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Figure 1: Relationships detected by our method on an unseen image. The top rela-
tionships by confidence score are shown. Photo by Spacejoy on Unsplash.

Abstract. Visual relationship detection aims to identify objects and
their relationships in images. Prior methods approach this task by adding
separate relationship modules or decoders to existing object detection ar-
chitectures. This separation increases complexity and hinders end-to-end
training, which limits performance. We propose a simple and highly ef-
ficient decoder-free architecture for open-vocabulary visual relationship
detection. Our model consists of a Transformer-based image encoder that
represents objects as tokens and models their relationships implicitly. To
extract relationship information, we introduce an attention mechanism
that selects object pairs likely to form a relationship. We provide a single-
stage recipe to train this model on a mixture of object and relationship
detection data. Our approach achieves state-of-the-art relationship detec-
tion performance on Visual Genome and on the large-vocabulary GQA
benchmark at real-time inference speeds. We provide analyses of zero-
shot performance, ablations, and real-world qualitative examples.

†Work done while at Google DeepMind.
⋆Advising project leads in alphabetical order.
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1 Introduction

A fundamental goal of computer vision is to decompose visual scenes into struc-
tured semantic representations. A commonly studied task towards this goal is
object detection, in which objects in an image are localized by bounding boxes
and classified into semantic categories. However, a scene description also in-
cludes the semantic relationships between objects. This gives rise to the task
of visual relationship detection (VRD, [4, 6, 32, 48, 49, 55]). In VRD, the model
detects objects and infers pairwise relationships between them in the form of
<subject-predicate-object> triplets3 [32].

Detecting both objects and their relationships allows the construction of a
scene graph [19,30,48] in which objects are represented as nodes and their rela-
tionships as edges. Scene graph generation (SGG) has wide-ranging applications
in robotics [1,5,11,17,38,42] and image retrieval [19,27]. Increasingly, structured
scene representations are also employed to provide grounding and explainability
to multimodal large language models [15,36,59].

Prior work typically draws a distinction between object detection and re-
lationship prediction. Detection is performed either as a wholly separate step
before relationship prediction [8, 32, 48, 52, 55, 57], or by separate model parts
such as “relationship decoders” that are responsible for modeling the interac-
tions between objects [7,49,61]. This distinction makes it hard to optimize such
models end-to-end for VRD [61]. In contrast, we propose an encoder-only ar-
chitecture that models objects and relationships jointly, directly in the image
encoder. Our architecture performs open-vocabulary relationship detection and
can be trained end-to-end on arbitrary mixtures of object detection and rela-
tionship annotations.

Our model builds on a Transformer-based encoder-only object detector [34] in
which the output tokens of the image encoder directly represent object proposals.
From these tokens, class embeddings and bounding boxes are decoded with light-
weight heads. Our insight is that this architecture is perfectly set up to learn
relationships between objects directly in the image encoder, without the need for
additional relationship-specific stages. This is because the existing self-attention
in the encoder already models all-to-all pairwise interactions between the object
proposal tokens.

To access information about the relationship between two of these tokens, we
combine the embeddings corresponding to the <subject> and <object> token
using a new Relationship Attention layer. Obtaining relationship embeddings
for all possible pairwise combinations of object proposal tokens would be com-
putationally infeasible. To reduce the number of combinations, we introduce
a self-supervised hard attention mechanism that selects the highest-confidence
<subject-object> pairs at a computational cost comparable to a single self-
attention layer. We show how to directly supervise the attention scores of this
mechanism without the need to propagate gradients through the hard selection.

3 We use <fixed width font> to distinguish the grammatical terms <subject> and
<object> from generic use of the word object as in object detection.
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An additional benefit of our design is that it disentangles object names from
relationship predicates during inference. In contrast to prior open-vocabulary
methods [53,54,61], our model can embed object and predicate texts separately
and generate confidence scores efficiently for all possible <subject-predicate-
object> combinations.

In summary, we make the following contributions:

1. An efficient architecture for open-vocabulary visual relationship detection.
2. A single-stage recipe for joint object and relationship detection training.
3. Efficient, disentangled object and relationship inference.
4. Analysis of inference speed, ablations, and qualitative examples.

Our method achieves state-of-the-art visual relationship detection perfor-
mance on the Visual Genome dataset (29.5% mR@100) and on the large-vocabulary
GQA benchmark in open-vocabulary and zero-shot settings. It provides strong
results while being significantly simpler than prior approaches to visual relation-
ship detection.

2 Related Work

Below, we review the main approaches to VRD that are relevant to our work.
For a comprehensive overview of the field, we refer to [27].

Detector-Agnostic Relationship Detection. Historically, many works on
VRD assume that object detections are given, such that the task reduces to
inferring relationships between the objects. These “detector-agnostic” methods
use off-the-shelf detectors such as Faster-RCNN [39] to obtain boxes and box
embeddings and infer a scene graph from them. Early work on large-scale VRD
employed word embeddings to improve relationship generalization [32] and graph
inference methods such as message passing for SGG [48]. More recent methods
leverage relationship co-occurrence statistics [55] and address the long-tailed
nature of the training data [8, 52,57].

