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ABSTRACT

Vision Transformers are widely adopted as the backbone of vision foundation
models, but they are known to produce high-norm artifacts that degrade represen-
tation quality. When knowledge distillation transfers these features to students,
high-norm artifacts dominate the objective, so students overfit to artifacts and un-
derweight informative signals, diminishing the gains from larger models. Prior
work attempted to remove artifacts but encountered an inherent trade-off between
artifact suppression and preserving informative signals from teachers. To address
this, we introduce Singular Nullspace-Guided Energy Reallocation (SiNGER), a
novel distillation framework that suppresses artifacts while preserving informa-
tive signals. The key idea is principled teacher feature refinement: during re-
finement, we leverage the nullspace-guided perturbation to preserve information
while suppressing artifacts. Then, the refined teacher’s features are distilled to a
student. We implement this perturbation efficiently with a LoRA-based adapter
that requires minimal structural modification. Extensive experiments show that
SiNGER consistently improves student models, achieving state-of-the-art perfor-
mance in multiple downstream tasks and producing clearer and more interpretable
representations.
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(a) Overview of SiNGER distillation.
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(b) Performance gains using SiNGER.

Figure 1: SiNGER suppresses artifacts and enhances transfer. (a) Feature visualizations highlight
clearer and more interpretable representations. (b) Radar chart shows consistent multi-task gains.

1 INTRODUCTION

Transformers have become the de facto standard architecture in both research and industry due to
their scalability and effectiveness (Oquab et al., 2024; Radford et al., 2021). Their token-based
self-attention mechanism is broadly applicable with minimal inductive bias (Lu et al., 2022), and
has enabled significant advances in computer vision and machine learning (Kim et al., 2024; Sariy-
ildiz et al., 2024). Vision Transformers (ViTs, Dosovitskiy et al. (2021)) extend this paradigm to
visual data and form the backbone of Vision Foundation Models (VFMs). Compared to convolu-
tional networks, ViTs rely less on spatial inductive biases and instead exploit scale to achieve high
performance. ViTs are also highly scalable since supervised or self-supervised training produces
increasingly generalizable representations (Oquab et al., 2024; Touvron et al., 2022). However, the
quadratic complexity of self-attention severely limits the practicality of scaling ViTs. This tension
between accuracy and efficiency motivates the study of compression. Pruning (Yang et al., 2023)
and quantization (Liu et al., 2021) have been explored, but pruning often fails to deliver practical
speedup due to structural rigidity (Aghli & Ribeiro, 2021), and quantization can induce numerical
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Figure 2: Qualitative analysis. Row 1: KD method comparison. Left: distilled feature map col-
ored by patch norm, Right: patch-wise cosine similarity to the teacher. Row 2: Input image, two
pretrained ViTs, and three ViT-L → ViT-T distilled variants. Each panel shows similarity from the
×-marked patch. SiNGER most closely preserves teacher semantics, showing the most coherent
teacher-consistent similarity patterns.

instability (Jiang et al., 2024; Javed et al., 2024). Knowledge distillation (KD, Hinton et al. (2015))
has emerged as the most reliable solution for transferring knowledge from large ViTs to smaller
students. KD methods span diverse targets and frameworks (Sun et al., 2024; Romero et al., 2015;
Ranzinger et al., 2024), consistently yielding structurally and numerically stable compact models.

Nevertheless, KD for ViTs suffers from subtle but critical limitations in their representation space.
Darcet et al. (2024) revealed that ViT token representations contain high-norm artifacts. Wang et al.
(2025) argue that these artifacts are singular defects induced by power-iteration-like accumulation
across residual blocks, whereby tokens align with the leading left singular vector of the pre-trained
weights. These artifacts interact poorly with the standard feature mean squared error objective in
KD: when the teacher and student are matched, gradients concentrate on the few high-norm tokens,
producing an outlier-driven optimization bias that obscures informative signals in the inlier structure.
Therefore, suppressing outlier norms in teacher features is essential for KD in ViTs as the scale
grows. Prior work mitigated this issue via random masking of teacher features (Yang et al., 2024);
however, this inevitably removes informative signals. Therefore, a key challenge is to mitigate
these artifacts without losing valuable information, a fundamental trade-off that requires a principled
approach.

To resolve this trade-off, we introduce a nullspace-guided suppression: we modify only the nullspace
component in the teacher features, mathematically, the subspace orthogonal to the downstream
space. This yields student-optimal supervision by suppressing artifacts without sacrificing infor-
mative signals. Based on this insight, we propose Singular Nullspace-Guided Energy Reallocation
(SiNGER), a framework that addresses this trade-off in ViTs distillation, illustrated in Figure 1a. To
minimize the modification to the teacher’s signal, we attach a lightweight LoRA-based adapter (Hu
et al., 2022) to the KD architecture, which refines the teacher features. The adapter produces a min-
imal perturbation guided toward the left-nullspace of the next block, suppressing high-norm outliers
while leaving the next block output unchanged. Our method achieves superior performance com-
pared to baselines across multiple downstream tasks (Figure 1b). It also produces more structured
and interpretable feature maps (Figure 2). Our contributions are summarized as follows:

• We propose a novel distillation framework (SiNGER) that refines teacher signals via the
LoRA-based adapter with nullspace initialization to guide effective perturbations.

• We analyze a fundamental limitation of naı̈ve ViT distillation, showing degraded transfer
on downstream benchmarks along with qualitative evidence.

• We provide extensive ablation studies to analyze the contribution of each component in
SiNGER and validate the robustness of our framework.

