GL-FUSION: RETHINKING THE COMBINATION OF
GRAPH NEURAL NETWORK AND LARGE LANGUAGE
MODEL

Anonymous authors
Paper under double-blind review

ABSTRACT

Recent research on integrating Large Language Models (LLMs) with Graph Neu-
ral Networks (GNNs) typically follows two approaches: LLM-centered models,
which convert graph data into tokens for LLM processing, and GNN-centered
models, which use LLMs to encode text features into node and edge represen-
tations for GNN input. LLM-centered models often struggle to capture graph
structures effectively, while GNN-centered models compress variable-length tex-
tual data into fixed-size vectors, limiting their ability to understand complex se-
mantics. Additionally, GNN-centered approaches require converting tasks into
a uniform, manually-designed format, restricting them to classification tasks and
preventing language output. To address these limitations, we introduce a new ar-
chitecture that deeply integrates GNN with LLM, featuring three key innovations:
(1) Structure-Aware Transformers, which incorporate GNN’s message-passing ca-
pabilities directly into LLM’s transformer layers, allowing simultaneous process-
ing of textual and structural information and generating outputs from both GNN
and LLM; (2) Graph-Text Cross-Attention, which processes full, uncompressed
text from graph nodes and edges, ensuring complete semantic integration; and
(3) GNN-LLM Twin Predictor, enabling LLM’s flexible autoregressive genera-
tion alongside GNN'’s scalable one-pass prediction. GL-Fusion achieves outstand
performance on various tasks. Notably, it achieves state-of-the-art performance
on OGBN-Arxiv and OGBG-Code?2,

1 INTRODUCTION

Research in Graph Neural Networks (GNNs) has long focused on learning from graph with pre-
processed vector features, often overlooking the rich textual information contained in raw data.
Recently, many studies have recognized that better utilization of these text features can enhance
performance. This has led to a focus on text-attributed graphs (TAGs), graphs with node, edge, and
graph-level text attributes. In addition, some tasks may contain a task description, questions, and
candidate answers in natural language. The combination of GNNs and pretrained Large Language
Models (LLMs), which can efficiently encode these text attributes and information, has garnered
significant interest.

Two main approaches have emerged for combining GNNs and LLMs: GNN-centered methods and
LLM-centered methods. GNN-centered methods focus on typical graph tasks like node classifica-
tion and link prediction. These methods convert text into representation vectors for graph nodes
or edges using LLMs, which are then fed into GNNs to produce final predictions. GNN-centered
approaches excel at capturing structural information. However, compressing rich textual features
into fixed-length vectors results in information loss. Moreover, The importance of different text
features varies depending on the task. For example, in wiki knowledge graph (KG) datasets, en-
tity descriptions may include a person’s name, nationality, or occupation. A name might be crucial
for identifying relatives but irrelevant for finding their workplace. Additionally, GNN architectures
cannot generate natural language, making it difficult to perform tasks like question answering.

LLM-centered methods, on the other hand, use a multi-modal approach by projecting graph repre-
sentations into the language space, allowing LLMs to generate text answers to graph-text questions.

GNN Autoregressive

prediction LLM prediction
Geoffrey Hinton .
s [
Turing Award 2018
—_— = ?
LLM \/ Graph Readout
e i {EEEECEA)
encoder ; -
------- > e Cross-Attention Layer J
4 Nodes’ Text - ‘ Bl X]
Embedding E e .
. H
el s N (Normal Transformers Block]
Last)
. Structure- Transf Block
Who won Turing award in 2018 and is of the same country as token [ructure-aware Iranstormers Bloc |
Yoshua Bengio in the knowledge graph ? L o e e
Geoffrey Hinton 1
1 Who won Tu ring award In 2018?Graph<nd> <nd> <nd> <end> Geoffrey Hin ton
1 —

» Graph node in the context

(a) (b)

Figure 1: Workflow of the GL-Fusion model. (a) An example of a text-attributed graph, where each
node and edge has a text attribute that will be encoded by the LLM. (b) The encoded text-attributed
graph nodes (<node> in the figure), along with a prompt or question in natural language, are merged
into an input sequence for our GL-Fusion model. GL-Fusion consists of several structure-aware
transformer blocks and standard transformer blocks. Cross-attention layers are inserted to retrieve
the complete, uncompressed node and edge text. The output on graph nodes is further processed by
graph readout components, while the output on standard text tokens predicts the next token, similar
to an original autoregressive LLM.

However, this approach faces similar challenges. Graph tasks vary widely in domains, and current
LLM-centered models lack dynamic encoding by GNNs that adapt to tasks, so these models strug-
gles to generalize to diverse datasets or tasks. Furthermore, language supervision is often indirect
and less efficient compared to direct graph supervision, making training more difficult. For example,
LLMs, with their autoregressive nature, cannot simultaneously predict all nodes in a graph, unlike
GNNs, which can process nodes in parallel. Moreover, GNNs focus on classifying nodes into a finite
set of classes, while LLLMs operate in the much larger and noisier token space of natural language,
complicating the training process.

To handle tasks involving both graphs and text, we introduce Graph-Language Fusion (GL-Fusion),
an architecture that combines the strengths of GNN-centered and LLM-centered models. As shown
in Figure[T|(a), graphs are paired with node and edge text features to solve tasks described in natural
language. In Figure [[|b), the task description is included as part of the input text sequence, and
a special token <node> is added for each graph node. Each node’s feature is generated by a text
encoder based on its text attribute, which is then incorporated into the sequence. To process this
combination of graph and text tokens, our architecture includes:

* Structure-Aware Transformer Layers: We modify the original attention layers for language
input to graph structure-aware attention with both graph and text inputs, which maintains causality
for language generation and further enabling transformer to encode graph structure. Different
from graph transformer, which encodes graph only and cannot process text, our transformer can
naturally encodes graph tokens conditioning on the text tokens before it in sequence, and encodes
text tokens after the graph based on the graph. This two-way information exchange between
graph and text overcomes the limitations of older models, where either graph or text embedding
is irrelevant from the other, and achieves better expressivity.