End-to-End Relationship Detection. A fundamental limitation of the detec-
tor-agnostic approach is that object detection and relationship prediction are
treated separately and cannot learn from each other. Overcoming this limitation
has recently motivated the development of end-to-end architectures in which
objects and relationships are predicted jointly by a single model [7, 20, 29, 61].
All of these models have in common that they use a Transformer [47] decoder
to predict object and relationship embeddings. The decoder represents object
proposals with query embeddings that can cross-attend into image embeddings.
The literature on object detection suggests that this choice may be problematic,
because the query embeddings can be difficult to initialize, which can lead to
unstable and slow optimization [3,34,43,50,58,63]. To avoid this issue, we design
an encoder-only architecture in which both object and relationship embeddings
are computed directly from the output tokens of a Vision Transformer [10] image
encoder, building on an idea from object detection [34]. In contrast to prior mod-
els [61], this allows us to train the model end-to-end on object and relationship
annotations simultaneously.
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Long-Tailed and Open-Vocabulary Relationship Detection. Object clas-
ses in the natural world follow a long-tailed distribution [12,62], and this is com-
pounded in VRD due to the combination of subject, object, and predicate in a
relationship [27,48,49]. A large number of VRD methods specifically aim to ad-
dress this issue, for example with debiasing losses [52], data augmentation [57],
or data resampling [8]. Additionally, while VRD models historically assumed a
fixed set of object and predicate classes, recent works add open-vocabulary capa-
bilities [13, 41, 54, 61]. These models leverage pretrained vision-language models
such as CLIP [18, 37, 51, 56] to inherit their natural-language understanding.
Instead of learning a fixed set of classes, open-vocabulary models predict class
embeddings that can be compared to the text embeddings of arbitrary object
or predicate descriptions for classification. Here, we employ a pretrained vision-
language backbone and combine it with a carefully designed, lightweight rela-
tionship detection head to preserve and transfer semantic knowledge from the
backbone pretraining to VRD. Without adding further complexity to handle rare
classes, this allows our model to achieve strong results on the large-vocabulary
QGA benchmark [16] (Section 4.3).

While we focus on architectural improvements, another line of work addresses
the scarcity of training data for VRD. For example, RLIP [53] and RLIPv2 [54],
which focus on human-object interaction [4], propose relationship-focused image-
text pretraining and self-training, which yield large improvements in VRD per-
formance. These works are orthogonal to our contributions and can be combined.

3 Scene-Graph ViT

We propose an architecture for open-vocabulary relationship prediction in which
both objects and the relationships between them are handled as “first-class cit-
izens” directly in a single-stage process within the model backbone. We build
on an encoder-only architecture for object detection [34] and adapt it to rela-
tionship prediction by adding a specialized attention layer. This layer exploits
the pairwise structure between existing object embeddings to obtain relationship
embeddings as schematized in Figure 2 and described below.

3.1 Encoder-Only Open-Vocabulary Object Detection

We briefly review the detection architecture that forms the basis of our model [34].
The model consists of Transformer-based [10] image and text encoders that are
contrastively pretrained on a large number of image and text pairs [37]. The
image encoder is adapted to detection by removing the final pooling layer and
adding heads that predict bounding boxes and class embeddings directly from
the output tokens of the image encoder. For open-vocabulary object classifi-
cation, the embeddings computed by the class prediction head are compared
to text encoder embeddings of object descriptions. This architecture achieves
strong open-vocabulary object detection performance [33, 34] and does not suf-
fer from the training instabilities observed in some encoder-decoder detection
models [3, 34,43,50,58,63].
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Figure 2: For relationship selection, image tokens are first projected using two
lightweight MLPs to produce <subject> and <object> embeddings. A relationship
score is then computed as the inner product between all <subject> and <object> em-
beddings. Relationships are filtered by first selecting the top object instances, using
the scores along the diagonal to represent instance likelihood. Among the remaining in-
stances, the top <subject-object> pairs are selected using the off-diagonal scores. This
yields a set of relationship triplets, each consisting of a <subject> index, an <object>
index, and a relationship embedding that is computed by summing the respective
<subject> and <object> embeddings. For classification, the relationship embeddings
are compared against text embeddings of object class or predicate text descriptions.

3.2 Extension to Relationship Prediction

In the architecture described above, each image encoder token represents an
object proposal that captures per-object information. Importantly, the encoder
consists of self-attention layers which, by design, model all pairwise interactions
between these tokens. We therefore hypothesize that information about object
relationships can be learned directly in the image encoder. To extract this infor-
mation in the form of <subject-predicate-object> triplets, we introduce two
MLPs that transform vision encoder output tokens into <subject> embeddings
si and <object> embeddings oj (Figure 2). Using different MLPs for <subject>
and <object> is crucial to break symmetry in subsequent processing.

