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Abstract

We develop and analyze a general technique for learning with an unknown distri-
bution drift. Given a sequence of independent observations from the last T steps
of a drifting distribution, our algorithm agnostically learns a family of functions
with respect to the current distribution at time T . Unlike previous work, our tech-
nique does not require prior knowledge about the magnitude of the drift. Instead,
the algorithm adapts to the sample data. Without explicitly estimating the drift,
the algorithm learns a family of functions with almost the same error as a learning
algorithm that knows the magnitude of the drift in advance. Furthermore, since
our algorithm adapts to the data, it can guarantee a better learning error than an
algorithm that relies on loose bounds on the drift. We demonstrate the application
of our technique in two fundamental learning scenarios: binary classification and
linear regression.

1 Introduction
Standard statistical learning models (such as PAC learning) assume independent and identically
distributed training set, and evaluate the performance of their algorithms with respect to the same
distribution as the training set [Vapnik, 1998, van de Geer, 2000, Shalev-Shwartz and Ben-David,
2014, Wainwright, 2019]. However, in many practical applications, such as weather forecast, fi-
nance prediction or consumer preference analysis, the training data is drawn from a non-stationary
distribution that drifts in time. In this work, we consider a more general setting where the samples
are still independent, but their distribution can change over time. To obtain accurate results, the
learning algorithm needs to adjust to the distribution drift occurring in the input.

This framework has been extensively studied in the literature [Helmbold and Long, 1991, Bartlett,
1992, Helmbold and Long, 1994, Barve and Long, 1996, 1997]. This line of research culminated in
showing that as long as the total variation distance of two consecutive distributions is bounded by ∆,
there exists an algorithm that agnostically learns a family of binary classifiers with VC dimension ν
with expected error O((ν∆)1/3) [Long, 1998], which can be shown to be tight. These results were
generalized in the work of Mohri and Muñoz Medina [2012] to address any family of functions with
bounded Rademacher complexity and to use a finer problem-dependent distance between distribu-
tions called discrepancy, originally introduced in the context of domain adaptation [Mansour et al.,
2009].

The core idea of the aforementioned work is to learn by using a number of previous samples that
minimizes the trade-off between the error due to the variance of the estimation (statistical error),
and the error due to the drifting of the samples with respect to the current distribution (drift error).
If the algorithm trains using only a few recent observations, the statistical error will be large. If
the algorithm uses a larger training set, including not very recent observations, the drift error will
be large. For example, if the algorithm uses the most recent r training point, the hypothesis class
has VC-dimension ν, and the distribution drift in each step is bounded by ∆, then the statistical
error is O(

√
ν/r) and the drift error is O(r∆). The trade-off with respect to r is optimized for r =

Θ((∆2/ν)−1/3) giving O((ν∆)1/3) error, as mentioned before. This, as well as similar approaches
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in the literature, requires an upper bound to the magnitude of the drift and resolves the trade-off
between the statistical and drift errors based on this knowledge. As noted in previous work [Hanneke
and Yang, 2019], it is an open problem to develop an algorithm that adapts to the training set and does
not rely on prior knowledge about the drift, whose solution would lead to the practical applicability
of those ideas.

Our work resolves this open problem. Our algorithm does not require any prior knowledge of the
magnitude of the drift, and it adapts based on the input data. Without explicitly estimating the drift
(which is often impossible), the algorithm agnostically learns a family of functions with the same
error guarantee as an algorithm that knows the exact magnitude of the drift in advance. Our approach
has two advantages: it eliminates the, often unrealistic, requirement of having a bound on the drift,
and it gives better results when the drift bounds are not tight. We showcase our algorithm in two
important learning settings: binary classification and linear regression.

2 Preliminary
Let (Z,A) be a measurable space. Let Z1, . . . , ZT be a sequence of mutually independent random
variables on Z distributed according to P1, . . . , PT respectively, i.e. Zt ∼ Pt for t ≤ T . For r ≤ T ,
we denote by P r

T the average distribution of the most recent r distributions PT−r+1, . . . , PT :

P r
T (A)

.
=

1

r

T∑
t=T−r+1

Pt(A) ∀A ∈ A .

We set Pr
T to be the corresponding empirical distribution over the random variables

ZT−r+1, . . . , ZT :

Pr
T (A)

.
=
|{Zt ∈ A : T − r + 1 ≤ t ≤ T}|

r
∀A ∈ A .

Let F be a class of measurable functions from Z to R. For f ∈ F , and any distributions P,Q on
(Z,A), we let

P (f)
.
= E

Z∼P
f(Z) =

∫
fdP, ∥P −Q∥F

.
= sup

f∈F
|P (f)−Q(f)| .

The norm ∥·∥F is a notion of discrepancy introduced by the work of Mohri and Muñoz Medina
[2012] to quantify the error due to the distribution shift with respect to a family of functions F , and
it is based on previous work on domain adaptation [Mansour et al., 2009].

The goal is to estimate PT (f) for all f ∈ F using the random variables Z1, . . . , ZT . Let 1 ≤ r ≤ T ,
and suppose that we do this estimate by considering the empirical values induced by the most recent
r random variables. Then, by using triangle inequality, we have the following decomposition

E∥PT − Pr
T ∥F ≤ E ∥P r

T − Pr
T ∥F︸ ︷︷ ︸

statistical error

+ ∥PT − P r
T ∥F︸ ︷︷ ︸

drift error

. (1)

The first term of the upper bound is the expected statistical error of the estimation, and quantifies
how accurately the empirical values {Pr

T (f) : f ∈ F} approximate the expectation of each function
f according to P r

T . The second term ∥PT − P r
T ∥F of the upper bound represents the drift error.

Intuitively, the statistical error decreases by considering more samples, whereas the drift error can
potentially increase since we are considering distributions that are further away from our current
distribution. We are looking for the value of r that balances this trade-off between statistical error
and drift error.

2.1 Statistical Error
Since our results revolve around learning a class of functions F , we first need to assume that F is
“learnable”, i.e. the statistical error can be bounded as a function of r. For concreteness, we use the
following standard assumption that the family of F satisfies the standard machine learning uniform
convergence requirement with rate O(1/

√
r).

Assumption 1. (Uniform Convergence). There exists non-negative constants CF,1 and CF,2 such
that for any fixed r ≤ T and δ ∈ (0, 1), it holds

E∥P r
T − Pr

T ∥F ≤
CF,1√

r
,

2



and with probability at least 1− δ, we have

∥P r
T − Pr

T ∥F ≤
CF,1√

r
+ CF,2

√
ln(1/δ)

r
.

The learnability of a family of functions F is an extensively studied topic in the statistical learning
literature (e.g., [Bousquet et al., 2003, Wainwright, 2019]). For a family of binary functions, the
above assumption is equivalent to F having a finite VC-dimension, in which case CF,1 = O(ν) and
CF,2 = O(1). For a general family of functions F , a sufficient requirement is that the Rademacher
complexity of the first r samples is O(r−1/2) and the range of any function in F is uniformly
bounded. There is nothing special about the rate O(r−1/2). It is possible to adapt our analysis to
any rate O(r−α) with α ∈ (0, 1) by modifying the constants of our algorithm.

2.2 Quantifying the Drift Error
While for many classes F , it is possible to provide an upper bound to the statistical error by using
standard statistical learning theory tools, the drift error is unknown and challenging to estimate. The
literature used different approaches to quantify the drift error. By using triangle inequality, it is
possible to show that for any r ≤ T , we have the following upper bounds to the drift error:

∥PT − P r
T ∥F ≤

1

r

r∑
t=1

∥PT − PT−t∥F ≤ max
t<r
∥PT − PT−t∥F ≤

r−1∑
t=1

∥PT−t − PT−t+1∥F . (2)

In a long line of research (e.g., [Bartlett, 1992, Long, 1998, Mohri and Muñoz Medina, 2012, Han-
neke and Yang, 2019]), it is assumed that an upper bound to the drift error is known apriori. One
of the most used assumption is that there exists a known upper bound ∆ to the discrepancy between
any two consecutive distributions, in which case we can upper bound

∑r−1
t=1 ∥PT−t − PT−t+1∥F

with r∆. In this case, for a binary family F with VC-dimension ν, we obtain that:

E∥PT − P r
T ∥F ≲

√
ν

r
+ r∆ ,

and we can choose the value of r that minimizes this upper bound. Since these algorithms rely on
an unrealistic assumption that an upper bound to the drift is known a priori, they are not usable in
practice. It is an open problem to provide a competitive algorithm that can choose r adaptively and
it is oblivious to the magnitude of the drift.