• We demonstrate through extensive experiments that our method exceeds baseline perfor-
mance across tasks and produces more interpretable feature maps.
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2 RELATED WORKS

Vision Transformers. ViTs (Dosovitskiy et al., 2021) underpin many VFMs and have become
the representative architecture for large-scale visual learning. Unlike convolutional networks (He
et al., 2016; Howard et al., 2017), ViTs rely on self-attention with fully connected layers. Since
ViTs form the architectural core of most VFMs, studying them provides representative insights that
generalize broadly. Similarly, parameter-efficient tuning methods such as LoRA (Hu et al., 2022)
highlight how minimal perturbations can effectively adapt VFMs, a perspective that motivates our
artifact-suppressing perturbations. However, the quadratic complexity of the ViT architecture limits
the practicality of large models despite their advanced representation.

Knowledge Distillation. KD compresses models by training a smaller student to mimic a larger
teacher (Hinton et al., 2015). Among various approaches, FitNet-style methods (Romero et al.,
2015) that align intermediate features are especially influential, as they encourage the student to
learn useful representations beyond logits (Sun et al., 2024). Later extensions incorporated rela-
tional structures (Park et al., 2019) or multi-teacher settings (Ranzinger et al., 2024), while adap-
tations for ViTs (Touvron et al., 2022) aimed to respect their architectural characteristics. Despite
these advances, distillation applied to VFMs often inherits undesirable properties from teachers, re-
vealing the need for methods that improve not only compression but also the quality of transferred
representations.

Artifacts in Transformers. Artifacts are a recurring issue in transformer models, degrading the
representation quality. Darcet et al. (2024) demonstrated that ViTs produce high-norm artifacts, par-
ticularly in background regions, harming interpretability and dense prediction. Practical suppression
strategies include register tokens (Darcet et al., 2024), and recent work argues these artifacts arise
from power-method-like accumulation across residual layers, aligning tokens with the leading left
singular vector (Wang et al., 2025). In the knowledge distillation domain, ViTKD (Yang et al.,
2024) randomly masks teacher features to reduce the mimicking of high-norm artifacts. However,
such indiscriminate masking also removes informative inlier signals, motivating artifact-aware KD
that suppresses high-norm artifacts while preserving inlier structure.

3 METHOD

3.1 PROBLEM FORMULATION

3.1.1 HIGH-NORM OUTLIERS IN VISION TRANSFORMERS

In large ViTs, a non-negligible fraction of patch features in F T
l exhibit high-norm artifacts (outliers).

Their prevalence and magnitude increase with model capacity, as Darcet et al. (2024) reported. This
is particularly consequential for distillation from a larger teacher to a smaller student: artifact-prone
teacher features introduce a systematic imbalance at the feature level and can obscure informative
signals.

3.1.2 KNOWLEDGE DISTILLATION OBJECTIVE

Let F T
l ∈ Rn×dT

and F S
l ∈ Rn×dS

denote teacher (T) and student (S) features at layer l. We align
dimensions dS → dT with a trainable projection Pl : RdS → RdT

and define the feature-level KD
loss as follow:

LKD,l =
1

n

n∑
i=1

∥F T
l,i − Pl(F

S
l,i)∥2, (1)

where F T
l,i and F S

l,i denote the i-th patch feature and n is the number of patches and ∥ · ∥ means
ℓ2-norm.

3
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Figure 3: The overall pipeline of knowledge distillation with the SiNGER adapter at lth layer .

3.1.3 OUTLIER DOMINANCE AND GRADIENT BIAS

Partition the patch indices into an outlier set Ol and an inlier set Il to obtain

LKD,l =
1

n


∑
i∈Ol

∥F T
l,i − Pl(F

S
l,i)∥2︸ ︷︷ ︸

Outlier Term

+
∑
j∈Il

∥F T
l,j − Pl(F

S
l,j)∥2︸ ︷︷ ︸

Inlier Term

 . (2)

By construction, for i ∈ Ol we have ∥F T
l,i∥ ≫ ∥F T

l,j∥ for j ∈ Il. Hence, when the residual
magnitudes are of similar order across patches, the outlier term dominates both the objective and its
gradients. In particular,

∇Pl(F
S
l,i)

LKD,l =
2

n

(
Pl(F

S
l,i)− F T

l,i

)
, (3)

so outliers induce proportionally larger updates. Optimization is therefore biased toward mimicking
a few high-norm outliers, rather than consolidating the majority inlier structure that carries most of
the informative signals. This gradient bias disrupts the learning of the dominant inlier representation
and leads to suboptimal transfer. We therefore seek to refine the teacher features F T

l at layer l before
distillation, so that they are more conducive to transferring informative signals to the student.

3.2 SINGULAR NULLSPACE-GUIDED ENERGY REALLOCATION

We consider KD at layer l, where high-norm outliers in F T
l induce gradient bias toward a few

tokens. To prevent this, the outlier term to the Equation (2) must be weakened, which in practice
means reducing the norm of outlier patches in F T

l . However, naı̈ve shrinkage erodes information
carried by the larger teacher and can nullify the benefits of distillation.
3.2.1 PERTURBATION ON NULLSPACE

Let F T
l ∈ Rn×dT

and define a refined feature map F̂ T
l = F T

l +∆F T
l . Our two objectives are:

1. Suppress Outlier Norms. Reduce the norm of high-norm patches in F T
l (Figure 4a).

2. Preserve Information. Ensure that when the modified features are fed into the next teacher
block, the conveyed information is not altered (Figure 4b).

Consider the next block at layer l+1 with transformation Wl+1 ∈ RdT×dT
. Then F̂ T

l preserves the
next-block output if and only if

(F T
l +∆F T

l )Wl+1 = F̂ T
l Wl+1 ⇐⇒ ∆F T

l Wl+1 = 0. (4)

A perturbation ∆F T
l that satisfies the above is obtained by restricting it to the left-nullspace of the

next block Wl+1. Let us Nl+1 := Null
(
(Wl+1)

⊤) denote this left-nullspace. Then the requirement

4
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is as follows:
row

(
∆F T

l

)
⊆ Nl+1. (5)

Consequently, to allow effective distillation, we refine the features of the teacher F T
l to F̂ T

l by a
perturbation guided to the left-nullspace Nl+1.

