-truths include the correlation between old and new
model repr., reducing the influence of imbalanced incremental data.

We performed ablation studies to investigate the behaviour of MODEL SPIDER as the pre-trained
model zoo dynamically expanded. Our analysis focused on how can MODEL SPIDER could quickly
adapt to newly added PTMs and integrate them into the ranking process. The results in Table 6
demonstrate that as the size of the model zoo increased from 3 to 6 and then to 10, MODEL SPIDER
demonstrated the ability to incrementally learn the recommended ranking for the new additions to
the model zoo. The incrementally learned ranking for the entire PTM zoo exhibited slightly lower
accuracy than the results of direct training on all PTMs. Nonetheless, MODEL SPIDER consistently
maintained an excellent level of performance.

C.5 Confidence intervals for few-shot setting in Table 1 of the main text

We include the confidence intervals (in 95%) for the few-shot experiments in the respective section of
Table 1 for the main text. These intervals were obtained through 30 repeated trials, providing a robust
estimate of the performance variability in a few-shot manner.

C.6 Illustration of re-ranking with PTM-specific task representation

In subsection 4.4, we discuss the learnable model repr., which captures the empirical performance
of a PTM across various training tasks. This training scheme serves to decouple the task repr. from
the forward pass of each PTM. Compared to the task repr. guided solely by general features, the
PTM-specific task repr. provides more informative clues. By constructing it with the forwarding pass
of PTM, we can incorporate the source PTM’s adaptation information for downstream tasks. Our
approach allows for the re-ranking of estimated PTM rankings using PTM-specific task representation.
Since more forward passes consume more resources, MODEL SPIDER further improves performance
and provides a dynamic resource adaptation option with PTM-specific features.

Illustrated in Figure 8 is an example of model re-ranking in the context of a heterogeneous multi-
source model zoo. The MODEL SPIDER, after extracting PTM-specific task repr., accomplished
a more precise PTM ranking. We re-construct the PTM-specific task repr. on the Dogs dataset
pre-trained. Our investigation focuses on the Aircraft downstream dataset, and intriguingly, we
discover that PTMs trained on multi-scenario multi-target datasets possessed inherent advantages
when applied to the aircraft domain. This advantage can be attributed to their generally strong
recognition capabilities for diverse targets. Remarkably, even models pre-trained on the Food dataset
demonstrated exceptional performance on the Aircraft dataset. Despite the notable dissimilarities
between the Food and Aircraft datasets, we conjecture that the Food-pre-trained models not only
exhibit proficiency in recognizing multiple targets, encompassing various food items but also harbor
latent potential for fine-grained recognition within the food domain. Consequently, these PTMs
transfer their fine-grained recognition capacity to the aircraft domain. In contrast, the Dogs dataset,
characterized by a narrow focus on a single biological species, impedes successful transfer to the
Aircraft task.
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Table 7: The confidence interval (in 95%) for few-shot evaluation (10 examples per class and 30
trials) in Table 1 of the main text. Specific features of Top-3 ranked PTMs are employed.

Method Downstream Target Dataset
Aircraft Caltech101 Cars CIFAR10 CIFAR100 DTD Pets SUN397

Few-Shot Evaluation (10-example per class)
H-Score [9] -0.014±0.14 0.078±0.13 0.375±0.09 0.018±0.12 0.005±0.14 -0.028±0.12 -0.006±0.15 0.853±0.02

NCE [97] 0.273±0.05 0.534±0.07 0.597±0.02 0.267±0.08 0.232±0.04 0.362±0.06 0.352±0.09 0.793±0.03

LEEP [66] 0.069±0.04 -0.038±0.01 0.476±0.03 0.530±0.04 0.471±0.02 -0.111±0.02 0.567±0.02 0.468±0.01

N -LEEP [55] -0.559±0.06 0.476±0.05 0.743±0.04 0.515±0.06 0.707±0.03 0.027±0.07 0.713±0.04 0.812±0.02

LogME [113] 0.341±0.02 0.453±0.01 0.497±0.01 0.718±0.02 0.698±0.03 0.407±0.01 0.657±0.02 0.817±0.00

PACTran [27] 0.136±0.05 0.262±0.02 0.484±0.05 0.631±0.02 0.614±0.03 -0.227±0.03 0.701±0.03 0.477±0.03

OTCE [93] -0.316±0.01 -0.050±0.00 -0.127±0.00 0.515±0.00 0.505±0.00 -0.168±0.01 0.406±0.00 0.210±0.00

LFC [25] 0.226±0.01 -0.226±0.01 -0.235±0.02 0.330±0.04 0.271±0.01 -0.669±0.03 -0.059±0.04 -0.151±0.02

Ours 0.382±0.04 0.711±0.00 0.727±0.01 0.870±0.01 0.977±0.02 0.686±0.02 0.717±0.02 0.933±0.03

Aircraft
Pre-trained on

SUN397
Pre-trained on

Dogs
Pre-trained on

Food
Pre-trained on
Caltech101

Model Zoo

Ground-Truth:
Food > SUN397 > Caltech101 > Dogs

Downstream Task

MODEL SPIDER (Ours):

H-Score:  Caltech101 > Dogs > SUN397 > Food

NCE:         Dogs > Caltech101 > Food > SUN397

Baselines:
w/ PTM-Specific task representation*
Update Dogs-pretrained measure

Bad Result

…

𝟒𝟒𝟒𝟒 PTMs

86.86%
PTM Ranking:

81.97% 80.65% 78.19%

Bad Result

w/o PTM-specific feature:  Food > SUN397 > Dogs > Caltech101

Updated
Task Repr.