Another sequence of work [Mohri and Muñoz Medina, 2012, Awasthi et al., 2023] relaxes the
problem setting assuming that the algorithm can observe multiple samples from each distribution
P1, . . . , PT . In this case, they can provably estimate the discrepancies between different distribu-
tions, and compute a weighting of the samples that minimizes a trade-off between the statistical
error and the estimated discrepancies. This strategy does not apply to our more general setting, as
we can have access to at most one sample from each distribution.

Surprisingly, we show that we can adaptively choose the value of r to minimize the trade-off between
statistical error and drift error without explicitly estimating the discrepancy. Noticeably, our method
does not require any additional assumption on the drift. The only requirement for our algorithm is
that we can compute the norm ∥·∥F from a set of samples. This is formalized as follows.

Assumption 2. (Computability). There exists a procedure that computes ∥Pr
T − P2r

T ∥F for any
r ≤ T/2.

In general, the hardness of computing the norm ∥·∥F depends on the family F . This challenge is
also common in previous work that uses this norm to quantify the distribution drift [Mansour et al.,
2009, Awasthi et al., 2023]. In this paper, we provide two examples of important learning settings
where this assumption is satisfied: binary classification with zero-one loss and linear regression with
squared loss.

3 Main Result
Under those assumption, we prove the following theorem, which is our main result.
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Theorem 1. Let δ ∈ (0, 1). Let Assumptions 1 and 2 hold. Given Z1, . . . , ZT , Algorithm 1 outputs
a value r̂ ≤ T such that with probability at least 1− δ, it holds that

∥PT − Pr̂
T ∥F = O

(
min
r≤T

[
CF,1√

r
+max

t<r
∥PT − PT−t∥F + CF,2

√
log(log(r + 1)/δ)

r

])
In order to appreciate this theorem, we can observe the following. If we learn using the most recent
r samples, similarly to (1) we have the following error decomposition

∥PT − Pr
T ∥F ≤ ∥P r

T − Pr
T ∥F + ∥PT − P r

T ∥F
By using Assumption 1 and (2), we have that with probability at least 1− δ it holds that

∥PT − Pr
T ∥F ≤

CF,1√
r

+ CF,2

√
log(1/δ)

r
+max

t<r
∥PT − PT−t∥F . (3)

Theorem 1 guarantees a learning error that is essentially within a multiplicative constant factor as
good as the upper bound obtained by selecting the optimal choice of r in (3). This result provides
an affirmative answer to the open problem posed by Hanneke and Yang [2019], that asked if it
was possible to adaptively choose the value of r that minimizes (3) 1. The upper bound of the
theorem contains a negligible additional factor log(r+1) within the logarithm due to the union bound
required to consider multiple candidate values of r. As further evidence of the efficiency of our
algorithm, assume that there is no drift, and we are in the usual i.i.d. setting where P1 = . . . = PT .
In this setting, the following corollary immediately follows from Theorem 1 by setting the drift error
equal to 0.

Corollary 2. Consider the setting of Theorem 1, and also assume that P1 = . . . = PT . With
probability at least 1− δ, the window size r̂ computed by Algorithm 1 satisfies

∥PT − Pr̂
T ∥F = O

(
CF,1√

T
+ CF,2

√
log(log(T + 1)/δ)

T

)

Observe that in the i.i.d. case, Assumption 1 implies that with probability at least 1 − δ, it holds
∥PT − PT

T ∥F ≤ CF,1/
√
T + CF,2

√
log(1/δ)/T . Corollary 2 shows that with our algorithm we

obtain a result that is competitive except for a negligible extra factor O(log T ) within the logarithm.
We want to emphasize that our algorithm does not know in advance whether the data is i.i.d. or
drifting, and this factor is the small cost of our algorithm to adapt between those two cases.

4 Algorithm
We describe an algorithm that attains the results of Theorem 1. Throughout the remaining of this
section, we let Assumptions 1 hold. In particular, the algorithm has access to constants CF,1 and
CF,2 that satisfy this assumption. The main challenge is the fact that the drift error ∥PT − Pr

T ∥F
is unknown for any r > 1, and it is challenging to quantify since we have only a single sample
ZT ∼ PT .

We first provide an informal description of the algorithm. Our algorithm revolves around the fol-
lowing strategy. We do not try to estimate the drift. Instead, we try to assess whether increasing the
sample size can yield a better upper bound on the error. Recall that given the most recent r samples,
we have the following upper bound on the error,

E∥PT − Pr
T ∥F ≤

CF,1√
r

+ ∥PT − P r
T ∥F . (4)

The algorithm cannot evaluate (4) since the drift component, ∥PT − P r
T ∥F , is unknown. Our key

idea is to compare the difference in the upper bound on the error when using the latest 2r or r
samples:(

CF,1√
2r
− CF,1√

r

)
+
(
∥PT − P 2r

T ∥F − ∥PT − P r
T ∥F

)
≤
(
CF,1√
2r
− CF,1√

r

)
+ ∥P r

T − P 2r
T ∥F

(5)

1We prove a stronger result. The original formulation of the question uses the looser upper bound∑r−1
t=1 ∥PT−t − PT−t+1∥F to the drift error in (3), which can be significantly worse as shown in an exam-

ple of Section 5
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The last step follows from the triangle inequality: ∥PT − P 2r
T ∥F ≤ ∥PT − P r

T ∥F + ∥P r
T − P 2r

T ∥F .
By considering the latest 2r samples rather than r samples, we can see from (5) that the statistical
error decreases, and the difference in drift error can be upper bounded by ∥P 2r

T − P r
T ∥F . We can

estimate ∥P r
T − P 2r

T ∥F using ∥Pr
T − P2r

T ∥F within expected error O(CF,1/
√
r) as it depends on

≥ r samples. This suggests the following algorithm. Let r be the current sample size considered
by the algorithm. The algorithm starts from r equal to 1, and doubles the sample size as long as
∥Pr

T − P2r
T ∥F is small. If ∥Pr

T − P2r
T ∥F is big enough, a substantial drift must have occurred in the

distributions PT−2r+1, . . . , PT , and we can show that this implies that maxt<2r−1∥PT −PT−t∥F is
also large. When this happens, we can stop our algorithm and return the current sample size.

For a formal description of the algorithm, let δ ∈ (0, 1) denote the probability of failure of our
algorithm, and let ri = 2i, for i ≥ 0, be the size of the training set used by the algorithm at iteration
i+ 1. For ease of notation, we set

CF,δ
.
= CF,1 + CF,2

√
2 ln(π2/(6δ)),

and

S(r, δ)
.
=

CF,δ√
r

+ CF,2

√
2 ln(log2(r) + 10)

r
. (6)

The proofs of the following propositions appear in the Appendix A.

Proposition 3. With probability at least 1− δ, the following event holds:

∥P ri
T − Pri

T ∥F ≤ S(ri, δ) ∀i ≥ 0

We assume that the event of Proposition 3 holds, otherwise our algorithm fails (with probability
≤ δ). Our algorithm considers the following inflated upper bound U(r, δ) to ∥Pr

T − PT ∥F defined
as follows

U(r, δ)
.
= 21 · S(r, δ) + ∥PT − P r

T ∥F . (7)

Proposition 3 implies that with probability at least 1− δ for any i ≥ 0, we have

U(ri, δ) = 21 · S(ri, δ) + ∥PT − P ri
T ∥F ≥ ∥P

ri
T − P ri

T ∥F + ∥PT − P ri
T ∥F ≥ ∥PT − Pri

T ∥F
We use this value as an upper bound that our algorithm guarantees if we choose a sample size ri.
We observe that with respect to (4), the upper bound of the algorithm also contains an additional
term that is proportional to

√
log(1/δ) for the high-probability guarantee, and a term proportional

to
√
log log ri that is necessary for the union bound across all possible window sizes ri for i ≥ 0.

