Under review as a conference paper at ICLR 2026

ROBOMEMORY: A BRAIN-INSPIRED MULTI-MEMORY
AGENTIC FRAMEWORK FOR INTERACTIVE ENVIRON-
IN PHYSICAL EMBODIED SYS-

MENTAL LEARNING

TEMS

Anonymous authors

Paper under double-blind review

Closed-Loop
Planning

({) Planner
OYQ Critic

Information
Preprocessor

am. Query
Generator

= Step
Summarizer

3 New " Context
- Exp Clues

‘Workin Mem
Mem Association
Longterm Mem

Cerebellum
Envinfo Sub-goal
Action Sequence

Ontology Actuator

Feedback Signal

Comprehensive Embodied

Memory
r
Spatial Episodic
© e
T'emporal Semantic

Low-Level Executer
gy
Y Q

Navigation

Interaction

K

Interact NG

Real World Habitat ALFRED ROBOT

Figure 1: RoboMemory adopts a brain-inspired architecture that maps neural components to agent
modules, enabling long-term planning and interactive learning across diverse environments (real-
world, Habitat, ALFRED) and robotic hardware.

ABSTRACT

Embodied agents face persistent challenges in real-world environments, including
partial observability, limited spatial reasoning, and high-latency multi-memory
integration. We present RoboMemory, a brain-inspired framework that unifies
Spatial, Temporal, Episodic, and Semantic memory under a parallelized archi-
tecture for efficient long-horizon planning and interactive environmental learn-
ing. A dynamic spatial knowledge graph (KG) ensures scalable and consistent
memory updates, while a closed-loop planner with a critic module supports adap-
tive decision-making in dynamic settings. Experiments on EmbodiedBench show
that RoboMemory, built on Qwen2.5-VL-72B-Ins, improves average success rates
by 25% over its baseline and exceeds the closed-source state-of-the-art (SOTA)
Gemini-1.5-Pro by 3%. Real-world trials further confirm its capacity for cumu-
lative learning, with performance improving across repeated tasks. These results
highlight RoboMemory as a scalable foundation for memory-augmented embod-
ied intelligence, bridging the gap between cognitive neuroscience and robotic au-
tonomy.

INTRODUCTION

Recent advances in Vision-Language Models (VLMs) [2024}, Bai et all, 2025)) have

enabled their growing use in embodied tasks (Park et al., [2023; Hu et al.,[2023). VLM-based em-

Under review as a conference paper at ICLR 2026

bodied agents can process multimodal inputs and generate high-level textual commands (e.g., “Pick
up the cup”), which require translation via tool APIs to become executable robot actions. In con-
trast, Vision-Language-Action models (VLAs) (Kim et al., 2024} Black et al., |2024; Bjorck et al.,
2025} |Chi et al.|[2023)) produce low-level control signals directly but generally rely only on the latest
observation. This limits their ability to perform long-horizon, multi-step tasks that require reasoning
over task history. In summary, VLA models enable direct robot control but lack high-level planning
capabilities, and VLM-based embodied agents support strategic planning but struggle with direct
motor control. This highlights a key gap inherent in two distinct technical approaches to embodied
intelligence.

To bridge this gap, recent work (Yuan et al.| |2025; [Shi et al.l 2025} [Tan et al.| 2025) proposes a
“VLM planner + VLA executor” paradigm. Here, VLM-based embodied agents serve as high-level
planners that decompose complex tasks (e.g., “make a coffee”) into executable sub-instructions (e.g.,
“grasp the cup”) that VLAs can complete. Although this paradigm improves performance on multi-
step tasks, prior work suffers from two key limitations in real-world settings. First, real-world tasks
(e.g., kitchen operations) require navigating across multiple locations to gather objects and tools, but
the environment remains only partially observable at any time due to robots’ limited field of view
and dynamic occlusions. This necessitates a planner with robust spatial awareness and long-term
memory to maintain a consistent spatial awareness across viewpoints. However, most VLM-based
agents rely on chat-style context windows (e.g., logging instruction — feedback pairs (Yao et al.
2022))), which lack mechanisms for maintaining an overview of the environment’s spatial layout.
Consequently, agents cannot reliably track object locations or recognize previously visited states.
Second, pretrained VLMs are rarely trained on embodied planning trajectories, especially long-
horizon, spatially grounded ones. So VLM-based agents often struggle to generalize to real-world
settings (Yang et al.l 2025a). To overcome these challenges, VLM-based planners must support
interactive environmental learning — the ability to acquire, integrate, and retrieve spatial, episodic,
and semantic knowledge during task execution, thereby enabling adaptation through experience.