* Graph-Text Cross-Attention: Previous models often compress either graph or text information
into a single vector, leading to information loss. In our model, graph structure is preserved across
each transformer layer without compression. To avoid compressing textual features, we introduce
Graph-Text Cross-Attention layers, where attention is applied between node text and the main
sequence (which includes the <node> tokens). These layers retain the complete text information
of each node, allowing the model to more precisely extract task-relevant information by focusing
on the most important tokens.

* GNN & LLM Twin-Predictor: Different tasks require different prediction mechanisms. For
traditional GNN tasks, such as node classification, having the LLM generate predictions for each
node would slow down inference and be constrained by graph size. In such cases, direct readout
from the GNN is more efficient. Conversely, tasks that require natural language outputs benefit

from the autoregressive capabilities of LLMs. Unlike previous models, which rely on either a
GNN or LLM predictor, GL-Fusion retains both as predictors. During training, supervision can
be applied to both models, and during inference, both outputs are generated simultaneously. Users
can choose the most appropriate output for the task or consider both outputs together.

With these modifications, we propose GL-Fusion, a unified architecture that achieves competitive
performance by integrating structural and textual information. To demonstrate this, we conducted
experiments on various tasks, including basic graph property prediction, node classification, knowl-
edge graph completion, commonsense question answering, and code graph-to-text generation. Our
GL-Fusion achieves outstanding performance across all these datasets, outperforming various com-
binations of GNNs and LLMs. Notably, our model even achieves state-of-the-art performance on
two Open Graph Benchmark (Hu et al., 2020) datasets: ogbn-arxiv and ogbg-code2. These results
demonstrate the powerful capability of our GL-Fusion architecture.

2 PRELIMINARY

For a tensor Z € R%*? let Z; € R® denote the i-th row, Z.; € R® denote the j-th column, and
Z;; € R denote the element at the (4, j)-th position.

Text-Attributed Graph (TAG) A TAG is represented as G = (V,E,X), where V =
1,2,3,...,nisthe setof n nodes, E C V x V x Zl« is the set of edges. Each edge (i, j, E;j) € E
connects node ¢ and node j with text E;; consisting of L. tokens. The node text feature matrix is
denoted as X € Z"*Ln where X; represents the L, -token text feature of node i. Here, L, and
L. represent the maximum lengths of node and edge text, respectively. Text of varying lengths is
padded to the same length.

Problem Settings We consider a TAG G and a task description 7' € Z%¢. The task can be node
classification, link prediction, graph classification, or text generation. As illustrated in Figure [T}
our model processes a TAG along with a task description. The graph is integrated into the task
description as part of the input sequence to our model, where the graph forms a subsequence starting
with a special <graph_start> token and ending with a <graph_end> token. Each node is
represented by a <node> token. For each specific task, we use a task-specific prediction head,
and the model also leverages the LLM itself to generate the answer in text form. We focus on
the supervised learning setting, where the dataset is split into training, validation, and test sets.
Models are trained on the training set, hyperparameters are tuned on the validation set, and test set
performance is reported.

3 GL-FuUsION: A HIGHLY INTEGRATED GNN-LLM MODEL

This section presents the architecture of our GL-Fusion model, which integrates structure-aware
transformer layers, graph-text cross-attention blocks, and GNN & LLM twin predictors. Given input
sequence T' € Zt and input graph G = (V, E, X), we first convert 7' to sequence representation
t € RE+*4 with token embedding layer. Then we use an existing text encoder (BehnamGhader et al.|
2024) to convert node text sequences X to uncompressed text embeddings x € R™ <14 "and we
also convert edge text I;; € Z < to compressed text embedding eij € R?. Our GL-Fusion model
will update input sequence representations ¢ in each transformer layer and use ¢ to produce the final
prediction.

3.1 STRUCTURE-AWARE TRANSFORMER LAYER

To encode the input sequence, a mixture of text and node tokens, we propose a structure-aware
transformer layer that fulfills the following properties: (1) Preserving causality for text generation.
(2) Maintaining invariance to node permutation. (3) Encoding edges between nodes. Figure [2a]
illustrates this structure-aware architecture. Compared to ordinary transformer layers, it includes the
following extensions.

Graph-aware attention mask and positional encodings To preserve causality for text genera-
tion, a causal mask keeps only the lower triangle of the attention matrix, setting all other entries to

Full-attention on Graph
+

Causal Causal Causal
Self-attention Self-attention Self-attention Text Node Text
T

+
KN_H_M

{ Permutation Invariant Causal Self-Attention }
(Message Passing
PE .
HK_J Y V"
Text Node Text
(b)

Figure 2: Design of Structure-Aware Transformer layer. (a) Structure-aware Transformer layer. The
brown curve indicates the message-passing process along graph edges. The dashed brown and blue
lines represent causal self-attention and full attention, respectively. The boxed numbers indicate
shared positional encodings. (b) The attention mask in structure-aware transformer layers. The blue
part represents the ordinary causal attention mask, and the yellow part allows attention between
nodes in the same graph.

Text

Node

Text

zero. In other words, each token can only aggregate embeddings from previous tokens, prohibiting
the use of representations from tokens that come after it. While directly applying the causal mask
to the mixed sequence preserves causality for text generation, it disrupts permutation equivariance;
that is, each graph token can only aggregate information from graph tokens preceding it, making the
order of graph tokens affect the output. This violates the permutation invariance of node indices,
which is crucial for graph learning.

To address this, we propose the following attention masks. All tokens can aggregate information
from any token before them. However, for node tokens, other node tokens within the same graph are
also visible to them, preserving permutation invariance. Additionally, causality for text generation
is maintained as graph tokens are not generated. Furthermore, to preserve causality, we only allow
graph tokens to attend to text tokens that come before them, and text tokens can only attend to graph
tokens that come before them. The resulting attention mask is shown in Figure 2b]

To further ensure permutation invariance, we assign the same positional encodings to all node tokens
in the same graph as the corresponding <graph_start> token. Additionally, all graph tokens use
a single index, as shown in the positional encoding (PE) of Figure [2a] preventing the model from
running out of the context window for large graphs.