This union bound is required as we need to have a correct estimation for all possible sample sizes
ri in order to assure that the algorithm takes a correct decision at each step. The constant factor in
front of the upper bound on the statistical error S(ri, δ) is a technical detail that allows taking into
account the error of the estimation of the difference in drift error.

We want to compare the upper bound U(ri, δ) with the upper bound U(ri+1, δ) obtained by doubling
the current sample size ri. As we previously discussed, it is possible to show that if ∥Pri

T −Pri+1

T ∥F
is sufficiently small, then U(ri+1, δ) ≤ U(ri, δ), and this intuition is formalized in the following
proposition.

Proposition 4. Assume that the event of Proposition 3 holds and let i ≥ 0.

If ∥Pri
T − Pri+1

T ∥F ≤ 4S(ri, δ) then U(ri+1, δ) ≤ U(ri, δ).

The algorithm works as follows. Starting from i = 0, we iteratively increase i by one while ∥Pri
T −

Pri+1

T ∥F ≤ 4S(ri, δ). There are two cases. In the first case, we reach ri = ⌊log2 T ⌋, and this
implies that ri+1 > T . In this case, the algorithm returns ri, and Proposition 4 guarantees that the
sample size returned by the algorithm is as good as any previously considered sample size. In the
second case, we reach a value of i such that ∥Pri

T − Pri+1

T ∥F > 4S(ri, δ). In this case, we return
ri, and we can still prove that this is a good choice. In fact, as shown in the next proposition, this
terminating condition implies a lower bound maxt<ri+1∥PT − PT−i∥F , thus any estimation with a
number of recent samples greater or equal to ri+1 could have a non-negligible drift error.
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Algorithm 1: Adaptive Learning Algorithm under Drift
i← 0 ;
while ri ≤ T/2 do

if ∥Pri
T − Pri+1

T ∥F ≤ 4S(ri, δ) then
i← i+ 1 ;

end
else

return ri ;
end

end
return ri

Proposition 5. Assume that the event of Proposition 3 holds, and assume that there exists i ≥ 0
such that ∥Pri

T − Pri+1

T ∥F > 4S(ri, δ), then maxt<ri+1
∥PT − PT−t∥F > S(ri, δ).

The pseudo-code of the algorithm is reported in Algorithm 1. The algorithm receives in input δ, the
samples Z1, . . . , ZT , and returns an integer r̂ ∈ {1, . . . , T} that satisfies Theorem 1.

Proof of Theorem 1. We assume that the event of Proposition 3 holds. If it doesn’t, we say that our
algorithm fails, and this happens with probability ≤ δ. Let r̂ = rj = 2j for j ≥ 0 be the value
returned by the algorithm when it terminates. We remind that our algorithm guarantees an upper
bound U(rj , δ) ≥ ∥PT − Prj

T ∥F to the learning error by using rj samples. Let r∗ be the value of r
that minimizes this expression

r∗ = argmin
r≤T

(
21 · S(r, δ) + max

t<r
∥PT − PT−t∥F

)
,

and let B∗ be the minimum value of this expression, i.e.
B∗ = 21 · S(r∗, δ) + max

t<r∗
∥PT − PT−t∥F

be any fixed optimal sample size, where we remind the definition of U from (7). The first observation
is that the right-hand side of the inequality in Theorem 1 is O(B∗). Therefore, in order to prove the
theorem, it is sufficient to show that U(rj , δ)/B

∗ = O(1).

We distinguish two cases: (a) r∗ < 2rj , and (b) r∗ ≥ 2rj . We first consider case (a). We let k ≥ 0
be the largest integer such that rk ≤ r∗. Since r∗ < 2rj , it holds that k ≤ j. Since our algorithm
returned rj , Proposition 4 applies for i = 0, . . . , j − 1, thus U(rj , δ) ≤ U(rk, δ). We have that:

U(rj , δ)

B∗ ≤ U(rk, δ)

B∗ (8)

We observe that
U(rk, δ)

B∗ =
21S(rk, δ) + ∥PT − P rk

T ∥F
21S(r∗, δ) + maxt<r∗∥PT − PT−t∥F

≤ 21S(rk, δ) + maxt<rk∥PT − PT−t∥F
21S(r∗, δ) + maxt<r∗∥PT − PT−t∥F

≤ S(rk, δ)

S(r∗, δ)
+

maxt<rk∥PT − PT−t∥F
maxt<r∗∥PT − PT−t∥F

≤
√

r∗

rk
+ 1 ≤ 3 ,

where the first inequality is due to (2), and the last inequality is due to the fact that rk ≤ r∗ < 2rk
by definition of rk. By using the above inequality in (8), we obtain that U(rj , δ)/B

∗ ≤ 3.

We consider case (b). Since T ≥ r∗ ≥ 2rj = rj+1, the algorithm returned rj because ∥Prj
T −

Prj+1

T ∥F > 4S(rj , δ). Using Proposition 5, we have
max
t<r∗
∥PT − PT−t∥F ≥ max

t<rj+1

∥PT − PT−t∥F > S(rj , δ) .

Therefore, we have that
U(rj , δ)

B∗ =
21S(rj , δ) + ∥PT − P

rj
T ∥F

21S(r∗, δ) + maxt<r∗∥PT − PT−t∥F

≤ 21S(rj , δ)

maxt<r∗∥PT − PT−t∥F
+

maxt<rj∥PT − PT−t∥F
maxt<r∗∥PT − PT−t∥F

≤ 21S(rj , δ)

S(rj , δ)
+ 1 = 21

This concludes the proof.
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5 Binary Classification with Distribution Drift
In this section, we show an application of Theorem 1 for the fundamental statistical learning problem
of agnostic learning a family of binary classifiers. Let Z = X × Y , where X is the feature space,
and Y = {0, 1} is the label space, i.e. Zt = (Xt, Yt). A hypothesis class H is a class of functions
h : X 7→ Y that classify the feature space X . Given a point (x, y) ∈ X × Y and a function h ∈ H,
the risk of h on (x, y) is defined through the following function Lh(x, y) = 1{y ̸=h(x)}. We work
with the class of functions F = {Lh : h ∈ H}.
Let h∗ = argminh∈H PT (Lh) be a function with minimum expected risk with respect to the current
distribution PT . We want to use Theorem 1 to find a function h ∈ H such that PT (Lh) is close
to PT (Lh∗). Let ν be the VC dimension of H. The VC dimension describes the complexity of
the family H, and it is used to quantify the statistical error. In particular, using standard learning
tools, it is possible to show that the family F satisfies Assumption 1 on the sample complexity with
constants CF,1 = O(

√
ν) and CF,2 = O(1) (e.g., [Mohri et al., 2018]).

Finally, to satisfy Assumption 2, we need to exhibit a procedure that for r ≤ T/2, outputs the
quantity ∥Pr

T − P2r
T ∥F . This quantity is also referred to as Y-discrepancy between the empirical

distributions Pr
T and P2r

T in previous work on transfer learning [Mohri and Muñoz Medina, 2012].
We can adapt a strategy from Ben-David et al. [2010] to our setting and show that it is possible to
compute it by solving an empirical risk minimization problem. We say that a hypothesis class H is
computationally tractable if given a finite set of points from X × Y , there exists an algorithm that
returns a hypothesis h that achieves the minimum risk over this set of points.