To support long-horizon planning and interactive learning in real-world settings, agents require a
comprehensive memory system with multiple specialized modules. Recent frameworks (Tan et al.,
2024} Glocker et al.,2025;|Wang et al.,[2023;|Agashe et al., 2024} [Fu et al.,2024a;|Zhao et al.,2024;
Chen et al., 2024a)) have integrated Retrieval-Augmented Generation (RAG)-based memory to en-
hance planning and interactive environmental learning (Gao et al., | 2023)), but most are designed for
simulated environments. A key limitation for real-world deployment is the absence of spatial mem-
ory, which is critical for building spatial awareness and providing context for planning. Additionally,
existing multi-module memory systems often incur significant inference latency.

To overcome these limitations, especially the need for memory that is efficient, spatially grounded,
and persistent in dynamic environments, we return to the essence of intelligence — how does the
human brain plan, remember, and learn in dynamic environments? Inspired by cognitive neuro-
science, we have designed RoboMemory, a parallel multi-memory architecture that simulates key
functional regions of the brain. RoboMemory features a hierarchical and parallelized architecture
enabling long-term planning and continuous adaptation. Drawing inspiration from cognitive neuro-
science (Milner, [1998), RoboMemory comprises four core components (Figure [I): (1) Information
Preprocessor (thalamus-inspired) for multimodal sensory integration. (2) Comprehensive Embod-
ied Memory System (hippocampus-inspired), which organizes experiential and spatial knowledge
through a three-tier structure (long-term, short-term, and sensory memory). Within this tiered sys-
tem, four memory modules: Spatial, Temporal, Episodic, and Semantic operate under a unified,
parallel-update paradigm to enable coherent knowledge integration while minimizing latency. (3)
Closed-Loop Planning Module (prefrontal cortex-inspired) for high-level action sequencing. These
three modules provide a high-level planner with comprehensive sensory and memorization ability.
(4) Low-level Executor (cerebellum-inspired), consisting of a VLA-based operation model and a
SLAM-based navigation model. The Low-level Executor directly controls the robot with low-level
control signals to navigate and operate in the real-world environment.

To verify whether RoboMemory truly addresses the problems of long-horizon planning and inter-
active learning, we evaluate RoboMemory on EmbodiedBench, a long-horizon planning benchmark
(Yang et al., 2025a). Using Qwen2.5-VL-72B as the base model, RoboMemory improves average
success rates by 25% over its base model and 3% over the closed-source state-of-the-art model,
Gemini-1.5-Pro. In real-world trials, RoboMemory executed diverse tasks twice consecutively:
once for environmental familiarization (learning phase) and once for memory-augmented execu-

Under review as a conference paper at ICLR 2026

tion (testing phase) without resetting memory. The observed performance improvement validates
RoboMemory’s capacity for interactive environmental learning. We further conduct ablation stud-
ies and error analysis to quantify component contributions and identify remaining limitations. We
summarize our contribution as follows:

* We propose a brain-inspired unified embodied memory system, integrating four concur-
rently updated modules (Spatial, Temporal, Episodic, Semantic) into a single framework. It
enables efficient, comprehensive memory operations and coherent knowledge integration,
which are critical for interactive environmental learning in real-world embodied scenarios.

* We design a retrieval-based incremental update algorithm for real-time evolution of Spatial
Knowledge Graphs (KGs). By retrieving relevant subgraphs, detecting local inconsisten-
cies, and merging new observations, it ensures efficient, consistent KG maintenance and
addresses the scalability bottleneck of previous KG-based methods in embodied settings.

* RoboMemory supports interactive environmental learning for real-world physical robots:
it enables sequential diverse tasks without memory reset, with experience accumulation
driving steady performance improvements, demonstrating practical long-term autonomous
learning in physical scenarios.

2 ROBOMEMORY

RoboMemory is a hierarchical embodied agent system that equips robots with three core memory
capabilities: historical interaction logs, dynamically updated spatial layouts, and accumulated task
knowledge. As illustrated in Figure 2} each iteration, RoboMemory follows a process of ‘“Percep-
tion — Memory — Retrieval — Planning — Execution” process, ensuring that the agent continuously
calibrates its memory and behavior in dynamic environments.

First, the information preprocessor converts multimodal sensor inputs into a textual summary of
the current scene, which serves as the primary input to the Comprehensive Embodied Memory.
Next, the Comprehensive Embodied Memory updates its internal representations, including action
histories, object locations, and experiential knowledge. After information is updated, the memory
system retrieves contextually relevant entries to inform the Closed-Loop Planning Module. Then,
leveraging this contextual memory, the Closed-Loop Planning Module generates high-level, text-
based action instructions. Finally, these commands are dispatched to low-level executors, who will
directly control the robot and complete the instructions.