Message Passing with Multiple Aggregators. To encode graph structure, we involve a message
passing layer (Gilmer et al.| [2017) in our transformer layer. Our message-passing layer updates the
representation of node u as follows:

h!, = COMBINE(h,,, AGGREGATE({h, ® eyy|v € N(u))), (1)

where h, € R? is the representation of node u, produced by a linear layer with the corresponding
node token representation t;, ey, € R4 is the edge feature extracted from text, and N (u) denotes
neighboring nodes. Following |Corso et al.| (2020), we employ three aggregators: mean, max, and
std, concatenating their outputs into a R3¢ vector, which is then projected back to k!, € R¢ via a
linear layer.

To manage the varying importance of graph structure information across tasks, we introduce a gating
mechanism. The gate value is computed with a linear layer and a tanh activation function with the
original token embedding as input, updating ¢;, the representation of node token 7, corresponding to
node w as:

t; < t; + tanh(Wti)hu, 2)

where W € R'*?. All elements in W are initialized as 0 and optimized in the training process.
So the gate value and thus the output of Message Passing module is O initially. This mechanism
allows gradual integration of GNN outputs during training while stabilizing the model and mitigating
knowledge forgetting.

3.2 GRAPH-TEXT CROSS-ATTENTION

One significant drawback of previous GNN-
centered models is that they compress node,
edge text features, and task descriptions into
fixed-size representations, while LLM-centered
methods tend to compress graph structure into
fixed-size representations, leading to signifi-
cant information loss. With our structure-
aware transformer layer, we encode the graph
structure and task description directly in each
layer without compression. To avoid compres-
sion of node/edge text features, we introduce
the Graph-Text Cross-Attention block to en-
able node token representations and text tokens
generated after the node token to extract in-
formation from the raw node text. Note that
we can also use the cross-attention block to
extract information from edge text. However,
most datasets currently have simple and unvar-
ied edge features, so we primarily focus on ex-
tracting information from raw node text.

Node N
text

Node 2

text

Node 1
text

Query

Figure 3: The attention mask in cross-attention
layers. For text tokens before the graph, they
do not involve cross-attention to maintain causal- The architecture is shown in Figure Bl The
ity (red dashed line with the x). For node tokens cross-attention block extracts features from the

<node>, each token only has access to its own node text representation x to update the task
text (orange lines). For text tokens after the graph, representation ¢ as follows.

they have access to all node text (black lines).))
To update ¢;, the representation of token ¢, first,

each node’s text representation of L,, tokens is aggregated into a single representation. For node v,

1
Vd
where t; € R? is the query of cross attention, Wq,, Wk, € R*4 are learnable linear layer for
query and key, and z,, € RE7*9 is the uncompressed text representation of node v. =/, is the

feature extract from node v for updating token 7’s representation. Then, all nodes’ features are
further aggregated:

), = softmax (tTWE W, xT) z, € RY, (3)

4)

P if 4 is the node token w.r.t. node v,
t o softmax (] WE Wi, a,), if i is a text token,

where v is the set of nodes whose token in input sequence is before i, x7,, € RIVI*4 s the sequence
of o}, for node v in v, and Wq,, Wk, € R?*? are learnable linear layers. Then t; € R is used
to update ¢;. To maintain causality, we only allow text tokens to aggregate features from graph
nodes preceding them in the input sequence. For text tokens, if there is no graph token before, the
resulting cross-attention result is 0. For node tokens, although they can aggregate text features from
other nodes, in experiments we find that this may cause all nodes to have similar representations,
which makes them indistinguishable from each other. Therefore, we constrain each node to extract
information solely from its own text to avoid this problem.

Compared to the cross-attention block, directly adding node text to the input sequence of the LLM
may seem more straightforward. However, it introduces several challenges. First, it is difficult to

design a special positional encoding (PE) and attention mask that preserve causality for text and
permutation invariance for graphs in the structure-aware layer. Second, in terms of computational
complexity, the naive text-in-context method incurs O((nL,, + L;)?) time complexity as n L,-
length node text sequences are added to the context window. In contrast, our cross-attention method
simplifies the complexity to O(nL,, - L;), significantly reducing costs and enabling our model to
handle larger graphs efficiently, as is often the case when nL,, >> L;.

3.3 GNN & LLM TwIN PREDICTOR

Since our model uses a transformer architecture and maintains causality, it can naturally generate
text outputs, which we refer to as the LLM predictor. Additionally, since graph nodes are treated
as tokens in the input sequence, the transformer’s output representations for these tokens can be
considered node-level GNN representations, which can be fed into pooling layers and linear layers
to produce predictions—referred to as the GNN predictor. Both predictors have their advantages
and disadvantages, as outlined below:

Rationale for GNN as a Predictor. While LLMs can perform various language tasks, they face
limitations in autoregressive generation, including:

* Natural Language Output: LLMs can natively produce text predictions, which is challenging for
the GNN predictor.

e Numerical Output: GNN predictors naturally output numerical values, making them well-suited
for regression or ranking tasks. In contrast, LLMs produce token sequences, making it difficult to
generate numerical outputs as text.

* Scalability: LLMs predict outputs one by one in an autoregressive manner, which can be ineffi-
cient for tasks requiring multiple predictions for all nodes or edges. In contrast, GNNs generate
all predictions for all nodes or edges in parallel.

* Training Efficiency: Training models end-to-end through LLM-generated sequences is more in-
direct and harder to control, as the LLM’s loss function is constrained by “perplexity” (i.e., the
cross-entropy loss on token space), which often includes task-irrelevant tokens instead of focus-
ing solely on the task-relevant labeling space. With GNNs, we can provide direct and dense
supervision on the target classes, improving training efficiency.

To leverage both approaches, we employ a twin-predictor architecture, allowing for simultaneous
predictions from both the GNN and LLM. A graph readout component, tailored to specific tasks, is
added after the final layer for GNN predictions. This component is trained using cross-entropy loss
for classification tasks or mean squared error for regression tasks. During inference, it can generate
predictions for graph nodes as needed.