Input ∥F T
l ∥ ∥∆F T

l ∥ ∥F̂ T
l ∥

(a) Outlier suppression with the proposed adapter.

Input F T
l+1→F̂ T

l+1 F̂ T
l+1→F T

l+1

(b) Information preservation after the l+1th layer.

Figure 4: Two objectives of SiNGER; (a) outlier suppression and (b) information preservation.
∥∆F T

l ∥ in (a) is signed with the cosine-similarity between ∆F T
l and F T

l . In (b), the cosine similarity
between ×-marked patch and every patch of another feature map is visualized.

3.2.2 ADAPTER-BASED FEATURE REFINEMENT

We refine F T
l by adding a low-rank perturbation produced by a LoRA-based adapter while freezing

all teacher weights.

F̂ T
l = F T

l +∆F T
l , ∆F T

l =
(
F T
l ϕdown,l

)
ϕup,l, (6)

where ϕdown,l∈RdT×r, ϕup,l∈Rr×dT
, and r≪dT.

To bias ∆F T
l toward the left-nullspace Nl+1 of Wl+1, we set the initial weights of adapter,

ϕdown,l := Nl+1, ϕup,l := N⊤
l+1. (7)

This initialization guides the optimization to remain near Nl+1 and to find solutions that satisfy
the two objectives. Because the next block is nonlinear, its exact nullspace cannot be obtained via
SVD. We adopt a practical linearization of the next block, Wl+1 ≈ W̃l+1, and define Ñl+1 as
the left singular vectors associated with the r smallest singular values of W̃l+1. By construction,
Ñl+1 collects the left singular vectors corresponding to the r smallest singular values of W̃l+1, so
∥Ñ⊤

l+1W̃l+1∥ = σd−r+1. Moreover, Appendix A provides a detailed spectral analysis (sublayer
perturbations, singular value diagnostics, and ε-null bounds) showing that the same approximate-
null relation holds for the nonlinear block. Consequently,

ϕdown,l := Ñl+1, ϕup,l := Ñ⊤
l+1. (8)

3.3 KNOWLEDGE DISTILLATION WITH SINGER

Figure 3 summarizes the pipeline: SiNGER refines teacher features at selected layers before feature
matching. Let D = linter ∪ {lfinal} denote the distillation layers, where linter is a set of intermediate
layers and lfinal is the final layer. For each l ∈ D, an adapter ϕl transforms F T

l into F̂ T
l . Training is

guided by three losses, aggregated over D.

Knowledge-Distillation Loss. The student is trained to mimic the refined teacher with LKD.

LKD =
∑
l∈D

MSE
(
F̂ T
l , Pl(F

S
l )
)
. (9)

Outlier Suppression Loss. Adapters are explicitly encouraged to suppress high-norm artifacts.
For each l, let Ol be the indices of patches in F̂ T

l whose norms exceed the α-percentile qα,l as
Equation 10.

Loutlier =
∑
l∈D

1

|Ol|
∑
i∈Ol

(
∥F̂ T

l,i∥2 − qα,l

)2

(10)
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Information Preservation Loss. To retain informative signals while suppressing norms, we align
feature directions via Gram matching. Define

Linfo,l =

{
MSE

(
G(F̂ T

l+1), G(F T
l+1)

)
, l ∈ linter,

MSE
(
G(F̂ T

l ), G(F T
l )

)
, l = lfinal.

(11)

where G(F ) denotes the Gram matrix of F . This preserves the directional structure passed to the
next block for intermediate layers, and preserves the final-layer structure at lfinal. Consequently, the
total information term is Linfo =

∑
l∈D Linfo,l.

Training Objective. We jointly optimize the student parameters θS, projection parameters θP =
{Pl}l∈D, and SiNGER adapter parameters θϕ = {ϕdown,l, ϕup,l}l∈D with a single weighted sum
loss:

Ltotal = LKD + λoutlier Loutlier + λinfo Linfo, (12)

where λoutlier and λinfo balance artifact suppression and information alignment. This objective en-
courages effective transfer while controlling high-norm artifacts in teacher features.

4 EXPERIMENTS AND ANALYSIS

4.1 DETAILS

Downstream Tasks. To evaluate SiNGER-distilled ViT as a VFM, we adopt the student network
to a diverse set of downstream tasks. Specifically, we consider six representative benchmarks:
ImageNet-1K validation set for large-scale classification (Deng et al., 2009), ADE-20K for semantic
segmentation (Zhou et al., 2019), NYUd-v2 for depth estimation (Ignatov et al., 2024), iNaturalist-
2019 for long-tail classification (Van Horn et al., 2018), ImageNet-R and ImageNet-v2 for domain
shift robustness (Hendrycks et al., 2021; Recht et al., 2019), and four fine-grained classification
datasets (Maji et al., 2013; Parkhi et al., 2012; Bossard et al., 2014; Nilsback & Zisserman, 2006).

Distillation Setup. We assess SiNGER under the canonical ViT (Dosovitskiy et al., 2021), which
lies as the core form of ViTs and the variants. For scale, we use a large ViT as the teacher (290.2M
parameters, 24 layers) and a tiny ViT as the student (5.5M parameters, 12 layers). Student layers are
aligned with every second teacher layer. The official implementation of FitNet and ViTKD employ
task-specific loss objectives, such as cross-entropy minimization for classification. In contrast, we
target VFM distillation and therefore exclude task-specific losses, distilling the last hidden layer’s
representation.

Rationale. We aim to probe pre-training agnostic mechanisms of artifact formation and suppres-
sion. To this end, we conduct the full ablation suite on canonical ViTs, whose transparent design
and widely adopted training recipe allow tighter control, clearer causal attribution, and more repro-
ducible analysis.