2.1 INFORMATION PREPROCESSOR

At each time step i, RoboMemory receives a visual observation O;: an RGB frame (in simulation)
or a short video clip (on physical robots), representing the agent’s observations.

Since raw visual data is unsuitable for direct use in memory construct and retrieval, RoboMemory
first employs an information preprocessor to convert multimodal observations into textual repre-
sentations, thereby providing a semantic interface for subsequent memory and planning modules.
The information preprocessor executes two Vision-Language Models (VLMs) in parallel: (1) Step
summarizer S: Transforms Q; into a concise textual description s; of the just-executed action. The
string s; is stored in the system’s working memory. (2) Query generator Q: Derives a query ¢; from
the same observation O;, which is used to probe long-term memory for relevant episodes.

Together, S and Q provide a swift, text-based interface between raw sensory data and provide basic
information in each iteration for RoboMemory’s Comprehensive Embodied Memory System.

2.2 COMPREHENSIVE EMBODIED MEMORY SYSTEM

We present a high-level memory system designed to enhance embodied agents’ long-horizon plan-
ning and enable interactive learning in dynamic, partially observable environments. Built on RAG
and KG technologies (Gutiérrez et al., [2024), the system comprises Spatial-Temporal Memory and
Long-Term Memory. Spatial-Temporal Memory continuously encodes object relationships and en-
vironmental layouts, as well as detailed task execution traces. These records inform Long-Term

Under review as a conference paper at ICLR 2026

02 Comprehensive Mmbodied Memory =

Step Summarizer

Step Summarizer v) Update
« ., Parallel Spatial (ﬁ Temporal L i) ;g Action/Task level history
Query Generator O Update
1 op Pla g Relation Retriever i@ Dynamic KG
04 Visual inputs & Actions T

Planne find an apple; pick up apple i %
L) S \

You are facing a fridge, the apple is not in your
observation. It may be inside the fridge ...need Critic
replan s According to new graph, update

03 Open fridge open fridge; find an apple

= Update for | ¢ ‘ : I
(spatial) spatial memory | ™\ N
Apple is in the fridge ... ot i ;
I \ . H i
find a knife; pick up the knife; ...; slice the apple; o Parallel) Isomorphism
pick up the apple ...
. p | (3= Long-term =
i uy k up the knife Temporal ’V\ > I==] Vector DB
I have | Memory 4" memory creator N
You can only hold one object at a time. Now you .
Critic
are holding a knife ...need replan |
s} Add Update Remove Noop
drop the knife; pick up the app &
® ® W O

7 Slice the apple 08 Drop the knife 09 Pick up the apple

Flgure 2: RoboMemory architecture. (a) Left: Parallel Step Summarizer and Query Generator
generate updates/queries for Comprehensive Embodied Memory. These memories enable Closed-
Loop Planning for tasks like “slice and pick up the apple”—the Planner generates plans, while the
Critic and memories adjust decisions via feedback from visual inputs/results. (b) Right: Spatial
memory maintains a relevance/similarity-updated KG, and Semantic/Episodic memory manages a
Vector DB with analogous logic. Besides, Temporal memory is implemented as a linear FIFO buffer
that stores step-wise summaries generated by the Step Summarizer.

Memory, which goes through spatial-temporal information collected in each task, capturing what
strategies succeeded or failed and relevant environmental facts (Figure 2).

The Comprehensive Embodied Memory module receives summarized sensory information from the
information preprocessor to update both memory components in real time. Critically, all updates and
retrievals are performed in parallel, ensuring efficient operation even under multiple active memory
modules.

2.2.1 SPATIAL-TEMPORAL MEMORY SYSTEM

Due to the dynamic and partially observable nature of real embodied environments, completing
long-term tasks requires dynamically maintaining a spatial-temporal memory system. The system
records the agent’s interaction history with the environment and maintains a continuously updated
spatial model of the current surroundings. To achieve these two purposes, we design spatial mem-
ory and temporal memory. The combination of spatial and temporal memory provides the embodied
agent with comprehensive contextual awareness, supporting effective planning and interactive envi-
ronmental learning in real-world settings.