4 RELATED WORK

LLM-Centered Approaches LLM-centered methods leverage pretrained language models to
handle graph data by translating graph structures into text formats, like adjacency lists (Liu & Wul
2023; |Guo et al., [2023b; [Chen et al., 2024). While these methods have shown some promise, they
often suffer from issues related to node and edge ordering and can struggle with large graphs due
to the limited context windows of LLMs. A more effective solution has been to use GNNs to gen-
erate node representation sequences that are fed into LLMs. For example, |Chai et al.| (2023) used
embeddings from Message Passing Neural Networks (MPNNs) to represent target nodes, enabling
the LLM to answer basic structural questions. Similarly, Tang et al.| (2024)) aligned both structural
and textual inputs using GNNs and Transformers, achieving better accuracy by processing all node
embeddings through a frozen pretrained LLM. However, these approaches can still face limitations,
such as task-agnostic encoders, as seen in |Qin et al| (2024), which limit their ability to transfer
across different domains.

GNN-Centered Approaches In GNN-centered methods, LLMs are primarily used to encode tex-
tual data that is then fed into GNNs for tasks like node classification and link prediction. Early
graph datasets such as Cora (McCallum et al., 2000) and CiteSeer (Giles et al.,|1998)) used basic text
embeddings, but these often failed to capture complex textual information. More recent datasets,

Table 1: Results in accuracy (%) on Basic Graph Property Prediction Tasks.

GL-Fusion EdgePrompt GML GraphML w/o Cross Atten

degree 100 44 .87 20.91 40.20 100
edge 99.78 74.60 50.45 62.05 100
node text 34.50 - - - 0.00

like OGB-WikiKG90Mv2 (Hu et al.||2021)), have improved this by utilizing pretrained sequence en-
coders. Duan et al.| (2023) demonstrated that fine-tuning LLMs before passing textual information
to GNNss significantly boosts performance. Further work by [loannidis et al.[(2022) and |Xie et al.
(2023) introduced novel fine-tuning strategies to better integrate LLMs into GNN tasks. Besides,
with many powerful LLMs being closed-source, researchers like/He et al.|(2024) have proposed aug-
menting graph data with enhanced text features generated by accessible LLMs. While they improve
performance, these models like OFA (Liu et al. [2023) still compress textual data into fixed-length
vectors, limiting their application to tasks with complex text features.

GNN-LLM Fusion Recent efforts aim for a deeper integration of GNNs and LLMs. One exam-
ple is GraphFormers (Yang et al., |2023), which proposed an architecture that combines GNNs and
Transformers by iteratively encoding text and aggregating graph structures across layers. While this
approach improves text encoding for graph nodes, it overlooks the inclusion of task descriptions or
language prompts. Furthermore, the lack of autoregressive generation and cross-attention mecha-
nisms restricts the model’s ability to dynamically extract task-specific information. Building on this,
Jin et al.| (2023) adapted the GraphFormers architecture by refining its pretraining strategy, aiming
to better capture text relationships between neighboring nodes. While these methods have made
strides, there is still a need for more tightly integrated approaches that can fully exploit the potential
of GNNs and LLMs working together.

5 EXPERIMENTS

To evaluate the potential of GL-Fusion as a new architecture combining GNN and LLM, we con-
ducted experiments on various tasks. These include synthetic tasks to validate its capacity to capture
basic graph properties, traditional GNN tasks such as node classification and link prediction to as-
sess its ability to solve graph-related tasks, commonsense question-answering tasks to test its ability
to leverage knowledge graphs for language generation, and code graph tasks to evaluate its capacity
to generate text based on graph structures. Through these experiments, we demonstrate GL-Fusion’s
strong potential to effectively combine GNN and LLM architectures. Further details on the experi-
ments can be found in Appendix [A]

5.1 BASIC GRAPH PROPERTY PREDICTION

Following |Guo et al.[(2023a), we evaluate our model on basic graph property prediction tasks. We
consider two tasks: degree (to predict a node’s degree with the whole graph as input) and edge (to
predict whether there exists an edge between two nodes in the graph). These two properties are
simple for GNN-centered methods. However, for LLM-centered methods, graph structural features
are often compressed and thus incomplete, leading to difficulties. The baselines include LLM-
centered methods such as EdgePrompt, GML, and GraphML from |Guo et al| (2023a). We also
conduct an ablation study on these two tasks. Additionally, we introduce a node text retrieval task,
where models attempt to predict the input sentence of a node. The results are shown in Table[I] In
general, GL-Fusion outperforms all these baselines and captures basic graph properties perfectly.
Moreover, GL-Fusion without cross-attention results in significantly lower precision on the node
text task, validating the effectiveness of our cross-attention block in extracting information from
node text.

5.2 NODE CLASSIFICATION

We demonstrate our model’s ability to leverage both textual features and graph structure in TAG
through a node classification task. We evaluate GL-Fusion on two datasets: ogbn-arxiv (Hu et al.,

Table 2: Results in accuracy (%) on node classification Tasks.

GL-Fusion GLEM XRT OneForAll GPT4graph GraphGPT GCN

Ogbn-arxiv 78.20 76.12 76.94 77.51 60.00 75.11 71.47
Cora 84.3 - - 74.76 - - 81.5 -

Table 3: Results in test accuracy(%) on ogbn-arxiv dataset with a few training samples.

#shots Feature PLM+GAE GIANT PLM-cls PLM-dense PLM-sparse G-Prompt GL-Fusion

10 45.76 51.89 514 46.97 51.17 52.01 5248 56.44
100 58.75 60.63 61.26 58.69 58.65 60.85 61.67 68.18

2020) and Cora (Yang et al.l 2016)). The baselines include GCN (Kipf & Welling, 2017)), the GNN-
centered model GLEM (Zhao et al.l 2023), XRT (Chien et al., [2022), OFA (Liu et al., 2023)), and
the LLM-centered methods GPT4graph (Guo et al., 2023a), MuseGraph (Tan et al., 2024), and
GraphGPT (Tang et al., 2024). The results are shown in Table E} We also conduct experiments in
few-shot settings following (Huang et al., 2023). The results are shown in Table |3| #shot means
the number of training set per class. Baselines are from [Huang et al.|(2023). Our model outper-
forms existing models significantly. Besides these datasets, we also conduct experiments on CSTAG
benchmark (Yan et al., 2023)). We use the datasets and baseline in (Yan et al., [2023). PLM-Based
models uses LLM to encode target node text only. GNN-Based methods uses GNN to encode graph
with node feature provided by fixed LLM. Co-Training methods denote methods training GNN and
LLM simultaneously. The results are shown in Table 4| Our GL-Fusion significantly outperforms
all baselines on most datasets, verifying the model’s capacity for ordinary graph tasks.