4.2 MULTI-TASK EVALUATION

Table 1 summarizes multi-task linear evaluation results across ten benchmarks. The teacher (Large)
achieves strong performance, while the Tiny baseline shows significant degradation, particularly
on dense prediction tasks; ADE-20K and NYUd-v2. FitNet improves over the Tiny baseline by
transferring intermediate features, but still inherits artifacts from the teacher, limiting overall gains.
ViTKD performs poorly across all tasks, as its random masking strategy often collapses feature
representations and prevents effective learning. Discussion on ViTKD is detailed in Appendix B.

By contrast, SiNGER demonstrates consistent improvements over FitNet and ViTKD on most
benchmarks. On IN-val, ADE-20K, NYUd-v2, DS, and FG, SiNGER yields large gains, approach-
ing teacher performance despite the smaller capacity. The only exception is iNat2019, where per-
formance slightly drops, which we attribute to the long-tail nature of the dataset, as Zhang et al.
(2023) pointed out. However, SiNGER still outperformed FitNet. We report analysis on iNat2019
in Appendix H. Overall, these results confirm that suppressing artifacts during distillation produces
student models that are both more accurate and more generalizable across diverse tasks.

6
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Model Distillation IN-val ADE-20K NYUd-v2 iNat2019 DS FG
top-1 (↑) mIoU (↑) RMSE (↓) top-1 (↑) top-1 (↑) top-1 (↑)

Large - 79.58 26.57 0.9157 71.42 54.20 82.27
Tiny - 58.03 14.20 1.1807 43.95 28.75 62.02
Large → Tiny FitNet 62.43 18.73 1.0093 40.02 32.32 62.48

ViTKD 5.07 11.92 1.1903 23.69 2.08 33.52
SiNGER 70.59 8.16 21.76 3.03 0.9406 0.0687 41.11 2.84 38.87 6.55 64.61 2.13

Table 1: Multi-task linear evaluation results. ImageNet-1K validation (IN-val) for large-scale clas-
sification, ADE-20K for semantic segmentation, NYUd-v2 for monocular depth estimation, iNatu-
ralist2019 (iNat2019) for long-tail learning, ImageNet-R and ImageNet-v2 for domain shift (DS),
and four fine-grained classification (FG) benchmarks: FGVC-Aircraft, Oxford-IIIT Pet, Food-101,
and Flowers-102 were tested. Blue represents improvement and red indicates degradation.

4.3 REPRESENTATION QUALITY

We assess the quality and interpretability of distilled representations by comparing the feature maps
and their Gram matrices. Figure 5 depicts the Gram matrices of the feature maps. Quantitatively,
SiNGER’s Gram matrix is the most similar one to the teacher’s Gram matrix. Gram Distance (GD),
defined as ℓ2 distance between the Gram matrices, confirms this trend Figure 2. This shows that
when artifacts are distilled, it disrupts the transfer of patch-wise relation, resulting in degraded stu-
dent representation. Centered Kernel Analysis (CKA, Kornblith et al. (2019)) measures the linear
correlation between two feature maps. FitNet and ViTKD achieve higher similarity by following
the teacher too closely, but this reflects replication of artifacts rather than useful knowledge trans-
fer. By contrast, SiNGER learns structurally consistent yet information-preserved representations,
balancing similarity with the teacher.

Figure 5: Gram matrices of the patches. The input,
the teacher, and distilled features; FitNet, ViTKD, and
SiNGER in order.

Layer FitNet ViTKD SiNGER

GD 0.237 0.520 0.130
CKA 0.732 0.745 0.660

Table 2: The teacher-student representa-
tion’s similarity in terms of ℓ2 distance be-
tween the Gram Distance (GD) and CKA.

4.4 ADAPTER OPERATION

We empirically analyze how the optimized
adapter operates on ImageNet-1K. To probe the
coupling with the next layer, we evaluate at an in-
termediate layer l = 17.
Patch-Norm Distribution Between Fl+1 and
F̂l+1. We visualize the distribution of patch l2
norms for Fl+1 and F̂l+1 with side-by-side box
plots (Figure 6). The teacher produces high-norm
artifacts that are distinctly gathered as a group.
We observed that SiNGER effectively draws such
artifacts into the normal-patch range while pre-
serving informative features. This results in sta-
bilized gradient flow through the normal patches.

𝐹𝑙

෠𝐹𝑙

50 200 400
ℒ2-norm

250 300 400350 450

𝐹𝑙,𝑖 − ෠𝐹𝑙,𝑖 𝑖∈𝒪

Figure 6: Patch-norm distributions of
Fl+1 and F̂l+1. Artifacts are scale-
colored separately with inferno.

Cosine Similarity Between Fl+1 and F̂l+1.
To assess information preservation, we compute
patch-wise cosine similarities for both Fl vs. F̂l

and Fl+1 vs. F̂l+1, aggregating per image across
the dataset (see Figure 3). The 17, 18-th layers
yield cosine similarity of 0.9566 and 0.9731 with
negligible variance, respectively, which is clearly
considered similar.

Pair µ σ median

F17 vs. F̂17 0.9566 0.0038 0.9569
F18 vs. F̂18 0.9731 0.0021 0.9732

Table 3: Patch-wise cosine similar-
ity (per-image mean over patches) on
ImageNet-1K at l=17 and l+1=18.
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4.5 ABLATION STUDY

We report four ablations, focusing on initialization, losses, hyperparameters, and distillation layers.

Initialization Method. We validate whether nullspace initialization truly guides the adapter
to induce perturbations along the nullspace during optimization by comparing nullspace-biased
(SiNGER) and random initializations.