Temporal Memory. Interactions between the robot and the environment must be recorded. For
such temporally sequential memory, a simple structure suffices: a sequential buffer with automatic
summarization triggered upon reaching capacity. The buffer tracks the high-level actions from the
Embodied Agent, how the low-level executor actually controls the robot, and the environmental
feedback received. In a specific design, temporal memory can store up to /N interaction summaries,
each generated by an information preprocessor. When the buffer is full, rather than discarding old
entries outright, we compress the oldest IV steps into a single summarized entry using a VLM, which
is then reinserted at the front of the buffer, ensuring continuous context retention without unbounded
growth.

Spatial Memory. Current spatial memory approaches often rely on RGB-D cameras to reconstruct
3D point clouds (Zhang et al.,|2023}; Chang et al., [2023). However, such representations are overly
detailed for high-level planning in embodied agents — precise geometric relationships (e.g., exact
distances between objects) are unnecessary. Moreover, point clouds are difficult to update efficiently
in dynamic scenes.

Under review as a conference paper at ICLR 2026

To address these problems, we advocate for an abstracted spatial memory that captures object-level
entities and their spatial relationships. Inspired by |Gutiérrez et al.| (2024), we represent this memory
as a KG: objects become vertices, and spatial relations are encoded as edges. The KG focuses on
high-level spatial relations (e.g., “cup on table”, “key left of drawer”). Unlike geometric represen-
tations that encode precise coordinates, which are often irrelevant for high-level planning, our KG
focuses on semantically meaningful, task-relevant relations. This abstraction enhances the agent’s
spatial reasoning capability in dynamic environments. In our memory system, spatial memory is
a dynamic KG storing high-level spatial knowledge. To overcome the limited spatial reasoning of
embodied agents in dynamic environments, we use a KG.

We introduce a retrieval-driven, incremental KG update algorithm that maintains a locally mod-
ifiable, globally consistent, and dynamically adaptive spatial memory. As illustrated in the right
panel of Figure[2] the update process proceeds in four steps: (1) retrieves the most relevant sub-KG
around new observations. (2) Injects new relations from the current observation by a VLM-based
Relation Retriever. (3) Detects and resolves conflicts between newly extracted relations and exist-
ing ones (e.g., “cup on table” vs. ‘cup in drawer”) using a VLM-based resolver, which decides
whether to add, delete, or modify edges. (4) Merges back and prunes isolated vertices. Moreover,
our retrieval-based incremental update algorithm comes with provable efficiency guarantees: for a
KG with n vertices and maximum degree D, the number of vertices processed per update is bounded
by O(D¥), where K is the retrieval hop distance (see Appendix for formal analysis). Further
architectural and implementation details are provided in Appendix

2.2.2 INTERACTIVE ENVIRONMENTAL LEARNING SYSTEM

Although episodic memory can record “what happened,” it cannot directly answer “why it succeed-
ed/failed” or “what should be done next time.” Drawing on cognitive psychology’s classification of
human long-term memory, we divide our system into episodic and semantic memory: the former
records agent-environment interaction histories, while the latter extracts experiential insights to sup-
port long-term task reasoning. This update process mirrors human daily experience consolidation
during sleep (Maboudi et al., [2024).

Episodic Memory: It captures task-level interactions, accounting for temporal interdependencies
between sequential tasks in the same environment. The agent must memorize what it has done
before to complete future tasks. Moreover, task-level interactions can be a reference that may help
the agent improve its plan in the future.

Semantic Memory: It accumulates step-by-step action usage experiences (based on invoked actions
and outcomes) to inform action arrangement. Post-task, it summarizes temporal memory, distilling
successes from completed tasks and identifying failure causes/improvement strategies from unsuc-
cessful ones, thus enabling both action-level and task-level learning across both task and action
levels.

In implementation, both episodic and semantic memory share the same RAG framework consisting
of an extractor, updater, and RAG storage (each entry is a memory entity). Post-task, the Extractor
summarizes the task’s Spatial-Temporal Memory into a new memory entity. The RAG then retrieves
similar existing entities (old information) from the RAG. Then, the Updater deletes, adds, or updates
old memory entities according to new information. After that, we write the updated memory entities
back to the RAG. Because we only update memory entities similar to new information, efficiency
is ensured by restricting updates to old memory entities relevant to the new entity instead of all
memory entities stored in the RAG.

2.3 CLOSED-LOOP PLANNING MODULE FOR DYNAMIC ENVIRONMENT

The Closed-Loop Planning Module integrates information about the current task provided by the
Spatial-Temporal Memory, Semantic and Episodic information recorded in long-term memory, and
current observations to perform action planning. Each action is planned and passed on to the low-
level executor for execution.