5.3 KNOWLEDGE GRAPH COMPLETION

We demonstrate our model’s ability to leverage both textual and structural information through the
knowledge graph completion task, using the Wikidata Knowledge Graph, which provides rich tex-
tual descriptions and structural relationships. We employ the FB15k-237-ind dataset (Teru et al.,
2020), extracted from Freebase (Bollacker et al.l [2008), featuring four standard training and test
splits with shared relation types but disjoint entities. Each node and edge is annotated with textual
attributes: entities include names and brief descriptions, while edges retain their textual represen-
tations from Freebase. Following approaches like NBFNet (Zhu et al., [2022)) and UniLP (Mikhail
et al.| 2024), we annotate nodes with distances to their corresponding head or tail nodes for predic-
tion tasks.

For baselines, we select several representative inductive learning GNNs and KG-BERT (Yao et al.,
2019) for LLM-based completion. Recent methods using LLMs for KG completion, such as few-
shot prompting (BertRL)(Zha et al., |2021) or explicit rule learning (KRST)(Su et al., [2023), are
also included as they focus on different techniques. Our results, shown in Table [5| indicate that
our model outperforms all baselines across the four splits, effectively utilizing both linguistic and
structural information.

5.4 COMMON SENSE QUESTION ANSWERING

CommonsenseQA (Talmor et al.) is a 5-way multiple choice Question Answering task that requires
reasoning with commonsense knowledge, containing 12,102 questions. It can be solved with an
pure language model. However, following (Yasunaga et al.| 2021)). for each problem, we sample a
subgraph containing entities in the problem from a knowledge graph. Our baselines include com-
bination of Knowledge graph and LLM: , QAGNN (Yasunaga et al.l 2021) and some pure LLM
results from (Xu et al.,[2021)). The results are shown in Table@ Note that our GL-Fusion is base on
Llama3-8b, and our model outperforms Llama3-8b with prompt significantly, verifying that learning
on KG indeed significantly boost model’s performance.

Table 4: Node classification on CSTAG datasets (Yan et al., [2023)). Sports uses F1 score. Other
datasets use accuracy.

PLM-Based GNN-Based Co-Training Based

Model GL-Fusion Tiny Base T-GCN B-GCN T-SAGE B-SAGE GCN(T) SAGE(T)
Children 61.19 49.85 5991 57.07 58.11 57.57 58.74 54.75 59.7

History 86.16 83.06 86.09 84.52 85.04 84.79 85.12 83.52 85.09
Photo 82.89 73.75 77.53 8242 827 83.25 83.27 83.32 86.64
Computers 88.91 58.32 604 8743 87.86 87.9 88.3 83.93 86.04
Sports 93.33 81.47 86.02 8493 86.16 87.06 87.34 85.06 85.87

Table 5: Inductive link prediction on FB15k237-ind dataset. Higher scores are better. KG-BERT
serves as a baseline LLM, while others are GNNs. KG-BERT performance is from |[Zha et al.| (2021));
GNN baselines are from Zhu et al.| (2024).

Method vl v2 v3 v4

MRR H@l H@I0 MRR H@l H@l10 MRR H@l H@I0 MRR H@l H@I10
GrailL 0443 0329 0642 0.614 0495 0.818 0.642 0.531 0.828 0.646 0.529 0.893
NBFNet 0.625 0519 0834 0.769 0.673 0949 0.762 0.668 0.951 0.774 0.681 0.960
UniLP 0.754 0.672 0921 0.808 0.734 0943 0.793 0.720 0.945 0.832 0.760 0.960
KG-BERT 0.500 0.341 - - - - - - - - - -
BertRL 0.605 0.541
KRST 0.716 0.602

GL-Fusion 0.8558 0.7306 0.9830 0.8558 0.7761 0.9853 0.8257 0.7379 0.9861 0.8514 0.7697 0.9905

5.5 GRAPH-TO-LANGUAGE GENERATION

While image-to-text and video-to-text generation are well-studied, graph-to-language generation
remains underexplored. We evaluate our GL-Fusion model on the ogbg-code2 dataset (Hu et al.|
2020), where each graph represents the Abstract Syntax Tree (AST) of a Python function, and the
goal is to predict the function name from the AST. Previous methods have treated this as a classifi-
cation task, assuming uniform function name lengths and a limited token set, which is impractical.
In contrast, our model generates text directly. The results are shown in Table [f] Our GL-Fusion
model outperforms state-of-the-art methods (Velickovic et al., [2018; [Luo et al., [2023)) signficantly,
verifying the strong potential of our architecture.

5.6 ABLATION STUDY

To verify the effectiveness of our designations, we conduct ablation study on ogbn-arxiv dataset.
The results are shown in Table @ In the table, Low rank denotes using model with LoRA rank=8.
w/o cross atten removes the graph-text cross attention. w/o gate removes the gate mechanism. w/o
aggrs removes multiple aggregators in the message passing modules in transformer layers and uses
mean aggregator only. w/o gnn pred removes the gnn prediction and training loss on it. w/o text
pred removes the text prediction and training loss on it. Each module contributes to the overall
performance, and removing any of them results in a performance drop.

6 CONCLUSION

This paper addresses key challenges in integrating GNNs and LLMs, such as independent encoding
of text and structure, task-agnostic text representation, excessive information compression, and is-
sues with output scalability and flexibility. We propose the GL-Fusion architecture, featuring three
innovations: 1. Integrated Structural and Textual Learning by combining MPNN’s with self-attention
layers; 2. Graph-text cross-attention modules that preserve full textual content to prevent informa-
tion loss; and 3. A GNN-LLM twin-predictor that facilitates predictions as both LLM and GNN for
enhanced scalability and flexibility. Our experiments on the various datasets demonstrate that GL-

Table 6: Result in accuracy (%) in CommonSenseQA tasks.

Model GL-Fusion QA-GNN GPT-3 Finetuned Llama3-8b-
ACC 81.79 76.1 73.0 59.4

Table 7: Function name generation task on ogbg-code2 dataset. Baseline results are from the
OGB (Hu et al., [2020)) leaderboard.