Let the next block at layer l+1 be linearized to W̃l+1 ∈ RD×D. From W̃l+1, define two rank-r
bases: the principal basis Pl+1 ∈ RD×r (largest singular directions) and the null basis Nl+1 ∈
RD×r (smallest singular directions). We quantify alignment with the normalized Frobenius norm

Eprob(ϕ) =
∥ϕPl+1∥f

∥ϕ∥f
, Esafe(ϕ) =

∥ϕNl+1∥f
∥ϕ∥f

, ∀ϕ ∈
{
ϕup,l, ϕ

⊤
down,l

}
. (13)

A larger Frobenius norm indicates stronger alignment of the trained adapter matrix(ϕup,l, ϕdown,l)
with the corresponding subspace; in our design, the primary goal is to increase Esafe (alignment to
Nl+1).

In Table 4a, initialization markedly increases alignment to Nl+1: Esafe reaches 0.83/0.76 for ϕup,l at
l=17/23, and 0.55/0.58 for ϕdown,l

⊤. Both are under 0.27 for random initialization. This provides
strong evidence that the initialization guides optimization into the null space, yielding substantially
higher Esafe across layers and for both ϕup,l and ϕ⊤

down,l, which indicates successful guidance toward
the null space directions. Meanwhile, Eprob remains lower or comparable under SiNGER, but our
objective is not to minimize Eprob per se; rather, to ensure that the learned parameters predominantly
occupy Nl+1 so as to suppress high-norm amplification while preserving useful directions.

Layer Matrix Init Eprob ↓ Esafe ↑

17 ϕup,l Random 0.2565 0.2532
17 ϕup,l SiNGER 0.1479 0.8337
23 ϕup,l Random 0.2537 0.2541
23 ϕup,l SiNGER 0.1833 0.7589

17 ϕdown,l
⊤ Random 0.3100 0.2494

17 ϕdown,l
⊤ SiNGER 0.2847 0.5485

23 ϕdown,l
⊤ Random 0.3025 0.2641

23 ϕdown,l
⊤ SiNGER 0.2746 0.5774

(a) Initialization methods.

Pair Loutlier Linfo mean ± std ↓ median

FT ↔ F̂T ✓ 14.22 ± 1.45 14.28
FT ↔ F̂T ✓ ✓ 7.25 ± 0.84 7.19

FT ↔ FS ✓ 72.36 ± 7.61 71.85
FT ↔ FS ✓ ✓ 41.71 ± 7.01 40.89

(b) Information preservation term.

Table 4: Ablation studies on the initialization method and the information preservation loss.

Loss Term. We ablate the loss design to verify the role of information preservation. Our full ob-
jective uses both outlier suppression Loutlier and information preservation Linfo, whereas the ablated
variant uses Loutlier only. (Using Linfo alone admits the trivial solution ∥∆∥=0 and yields no up-
dates.)

To assess preservation of teacher information, we measure the Gram distance between FT and F̂T .
Additionally, to evaluate the final effect on distillation, we measure how well the student features
FS preserve teacher relations by comparing FS against FT . Distances are computed per image and
summarized over ImageNet-1K. For a feature map F , let G(X) = FF⊤ and define

DG(Fi, Fj) =
∥∥G(Fi)−G(Fj)

∥∥
f
.

In Table 4b, lower DG indicates better preservation of pairwise feature relations. Compared to
Loutlier alone, adding Linfo nearly halves the DG distance (14.22 → 7.25) and substantially improves
teacher–student alignment (72.36 → 41.71). Thus, the information preservation term prevents de-
generate updates and maintains the relational geometry that is crucial for effective transfer.
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Hyperparameter Sensitivity. Two hyperparame-
ters are required in SiNGER: α and r. α deter-
mines the strictness of artifact filtering by setting
the percentile threshold based on the Gaussian-
like distribution of the patch norms ∥F T

l,i∥ across
i. r controls the capacity of the perturbation ∆F T

applied to F T. A larger r allows the adapter to
explore a wider subspace, but may distort the se-
mantic structure of the features. Conversely, if r is
too small, the limited degrees of freedom restrict
the adapter from effectively suppressing artifacts,
while also risking the loss of informative compo-
nents.
Table 5 reports the sensitivity of α and r on
NYUd-v2. We observe that performance degrades
when r is too small or too large, confirming the
need for balanced capacity. Similarly, extreme
values of α either under-filter artifacts or discard
informative signals. The observed trends match
our theoretical intuition: performance improves

r RMSE (↓) δ1.25 (↑)

8 1.4545 33.97
16 1.4395 33.79
32 1.4907 33.07
64 1.6485 28.91

(a) Rank sweep with α = 0.95.

α RMSE (↓) δ1.25 (↑)

0.90 1.5989 29.78
0.95 1.4395 33.79
0.97 1.4748 33.66
0.99 1.5321 30.80

(b) Quantile threshold sweep with r = 16.

Table 5: Rank and quantile threshold
sweeps on NYUd-v2. We conduct a
grid search over candidate values and
select the configuration that yields the
best performance.

when artifact suppression and information preservation are balanced, but deteriorates when either
dominates. At the same time, the results show robustness—performance does not collapse outside
the optimal point, indicating stability of the framework. Finally, the chosen hyperparameters (r = 16
and α = 0.95) generalize well across other tasks and datasets, and we adopt them as the default
configuration.

Distillation Layers. Selecting is critical because we aim to
distill artifact-prone features. To ensure gradients traverse
the entire backbone, we always distill the last layer (l = 23
in ViT-L). Beyond this, we select an additional intermediate
layer by inspecting teacher feature trends (see Appendix F).
Since our method is an artifacts-aware approach, we first
pinpointed the location where artifacts occur. For ViT-L, we
observed that artifacts appear after l = 11. We additionally

Layers NYUd-v2
11 17 23 RMSE (↓)

✓ ✓ 0.9554
✓ ✓ 0.9406

✓ ✓ ✓ 0.9624

Table 6: Distillation layer selection.

select the intermediate layer at l = 17. Across three variants, the l = 17, 23 configuration performs
best, as shown in Table 6.