An embedding representing the relationship between two object proposals
(encoder tokens) can then be obtained simply by element-wise addition of their
<subject> and <object> embeddings. Obtaining relationship embeddings for all
N2 <subject-object> pairs, where N is the number of object proposals, would
be computationally infeasible. We therefore introduce a Relationship Attention
layer that performs hard attention to select the <subject-object> pairs most
likely to form a relationship. This layer computes an attention-like score pij =
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sio
T
j , where si and oj are the embedding vectors of <subject> i and <object> j,

and pij represents the likelihood that a relationship between <subject> i and
<object> j exists. By computing this score for all <subject-object> pairs,
we obtain an N×N matrix, from which we select the top k pairs.4 For these
k pairs, we compute relationship embeddings rij = LayerNorm(si + oj). To
classify the relationship of a pair, its relationship embedding is compared to text
embeddings of relationship predicates. We use the embeddings where <subject>
and <object> are identical (ri=j) to represent object instances, and predict
object classes from them. Boxes are predicted from the corresponding image
encoder output tokens (see Figure 2).

The Relationship Attention layer therefore identifies object pairs to focus on
for relationship classification, by computing a hard attention with <subject>
embeddings as queries and <object> embeddings as keys. Since the hard selec-
tion is not differentiable, gradients from the relationship prediction cannot be
used directly to train this layer. Instead, the relationship score is self-supervised
to predict the maximum <predicate> class probability that will later be pre-
dicted for the relationship at the classification stage (Section 3.3).

3.3 Training

The image and text encoders of our model are initialized from a vision-language
model that was contrastively pretrained on a large number of image-text pairs [37].
After adding the Relationship Attention as well as the object bounding box and
class prediction heads, the model is jointly trained on a mixture of object and
relationship detection datasets in a single training stage (Section 4.1), using the
losses described below.

Bipartite Matching. Bipartite matching between object predictions (ri=j)
and ground-truth annotations is performed based on a cost consisting of the
object classification loss and the box prediction losses as in [3]. This matching
between objects also establishes a matching of predicted to ground-truth rela-
tionship predicates, since a relationship is uniquely identified by the <subject>
and <object> indices i and j. Unmatched predictions are trained to predict low
scores for all classes and incur no box prediction loss.

Box Prediction Losses. For bounding box regression, we use the L1 and
generalized intersection-over-union (gIoU) losses described in [3].

Object and Predicate Classification Loss. For both object category and
predicate classification, we use a sigmoid cross-entropy loss as in [34]. This loss
is computed between the ground truth classes and logits obtained by computing
the inner product of the relationship embeddings rij selected by the Relationship
Attention layer with the text embeddings of the class names. For embeddings
corresponding to individual objects (ri=j), the class name is the object category
or description. For embeddings corresponding to relationships (ri̸=j), we use the
predicate text as class name. This differs from prior work [53, 54, 61], which

4 This selection reduces the number of relationships that need to be processed e.g.
from N2 = 36002 to k = 16386 (99.9% reduction) for our ViT-L/14 model.
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uses the full <subject-predicate-object> triplet description. Our approach
has the advantage of disentangling object category and predicate names, which
allows for more efficient inference since object category and predicate texts are
embedded separately.

Relationship Score Loss. To select only the most promising embeddings
for further processing, the Relationship Attention layer predicts a score pij that
represents the likelihood that the corresponding <subject-object> pair forms
a relationship (if i ̸= j), or that the corresponding object exists in the image (if
i = j). This score is trained with a sigmoid cross-entropy loss against targets
provided by the model itself, namely the maximum probability predicted for
any class for the corresponding rij embedding [33]. In this way, the relationship
score is trained to predict the class probability of a potential embedding rij
before actually computing and classifying the embedding. Note that this loss
can only be computed for those objects and relationships that ultimately get
selected for further processing. We found this to provide sufficient supervision.

The final loss is an equally weighted sum of four components: (1) classification
loss, (2) L1 box loss, (3) gIoU box loss, (4) relationship score loss.

4 Experiments

4.1 Experimental Setup

Datasets. We use the following datasets for training or evaluation:
Visual Genome [26], is the largest VRD dataset, labeled with 2.3M triplet

relationships across 108K images. However, as Visual Genome includes noisy
annotations, the community commonly evaluates VRD on a cleaned version of
the dataset [55] where the label space is reduced to the 150 most frequent object
classes and the 50 most frequent predicate classes. This dataset is commonly
referred to as Visual Genome 150 (VG150).

GQA [16] uses the same image corpus as Visual Genome, but is more diversely
labeled, with 1703 object classes (1704 including a background class) and 310
predicates. Spatial relationships like “to the left of” are automatically labeled
based on the 2-D spatial arrangement of bounding boxes. Similar to VQ150,
GQA200 is a reduced and cleaned version of GQA with 200 object classes and
100 predicate classes [9].

HICO-DET [4] is a dataset which focuses on a more specialized subset of vi-
sual relationships, specifically interactions between humans and objects. HICO-
DET contains 50k images and is exhaustively annotated for 600 defined human-
object interaction (HOIs).

Objects365 [40] (O365) is a large scale object-detection dataset with 365
object categories across two million images.