Model GAT GraphTrans SAT++ DAGformer GL-Fusion
TestFl(%) 15~69i0.10 18~30i0.24 22-22i0.32 20-18i0.21 40.97

Table 8: Ablation study on ogbn-arxiv dataset. All results are text accuracy (1)

Original Low Rank w/o cross atten w/o gate w/o aggrs w/o gnn pred w/o text pred

GNN 77.09 76.61 75.5 75.88 75.4 - 75.8
LLM 76.43 75.97 74.97 73.33 75.57 72.45 -
Ensemble 78.2 77.06 76.35 76.2 76.48 - -

Fusion effectively leverages language and structure, significantly improving reasoning performance
in graph-text tasks.

7 LIMITATIONS & BROADER IMPACTS

We recognize several limitations that can guide future research. First, while our architecture unifies
GNNs and LLMs and shows effectiveness across various tasks, we have not tested it across a com-
prehensive range of task types due to the diversity of domains and data properties. Future work will
involve refining our model on a broader spectrum of tasks to address these gaps.

Additionally, although our architecture provides a solid foundation for graph-text integration, our
experiments have relied on training separate models individually. We have not yet established a
unified set of pretrained parameters for all tasks due to resource and data limitations. Large-scale
multi-task pretraining remains an objective.

Regarding societal impacts, while our model aids in processing graph data, it also risks generating
incorrect or misleading information. Research focused on enhancing the reliability of LLM outputs
is crucial, and our work can support these efforts.

REFERENCES

Parishad BehnamGhader, Vaibhav Adlakha, Marius Mosbach, Dzmitry Bahdanau, Nicolas Cha-
pados, and Siva Reddy. Llm2vec: Large language models are secretly powerful text encoders.
CoRR, abs/2404.05961, 2024.

Kurt Bollacker, Colin Evans, Praveen Paritosh, Tim Sturge, and Jamie Taylor. Freebase: a collab-
oratively created graph database for structuring human knowledge. In Proceedings of the 2008
ACM SIGMOD International Conference on Management of Data, SIGMOD ’08, pp. 1247-1250,
New York, NY, USA, 2008. Association for Computing Machinery. ISBN 9781605581026. doi:
10.1145/1376616.1376746. URL https://doi.org/10.1145/1376616.1376746!

Ziwei Chai, Tianjie Zhang, Liang Wu, Kaiqiao Han, Xiaohai Hu, Xuanwen Huang, and Yang Yang.
Graphllm: Boosting graph reasoning ability of large language model, 2023.

Zhikai Chen, Haitao Mao, Hang Li, Wei Jin, Hongzhi Wen, Xiaochi Wei, Shuaiqiang Wang, Dawei

Yin, Wenqi Fan, Hui Liu, and Jiliang Tang. Exploring the potential of large language models
(Ilms) in learning on graphs, 2024.

10

https://doi.org/10.1145/1376616.1376746

Eli Chien, Wei-Cheng Chang, Cho-Jui Hsieh, Hsiang-Fu Yu, Jiong Zhang, Olgica Milenkovic, and
Inderjit S. Dhillon. Node feature extraction by self-supervised multi-scale neighborhood predic-
tion. In ICLR, 2022.

Gabriele Corso, Luca Cavalleri, Dominique Beaini, Pietro Lio, and Petar Velickovic. Principal
neighbourhood aggregation for graph nets. In NeurIPS, 2020.

Keyu Duan, Qian Liu, Tat-Seng Chua, Shuicheng Yan, Wei Tsang Ooi, Qizhe Xie, and Junxian He.
Simteg: A frustratingly simple approach improves textual graph learning, 2023.

Matthias Fey and Jan Eric Lenssen. Fast graph representation learning with pytorch geometric.
arXiv preprint arXiv:1903.02428, 2019.

C. Lee Giles, Kurt D. Bollacker, and Steve Lawrence. Citeseer: an automatic citation indexing
system. In Proceedings of the Third ACM Conference on Digital Libraries, DL 98, pp. 89-98,
New York, NY, USA, 1998. Association for Computing Machinery. ISBN 0897919653. doi:
10.1145/276675.276685. URL https://doi.org/10.1145/276675.276685.

Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural
message passing for quantum chemistry. In /ICML, pp. 1263-1272, 2017.

Jiayan Guo, Lun Du, and Hengyu Liu. Gptdgraph: Can large language models understand graph
structured data? an empirical evaluation and benchmarking. CoRR, abs/2305.15066, 2023a.

Jiayan Guo, Lun Du, Hengyu Liu, Mengyu Zhou, Xinyi He, and Shi Han. Gpt4graph: Can large
language models understand graph structured data ? an empirical evaluation and benchmarking,
2023b.

Xiaoxin He, Xavier Bresson, Thomas Laurent, Adam Perold, Yann LeCun, and Bryan Hooi. Har-
nessing explanations: Llm-to-lm interpreter for enhanced text-attributed graph representation
learning, 2024.

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele Catasta,
and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs. In NeurIPS,
2020.

Weihua Hu, Matthias Fey, Hongyu Ren, Maho Nakata, Yuxiao Dong, and Jure Leskovec. Ogb-Isc:
A large-scale challenge for machine learning on graphs. arXiv preprint arXiv:2103.09430, 2021.

Xuanwen Huang, Kaiqiao Han, Dezheng Bao, Quanjin Tao, Zhisheng Zhang, Yang Yang, and
Qi Zhu. Prompt-based node feature extractor for few-shot learning on text-attributed graphs.
CoRR, abs/2309.02848, 2023.

Vassilis N. Toannidis, Xiang Song, Da Zheng, Houyu Zhang, Jun Ma, Yi Xu, Belinda Zeng, Trishul
Chilimbi, and George Karypis. Efficient and effective training of language and graph neural
network models, 2022.

Bowen Jin, Wentao Zhang, Yu Zhang, Yu Meng, Xinyang Zhang, Qi Zhu, and Jiawei Han. Patton:
Language model pretraining on text-rich networks, 2023.

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional net-
works. In ICLR, 2017.

Chang Liu and Bo Wu. Evaluating large language models on graphs: Performance insights and
comparative analysis, 2023.