5 CONCLUSION

In this work, we investigated the challenge of artifact transfer in knowledge distillation for ViTs. We
showed that high-norm artifacts in teacher representations degrade interpretability and are naı̈vely
inherited by student models, limiting the effectiveness and benefits from scaling of conventional dis-
tillation approaches. To address this issue, we proposed a distillation framework, namely SiNGER,
and a nullspace-guided adapter that introduces minimal perturbations to suppress artifacts while pre-
serving informative representations. Our framework demonstrated consistent improvements over ex-
isting methods across a diverse set of downstream tasks, yielding both higher accuracy and more in-
terpretable features. We believe this perspective opens new directions for artifact-robust distillation
and provides insights into the broader problem of transferring knowledge from over-parameterized
models.

Limitations and Future Work. Nevertheless, our method has limitations. It suppresses artifacts
rather than fully eliminating their sources. Since the goal is to retain as much teacher information
as possible, the root causes of representation degradation remain. As a result, students distilled with
our approach cannot achieve the same level of clean representations as models explicitly trained to
avoid artifacts, such as SINDER (Wang et al., 2025) and DINOv3 (Siméoni et al., 2025). Future
work will extend our approach to a wider range of foundation models and multi-modal settings,
exploring whether nullspace-guided perturbations can serve as a general mechanism for reliable
model compression and adaptation.
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APPENDIX
SINGER: A CLEARER VOICE DISTILLS

VISION TRANSFORMERS FURTHER

A TRICKS FOR CALCULATING NULLSPACE

A.1 WEIGHTS LINEARIZATION

We generally compute a null space via the Singular Value Decomposition (SVD) of a linear oper-
ator M ∈ Rd×d, obtaining a left-nullspace N = Null(M⊤). This procedure presumes that the
target M is linear. However, a transformer block Wl at layer l is inherently non-linear due to atten-
tion, activation, and residual pathways, so the SVD-based nullspace of the block Wl is not directly
defined.

Let x ∈ R1×d denote the row-vector feature. A standard Pre-LN transformer block at layer l can be
written as

yl = xl + MHA
(
LN(xl)

)
,

xl+1 = yl + FFN
(
LN(yl)

)
,

where both MHA(·) and FFN(·) include non-linear operations (softmax attention, elementwise
activations) and the residual additions further couple the sub-layers. Consequently, there is no single
linear matrix M that exactly represents Wl for SVD, motivating a linearization that we introduce
next.

To compute a nullspace for a non-linear block Wl, we first replace it with a linear surrogate W̃l. Our
key design choice is to linearize only the FFN sub-layer, motivated by an empirical study showing
that the FFN induces larger relative feature changes than self-attention (SA).

We measure sub-layer-wise changes on a ViT teacher by sampling N=5000 random ImageNet train-
ing images (uniform over class folders), resizing to 224×224, normalizing, and running a forward
pass to obtain per-layer tokens. For each layer l and each block, we then reapply the block with
instrumented intermediates:

xin ∈ RB×(1+P )×d,

xSA = xin +MHA
(
LN(xin)

)
,

h1 = LN(xSA),

z1 = h1W1 + b1,

a1 = GELU(z1),

z2 = a1W2 + b2,

xout = xSA + z2,

where W1,W2 are the FFN weights (expand-then-project), and we ignore the stochastic drop-path
in reporting expectations. We exclude the [CLS] token and compute patch-wise ℓ2-norms.

For each image and layer, we aggregate over patches using the mean and record four quantities:

∆SA := meanpatch
∥xSA − xin∥2

∥xin∥2
∆FFN := meanpatch

∥xout − xSA∥2
∥xSA∥2

GFFN1 := meanpatch
∥a1∥2
∥h1∥2

GFFN2 := meanpatch
∥z2∥2
∥a1∥2
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Metric mean median p95

GFFN1 0.0719 0.0714 0.0844
GFFN2 0.7988 0.7945 0.8571
∆FFN 0.1871 0.1852 0.2210
∆SA 0.1417 0.1415 0.1611

Metric mean median p95

GFFN1 0.3251 0.3231 0.3773
GFFN2 1.0226 1.0194 1.1754
∆FFN 0.1543 0.1537 0.2001
∆SA 0.2960 0.2965 0.3468

Figure 7: Sub-layer change analysis at two depths. Top: box-plots of relative changes/gains in each
layer. Bottom: summary statistics in each layer.

From Figure 7, the dominant amplification occurs in the second FFN stage (GFFN2 is largest at both
depths), and the net FFN residual ∆FFN is comparable to or larger than the SA residual depending
on the layer. This indicates that the principal source of norm inflation lies within the FFN pathway,
especially its projection stage.

Guided by this analysis, we exclude the non-linear SA pathway when constructing a linear operator
for SVD and focus on the FFN inside Wl. Since the non-linearity enters the FFN only via the GELU
between two linear maps, removing GELU (and biases) yields a linear surrogate:

FFN(h) ≈ hWFFN1WFFN2 = h W̃ (14)

with row-vector features and right multiplication (the column-vector convention uses W̃⊤ =
W⊤

FFN2W
⊤
FFN1). We refer to W̃l as the linearized weights of block l.

A.2 NULLSPACE OF LINEARIZED WEIGHTS

Now, we can compute the SVD of the linearized FFN matrix W̃l ∈ Rd×d: We compute its SVD

W̃l = Ul Σl V
⊤
l , Σl = diag(σ1 ≥ · · · ≥ σd ≥ 0). (15)

A left-nullspace basis of dimension r is obtained by selecting the r left singular vectors associated
with the r smallest singular values:

Nl ∈ Rd×r, N⊤
l Nl = Ir, cols(Nl) = U

(:, d−r+1:d)
l . (16)

For any row vector v⊤ ∈ span(Nl) we then have the approximate-null condition

v⊤ W̃l = v⊤UlΣlV
⊤
l ≈ 0, (17)

since the selected modes correspond to the smallest singular values.