Open X-Embodiment [35] (OXE) dataset is targeted towards learning vision
language action policies for robotics. OXE lacks bounding box annotations which
precludes quantitative evaluation, but it represents both a visually different set-
ting compared to the standard VRD benchmarks and a promising application
area, so we use it for qualitative evaluation.
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VG150 VG HICO GQA200 GQA Objects365

% in training mixture 12.5% 12.5% 12.5% 12.5% 0% 50%
# removed 6587 17727 729 15361 18801 15306

Table 1: Training data mixture. # removed indicates the number of images that
were removed from the official training split due to overlap with data we evaluate on.

Training. Unless otherwise noted, we train models on a mixture of VG, VG150,
GQA200, HICO, and O365 in the proportions show in Table 1. The B/32 model
is trained for 200’000 steps at batch size 256 (further details in Appendix A.1).
Since the datasets we use share similar image sources, there is some overlap
between the official training and evaluation splits. To ensure that no evaluation
images are used for training, we rigorously filter all training datasets to remove
images present in any of the test splits for all datasets we evaluate on, i.e. VG150,
GQA, GQA200, and HICO. We use an image similarity filter that also identifies
non-exact matches [24]. Table 1 shows the number of images removed from each
training split. Note that all prior work performs similar deduplication.

Evaluation Procedure and Metrics. Prior work presents a diverse range of
evaluation metrics often tailored to specific datasets. For non-exhaustively la-
belled datasets, like Visual Genome and GQA, using precision-based metrics is
inherently inconclusive. Thus, the community has adapted a Recall@K metric for
these datasets, where K denotes a fixed budget of <subject-predicate-object>
triplets on which the recall is computed. However, this metric is biased towards
the more frequent <predicate> classes in the dataset [6, 46]. Therefore, recent
approaches use mean Recall@K, which calculates Recall@K separately for each
<predicate> class in the test data and then averages the results.

For exhaustively labeled datasets like HICO, it is feasible to use precision-
based metrics such as mean Average Precision (mAP), a well-established metric
in object detection. For HICO, the mean is taken over the 600 possible HOI
triplets. Besides the overall metric, we also report results separately for rare
(< 10 occurrences) and non-rare (≥ 10 occurrences) HOIs as mAPr and mAPn.

Further, evaluation can be “graph-constrained”, where only a single predic-
tion can be made per detected object pair, or “graph-unconstrained”, where any
number of predictions can be made per pair. We report unconstrained results in
the main paper and results with graph constraint in Appendix A.2.

Multiple implementations of the aforementioned metrics exist, often showing
differences in results. To compare fairly and directly against a wide range of
prior approaches we identified the PyTorch evaluation procedure of [45] as the
most prevalent routine for recall-based metrics and replicated their procedure
in JAX with numerical accuracy. Similarly, for HICO, we numerically reproduce
the original Matlab evaluation procedure outlined in [4] in JAX.

Exhaustive Relationship Evaluation. Previous methods [53,54,61] entangle
objects and relationships in a single representation. Consequently, these methods
score their embeddings against the full <subject-predicate-object> triplet.
While this is feasible for datasets with a low number of possible triplets, like
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Model Backbone mR@50 mR@100

RelTR [7] ResNet-50 6.8 10.8
Transformer + CFA [28] ResNeXt-101 12.3 14.6
VCTree [46] + IETrans + Rwt [57] ResNeXt-101 12.0 14.9
Motif [55] + IETrans + Rwt [57] ResNeXt-101 15.5 18.0
GPS-Net [31] + IETrans + Rwt [57] ResNeXt-101 16.2 18.8
SG-Transformer [52] + IETrans + Rwt [57] ResNeXt-101 16.2 18.8
Sgtr [29] ResNet-101 15.8 20.1
DT2-ACBS [8] ResNet-101 22.0 24.4

UniVRD CLIP: ViT-B/32 9.6 12.1
UniVRD CLIP: ViT-B/16 10.9 13.2
UniVRD CLIP: ViT-L/14 12.6 14.5

SG-ViT CLIP: ViT-B/32 20.5 24.8
SG-ViT CLIP: ViT-B/16 21.4 26.6
SG-ViT CLIP: ViT-L/14 23.9 29.5

Table 2: Performance on the Visual Genome test set. Best results are high-
lighted in bold.

HICO with 600 defined relationships, it quickly becomes computationally in-
tractable for datasets with a larger vocabulary of objects and predicates (e.g.
VG, GQA). Prior works [61] therefore evaluate only on triplets which are known
to be present in the test split, which may inflate metrics. In contrast, our method
disentangles objects and predicates (Section 3). This allows for an exhaustive
evaluation that considers all object and predicate combinations and enables ap-
plications where knowledge of possible relationships is unavailable.

4.2 Relationship Detection Performance

We use Visual Genome as our main benchmark for relationship detection because
it is widely adopted in the literature. Table 2 shows results for our models and
prior work. Our method significantly improves over the prior best method DT2-
ACBS [8] by 5.1 points mR@100 (29.5 vs. 24.4). We also note the large difference
in performance to UniVRD [61], which builds on the same detection architecture
as our method, but adds a Transformer decoder-based relationship module. To
disentangle whether the improvements over UniVRD are due to differences in
architecture or training data, we also trained our B/32 model on the UniVRD
data mixture, and still observe a large improvement (23.9% VG mR@100 for our
method vs. 12.1% for UniVRD when trained on the same data; Table 6). This
result suggests that our encoder-only architecture is better suited for VRD than
prior decoder-based architectures [7, 20,29,61].