To enable closed-loop control in embodied environments, the Closed-Loop Planning Module adopts
the Planner-Critic mechanism (Lei et al.,2025)), which consists of the planner and the critic module.
For each planning step, the planner generates a long-term plan consisting of multiple steps. However,

Under review as a conference paper at ICLR 2026

due to the dynamics of embodied environments, the action sequence in the long-term plan may
become outdated during the execution of the plan. Thus, before executing each step, we use the
Critic model to evaluate whether the proposed action in this step remains appropriate under the latest
environment. If not, the planner will re-plan based on the latest information. The demonstration of
this process is shown in Figure 2]

However, our experiments reveal that the original Planner-Critic mechanism may suffer from infinite
loops. In the original mechanism, the first step of the action sequence output by the Planner is
evaluated by the Critic before execution, which can lead to an infinite loop: if the Critic always
demands replanning, no action will ever be executed. To address this, we modified the Planner-
Critic mechanism so that the first step is not evaluated by the Critic. This ensures that even if the
Critic persistently demands replanning, the RoboMemory will still execute actions.

2.4 LOW-LEVEL EXECUTOR

The RoboMemory framework is a two-layer hierarchical agent framework. This design enables
RoboMemory to accomplish longer-term tasks in the real world. The upper layer is responsible only
for high-level planning, while the Low-level Executor carries out the actions planned by the upper
layer in the real environment.

We employ a LoRA-finetuned VLA model, 7y (Hu et al.l [2022; Black et al., [2024), to generate
manipulation actions, and a SLAM-based navigation model for locomotion. The low-level executor
then translates high-level actions planned by RoboMemory into concrete arm and chassis move-
ments in the real world.

Table 1: Comparison of Success Rates (SR) and Goal Condition Success Rates (GC) across difficulty
levels between RoboMemory and baseline methods on EB-ALFRED.

Method Type Avg. Base Long

SR GC SR GC SR GC
Single VLM-Agents
GPT-40 59.0 % 68.3 % 64.0 % 74.0 % 54.0 % 62.5 %
GPT-40-mini 17.0 % 32.4 % 34.0 % 47.8 % 0.0 % 17.0 %
Claude-3.5-Sonnet Closed-source 62.0 % 63.3 % 72.0 % 72.0 % 52.0 % 54.5 %
Gemini-1.5-Pro T 64.0 % 69.7 % 70.0 % 74.3 % 58.0 % 65.0 %
Gemini-2.0-flash 60.0 % 63.9 % 62.0 % 65.7 % 58.0 % 62.0 %
Llama-3.2-90B-Vision-Ins 27.0 % 339 % 38.0 % 43.7 % 16.0 % 24.0 %
InternVL2.5-78B 40.0 % 45.7 % 38.0 % 423 % 42.0 % 49.0 %
InternVL3-78B Open-source 37.0% - 38.0% - 36.0% -
InternVL2.5-38B 31.0% 36.9% 36.0% 37.3% 26.0% 36.5%
Qwen2.5-VL-72B-Ins 42.0 % - 50.0 % - 34.0 % -
VLM-Agent Frameworks
Voyager (Qwen2.5-VL-72B-Ins) 44.0% 63.7% 56.0% 73.2% 32.0% 54.2%
Reflexion (Qwen2.5-VL-72B-Ins) Baselines 29.0% 43.2% 48.0% 54.0% 10.0% 33.0%
Cradle (Qwen2.5-VL-72B-Ins) 43.0% 54.6% 54.0% 67.9% 32.0% 41.0%
RoboMemory (Qwen2.5-VL-72B-Ins) Ours 67.0 % 78.4 % 68.0 % 75.5 % 66.0 % 81.3 %

3 EXPERIMENTS

3.1 BENCHMARKS

To evaluate the task planning ability of RoboMemory, we select a subset of the EB-ALFRED bench-
mark from EmbodiedBench(Yang et al., [2025a). We selected the Base and Long subsets because
they aim to test the agent’s planning ability. The Base and Long subset comprises 100 tasks for
complex embodied tasks. The EB-ALFRED environment provides a visually-grounded operational
setting that closely mimics real-world conditions (see Appendix [E|for environment details), enabling
direct comparison with established baselines.

Additionally, we have also evaluated RoboMemory’s capabilities on the EB-Habitat benchmark
(Yang et al., [2025a)). For detailed results, please refer to Appendix |g

Under review as a conference paper at ICLR 2026

Moreover, we set up an environment to test the interactive environmental learning ability of
RoboMemory in the real world.