A common concern is that W̃l could be numerically full rank, making the exact nullspace trivial. We
therefore quantify a practical ε-nullspace using two diagnostics defined below, and visualize them
in Figure 8.

Let the singular values of W̃l ∈ Rd×d be σ1 ≥ σ2 ≥ · · · ≥ σd ≥ 0. Define the cumulative energy

E(k) :=

∑k
i=1 σ

2
i∑d

i=1 σ
2
i

∈ [0, 1],

14
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Figure 8: Singular-value spectra of W̃l for representative layers (l = 5, 13, 17, 23) with a green
horizontal line at the absolute threshold ε = 0.05 and red vertical lines marking kenergy (99.9%
cumulative energy) and kε (first index with σk ≤ ε).

and for a target level ρ ∈ (0, 1)

kenergy(ρ) := min{ k ∈ {1, . . . , d} : E(k) ≥ ρ }. (18)

For an absolute tolerance ε > 0, define the first crossing index

kε := min{ k ∈ {1, . . . , d} : σk ≤ ε }, rε := d− kε + 1, (19)

so that the ε-tail has dimension rε and is spanned by the last rε left singular vectors.

As summarized by Figure 8, we consider a ViT-L teacher with d=1024 and focus on a intermediate
block (l=17). At this layer, the cumulative-energy index is kenergy(0.999)=773, so the low-energy
tail has size d−kenergy=251. With an absolute tolerance ε=0.05, the first-crossing index is kε=980,
yielding an ε-tail of dimension rε=d− kε +1=45. Consequently, the tail span forms a high-quality
approximate nullspace: for any v⊤ in this subspace,

∥v⊤ W̃l∥2 ≤ ε ∥v∥2,

which justifies nullspace-guided updates that suppress outlier energy while preserving informative
structure.

B FAILURE OF VITKD

In this section, we discuss the failure of ViTKD (Yang et al., 2024) in learning teacher representation.
The core strategy behind ViTKD is masking and generation. Different from SiNGER, ViTKD does
not adaptively detect artifacts and randomly discards patches regardless of their semantic validity,
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and generates through convolution, utilizing learnable generative tokens. This ensures students learn
artifact-free representation. However, it also makes the whole representation blurry, which is one of
the expected trivial solutions to minimize the mean squared error of the generated features, resulting
in a significantly degraded representation.

As depicted in Figure 2, ViTKD successfully mimics the teacher’s representation in terms of cosine
similarity, but fails in building the informatively structured feature map. This structural degradation
makes the representation blurry, resulting in poor downstream task adaptation.

C VISUALIZING DISTILLATION OUTPUTS ON A SINGLE IMAGE

We visualize a single sample at token resolution 14×14 (patches only; [CLS] excluded). For the
teacher(ViT-large), we show odd-numbered blocks l ∈ {1, 3, . . . , 23}. For the student(ViT-Tiny),
we show layers i ∈ {0, . . . , 11} aligned with the teacher columns. In this sample, the SiNGER
adapter is applied only at l ∈ {17, 23}.

As shown in Figure 9, the first row F T
l exhibits artifacts: high-norm becomes more pronounced

at deeper blocks. After applying SiNGER adapter, the second row F̂ T
l attenuates these artifacts

while preserving the informational structure, producing a more transfer-friendly teacher target. The
third row visualizes the residual ∆F T

l = F̂ T
l − F T

l , confirming that SiNGER removes a small set
of outlier’s magnitudes. Finally, the fourth row F S

l aligns more closely with F̂ T
l than with F T

l ,
indicating that the student learns the SiNGER-refined, structure-preserving representation rather
than the original outlier-dominated one.

D VISUALIZATION OF OUTLIER SUPPRESSION

This appendix illustrates, on a single sample, how outlier suppression operates numerically. As
shown in Figure 10, in the last layer, the patchwise norm map ∥F T

l ∥ contains an outlier patch with a
maximum norm of 638. At the same spatial location, the suppressed map ∥F̂ T

l ∥ drops to 54.1. Finally,
the distribution of ∥F̂ T

l ∥ appears much more uniform across patches, indicating that extremely high-
norm outliers have been attenuated while the overall scale has been regularized.

E VISUALIZATION OF INFORMATION PRESERVATION

We confirm whether the information is actually preserved right after the l + 1-th layer. The cross-
similarity map between F T

l+1 and F̂ T
l+1 are visualized in Figure 11. For each 1 × 2 cells, the left

one shows F T
l+1 → F̂ T

l+1 similarity map, and the other one shows the contrary. As shown, in both
directions, the similarity maps are almost identical This implies the information is actually preserved
even after passing the next layer, which is the source of nullspace used for initializing the proposed
adapter.

F STUDENT VISUALIZATION

We evaluate the quality of our SiNGER-distilled feature by visualizing the similarity map (Fig-
ure 12). For each 2 × 2 cell, the top row is the student, the bottom row is the teacher. The left
column is the norm map of the feature map, and the right column is the similarity map to the ‘×’
marked patch. The norms of the teacher’s feature maps are artifact-prone, but still produce the
similarity map, which semantically makes sense. The student produces artifact-suppressed feature
maps while maintaining the semantic relation among the patches. This emphasizes that SiNGER
effectively optimizes two objective functions, distills high-quality feature representation.
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Figure 9: Distillation visualization across stages using complementary views. Each panel renders
patch features either as a directional view (PCA with 3 components) or as a magnitude view (patch-
wise ℓ2-norm). Within each panel, rows depict (top to bottom) F T

l , F̂
T
l ,∆F T

l , F
S
l .
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Figure 10: Left: input image. Right: patchwise visualizations. Row 1: ∥F T
l ∥ and ∥F̂ T

l ∥. Row 2:
∥F T

l ∥, F̂ T
l (signed map), and ∥∆F T

l ∥ with ∆F T
l = F T

l − F̂ T
l .