4.3 Scaling to Large Vocabularies

Improving long-tail performance has been critical to the VRD field since the
natural distribution of relationship triplets is highly skewed [27]. A substantial
body of literature is devoted to this goal, often proposing complex loss debiasing
or data augmentation approaches [8,27,52,57]. It is therefore of interest whether
our method, which includes no special treatment of rare classes, works well in
this regime.
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Model mR@50 mR@100

LLM4SGG [21] 5.3 6.5
Neural Motif w/ GCL [9] 16.8 18.8
VCTree w/ GCL [9] 15.6 17.8
SG-Transformer w/ CFA [28] 13.4 15.3
SHA w/ GCL [9] 17.8 20.1

SG-ViT (CLIP: ViT-B/32) 21.9 26.1
SG-ViT (CLIP: ViT-B/16) 23.2 27.4
SG-ViT (CLIP: ViT-L/14) 26.7 32.8

Table 3: Performance on the
GQA200 test set. Best results are
shown in bold.

Model mR@50 mR@100

Scene Graph Classification
IMP [25,44,48] 0.5 0.7
Neural Motif [25,44,55] 0.8 1.2
Unbiased TDE [25,45] − 0.7
RTN [25] − 1.4
MP [23] − 2.8
Transformer w/ EBM [44] 1.3 1.8

Scene Graph Generation
SG-ViT (CLIP: ViT-B/32) 9.5 11.5
SG-ViT (CLIP: ViT-B/16) 10.1 11.7
SG-ViT (CLIP: ViT-L/14) 13.5 16.6

Scene Graph Generation (unseen classes)
SG-ViT (CLIP: ViT-B/32) 1.5 2.2
SG-ViT (CLIP: ViT-B/16) 1.9 2.3
SG-ViT (CLIP: ViT-L/14) 2.2 2.8

Table 4: Performance on the GQA
test set. Best results are shown in bold.

To evaluate the performance of our method on large object and predicate
vocabularies with a long tail of rare classes, we use the Graph Question Answer-
ing (GQA) dataset [16]. This dataset builds on VG and expands the number of
classes and annotations. A simplified version of GQA with 200 object and 100
predicate classes, called GQA200 [9], is part of our training mixture. Our method
surpasses prior results on the GQA200 test split by a large margin (Table 3).

The full GQA dataset has an even larger vocabulary with 1703 object and
311 predicate classes. To our knowledge, no prior methods evaluate scene graph
generation on the full GQA dataset. Some prior methods report results on scene
graph classification, where ground-truth boxes are provided. As shown in Table 4,
our model achieves higher performance on the much harder task of scene graph
generation than prior methods on classification.

To assess zero-shot generalization to unseen classes, we separately report
the performance on the least-frequent 1503 object and 211 predicate classes in
GQA, i.e. those not included in GQA200 and therefore unseen during training
(Table 4, bottom). Although performance of our model is significantly lower
than on seen classes, it is still higher than the performance of prior methods
performing scene graph classification on all GQA classes. We suggest using the
least-frequent GQA annotations in this manner as a challenging benchmark for
future work on zero-shot VRD.

We believe that two factors contribute to the strong performance in the
open vocabulary regime: First, the simple design of the method does not impede
transfer of semantic knowledge from the pre-trained VLM backbone because it
adds only lightweight heads. In particular, we use no decoder, which could be
difficult to train and could lead to “forgetting” of pretrained representations.
Instead, most of the relationship modeling happens in the backbone, which has
had the benefit of large-scale vision-language pretraining. Second, the open-
vocabulary design allows end-to-end training on a mix of datasets, which was
not possible for all prior methods.
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Model Backbone mAP mAPr mAPn

HOTR [20] ResNet50 25.10 20.33 25.86
RLIP [53] ResNet50 32.84 26.85 34.63
RLIPv2 [54] ResNet50 35.38 29.61 37.10
RLIPv2 [54] Swin-L 45.09 43.23 45.64
UniVRD [60] CLIP: ViT-B/32 29.98 22.94 32.02
UniVRD [60] CLIP: ViT-B/16 29.98 22.94 32.02
UniVRD [60] CLIP: ViT-L/14 37.41 28.90 39.95
SG-ViT CLIP: ViT-B/32 28.86 23.72 30.39
SG-ViT CLIP: ViT-B/16 31.98 26.83 33.52
SG-ViT CLIP: ViT-L/14 38.11 33.71 39.42

Table 5: Performance on the HICO test set. Our method is on par with the
most comparable prior work, UniVRD, for overall mAP. However, our method performs
better on “rare” classes (mAPr), indicating better generalization to rarely seen concepts.
For reference, we also show RLIPv2, the state-of-the-art method on HICO. RLIPv2
proposes a self-training approach that is orthogonal and compatible to our method.