Lemma 6. Assume thatH is symmetric, i.e. h ∈ H ⇐⇒ 1− h ∈ H. For r ≤ T/2, it holds

∥Pr
T − P2r

T ∥F =
1

2
− 1

2
inf
h∈H

[
1

r

T∑
t=T−r+1

Lh(Xt, 1− Yt) +
1

r

T−r∑
t=T−2r+1

Lh(Xt, Yt)

]

Given r, the minimum in Lemma 6 can be computed by solving an empirical risk minimization
over the most recent 2r points, where we flip the label of half of those points, i.e. we use the points
(XT−2r+1, YT−2r+1), . . . , (XT−r, YT−r), (XT−r+1, 1−YT−r+1), . . . , (XT , 1−YT ). Thus, ifH is
computationally tractable and symmetric, Assumption 2 holds. This is indeed true for many hypoth-
esis class, e.g., hyperplanes, axis-aligned rectangles, or threshold functions. However, the empirical
risk minimization problem could be expensive to solve exactly, but as we discuss in Section 8, it is
possible to modify the algorithm to allow for an approximation of ∥Pr

T − P2r
T ∥F .

Our main result for binary classification is given in the following theorem:

Theorem 7. Let H be a computationally tractable and symmetric binary class with VC dimension
ν. Let F = {Lh : h ∈ H}. Let r̂ ≤ T be output of Algorithm 1 with input Z1, . . . , ZT using
the family F . Let ĥ = argminh∈H Pr̂

T (Lh) be an empirical risk minimizer over the most recent r̂
samples. With probability at least 1− δ, the following holds:

PT (Lĥ)− PT (Lh∗) = O

(
min
r≤T

[√
ν

r
+max

t<r
∥PT − PT−t∥F +

√
log(log(r + 1)/δ)

r

])

The symmetry assumption is not necessary, and in the appendix we show how to remove it at the
cost of a more expensive computation of the discrepancy. It is instructive to compare this upper
bound with the results of previous work. An often used assumption in the literature, originally
introduced in Bartlett [1992], is that there is a known value ∆ > 0, such that drift in each step
is bounded by ∆, i.e. for all t < T , ∥Pt+1 − Pt∥F ≤ ∆. Assume that T is sufficiently large,
i.e. T = Ω((ν/∆2)1/3). By using this assumption on the drift, previous work showed that with
high-probability, they can find a classifier ĥ such that PT (Lĥ) − PT (Lh∗) = O

(
3
√
∆ν
)

, and it
can be shown that this upper bound is tight up to constants within those assumptions [Barve and
Long, 1996]. These previous works assumed they had access a priori to the value of ∆, since those
algorithms compute ĥ by solving a empirical risk minimization over a number of previous samples
Θ((ν/∆2)1/3) that is decided before observing the data. On the other hand, this assumption on the
drift together with (2) implies that maxt<r∥PT −PT−t∥F ≤ (r− 1)∆. Our algorithm (Theorem 7)
guarantees an error that depends on a minimum choice over r ≤ T , hence it is always smaller than
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the one obtained with a specific choice of r. If we choose r = (ν/∆2)1/3 in the upper bound
of Theorem 7, we can show that with high-probability, our algorithm returns a classifier ĥ such
that PT (Lĥ) − PT (Lh∗) = O

(
3
√
∆ν + 6

√
∆2/ν

√
log log(ν/∆2)

)
. Our algorithm achieves this

guarantee while being adaptive with respect to the upper bound ∆, and it can indeed guarantee a
better result when this upper bound is loose.

For example, assume an extreme case in which the algorithm is given a ∆ > 0 bound on the drift
in each step, but the training set has actually no drift, it was all drawn from the distribution PT .
Previous methods are oblivious to the actual data, and they guarantee an upper bound O

(
3
√
∆ν
)

with high-probability, since they decide the sample size Θ((ν/∆2)1/3) a priory without observing
the input. In contrast, our algorithm adapts to this scenario, and Theorem 7 guarantees that we ob-
tain an O

(√
ν/T +

√
(log log T )/T

)
error, with high-probability, essentially retrieving the error

guarantee for learning with independent and identically distributed samples. Observe that our upper
bound depends on T , and it goes to 0 when T →∞.

It is possible to show that our algorithm can obtain asymptotically better guarantee even if ∥Pt −
Pt−1∥F = ∆ ≪ 1 for all t < T , i.e. there is an exact drift of ∆ at each step. This is because
our algorithm provides a guarantee as a function of maxt<r∥PT − PT−t∥F rather than the looser
quantity

∑r−1
t=1 ∥PT−t − PT−t+1∥F , as shown in the following example. Let X = [0, 1], and let H

be a class of threshold functions over [0, 1] i.e. for any c ∈ [0, 1], there exists classifiers hc, h
′
c ∈ H

such that hc(x) = 1 if and only if x ≥ c and h′
c(x) = 1 if and only if x < c. The class H has

VC-dimension equal to 2. We construct a sequence of distributions P1, . . . , PT as follows. The
marginal distribution over X is uniform for each distribution Pt with t = 1, . . . , T . At time t ≤ T ,
the classification of x ∈ [0, 1] is given by a function ℓt : [0, 1] 7→ {0, 1}. Assume that there exists
two disjoint intervals I0 = [p0, p0 + ∆/2) and I1 = [p1, p1 + ∆/2) such that ℓT (x) = 0 for all
x ∈ I0 and ℓT (x) = 1 for all x ∈ I1. We let

ℓT−t(x) =


1− ℓT (x) if (x ∈ I0) ∧ (t is odd)
1− ℓT (x) if (x ∈ I1) ∧ (t is even)
ℓT (x) otherwise

, ∀x ∈ X , t < T .

In particular, ℓT−t(x) differs from ℓT (x) for x ∈ I0 if t is odd, and for x ∈ I1 if t is even. By
construction, ∥Pt − Pt−1∥F = ∆ for all t < T , i.e. there is an exact drift of ∆ at each step (to
be precise, in the last step ∥PT − PT−1∥F = ∆/2). As discussed before, with the assumption of
a bounded drift ∆ at each step, previous methods guarantee an upper bound O( 3

√
∆) with high-

probability. However, we also have that for any 1 ≤ r ≤ T , it holds by construction that
max
t<r
∥PT − PT−t∥F ≤ ∆ .

Hence, our algorithm (Theorem 7) guarantees with high-probability an upper bound

O
(
∆+

√
ν/T +

√
(log log T )/T

)
.

Since our algorithm is adaptive with respect to the drift, it can correctly use more samples. In
contrast, previous non-adaptive algorithms that rely on the assumption of bounded drift ∆ at each
step choose a sample size of Θ(∆−2/3) based on this assumption, thus they can only guarantee a
looser bound of O(∆1/3), even when this assumption is satisfied with equality.

It is possible to use the recent lower bound strategy of Mazzetto and Upfal [2023] in order to show
that the upper bound of Theorem 7 is essentially tight in a minimax sense.

Theorem 8. Let H be a binary class with VC dimension ν, and consider an arbitrary non-
decreasing sequence ∆1 = 0,∆2, . . . ,∆T of non-negative real numbers. Let F = {Lh : h ∈ H}.
Let A be any algorithm that observes Z1, . . . , ZT , and it outputs a classifier hA ∈ H. If

Φ∗ = min
r≤T

(√
ν

r
+∆r

)
< 1/3 ,

then, for any algorithm A, there exists a sequence of distributions P1, . . . , PT such that
maxt<r∥PT − PT−t∥F ≤ ∆r for any r ≤ T , and with probability at least 1/8 it holds that:

PT (LhA)− PT (Lh∗) = Ω(Φ∗) = Ω

(
min
r≤T

(√
ν

r
+max

t<r
∥PT − PT−t∥F

))

8



6 Linear Regression with Squared Loss
In the previous section, we showed an application of Theorem 1 for the problem of binary classifica-
tion with zero-one loss. In this section, we show that our main result can also be applied to a linear
regression problem. Similarly to the previous section, we let Z = X × Y , where X is the feature
space and Y = [−1, 1] is the label space, i.e. Zt = (Xt, Yt). In this section, we constrain the feature
space X = {x ∈ Rd : ∥x∥2 ≤ 1} to be the unit ball centered at the origin in Rd.