3.2 SETTINGS & BASELINES

To facilitate comparisons, we consider two types of baselines. First, we choose the advanced closed-
source and open-source VLMs as a single agent. We compare their performance with RoboMemory.
For closed source VLMs, we choose GPT-40 and GPT-40-mini (OpenAl, [2024; Hurst et al.|, [2024),
Claude3.5-Sonnet (Anthropicl 2024), Gemini-1.5-Pro and Gemini-2.0-flash (Team et al.l 2024;
DeepMind, [2024). For open source VLMs, we choose Llama-3.2-90B-Vision-Ins (Meta, |2024),
InternVL-2.5-78B/28B (Chen et al., 2024b), InternVL-3-72B (Zhu et al., [2025)), and Qwen2.5-VL-
72B-Ins (Bai et al.||2025). Secondly, we choose three agent frameworks: (1) Reflexion (Shinn et al.}
2024), which introduces a simple long-term memory and a self-reflection module. Reflexion uses
the self-reflection module to summarize experiences as long-term memory, thereby enhancing the
model’s capabilities. (2) Voyager (Wang et al., 2023), which utilizes a skill library as its procedu-
ral memory, is a widely used baseline for embodied agent planning. (3) Cradle (Tan et al., 2024)),
which proposes a general agent framework with episodic and procedural memory and gains good
performances at various multi-model agent tasks.

In our experiments, each agent framework is tested using Qwen2.5-VL-72b-Ins (Team, 2024)). The
Qwen2.5-VL-72b-Ins represents a high-performing open-source alternative. Notably, the Qwen2.5-
VL-72b-Ins demonstrates performance comparable to advanced closed-source VLMs in several
benchmark tasks (White et al.l [2024). We use the Qwen3-Embedding model (Zhang et al.l 2025)
to create embedding vectors for RAGs in RoboMemory. For the Low-level Executor, since EB-
ALFRED provides high-level action APIs, we use the low-level executor provided by Embodied-
Bench instead of the VLA-based method.

We define two evaluation metrics to assess the performance: (1) Success Rate (SR), which is the
ratio of completed tasks to the total number of tasks in each difficulty level. This metric reflects the
agent’s ability to complete tasks across randomly generated scenarios. (2) Goal Condition Success
Rate (GC), which is the ratio of intermediate conditions achieved to the maximum possible score in
each scenario. An GC of 100% indicates that the task is completed in the given scenario. These two
metrics can be computed as:

SR =E;ex [lscn,=ccon,] (D
SCN,
6C =Euex | Gont |)

Where X’ denotes the test subset, and x represents a test task. The success condition number (SC'N,,)
refers to the number of conditions the agent has accomplished, while the global condition number
(GCN,) indicates the total number of conditions required for task completion. The task is consid-
ered successful if SCN, = GCN,.

Table 2: Ablation Study on RoboMemory’s Suc-

! cess Rate (SR)
‘g is Method Avg. Base Long
RoboMemory 7% 68% 66%
- w/o critic 55% 60% 50%
- w/o spatial memory 7% 2% 42%

- w/o long-term memory 57% 66% 48%
- w/o episodic memory 62% 68% 56%
0 1o » o “ o - w/o semantic memory 58% 66% 50%

Iteration

0

Figure 3: Efficiency improvement of Compre-
hensive Embodied Memory System

Under review as a conference paper at ICLR 2026

3.3 MAIN RESULTS

As shown in Table [1} our model achieves significant improvements over both single VLM agents
and Agent frameworks on the EB-ALFRED. Compared to the SOTA Single VLM-Agent model,
Geminil.5-Pro, RoboMemory with Qwen2.5-VL-72B-Ins backbone improves the average SR by
3% and GC by 15%. This demonstrates RoboMemory’s superiority over single VLM-Agents, prov-
ing that an Agent framework with open-source models can outperform closed-source SOTA models.
Furthermore, when tested against other VLM-Agent frameworks, RoboMemory also shows sub-
stantial gains. This is because, unlike other frameworks, RoboMemory’s brain-like memory system
provides embodied models with more accurate and persistent contextual information. Additionally,
the Planner-Critic mechanism provides a closed-loop planning ability, which helps the RoboMem-
ory gain better performance in long-term tasks. Because the RoboMemory can detect and try to
overcome possible failures. And it is more robust when encountering unexpected situations.

3.4 EFFICIENCY ANALYSIS

To evaluate the efficiency of the Comprehensive Embodied Memory module, we tasked RoboMem-
ory with executing 10 long-horizon tasks, each comprising approximately 50 steps. We exclusively
measured the wall-clock time consumed by memory update and retrieval operations. We analyzed
the scaling behavior of memory update latency across three distinct configurations: (1) fully paral-
lel update and retrieval across all memory modules; (2) sequential update of each memory module
without parallelism; and (3) update of only the most fundamental memory component: the Tem-
poral Memory. Results are presented in Figure 3] As shown, our parallel update strategy enables
updating a multi-module memory system with latency comparable to that of updating a single base
memory module. This demonstrates the critical efficiency gains afforded by parallelization across
the memory architecture.