4.4 Human-Object Interaction

We also evaluate our model on the specialized task of human-object interaction,
using the HICO benchmark [4]. The performance of our model is on par with the
most comparable prior method [61], but does not show similarly large improve-
ments as for VG or GQA200 (Table 5). HICO has a much narrower and more
specialized vocabulary than VG or GQA (HICO evaluates on 600 pre-specified
triplets, whereas VG150 has 1.1 × 106 possible triplet combinations). Perfor-
mance on this specialized task may benefit less from transfer of pretrained rep-
resentations and may instead be limited by the amount of task-specific training
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Figure 3: Model speed
and VRD accuracy by
number of selected rela-
tionships k. Speed is rela-
tive to a non-VRD object
detector [34].

data. This is supported by the fact that the recent
state-of-the-art method for HICO pretrains on large
amounts of person-focused pseudo-labels [54].

4.5 Ablations

In the following, we ablate training datasets and
model components to study the interplay of data and
architecture on the model performance.

Inference Speed and Number of Predicted Re-
lationships. The primary hyperparameter of our
method is the number of relationships k that are se-
lected by the Relationship Attention layer from all
possible <subject-object> combinations for further
processing. Figure 3 shows how VRD performance and
inference speed depend on k. For training, we use
k = 214, which results in 71% (B/32) to 81% (L/14) of
the speed of a pure object detection model [34] of the
same size. Without top-k selection, the model would
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Mixture VG150 GQA200 HICO
VG VG150 GQA200 HICO O365 COCO mR@100 mR@100 mAP

SG-ViT (ours) 12.5% 12.5% 12.5% 12.5% 50% − 24.8 26.1 28.9

UniVRD [61] − 10% − 20% 50% 20% 23.9 ↓ 4% 7.4 ↓ 72% 26.6 ↓ 8%
w/o O365 25% 25% 25% 25% − − 21.9 ↓ 12% 23.7 ↓ 9% 23.8 ↓ 18%
w/o VG − 25% 12.5% 12.5% 50% − 21.2 ↓ 15% 21.7 ↓ 17% 26.8 ↓ 7%

Table 6: Dataset Ablation.

be several times slower (right end of top plot in Figure 3). Since the vast ma-
jority of <subject-object> pairs do not form relationships, VRD performance
is essentially unaffected by top-k selection at inference. For inference, we can
therefore use k = 211 at no loss in accuracy to achieve 90% of the speed of the
object detector (for B/32 and L/14). At this k, the B/32 model achieves 52.8
FPS at batch size 1 on an NVIDIA V100 GPU and is therefore suitable for
real-time applications.

Dataset Mixture. To assess how training data and architectural improvements
contribute to the performance of our model compared to prior work, we train
the models on a range of dataset mixtures (Table 6). The full mixture, which we
use for all experiments unless otherwise noted, includes VG, VG150, GQA200,
HICO and O365. To allow direct comparison to UniVRD [61], we also train on
their mixture (VG150, HICO, O365, COCO) and find that our model still per-
forms better on VG150 by a large margin (23.9 mR@100 vs 12.1 for UniVRD for
B/32 models). Since UniVRD uses the same image and text encoding backbones
as our model, this result suggests that our encode-only model with Relationship
Attention is an advance over decoder-based relationship architectures. We fur-
ther find that including both pure object detection (O365) and large-vocabulary
VRD data (VG) benefit all metrics.

Object Detection Performance. A necessary step towards good relation-
ship detection performance is accurate object detection. In our architecture,
object detection is treated as a special case of relationship detection in which
the <subject> is identical to the <object>. We validate this design by training
the model only on detection datasets without relationship annotations, using
the same dataset mixture as the OWL-ViT [34] model (Objects365 and Visual
Genome, [34]). We find that our model achieves a similar object detection per-
formance as OWL-ViT (21.9% vs. 22.1% mAP and 18.3% vs. 18.9% mAPr on
LVIS [12]), indicating that the Relationship Attention design does not interfere
with object detection.

4.6 Qualitative Results

In Figure 4, we visualize qualitative examples to highlight difficult edge cases.
Even where the model output differs from the ground truth, it is often plausibly
correct, e.g. where either the extent of an object differs with the ground truth or
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Relation GT SG-ViT (B/32) SG-ViT (L/14)

(a)
building
near track

(b)
light on bus

(c)
snow on hill

(d)
bottle in
door

Figure 4: Qualitative examples of difficult edge-cases from VG150 test split [26, 55].
From left to right: Ground Truth, SG-ViT (B/32), SG-ViT (L/14). In all cases the
<subject> is lime and the <object> is red.

there are multiple appropriate relations which are not annotated. For example,
both models select the headlight on the bus in Figure 4b for “light on bus” as
opposed to the sun reflected off the windshield. In Figure 4c both models focus
more on the <predicate> “on” in “snow on hill” than the distinction between a
mountain and a hill. Figure 4d shows shows a challenging scene where the B/32
model selects the bottle inside the open fridge while the L/14 correctly selects a
water bottle in the door for “bottle in door” while also capturing the extent of
the door instance.