We consider the ℓ2 regularized linear prediction class H = {x 7→ ⟨x,w⟩ : w ∈ Rd ∧ ∥w∥2 ≤
1}. We denote each predictor hw ∈ H with its weight w. To evaluate the quality of a prediction
y = hw(x), we use the squared loss L : R × R 7→ R defined as L(y, y′) = (y − y′)2. For each
hw ∈ H, we let Lw(x, y) = L(hw(x), y) be the function that evaluates the loss incurred by hw for
any z = (x, y) ∈ Z . We work with the family of functions F = {Lw : hw ∈ H}. By a standard
uniform convergence argument based on the Rademacher complexity of F (e.g., see [Kakade et al.,
2008, Shamir, 2015, Awasthi et al., 2020]), we have that for any 1 ≤ r ≤ T , it holds:

∥P r
T − Pr

T ∥F = O

(
1√
r
+

√
ln(1/δ)

r

)
,

thus we satisfy Assumption 1 with CF,1 = O(1) and CF,2 = O(1).

The computation of the discrepancy is more challenging. Let 1 ≤ r ≤ T/2. Using the definition of
F , we have that:

∥Pr
T − P2r

T ∥F =
1

2r
sup

w:∥w∥≤1

∣∣∣∣∣
T∑

t=T−r+1

(
Yt − ⟨Xt, w⟩

)2 − T−r∑
t=T−2r+1

(
Yt − ⟨Xt, w⟩

)2∣∣∣∣∣ . (9)

Let cr ∈ R, br ∈ Rd, and Ar ∈ Rd×d be defined as follows:

ar =

T∑
t=T−r+1

Y 2
t −

T−r∑
t=T−2r+1

Y 2
t , br =

T−r∑
t=T−2r+1

YtXt −
T∑

t=T−r+1

YtXt ,

Ar =

T∑
t=T−r+1

XT
t Xt −

T−r∑
t=T−2r+1

XT
t Xt ,

and observe that the matrix Ar is symmetric. Using those definition, we can manipulate the right-
hand side of (9) to show that it is equivalent to:

max

(
−ar + inf

w:∥w∥≤1

[
wT (−Ar)w − 2bTr w

]
, ar + inf

w:∥w∥≤1

[
wT (Ar)w − 2(−bTr )w

])
(10)

In order to compute (10), it is sufficient to be able to solve the minimization problem

inf
w:∥w∥≤1

(
wTAw − 2bTw

)
(11)

where A ∈ Rd×d is a symmetric matrix, and b ∈ Rd. This minimization problem has been exten-
sively studied for the trust-region method [Conn et al., 2000], and Hager [2001, Section 2] provides
a way to compute the solution of (11) in terms of a diagonalization of A. Thus, we also satisfy As-
sumption 2, and we can obtain the following result as an immediate corollary of Theorem 1.

Theorem 9. Let δ ∈ (0, 1). Let 1 ≤ r̂ ≤ T be the output of Algorithm 1 with input Z1, . . . , ZT

and using the family F described in this section. Let ŵ = argminw:∥w∥≤1 Pr̂
T (Lw) be the linear

classifier with minimum loss over the most recent r̂ samples. Then, with probability at least 1− δ:

PT (Lŵ)− PT (Lw∗) = O

(
min
r≤T

[
1√
r
+max

t<r
∥PT − PT−t∥F +

√
log(log(r + 1)/δ)

r

])
where w∗ = argminw:∥w∥≤1 PT (Lw) is the linear predictor with minimum loss with respect to the
current distribution PT .
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7 Related Work
Additional variants of learning with distribution drift have been studied in the literature. Freund
and Mansour [1997] provide a refined learning algorithm in the special case of rapid distribution
shift with a constant direction of change. In the work of Bartlett et al. [2000], they show specialized
bounds in the case of infrequent changes and other different restrictions on the distribution drift. The
work of Crammer et al. [2010] provides regret bound for online learning with an adversarial bounded
drift. Yang [2011] studies the problem of active learning in a distribution drift setting. Hanneke
et al. [2015] provide an efficient polynomial time algorithm to learn a class of linear separators with
a drifting target concept under the uniform distribution in the realizable setting. Interestingly, they
also show how to adapt their algorithm with respect to an unknown drift, although their technique
relies on the realizability of the learning problem. In the more recent work of Hanneke and Yang
[2019], they relax the independence assumption and provide learning guarantees for a sequence of
random variables that is both drifting and mixing.

8 Conclusion, Limitations and Future Directions
We present a general learning algorithm that adapts to an unknown distribution drift in the training
set. Unlike previous work, our technique does not require prior knowledge about the magnitude of
the drift. For the problem of binary classification, we show that without explicitly estimating the
drift, there exists an algorithm that learns a binary classifier with the same or better error bounds
compared to the state-of-the-art results that rely on prior information about the magnitude of the
drift. This is a major step toward practical solutions to the problem since prior knowledge about the
distribution drift in the training set is often hard to obtain.

We presented concrete results for binary classification and linear regression, but our technique can
be applied for learning any family of functions F as long as it is possible to compute the distance
∥Pr

T −P2r
T ∥F between the empirical distributions with r and 2r samples according to the ∥·∥F norm

(Assumption 2). This is often a challenging problem, and it is related to the computation of the dis-
crepancy between distributions, which was studied in previous work on transfer learning [Mansour
et al., 2009, Ben-David et al., 2010]. For binary classification, we assume that the empirical risk
minimization problem is tractable. However, an exact solution to this problem is computationally
hard for many hypothesis classes of interest, and this is a limitation of our algorithm and previous
work on transfer learning. In those cases, we can modify our analysis to use the best-known approx-
imation for the distance ∥Pr

T − P2r
T ∥F as long as there is an approximation guarantee with respect

to its exact value. As an illustrative example, if we have a procedure that returns an approximation
Er such that 1 ≤ ∥Pr

T − P2r
T ∥F/Er ≤ α for any r ≥ 1, then it is possible to change the algorithm

to obtain a guarantee that is at the most a factor O(α2) worse than the one achieved by Algorithm 1
with the exact computation of the distance (we refer to Appendix B for additional details).

The method presented here uses a distribution-independent upper bound for the statistical error.
While this upper bound can be tight in the worst-case, as shown in our lower bound for binary
classification (Theorem 8), it can be loose for some other sequence of distributions. As a future
direction, it is an interesting problem to provide an adaptive algorithm with respect to the drift
that uses distribution-dependent upper bounds, for example, based on the Rademacher complexity,
which can be possibly computed from the input data. Our algorithm does not naturally extend to this
setting, as it requires knowing the rate at which the upper bound on the statistical error is decreasing
(see proof of Proposition 4).

Acknowledgements. This material is based on research sponsored by Defense Advanced Research
Projects Agency (DARPA) and Air Force Research Laboratory (AFRL) under agreement number
FA8750-19-2-1006 and by the National Science Foundation (NSF) under award IIS-1813444. The
U.S. Government is authorized to reproduce and distribute reprints for Governmental purposes
notwithstanding any copyright notation thereon. The views and conclusions contained herein are
those of the authors and should not be interpreted as necessarily representing the official poli-
cies or endorsements, either expressed or implied, of Defense Advanced Research Projects Agency
(DARPA) and Air Force Research Laboratory (AFRL) or the U.S. Government.
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A Deferred Proofs
Proof of Proposition 3. For any i ≥ 0, let δi = 6δ/[π2(i+ 10)2]. By using Assumption 1, we have
that with probability at least 1− δi it holds that

∥P ri
T − Pri

T ∥F ≤
CF,1 + CF,2

√
ln(π2/6) + ln(1/δ) + 2 ln(i+ 10)

√
ri

≤
CF,1 +

√
2CF,2

√
ln(π2/(6δ)) + ln(i+ 10)
√
ri

≤ CF,δ√
ri

+ CF,2

√
2 ln(i+ 10)

ri

where in the second inequality we used the definition of CF,δ and the fact that
√
x+ y ≤

√
x+
√
y.

Additionaly, the following equality holds
∞∑
i=0

δi ≤ δ

(
6

π2

) ∞∑
i=1

1/i2 = δ ,

where in the last equality, we used the known fact that
∑∞

i=1 1/i
2 = π2/6. Thus, if we take an

union bound over all i ≥ 0, we have with probability at least 1− δ it holds that

∥P ri
T − Pri

T ∥F ≤
CF,δ√

ri
+ CF,2

√
2 ln(i+ 10)

ri
∀i ≥ 0 .