3.5 ABLATION STUDIES

We used the full Base and Long Subset from EB-ALFRED to validate RoboMemory’s effective-
ness. We removed each component systematically and observed performance changes across task
categories. We use the success rate as our metric. Results are shown in Table 2]

Long-term Memory Adding long-term memory significantly improved RoboMemory’s success
rate. The experiment shows that it enables interactive environmental learning while attempting
to complete tasks. The semantic memory learns low-level skills’ properties, such as in what cir-
cumstances an action may fail. The temporal memory records all task attempts (successful/failed),
providing valuable experience at the task level and giving insight into how to complete a task suc-
cessfully. This helps the RoboMemory predict action outcomes and avoid ineffective attempts. This
ability indicates that the RoboMemory has an interactive environmental learning capability.

Spatial Memory Spatial memory is crucial for embodied agents, especially given that current pre-
trained VLMs have limited spatial understanding ability. Our novel dynamic KG update algo-
rithm enables KG-based spatial memory in dynamic environments. This spatial reasoning helps
RoboMemory handle partially observable embodied settings.

Critic Module Table[2shows performance without the critic module (55% vs 67% with full system).
This drop highlights how the critic’s closed-loop planning adapts to dynamic environments. It helps
RoboMemory recover from failures faster and handle unexpected situations better.

3.6 REAL-WORLD ROBOT DEPLOYMENT

To evaluate RoboMemory’s interactive environmental learning capability in the real world, we de-
signed a kitchen environment inspired by EB-ALFRED and EB-Habitat. The scene contains 5 nav-
igable points, 8 interactive objects, and over 10 non-interactive (but potentially distracting) items.
The environment is shown in Figure E} In the real world, we use interactive environmental video
recordings captured during action execution (rather than static snapshots taken after action comple-
tion) as RoboMemory’s input. This provides a more temporally coherent perception. We created
three task categories (5 tasks each). Tasks are matched to EB-ALFRED’s Base subset (avg. ora-
cle: 10-20 steps), though actual executions often exceed 20 steps due to search and error recovery.

Under review as a conference paper at ICLR 2026

0
50% 46.67%
40%

30%

Success Rate

20%

Trash can 10%

0% o -
’ First time Second time

Figure 5: The improvement of RoboMemory af-
ter learning in the real world.

Figure 4: Visualization of the experimental envi-
ronment.

Due to search and error recovery, the robot often exceeds 20 steps per task. Additional hardware
experiment details are in Appendix [E]

To test the interactive environmental learning ability of RoboMemory, we run each task twice with-
out clearing long-term memory between attempts. Success rates for first and second attempts are
shown in Figure 3]

The second attempt showed significantly higher success rates. This proves RoboMemory’s long-
term memory effectively guides subsequent tasks in real embodied environments. Key observations
include: (1) Closed-loop error recovery: RoboMemory retries failed actions when possible, even
if the low-level executor (VLA model) fails. (2) Spatial reasoning: RoboMemory remembers ob-
ject locations and spatial relationships using its memory. (3) Interactive environmental learning:
RoboMemory analyzes failure causes reasonably. These analyses guide future decisions. Detailed
examples demonstrating these capabilities and further discussions are provided in Appendix [F

Moreover, we observed a significant drop in task success rates when deploying the agent with the
Low-level Executor in real-world environments. This performance degradation primarily stems from
the executor’s inherent limitations: (1) The VLA model exhibits unreliable instruction-following ca-
pabilities, frequently failing during grasping actions or selecting incorrect objects; (2) Pre-trained
VLM models demonstrate inadequate video understanding - while capable of recognizing static ob-
jects, they struggle to interpret dynamic visual information such as action failures or state changes.
These limitations collectively contribute to the reduced performance compared to simulated envi-
ronments.

4 CONCLUSION AND FUTURE WORK

In summary, RoboMemory, a brain-inspired multi-memory framework, facilitates long-horizon
planning and interactive environmental learning in real-world embodied systems by addressing key
challenges such as memory latency, task correlation capture, and planning loops. Experiments on
EmbodiedBench demonstrate that RoboMemory outperforms state-of-the-art closed-source VLMs
and agent frameworks, with ablation studies confirming the critical roles of the Critic module and
spatial/long-term memory. Real-world deployment further validates its interactive learning capa-
bility through improved success rates in repeated tasks. Despite limitations arising from reasoning
errors and executor dependence, RoboMemory provides a foundation for generalizable, memory-
augmented agents, with future work aimed at refining reasoning and enhancing execution robust-
ness.