Furthermore, to qualitatively assess the utility of this work beyond standard
relation benchmark datasets, we also visualize some example relations applied
to data from the robotics domain, namely the OXE dataset [35]. Figure 5 shows
a real-life scene where multiple instances of the same semantic object categories
are present within the scene. The model is able to match the <predicate> to
the instances in the desired configuration. One subjective failure-case is that the
“banana outside bowl” text query had its highest scoring triplet involving a bowl
on a shelf in the background rather than the adjacent bowl. Another charac-
teristic is that the model occasionally places boxes over groups with multiple
instances of the same semantic class when a singular word is used for either the
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Figure 5: Qualitative examples showing SG-ViT (L/14) on out-of-distribution data
from the OXE dataset [35]. In all cases the <subject> is lime and the <object> is red.
Note how the model correctly disambiguates several instances of the same class (e.g.
“bananas” and “bottle”) depending on their relationships.

<object> or <subject>. This can be attributed to the similarity between word
and their plural in the CLIP embeddings and that many human annotations
from VG also confuse singular and plural (see Appendix A.3).

5 Limitations

While our model performs strongly on large-vocabulary VRD, its performance
on specialized human-object interaction detection is only on par with prior mod-
els. We discuss this limitation in Section 4.4. Further error modes are explored
qualitatively in Section 4.6 and Appendix A.3.

A challenge for open-vocabulary relationship detection models as a whole
is zero-shot generalization to unseen objects and predicates. While our model
improves over prior approaches, there is still a large gap between the performance
on seen and unseen classes (Tables 3 and 4). Future research should focus on
closing this gap.

6 Conclusion

We present an architecture for open-vocabulary visual relationship detection.
By combining an encoder-only design with a novel Relationship Attention layer
for efficient selection of high-confidence relationships, our architecture leverages
VLM pretraining and multi-dataset VRD training. It achieves strong perfor-
mance on standard and large-vocabulary VRD benchmarks while maintaining
pure object detection performance and adding little extra computational cost.
Due to its simplicity and strong performance, we believe that our method will
be a a useful basis for further research on visual relationship detection.
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A Appendix

A.1 Model Details and Hyperparameters

Unless otherwise noted, we follow the public implementation5 of [34]. Below, we
provide additional details.

Relationship Attention Architecture. To obtain query, key, and value em-
beddings from the image embeddings for the Relationship Attention layer, we
use 3-layer MLPs with no change in feature dimensionality, GeLU hidden ac-
tivations [14], and a skip connection from the input to the output embedding.
LayerNorm [2] is applied to the final output in the MLPs. To obtain the relation-
ship embedding, <subject> and <object> embeddings are summed, normalized
by LayerNorm, and processed by another 2-layer MLP (not shown in Figure 2).
We found model performance to be robust to the details of the Relationship
Attention layer, e.g. the hyperparameters of the MLPs, and it may be possible
to simplify the design further. However, as noted in the main paper, <subject>
and <object> embeddings must be computed with different projections to model
the asymmetry between <subject> and <object> in the relationship.

Relationship Selection. In the Relationship Attention layer, we perform two
rounds of top-k selection as depicted in Figure 2: First, we select the top 512
object instances, using the diagonal entries of the relationship score matrix as
“objectness” scores. This reduces the size of the relationship score matrix from
N ×N (where N is the number of image encoder output tokens, i.e. object pro-
posals) to 512 × 512. From this matrix, we then select k relationships, where
k = 214 = 16384 unless otherwise noted. Additionally, we always compute em-
beddings for the 512 self-relationships along the diagonal (which represent object
instances), since these embeddings will be necessary to classify the object cate-
gories of the <subject> and <object> boxes. Model performance is remarkably
robust to the value of k both during training and inference. We did not observe
a significant reduction in performance for k as low as 1024 either just during
inference (Section 4.5) or during training and inference.

Data Augmentation. For data preprocessing and augmentation, we follow [34]
with some exceptions to account for the differences between general object de-
tection and relationship detection data: For object detection datasets, we apply
random left/right flip and random crop augmentation, up to 3 × 3 mosaics,
and random negative labels. For relationship detection datasets, we replace the
random crop with random resizing between 0.5× and 1.0× of the original size,
since cropping may cause label inaccuracies if one member of a relationship is
cropped off. For GQA200, we also remove random left/right flipping since the
dataset contains spatial relationship annotations in the form of “<subject> to
the left of <object>”. We do not use random prompt templates such as "a photo
of a {}" or prompt ensembling for any datasets.

5 https://github.com/google-research/scenic/tree/main/scenic/projects/owl_vit

https://github.com/google-research/scenic/tree/main/scenic/projects/owl_vit
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Training Details. The B/32 and B/16 models are trained on images of size
768× 768 at batch size 256 for 200’000 steps with the Adam optimizer [22] and
a cosine learning rate schedule with a maximal learning rate of 5 × 10−5 and a
1000-step linear warmup. As in [34], the text encoder is trained with a learning
rate of 2× 10−6 instead. For the L/14 model, the image size is 840× 840, batch
size is 128, and the maximal learning rate is 2× 10−5.

Speed Benchmarking. For the speed benchmarking in Figure 3, we assume
a scenario in which a stream of images (e.g. a video feed) needs to be processed
with a fixed set of 1000 text queries (i.e. 1000 object and predicate classes). We
therefore report the time needed to process a new image, given pre-computed
text query embeddings. We measure the time from calling the model with a
single image (batch size 1) until the predictions are ready, using an NVIDIA
V100 GPU. We measure 30 trials and report the median result.