The statement follows by observing that the right-hand side of the above inequality is equal to
S(ri, δ) for any i ≥ 0.

Proof of Proposition 4. . We have

U(ri+1, δ)− U(ri, δ) = 21[S(ri+1, δ)− S(ri, δ)] + ∥PT − P
ri+1

T ∥F − ∥PT − P ri
T ∥F .

By using the triangle inequality, we obtain

∥PT − P
ri+1

T ∥F ≤ ∥PT − P ri
T ∥F + ∥P ri

T − P
ri+1

T ∥F ,

thus we have

U(ri+1, δ)− U(ri, δ) ≤ 21[S(ri+1, δ)− S(ri, δ)] + ∥P ri
T − P

ri+1

T ∥F . (12)

We use the triangle inequality and Proposition 3 to show that

∥P ri
T − P

ri+1

T ∥F ≤ ∥P ri
T − Pri

T ∥F + ∥P ri+1

T − Pri+1

T ∥F + ∥Pri
T − Pri+1

T ∥F
≤ ∥Pri

T − Pri+1

T ∥F + S(ri, δ) + S(ri+1, δ) .

If we plug the above inequality in (12) and use the assumption that ∥Pri
T −Pri+1

T ∥F ≤ 4S(ri, δ), we
obtain

U(ri+1, δ)− U(ri, δ) ≤ 21[S(ri+1, δ)− S(ri, δ)] + S(ri+1, δ) + 5S(ri, δ)

= 22S(ri+1, δ)− 16S(ri, δ)

If we expand the above upper bound by using the definition of the function S, we have

22S(ri+1, δ)− 16S(ri, δ) =
CF,δ√
ri+1

[22− 16
√
2] + CF,2

√
2 ln(i+ 11)

ri+1

[
22− 16

√
2

√
ln(i+ 10)

ln(i+ 11)

]
≤ 0 ,

where the last inequality follows since 22−16
√
2 ≤ 0, and 22−16

√
2
√

ln(i+ 10)/ ln(i+ 11) ≤ 0.
Thus, it holds that

U(ri+1, δ)− U(ri, δ) ≤ 22S(ri+1, δ)− 16S(ri, δ) ≤ 0 ,

and we can conclude that U(ri+1, δ) ≤ U(ri, δ).
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Proof of Proposition 5. . Observe that by using the triangle inequality, it holds that

∥Pri
T − Pri+1

T ∥F ≤ ∥P ri
T − Pri

T ∥F + ∥P ri+1

T − Pri+1

T ∥F + ∥P ri
T − P

ri+1

T ∥F
≤ ∥P ri

T − P
ri+1

T ∥F + S(ri, δ) + S(ri+1, δ)

≤ ∥P ri
T − P

ri+1

T ∥F + 2S(ri, δ) ,

where in the second inequality we used Proposition 3. By assumption, we have that ∥Pri
T −

Pri+1

T ∥F ≥ 4S(ri+1, δ), hence

∥P ri
T − P

ri+1

T ∥F ≥ 2S(ri, δ) (13)

Observe that by triangle inequality, we have that

∥P ri
T − P

ri+1

T ∥F ≤ ∥PT − P ri
T ∥F + ∥PT − P

ri+1

T ∥F .

We use (2) and obtain that

∥P ri
T − P

ri+1

T ∥F ≤ max
t<ri
∥PT − PT−t∥F + max

t<ri+1

∥PT − PT−t∥F

≤ 2 max
t<ri+1

∥PT − PT−t∥F .

By combining the above inequality with (13), we finally obtain that maxt<ri+1∥PT − PT−t∥F ≥
S(ri, δ).

Proof of Lemma 6. We remind that F = {Lh : h ∈ H}. By using the definition of ∥·∥F , we have

∥Pr
T − P2r

T ∥F = sup
h∈H

∣∣∣∣∣1r
T∑

t=T−r+1

Lh(Xt, Yt)−
1

2r

T∑
t=T−2r+1

Lh(Xt, Yt)

∣∣∣∣∣
=

1

2
sup
h∈H

∣∣∣∣∣1r
T∑

t=T−r+1

Lh(Xt, Yt)−
1

r

T−r∑
t=T−2r+1

Lh(Xt, Yt)

∣∣∣∣∣ .

We can remove the absolute value by re-writing this expression as

∥Pr
T − P2r

T ∥F =
1

2
max

{
sup
h∈H

(
1

r

T∑
t=T−r+1

Lh(Xt, Yt)−
1

r

T−r∑
t=T−2r+1

Lh(Xt, Yt)

)
,

sup
h∈H

(
1

r

T−r∑
t=T−2r+1

Lh(Xt, Yt)−
1

r

T∑
t=T−r+1

Lh(Xt, Yt)

)}
. (14)

Consider the first argument of the above maximum. We can observe that for any (X,Y ) ∈ X × Y ,
it holds that Lh(X,Y ) + Lh(X, 1− Y ) = 1, thus we obtain that

sup
h∈H

(
1

r

T∑
t=T−r+1

Lh(Xt, Yt)−
1

r

T−r∑
t=T−2r+1

Lh(Xt, Yt)

)

= sup
h∈H

(
1− 1

r

T∑
t=T−r+1

Lh(Xt, 1− Yt)−
1

r

T−r∑
t=T−2r+1

Lh(Xt, Yt)

)

=1− inf
h∈H

(
1

r

T∑
t=T−r+1

Lh(Xt, 1− Yt) +
1

r

T−r∑
t=T−2r+1

Lh(Xt, Yt)

)
(15)

Similarly, we can demonstrate that the second term of the maximum is equal to:

sup
h∈H

(
1

r

T−r∑
t=T−2r+1

Lh(Xt, Yt)−
1

r

T∑
t=T−r+1

Lh(Xt, Yt)

)

=1− inf
h∈H

(
1

r

T∑
t=T−r+1

Lh(Xt, Yt) +
1

r

T−r∑
t=T−2r+1

Lh(Xt, 1− Yt)

)
. (16)

14



Therefore, to compute the discrepancy (14), it is sufficient to solve the two empirical risk minimiza-
tion problems in (15) and (16). To obtain the final statement, we can observe that for any (X,Y )
and h ∈ H, it holds that Lh(X,Y ) = L1−h(X, 1 − Y ). Thus, we can show that (16) is equivalent
to:

1− inf
h∈H

(
1

r

T∑
t=T−r+1

Lh(Xt, Yt) +
1

r

T−r∑
t=T−2r+1

Lh(Xt, 1− Yt)

)

=1− inf
h∈H

(
1

r

T∑
t=T−r+1

L1−h(Xt, 1− Yt) +
1

r

T−r∑
t=T−2r+1

L1−h(Xt, Yt)

)
.

Since H is symmetric, i.e. 1 − h ∈ H ⇐⇒ h ∈ H, we can conclude that (15) and (16) have the
same value. This concludes the proof.

Proof of Theorem 7. SinceH has VC-dimension ν, by a standard argument we have that the family
F = {Lh : h ∈ H} has VC-dimension upper bounded by 2ν, thus it satisfies Assumption 1 on the
sample complexity for uniform convergence with CF,1 = O(

√
ν) and CF,2 = O(1).

We can observe that since H is symmetric, Lemma 6 shows that we can compute ∥Pr
T − P2r

T ∥F for
any r ≥ 1 by solving an empirical risk minimization problem. SinceH is computationally tractable,
there exists a procedure that solves this problem, thus we also satisfy Assumption 2.

Remark: If the symmetry assumption does not hold, in the proof of Lemma 6 we show that we can
still compute the discrepancy ∥Pr

T−P2r
T ∥F by solving the two empirical risk minimization problems

in (15) and (16).