Hao Liu, Jiarui Feng, Lecheng Kong, Ningyue Liang, Dacheng Tao, Yixin Chen, and Muhan
Zhang. One for all: Towards training one graph model for all classification tasks. arXiv preprint
arXiv:2310.00149, 2023.

Yuankai Luo, Veronika Thost, and Lei Shi. Transformers over directed acyclic graphs. In Alice
Oh, Tristan Naumann, Amir Globerson, Kate Saenko, Moritz Hardt, and Sergey Levine (eds.),
NeurlPS, 2023.

11

https://doi.org/10.1145/276675.276685

Andrew Kachites McCallum, Kamal Nigam, Jason Rennie, and Kristie Seymore. Automating the
construction of internet portals with machine learning. Information Retrieval, 3:127-163, 2000.

Galkin Mikhail, Yuan Xinyu, Mostafa Hesham, Tang Jian, and Zhu Zhaocheng. Towards foundation
models for knowledge graph reasoning. /CLR, 2024.

Yijian Qin, Xin Wang, Ziwei Zhang, and Wenwu Zhu. Disentangled representation learning with
large language models for text-attributed graphs, 2024.

Zhixiang Su, Di Wang, Chunyan Miao, and Lizhen Cui. Multi-aspect explainable inductive relation
prediction by sentence transformer, 2023.

Alon Talmor, Jonathan Herzig, Nicholas Lourie, and Jonathan Berant. Commonsenseqa: A question
answering challenge targeting commonsense knowledge. In NAACL, pp. 4149-4158.

Yanchao Tan, Hang Lv, Xinyi Huang, Jiawei Zhang, Shiping Wang, and Carl Yang. Musegraph:
Graph-oriented instruction tuning of large language models for generic graph mining. CoRR,
abs/2403.04780, 2024.

Jiabin Tang, Yuhao Yang, Wei Wei, Lei Shi, Lixin Su, Sugi Cheng, Dawei Yin, and Chao Huang.
Graphgpt: Graph instruction tuning for large language models, 2024.

Komal K. Teru, Etienne Denis, and William L. Hamilton. Inductive relation prediction by subgraph
reasoning, 2020.

Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
Bengio. Graph attention networks. In /CLR, 2018.

Han Xie, Da Zheng, Jun Ma, Houyu Zhang, Vassilis N. Ioannidis, Xiang Song, Qing Ping, Sheng
Wang, Carl Yang, Yi Xu, Belinda Zeng, and Trishul Chilimbi. Graph-aware language model
pre-training on a large graph corpus can help multiple graph applications, 2023.

Yichong Xu, Chenguang Zhu, Shuohang Wang, Siqi Sun, Hao Cheng, Xiaodong Liu, Jianfeng
Gao, Pengcheng He, Michael Zeng, and Xuedong Huang. Human parity on commonsenseqa:
Augmenting self-attention with external attention. arXiv preprint arXiv:2112.03254, 2021.

Hao Yan, Chaozhuo Li, Ruosong Long, Chao Yan, Jianan Zhao, Wenwen Zhuang, Jun Yin, Peiyan
Zhang, Weihao Han, Hao Sun, Weiwei Deng, Qi Zhang, Lichao Sun, Xing Xie, and Senzhang
Wang. A comprehensive study on text-attributed graphs: Benchmarking and rethinking. In
NeurlPS, 2023.

Junhan Yang, Zheng Liu, Shitao Xiao, Chaozhuo Li, Defu Lian, Sanjay Agrawal, Amit Singh,
Guangzhong Sun, and Xing Xie. Graphformers: Gnn-nested transformers for representation
learning on textual graph, 2023.

Zhilin Yang, William W. Cohen, and Ruslan Salakhutdinov. Revisiting semi-supervised learning
with graph embeddings. In Proceedings of the 33nd International Conference on Machine Learn-
ing, volume 48, pp. 40-48, 2016.

Liang Yao, Chengsheng Mao, and Yuan Luo. Kg-bert: Bert for knowledge graph completion, 2019.

Michihiro Yasunaga, Hongyu Ren, Antoine Bosselut, Percy Liang, and Jure Leskovec. Qa-gnn:
Reasoning with language models and knowledge graphs for question answering. NAACL, 2021.

Hanwen Zha, Zhiyu Chen, and Xifeng Yan. Inductive relation prediction by bert, 2021.

Jianan Zhao, Meng Qu, Chaozhuo Li, Hao Yan, Qian Liu, Rui Li, Xing Xie, and Jian Tang. Learning
on large-scale text-attributed graphs via variational inference. In ICLR, 2023.

Zhaocheng Zhu, Zuobai Zhang, Louis-Pascal Xhonneux, and Jian Tang. Neural bellman-ford net-
works: A general graph neural network framework for link prediction, 2022.

Zhaocheng Zhu, Xinyu Yuan, Michael Galkin, Louis-Pascal Xhonneux, Ming Zhang, Maxime
Gazeau, and Jian Tang. A* net: A scalable path-based reasoning approach for knowledge graphs.
Advances in Neural Information Processing Systems, 36, 2024.

12

A EXPERIMENTAL DETAILS

Architecture All our models are based on Llama-3-8b, which utilizes a 32-layer Transformer,
with message passing at layers 0, 4, 8, 12, 16, 20, 24, and 28, and node cross-attention at layers
3,7, 11, 15, 19, 23, 27, and 31. For the original LLaMA-3 layers, we employ LoRA with rank
r and weight a = 2r, while newly added layers are trained with full parameters. The LLM used
for sentence encoding is LLM2Vec (BehnamGhader et al., |2024) model based on Llama-3-8b, is
fine-tuned with Lora on its last layer. For ogbl-arxiv dataset, we use r = 64. For CSTAG datasets,
we use r = 4. For all other datasets, we use 7 = 32. GNN in our model in implemented with torch
geometric (Fey & Lenssen, |2019). Some parameters are loaded from pretrained LLM.

* For structure-aware Transformer Layers, we leverage the pretrained Llama-3-8B model as
the backbone. As detailed in Section 3.1, we introduce new parameters through modifica-
tions to positional encoding and attention masks. Additionally, for the <graph_node>
token, we simply add an embedding to the existing layer. The newly added MPNN com-
ponent is initialized randomly. We fine-tune the transformer parameters using the Low-
Rank Adaptation (LoRA) method from the peft library. This approach freezes the original
transformer layers and optimizes only the newly introduced low-rank layers. The MPNN
parameters, on the other hand, are trained entirely from scratch.