A.2 Additional Experimental Results

Recall@K. We provide results using the Recall@K metric (i.e. pooling all
classes before recall computation) in Appendix A.2. Note that this metric weighs
classes by their frequency and is therefore not suitable for assessing long-tail per-
formance [6, 46].

Graph-Constrained Performance. All results in the main paper are com-
puted without graph constraint [27]. Appendix A.2 provides the main results
with graph constraint.

Visual Genome 150 GQA200
R@20 R@50 R@100 R@20 R@50 R@100

SG-ViT (CLIP: ViT-B/32) 19.8 28.1 34.5 16.4 22.9 27.9
SG-ViT (CLIP: ViT-B/16) 20.2 28.8 35.4 16.6 23.4 28.9
SG-ViT (CLIP: ViT-L/14) 21.8 31.1 38.3 18.6 26.6 32.6

Table 7: Evaluation on Recall metrics.

Visual Genome 150 GQA200 HICO
mR@50 mR@100 mR@50 mR@100 mAP

SG-ViT (CLIP: ViT-B/32) 13.2 16.2 12.3 15.1 2.3
SG-ViT (CLIP: ViT-B/16) 14.3 17.0 14.2 16.8 2.4
SG-ViT (CLIP: ViT-L/14) 17.6 20.8 16.6 19.3 3.1

Table 8: Evaluation with graph-constraints.
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A.3 Additional Qualitative Examples

Figure 6 shows additional qualitative examples of relationships predicted by
SG-ViT on VG150 and illustrates some error modes. The bounding boxes for
each node of the relationship edge accurately captures the extent of the object
instances while in each case aligning the grammatical <subject> and <object>
in the correct direction, denoted by the shaded boxes lime and red respectively.
The only false positive in this set of images is in Figure 6c where the B/32 model
scores the relationship “light of bike” with the subject box selecting the bright
licence plate of the motorcycle instead of the brake light.

A more frequent error mode is the confusion of singular instances and groups
of instances. In some cases this can be put down to ambiguity in language.
For example in Figure 6d the subject text “fruit” could be referring to super-set
category that includes both oranges and apples and also shares the same word for
both singular and plural. In other cases we see that this confusion also appears
in the human annotations, e.g. in Figure 6e and Figure 6f. Such inconsistency
is likely common in the training set, which may impact the model’s ability to
distinguish singular and plural.

False negatives are another error mode, in which the model predicts no boxes,
or assigns very low confidence to predictions. Two such examples are shown
in Figure 6g and Figure 6h where the relationship descriptions are “snow on
mountain” and “elephant near giraffe” respectively. On these examples, the model
predicts no relationships with a score above 0.001, which we use as a threshold
for visualization for all examples shown here. In the first case, the snow is only
recognized by L/14 model and for the latter case neither model recognizes the
decorations on the cup-cakes as either an elephant or giraffe.

A.4 Additional Graph Visualization Examples

Figure 7 illustrates the ability of SG-ViT to generate entire scene graphs on novel
images. Each image shows all relationships with a score above 0.06, using the
object categories and predicates from the full Visual Genome dataset to query the
model. Nodes on the left are drawn at the center of the corresponding bounding
box. Relationship predicates are shown in the graph visualization on the right.
These visualizations are intended for qualitative assessment. For downstream
use of the scene graph, further post-processing, e.g. non-maximum suppression,
may be applied.
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Relation GT SG-ViT (B/32) SG-ViT (L/14)

(a)
bottle on
sink

(b)
number on
post

(c)
light of bike

(d)
fruit on
table

(e)
plane with
wing

(f)
food on
plate

(g)
snow on
mountain

(h)
elephant
near giraffe

Figure 6: Additional qualitative examples from VG150 test split [26, 55] illustrating
box outputs of the SG-ViT B/32 and L/14 models for the given text. Rows (a-b)
show true positives with only minor differences in the object bounding boxes. Row
(c) shows a minor error in subject from the B/32 model. Rows (d-g) illustrate the
challenge of selecting singular or plural entities while rows (g-h) show examples where
the relationship score is very low (i.e. no output if triplet score < 0.001). In all cases
the <subject> is lime and the <object> is red.
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(a) Photo by Joanna Boj on Unsplash.

(b) Photo by Vadim Sherbakov on Unsplash.

(c) Photo by CoWomen on Unsplash.

(d) Photo by Nachelle Nocom on Unsplash.

Figure 7: Additional graph visualizations on unseen images.

https://unsplash.com/photos/man-standing-beside-espresso-maker-MhOoD_h90ks
https://unsplash.com/photos/two-flat-screen-monitor-turned-on-near-organizer-rack-inside-the-room-RcdV8rnXSeE
https://unsplash.com/photos/three-women-sitting-around-table-using-laptops-7Zy2KV76Mts
https://unsplash.com/photos/woman-sitting-on-bed-watching-by-the-window-during-winter-51adhgg5KkE
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