Hence, we can use Algorithm 1 with the family F , and let r̂ be the value returned by the algorithm.
Theorem 1 guarantees that with probability at least 1− δ, we have that

∥PT − Pr̂
T ∥F = O

(
min
r≤T

[√
ν

r
+max

t<r
∥PT − PT−t∥F +

√
log(log(r + 1)/δ)

r

])
. (17)

Now, we have that

PT (Lĥ)− PT (Lh∗) = PT (Lĥ)− PT (Lh∗) = PT (Lĥ)− Pr̂
T (Lĥ) + Pr̂

T (Lĥ)− PT (Lh∗)

≤ PT (Lĥ)− Pr̂
T (Lĥ) + Pr̂

T (Lh∗)− PT (Lh∗)

≤ |PT (Lĥ)− Pr̂
T (Lĥ)|+ |P

r̂
T (Lh∗)− PT (Lh∗)|

≤ 2∥PT − Pr̂
T ∥F ,

where the first inequality is due to the definition of ĥ. Therefore, using (17), we have that with
probability at least 1− δ, it holds

PT (Lĥ)− PT (Lh∗) = O

(
min
r≤T

[√
ν

r
+max

t<r
∥PT − PT−t∥F +

√
log(log(r + 1)/δ)

r

])
.

Proof of Theorem 9. The theorem is proven following the same structure as the proof of Theorem 7.

A.1 Lower Bound.
In this section, we prove the lower bound of Theorem 8. The proof structure is based on the work
of Mazzetto and Upfal [2023]. We provide a simpler statement of their proof in our setting, and
we remove the additional regularity assumption used in that work to characterize the drift error. We
introduce the following notation.

We say that a distribution Q over Zn is a product distribution if it can be written as the product of n
distributions over Z , i.e. Q = Q1× . . .×Qn. For any n ≥ 1, we can observe that since the random
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variables Z1, . . . , Zn are independent, their distribution can be described as a product distribution
over Zn. Given two strings τ, τ ′ ∈ {−1, 1}n, we let hd(τ, τ ′) = 1

2∥τ − τ ′∥1 be the Hamming
distance between the two strings, i.e. the number of positions in which the two strings differ.

Let ν be the VC dimension of the hypothesis class H. We will construct a (later defined) family of
product distributionsQ = {Q(τ) = Q

(τ)
1 × . . .×Q

(τ)
T : τ ∈ {−1, 1}ν} over ZT that are indexed by

a string τ ∈ {−1, 1}ν . Intuitively, each distribution Q(τ) is a possible candidate for the distribution
of the random variables Z1, . . . , ZT . We will show that for any algorithm A, there exists a product
distribution Q(τ) such that the classifier hA computed by A using the samples Z1, . . . , ZT from
Q(τ) has large expected error. The proof is based on Assouad’s Lemma. We provide a statement of
this lemma that is an adaptation of its classical statement to our setting [Yu, 1997].

Lemma 10 (Assouad’s Lemma). Let Q be defined as above. For any function g : ZT 7→ {−1, 1}ν ,
there exists τ ∈ {−1, 1}ν such that

E
Z∼Q(τ)

hd
(
g(Z1, . . . , Zn), τ

)
≥ ν

2
· min

τ ′,τ ′′

hd(τ ′,τ ′′)=1

∥Q(τ ′) ∧Q(τ ′′)∥1

Let ∆1 = 0,∆2, . . . ,∆T be the sequence defined in the statement of Theorem 8. We let Φ :
{1, . . . , T} 7→ R be the function

Φ(r) =

(√
ν

r
+∆r

)
.

We let Φ∗ = minr Φ(r), and we remind that we assume Φ∗ < 1/3 in the statement of the Theorem.
We build the family Q based on the following value:

r̃ = max

{
1 ≤ r ≤ T : ∆r <

√
ν

r

}
Proposition 11. The following holds:

Φ(r̃) ≤ 3Φ∗ .

Proof. Let r∗ ∈ {1, . . . , r} be a value such that Φ∗ = Φ(r∗). The statement follows by exploiting
the definition of r̃. We distinguish two cases. If r̃ ≥ r∗, we have that

Φ(r̃)

Φ∗ =
∆r̃ +

√
ν/r̃

∆r∗ +
√
ν/r∗

≤
2
√

ν/r̃√
ν/r∗

= 2
√
r∗/r̃ ≤ 2

Conversely, if r∗ > r̃, we have that

Φ(r̃)

Φ∗ =
∆r̃ +

√
ν/r̃

∆r∗ +
√
ν/r∗

=
∆r̃ +

√
ν/(r̃ + 1)

√
(r̃ + 1)/r̃

∆r∗ +
√
ν/r∗

≤ 3∆r̃+1/∆r∗ ≤ 3

In the first inequality we used the fact that the sequence ∆1, . . . ,∆T is non-decreasing, and the
inequality

√
ν/(r̃ + 1) ≤ ∆r̃+1 due to the definition ot r̃.

We define the family of product distributions Q as follows. Let X1, . . . , Xν be a shatter set for the
hypothesis classH. We build the following familyQ = {Q(τ) = Q

[τ ]
1 × . . .×Q

[τ ]
T : τ ∈ {−1, 1}ν}

of product distributions over ZT = (X × Y)T that are indexed by τ ∈ {−1, 1}ν . They are defined
as follows:

Pr
(X,Y )∼Q

(τ)
t

(Y = 1|X = Xi) =

{
1
2 + τi

16
√
6

(√
ν
r̃ +∆r̃ −∆T−t+1

)
if t > T − r̃

1
2 else

Pr
(X,Y )∼Q

(τ)
t

(X = Xi) =
1

ν
∀i ∈ {1, . . . , ν}
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Those distributions are well-defined. In fact, we have that for all t > T − r̃:

1

16
√
6

(√
ν

r̃
+∆r̃ −∆T−t+1

)
≤ 1

16
√
6

(√
ν

r̃
+∆r̃

)
≤ 1

16
√
6
Φ(r̃) ≤ 3

10
Φ∗ < 1/4 ,

where we used Proposition 11. Given a classifier h ∈ H and τ ∈ {−1, 1}ν , we remind that

Q
(τ)
T (Lh) = Pr

(X,Y )∼Q
(τ)
T

(h(X) ̸= Y ) .

We can observe that for any classifier h ∈ H and t > T − r̃, it holds by construction that:∣∣∣Q(τ)
T (Lh)−Q

(τ)
T−t+1(Lh)

∣∣∣ = 1

16
√
6
∆T−t+1 ≤ ∆T−t+1 ,

and for any t ≤ T − r̃, we have that∣∣∣Q(τ)
T (Lh)−Q

(τ)
T−t(Lh)

∣∣∣ = 1

16
√
6

(
∆r̃ +

√
ν

r̃

)
≤ 1

8
√
6

√
ν

r̃
=

1

8
√
6

√
ν

r̃ + 1

√
r̃ + 1

r̃

≤ 1

8
√
3
∆r̃+1 ≤ ∆T−t+1 ,

where the first and the second inequality are due to the definition of r̃, and the last inequality follows
from the fact that the sequence ∆1, . . . ,∆T is non-decreasing. Hence, if we let F = {Lh : h ∈ H},
it results that for τ and for any 1 ≤ r ≤ T , it holds that:

max
t<r
∥Q(τ)

T −Q
(τ)
T−t∥F ≤ ∆r . (18)

We also let Lh∗ be the minimum loss that is achieved by a function h ∈ H with respect to Q
(τ)
T , i.e.

Lτ
h∗ = argminLh:h∈H Q

(τ)
T (Lh). By using the family Q together with Assouad’s Lemma, we can

show the following.

Lemma 12. Let Q be defined as above. Let A : ZT 7→ H be any algorithm that observes a
sequence of elements T elements from Z , and it outputs a classifier hA. For any algorithm A, there
exists τ ∈ {−1, 1}ν such that if the input Z1, . . . , Zn is sampled according to Q(τ), then:

E
[
Q

(τ)
T (LhA)−Q

(τ)
T (Lτ

h∗)
]
≥ 7
√
6Φ∗

768
.

Proof. Let τ ∈ {−1, 1}ν . We can define τA =
(
2hA(X1) − 1, . . . , 2 · hA(Xν) − 1

)
∈ {−1, 1}ν .