* For the Graph-Text Cross-Attention layers in our paper, all parameters are initialized ran-
domly and trained from scratch.

* For the GNN prediction modules, which are simple linear layers for generating outputs,
parameters are initialized randomly and trained from scratch.

e QOverall, most parameters are initialized from pretrained models and frozen. Only about
10% of the parameters in the entire model are optimized.

Training Process All experiments are trained on A800 GPUs with one epoch. The optimizer is
AdamW with learning rate=3e-5, weight decay=0.1. For node classification and csqa datasets, we
ensemble the prediction of GNN and LLM. For link datasets, we use GNN output only. For graph
level tasks and synthetic tasks, we use text output only. The entire model is trained end-to-end, with
joint training of all components.

Baselines Baselines and experiments setting used in different works on combining GNN and LLM
varies a lot. Therefore, we directly use the results reported by baseline works as shown in the
maintext.

B DATASET DETAILS

B.1 DETAILS OF FB15K-237-IND DATASETS

Table 9: Statistics of FB15k-237-ind benchmark. (Teru et al., [2020)

#links #nodes #links
train 183 2000 5226

VI indetest 146 1500 2404
,, tmin 203 3000 12085
ind-test 176 2000 5092
3 main 218 4000 22397
ind-test 187 3000 9137
rain 222 5000 33916
v4

ind-test 204 3500 14554

13

The statistics of the FB15k-237-ind is in Table E} To generate the text attributes of the datasets,
we first map Freebase objects to wikidateﬂ and then used the detailed texts from the wikiKGv2-
90m dataset in OGB-LSC (Hu et al., |2021)) as the textual representations for each node. Like other
KG completion work on GNN, we also added reverse relation for each relation and label them as
“[reverse] xxx”.

The total graph is too large to input the GNN, so like previous work we sample a subgraph. For
training set, we first sample random 50 negative samples by perturb the head or tails of a triple and
then sample the 3-hop neighbors of these nodes. Then we reduce the subgraph size with limiting the
maximal number of nodes is 500.

An example of our dataset:

The input question:

The Adventures of Tintin (2011 film directed by Steven Spielberg)
—/film/film/production_companies— ?. The graph: <graph_start><node><node>...<node><graph_end>.

The node text features in the graph:

{“title”: “Jane Krakowski”, “desc”: “American actress”, “dist to head”: 6}
{“title”: “Shochiku”, “desc™: “Japanese movie studio and production company for kabuki.”, “dist to head”: 3}
{“title”: “Erin Brockovich”, “desc”: “2000 biographical movie by Steven Soderbergh”, “dist to head”: 2}

The relation text features:

{“title”: “/film/film/runtime./film/film_cut/film release_region”}
{“title”: “[reverse] /music/record_label/artist”}

B.2 DETAILS OF CSTAG DATASETS
CSTAG datasets, including children, history, computers. photo, sport, are provided by Yan et al.

(2023). We conduct node classification tasks on them. Their statistics are shown in Table We
directly use the node text provided by the dataset.

Table 10: Statistics of CSTAG datasets.

Dataset #Nodes #Edges #Class Split Ratio Metric text length
Children 76,875 1,554,578 24 Random 60/20/20 Acc 256
History 41,551 358,574 12 Random 60/20/20 Acc 256
Computers 87,229 721,081 10 Time 72/17/11 Acc 256
Photo 48,362 500,928 12 Time 60/20/20 Acc 512
Sports 173,055 1,773,500 13 Random 20/10/70 F1 64

B.3 DETAILS OF CITATION GRAPHS

We use citation graphs ogbn-arxiv (Hu et al.,2020) and cora (Liu et al.}|2023) and classify nodes on
them. Their statistics are shown in Table L1} For ogbn-arxiv, we directly use official split. For node
text, we use paper title and abstract. We also add label of non-target nodes in training set to input
node text. The edge text are “cite” or “cited”.U

Table 11: Statistics of citation datasets.

Dataset #Nodes #Edges #Class Split Ratio Metric text length
ogbn-arxiv 169,343 1,166,243 40 Time 54/18/28 Acc 256
Cora 2,807 5,429 7 Random 10/10/80 Acc 256

"There are some tools to convert FB to wikidata, like |https://github.com/happen2me/
freebase-wikidata-convert?tab=readme-ov-file

14

https://github.com/happen2me/freebase-wikidata-convert?tab=readme-ov-file
https://github.com/happen2me/freebase-wikidata-convert?tab=readme-ov-file

B.4 DETAILS OF COMMON SENSE QUESION ANSWERING DATASET.

Common Sense Quesion Answering dataset (Talmor et al.) is a dataset answering common sense
questions based on knowledge graph. Each question is a 5-way multiple choice task that requires
reasoning with commonsense knowledge. The dataset contains 12,102 questions. The split is fixed.
The test set of CommonsenseQA is not publicly available, and model predictions can only be eval-
uated once every two weeks. So we report results on the in-house (IH) data splits used in|Yasunaga
et al.|(2021)).

B.5 DETAILS OF GRAPH PROPERTY PREDICTION DATASET.

We use ogbg-code2 (Hu et al., [2020), a dataset containing 158,100 code graphs with each graph
containing 125.2 nodes and 124.2 edges on average. The task is to predict the function name of the
code represented by the graph. We use node type in compiler and node attribute (values of constants)
as the node feature.

15

	Introduction
	Preliminary
	GL-Fusion: A Highly Integrated GNN-LLM Model
	Structure-aware Transformer Layer
	Graph-Text Cross-Attention
	GNN & LLM Twin Predictor

	Related Work
	Experiments
	Basic Graph Property Prediction
	Node Classification
	Knowledge Graph Completion
	Common Sense Question Answering
	Graph-to-Language Generation
	Ablation Study

	Conclusion
	Limitations & Broader Impacts
	Experimental details
	Dataset Details
	Details of FB15k-237-ind datasets
	Details of CSTAG datasets
	Details of citation graphs
	Details of Common Sense Quesion Answering dataset.
	Details of Graph Property Prediction dataset.