①

×
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Model Repr.

𝑡̂𝑡𝒯𝒯 Updated
Measure

②
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-2.792  < -2.363Update

w/ PTM-specific feature:    Food > SUN397 > Caltech101 > Dogs

Figure 8: Illustrative re-ranking example with enhanced ranking through PTM-specific task represen-
tation.

The substantial disparities between the datasets pose a significant challenge for conventional baseline
methods, often failing to prioritize the Food-pre-trained model. However, MODEL SPIDER success-
fully learns to rank the Food-pre-trained one and, through a meticulous screening process followed
by result re-ranking, MODEL SPIDER identifies that the Caltech101-pre-trained model outperforms
the Dogs-pre-trained one due to its superior multi-target recognition capabilities, thereby exhibiting
enhanced transfer performance.

D More Details

D.1 Comparison of the time consumption and memory footprint (details in Figure 1(c))

Figure 1(c) shows the average efficiency vs performance comparison over 5 baseline approaches
and MODEL SPIDER. The k = 0, k = 3, k = 6, k = 36, and k = 42 correspond to inference w/o
PTM-specific features, w/ 3, 6, 36, and 42 ones. Following [113], we measure the wall-clock time
(second) and memory footprint (MB) with code instrumentation.

D.2 Datasets Description

We show the datasets description Table 9 with some examples Figure 9 covered in this paper.
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Table 8: Comparison of the time consumption and memory footprint of fine-tuning, RankAgg,
different baseline approaches, and MODEL SPIDER to rank the PTMs.

Approaches Wall-clock Time (second) Memory Footprint (MB)

RankAgg 7,318.06 10,405.32
Fine-tuning (all parameters) 614,497.22 13,872.81

H-Score 2,358.70 9,367.74
NCE 2,196.53 8,121.49
LEEP 2,215.06 8,209.33
N -LEEP 4,963.01 9,850.84
LogME 2,571.99 8,217.80
MODEL SPIDER (w/o PTM-Specific Feature) 52.36 608.01
MODEL SPIDER (w/ 3 PTM-Specific Feature) 105.19 1,386.43
MODEL SPIDER (w/ 6 PTM-Specific Feature) 175.87 1,760.28
MODEL SPIDER (w/ 36 PTM-Specific Feature) 2,180.23 7,989.35
MODEL SPIDER (w/ all (42) PTM-Specific Feature) 2,402.77 9,954.09

Table 9: The number of training images, testing images and classes with the link to download the dataset.

Dataset Training Images Testing Images # Classes URL
Aircraft [59] 6,667 3,333 100 https://www.robots.ox.ac.uk/~vgg/data/fgvc-aircraft/#aircraft
CIFAR10 [49] 50,000 10,000 10 https://www.cs.toronto.edu/~kriz/cifar.html
CIFAR100 [49] 50,000 10,000 100 https://www.cs.toronto.edu/~kriz/cifar.html
DTD [19] 3,760 1,880 47 https://www.robots.ox.ac.uk/~vgg/data/dtd/
Stanford Cars [47] 8,144 8,041 196 https://ai.stanford.edu/~jkrause/cars/car_dataset.html
Caltech101 [32] 3,060 6,084 101 http://www.vision.caltech.edu/Image_Datasets/Caltech101/
STL10 [22] 5,000 8,000 10 https://cs.stanford.edu/~acoates/stl10/
Oxford Flowers 102 [68] 2040 6149 102 https://www.robots.ox.ac.uk/~vgg/data/flowers/102/
CUB-200 [100] 5994 5793 200 http://www.vision.caltech.edu/visipedia/CUB-200-2011.html
Stanford Dogs [46] 12,000 8,580 120 http://vision.stanford.edu/aditya86/ImageNetDogs/
EuroSAT [36] 21,600 5,400 10 https://github.com/phelber/eurosat
SmallNORB [51] 24,300 24,300 5 https://cs.nyu.edu/~ylclab/data/norb-v1.0-small/
SVHN [65] 73,257 26,032 10 http://ufldl.stanford.edu/housenumbers/
Food-101 [14] 75,750 25,250 101 https://www.tensorflow.org/datasets/catalog/food101
NABirds [37] 23,929 24,633 555 https://dl.allaboutbirds.org/nabirds
NWPU-RESISC45 [18] 25,200 6,300 45 https://www.tensorflow.org/datasets/catalog/resisc45
Oxford-IIIT Pets [73] 3,680 3,669 37 https://www.robots.ox.ac.uk/~vgg/data/pets/
AID [106] 8,000 2,000 30 https://captain-whu.github.io/AID/
PACS [54] 5,446 616 7 https://domaingeneralization.github.io/#data
VLCS [31] 4,690 2,234 5 https://github.com/belaalb/G2DM#download-vlcs
Office-Home [99] 11,231 11,231 65 https://www.hemanthdv.org/officeHomeDataset.html
SUN397 [107] 87,003 21,751 397 https://vision.princeton.edu/projects/2010/SUN/
ImageNet-1K [81] 1,281,167 50,000 1000 http://image-net.org/download

E Discussions

There are two promising directions of MODEL SPIDER. First, MODEL SPIDER exhibits the unique
characteristic of not relying on the forward pass of the model zoo, thereby enabling the evaluation of
task compatibility with classical machine learning models. Then, MODEL SPIDER could be applied
to the case when we use other criteria in addition to fine-tuning performance to measure the fitness
between a model and a task.
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Figure 9: Examples of datasets.
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