We have that:

Q
(τ)
T

(
Lτ
hA

)
=

[
1

2
− 1

16
√
6

(√
ν

r̃
+∆r̃

)]
+

1

8
√
6ν

(√
ν

r̃
+∆r̃

) ν∑
i=1

1{τA,i ̸=τi}

=

[
1

2
− 1

16
√
6

(√
ν

r̃
+∆r̃

)]
+

Φ(r̃)

8
√
6ν

hd
(
τA, τ

)
By construction of Q(τ)

T , we can observe that

Q
(τ)
T (Lτ

h∗) =

[
1

2
− 1

16
√
6

(√
d

r̃
+∆r̃

)]
,

hence, we have the following relation

Q
(τ)
T (LhA)−Q

(τ)
T (Lτ

h∗) =
Φ(r̃)

8
√
6ν

hd
(
τA, τ

)
(19)

=⇒E
[
Q

(τ)
T (LhA)−Q

(τ)
T (Lτ

h∗)
]
=

Φ(r̃)

8
√
6ν

Ehd
(
τA, τ

)
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Observe thatA can be seen as a map from ZT to {−1, 1}ν (i.e., the string τA). Hence, we can apply
Lemma 10: this implies that there exists τ ∈ {−1, 1}ν such that

E
[
Q

(τ)
T (LhA)−Q

(τ)
T (Lτ

h∗)
]
≥ Φ(r̃)

16
√
6

min
τ ′,τ ′′

hd(τ ′,τ ′′)=1

∥Q(τ ′) ∧Q(τ ′′)∥1 .

We are left to evaluate the right-hand side of the above inequality. We can use the following known
relations that hold for any two distributions P and Q over ZT [Tsybakov, 2008]:

∥P ∧Q∥1 = 1− 1

2
∥P −Q∥1, ∥P −Q∥1 ≤

√
2KL(P,Q) (20)

where KL is the Kullback–Leibler divergence (we refer to the classic definition of those distances
as in [Tsybakov, 2008]). Let τ ′ and τ ′′ be two strings in {−1, 1}ν that only differ in one coordinate.
Let Ber(p) be a Bernoulli distribution with parameter p ∈ [0, 1]. We have that:

KL(Q(τ ′), Q(τ ′′)) =

T∑
t=1

KL(Q
(τ ′)
t , Q

(τ ′′)
t )

=

T∑
t=T−r̃+1

KL(Q
(τ ′)
t , Q

(τ ′′)
t )

=
1

ν

r̃∑
t=1

KL

(
Ber

(
1

2
+

1

16
√
6

(√
ν

r̃
+∆t

))
,Ber

(
1

2
− 1

16
√
6

(√
ν

r̃
+∆t

)))
(21)

where the first equality is due to the factorization property of the KL-divergence, the second and
third equality are due to the definition of the family Q. For any ϵ < 1/4, it holds that

KL

(
Ber

(
1

2
− ϵ

)
,Ber

(
1

2
+ ϵ

))
≤ 12ϵ2 .

By plugging the above inequality in (21), and using the fact that (x + y)2 ≤ 2x2 + 2y2, we obtain
that

KL(Q(τ ′), Q(τ ′′)) ≤ 24

162 · 6ν

[
r̃∑

t=1

ν

r̃
+

r̃∑
t=1

∆2
r̃

]

≤ 24

162 · 6ν
[
ν + r̃∆2

r̃

]
By using the definition of r̃, it holds that ∆2

r̃ r̃ ≤ ν. Thus, we we have that KL(Q(τ ′), Q(τ ′′)) ≤
1/32. If we use this inequality with (20), we have

min
τ ′,τ ′′

hd(τ ′,τ ′′)=1

∥Q(τ ′) ∧Q(τ ′′)∥1 ≥ 7/8 .

Hence, we can conclude that there exists τ ∈ {−1, 1}ν such that

E
[
Q

(τ)
T (LhA)−Q

(τ)
T (Lτ

h∗)
]
≥ 7
√
6Φ(r̃)

768
.

By using this Lemma, we can easily prove Theorem 8.

Proof of Theorem 8. . By Lemma 12, there exists τ such that if Pt = Q
(τ)
t for all 1 ≤ t ≤ T , then

the algorithm A with input Z1, . . . , ZT satisfies

E [PT (LhA)− PT (Lh∗)] ≥ 7
√
6Φ∗/768 . (22)

Due to (18), we observe that the distributions P1, . . . , PT satisfy the assumption on the drift.
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Let E = PT (LhA)− PT (Lh∗). Observe that due to the construction of Q(τ) and (19), we have that
E ≤ Φ(r̃)/(8

√
6) ≤ 3Φ∗/(8

√
6), where the last inequality is due to Proposition 11. Let α > 0 be

a later defined value. We have that:

E[E] = E[E|E > αΦ∗] Pr(E ≥ αΦ∗) + E[E|E < αΦ∗] Pr(E ≤ αΦ∗)

≤ (3Φ∗/(8
√
6)) Pr(E ≥ αΦ∗) + αΦ∗(1− Pr(E ≤ αΦ∗))

= Pr(E ≥ αΦ∗) [3Φ∗/20− αΦ∗] + αΦ∗ .

By using the above inequality together with (22), we finally obtain that:

Pr(E ≥ αΦ∗) ≥ 7
√
6Φ∗/768− αΦ∗

3Φ∗/(8
√
6)− αΦ∗

=
7
√
6/768− α

3/(8
√
6)− α

We set α = 1/(112
√
6) and we finally obtain that

Pr

(
E ≥ Φ∗

112
√
6

)
≥ 1/8

.

B Relaxing Assumption 2
Given a family F , it is possible that the exact computation of ∥Pr

T −P2r
T ∥F is computationally hard.

In this section, we show an example on how to relax Assumption 2 to allow an approximation of
this quantity.

Let α ≥ 1. We say that an algorithm A in an α-approximation procedure if given Zt−2r+1, . . . , ZT ,
it computes an estimate A(ZT−2r+1, . . . , ZT ) such that

1 ≤ ∥Pr
T − P2r

T ∥F
A(ZT−2r+1, . . . , ZT )

≤ α

for any r ≤ T/2. That is, the algorithm A does not compute the value of the supremum of the norm
∥·∥F exactly, but it guarantees a constant factor approximation α. In this case, we can modify the
algorithm as follows.

Algorithm 2: Adaptive Learning Algorithm under Drift with Approximation Procedure
i← 0 ;
while ri ≤ T/2 do

if A(Zt−2r+1, . . . , ZT ) ≤ 4 · S(ri, δ) then
i← i+ 1 ;

end
else

return ri ;
end

end
return ri

Theorem 13. Let δ ∈ (0, 1). Let Assumptions 1 hold, and assume that there exists an α-
approximation procedure for estimating ∥Pr

T − P2r
T ∥F for any r ≤ T/2. Given Z1, . . . , ZT , there

exists an algorithm that outputs a value r̂ ≤ T such that with high-probability, it holds that

∥PT − Pr̂
T ∥F = α ·O

(
min
r≤T

[
αCF,1√

r
+max

t<r
∥PT − PT−t∥F + αCF,2

√
log(log(r + 1)/δ)

r

])

Proof. The proof follows the same strategy as the one of the main theorem with slight modifications,
and we discuss those changes. We replace the definition of U(r, δ) with

U(r, δ) = (18α+ 9)S(r, δ) + ∥PT − P r
T ∥F
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in order to take into account the additional error due to the approximation procedure. We can observe
that

A(ZT−ri+1−1, . . . , ZT ) ≤ 4S(ri, δ)

implies

∥Pri
T − Pri+1

T ∥F ≤ 4αS(ri, δ)

since A is an α-approximation procedure. We can follow the steps of Proposition 4 with those
different constants to show an equivalent statement of this Proposition. On the other hand, we have
that if

A(Zt−2r+1, . . . , ZT ) > 4S(ri, δ)

then

∥Pr
T − P2r

T ∥F > 4S(ri, δ) ,

and Proposition 5 applies. Therefore, we can use the same proof strategy of Theorem 1 to prove
Theorem 13
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