Figure 11: The cross-similarity map btw F T
l+1 and F̂ T

l+1 to ‘×’ mark is visualized.

G CORRELATION OF OUTLIER WITH PRINCIPAL AND NULL BASES

We conduct this experiment to validate the core design choice behind our method: we perturb fea-
tures along a nullspace to preserve information, but such a perturbation is only meaningful if outliers
do not primarily reside in the nullspace. Otherwise, nullspace-directed updates would fail to sup-
press outliers. To test this, we build on Appendix A.1 and Appendix A.2: from the linearized FFN
matrix W̃l, we take the r left singular vectors with the largest singular values as the principal basis,
and the r with the smallest singular values as the null basis.

Fix a layer l and an image, and let X ∈ R(1+P )×d be the teacher tokens (CLS excluded below).
Compute

W̃l = Ul Σl V
⊤
l , Ul = [u1, . . . , ud], Σl = diag(σ1 ≥ · · · ≥ σd ≥ 0).

Define the two r-dimensional bases

Uprin = [u1, . . . , ur], Unull = [ud−r+1, . . . , ud].

18
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Figure 12: The similarity map to ‘×’ mark is visualized.

Let xp ∈ R1×d be the p-th patch feature with norm np = ∥xp∥2. For a chosen r-dimensional
orthonormal basis U =

[
ui1 , . . . , uir

]
∈ Rd×r (e.g., columns selected from the left singular vectors

of W̃l), define the normalized subspace energy.

EU (p) =

r∑
k=1

⟨xp, uik⟩2

∥xp∥22 + ε

In words, EU (p) is the fraction of the patch’s total energy captured by the subspace U—i.e., a norm-
invariant measure of how strongly xp aligns with U . In our analysis, we instantiate U by either of
the above bases, i.e.,

U ∈
{
Uprin, Unull

}
.

In Figure 13, across layers we observe distinct behaviors as the rank r increases. At the intermediate
layer (l=17), outlier patches (high ∥F T

l ∥2) exhibit growing values in EUnull as r increases, while
EUprin over those same patches does not grow accordingly. Conversely, at the last layer (l=23),
outlier patches show increasing EUprin with r, whereas EUnull over outliers does not increase in the
same manner. We quantify these patterns in Figure 13 (m),(n). For l=17, the patch norm cor-
relates positively with the null subspace energy (corr(∥F T

l ∥2, EUnull) > 0) and negatively with
the principal subspace energy (corr(∥F T

l ∥2, EUprin) < 0). In contrast, for l=23 the signs flip:
corr(∥F T

l ∥2, EUnull) < 0 and corr(∥F T
l ∥2, EUprin) > 0.

These results indicate that at intermediate depth (e.g., l=17) the high-norm (outlier) content lies
relatively closer to the null subspace, whereas at the final depth (e.g., l=23) it aligns more with
the principal subspace. Accordingly, initializing updates along the nullspace at intermediate layers
achieves information preservation (by construction) while still enabling outlier suppression, consis-
tent with our design objective.
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(a) r = 4, l = 17 (b) r = 4, l = 23

(c) r = 8, l = 17 (d) r = 8, l = 23

(e) r = 16, l = 17 (f) r = 16, l = 23

(g) r = 32, l = 17 (h) r = 32, l = 23

(i) r = 64, l = 17 (j) r = 64, l = 23

(k) r = 128, l = 17 (l) r = 128, l = 23

(m) correlation with basis at layer 17 (n) correlation with basis at layer 23

Figure 13: panels (a)–(l) show, for each setting, four views: the input image, the patchwise norm
∥F T

l ∥2, and the subspace energies EUprin and EUnull . Panels (m)–(n) show correlation with each basis.

H DISTILLED MODELS IN LONG-TAIL LEARNING

As reported in Table 1 in the main paper, the classification accuracy of the iNat2019 dataset did
not overcome the baseline ViT-T. Still, SiNGER achieved the highest accuracy among distillation
methods. We consider this borderline as the nature of KD training. Many studies pointed out the
performance drop of distilled models in long-tail learning (Zhang et al., 2023; Yu et al., 2024; Huang
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et al., 2025). They claim that pure knowledge distillation may harm the accuracy in long-tail learning
due to the teacher model’s bias transfer and hyperparameter sensitivity.

I IMPLEMENTATION DETAILS

In this section, we report our implementation details for reproducibility. We trained our model on
Ubuntu 22.04.5 LTS with CUDA v12.6.85 using eight NVIDIA GeForce RTX 3090 GPUs. Mixed
precision training (FP16) was enabled to reduce memory consumption and accelerate computation.
All experiments were conducted with a global batch size of 512, distributed evenly across GPUs
using PyTorch’s DistributedDataParallel (DDP).

For distillation, the 8th layer and 17th layer were selected as the distillation layers for Tiny ViT and
Large ViT, respectively. We tuned the weights for the losses equally to 1.0. The model and adapters
were optimized using the AdamW optimizer with a cosine annealing learning rate scheduler of
a single cycle. The learning rate was initialized at 10−4 and decayed to 10−8 over 100 epochs.
Weight decay was set to 0.05, and gradient clipping with a max norm of 1.0 was applied to stabilize
training. Data augmentation followed common practice for ImageNet training, including random
resized cropping, horizontal flipping. Input images were resized to 224 × 224 unless otherwise
specified. During evaluation, a center crop was used. All hyperparameters and code will be released
upon publication.

J THE USE OF LARGE LANGUAGE MODELS

As per the ICLR 2026 guidelines on the use of Large Language Models (LLMs), we disclose that
an LLM was used for minor grammar corrections and polishing of the text to enhance readability
and for searching related research to broaden the scope of the literature review. The LLM did not
contribute to the research ideation, methodology, or core findings of the paper.
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