A notable open challenge in hierarchical embodied agents, including RoboMemory, lies in the in-
terface between high-level planners and low-level executors. Existing frameworks typically rely on
language instructions to convey actions, yet some execution details (e.g., precise grasp points) are
difficult to describe textually and are better captured through other modalities, such as vision. While
our current work emphasizes long-term planning and interactive learning, future research may im-
prove generalization by developing richer multimodal interactions between the agent and executor.

Under review as a conference paper at ICLR 2026

REFERENCES

Saaket Agashe, Jiuzhou Han, Shuyu Gan, Jiachen Yang, Ang Li, and Xin Eric Wang. Agent s: An
open agentic framework that uses computers like a human. arXiv preprint arXiv:2410.08164,
2024.

Anthropic. Claude 3.5 sonnet, 2024. URL https://www.anthropic.com/news/claude-3-5-sonnet.

Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,
Shijie Wang, Jun Tang, et al. Qwen2. 5-vl technical report. arXiv preprint arXiv:2502.13923,
2025.

Johan Bjorck, Fernando Castafieda, Nikita Cherniadev, Xingye Da, Runyu Ding, Linxi Fan,
Yu Fang, Dieter Fox, Fengyuan Hu, Spencer Huang, et al. GrOOt nl1: An open foundation model
for generalist humanoid robots. arXiv preprint arXiv:2503.14734, 2025.

Kevin Black, Noah Brown, Danny Driess, Adnan Esmail, Michael Equi, Chelsea Finn, Niccolo
Fusai, Lachy Groom, Karol Hausman, Brian Ichter, et al. my: A vision-language-action flow
model for general robot control. arXiv preprint arXiv:2410.24164, 2024.

Neil Burgess, Eleanor A Maguire, and John O’Keefe. The human hippocampus and spatial and
episodic memory. Neuron, 35(4):625-641, 2002.

Matthew Chang, Theophile Gervet, Mukul Khanna, Sriram Yenamandra, Dhruv Shah, So Yeon
Min, Kavit Shah, Chris Paxton, Saurabh Gupta, Dhruv Batra, et al. Goat: Go to any thing. arXiv
preprint arXiv:2311.06430, 2023.

Minghao Chen, Yihang Li, Yanting Yang, Shiyu Yu, Binbin Lin, and Xiaofei He. Automanual:
Constructing instruction manuals by 1lm agents via interactive environmental learning. Advances
in Neural Information Processing Systems, 37:589-631, 2024a.

Xiaojun Chen, Shengbin Jia, and Yang Xiang. A review: Knowledge reasoning over knowledge
graph. Expert systems with applications, 141:112948, 2020.

Zhe Chen, Weiyun Wang, Yue Cao, Yangzhou Liu, Zhangwei Gao, Erfei Cui, Jinguo Zhu, Shen-
glong Ye, Hao Tian, Zhaoyang Liu, et al. Expanding performance boundaries of open-source
multimodal models with model, data, and test-time scaling. arXiv preprint arXiv:2412.05271,
2024b.

Cheng Chi, Zhenjia Xu, Siyuan Feng, Eric Cousineau, Yilun Du, Benjamin Burchfiel, Russ Tedrake,
and Shuran Song. Diffusion policy: Visuomotor policy learning via action diffusion. The Inter-
national Journal of Robotics Research, pp. 02783649241273668, 2023.

Wonje Choi, Jinwoo Park, Sanghyun Ahn, Daehee Lee, and Honguk Woo. Nesyc: A neuro-symbolic
continual learner for complex embodied tasks in open domains. arXiv preprint arXiv:2503.00870,
2025.

Google DeepMind. Introducing gemini 2.0: our new ai model for the agentic era, 2024. URL
https://blog.google/technology/google-deepmind/google- gemini-ai-update-december-2024/.

Dayuan Fu, Biqing Qi, Yihuai Gao, Che Jiang, Guanting Dong, and Bowen Zhou. Msi-agent: In-
corporating multi-scale insight into embodied agents for superior planning and decision-making.
arXiv preprint arXiv:2409.16686, 2024a.

Zipeng Fu, Tony Z Zhao, and Chelsea Finn. Mobile aloha: Learning bimanual mobile manipulation
with low-cost whole-body teleoperation. arXiv preprint arXiv:2401.02117, 2024b.

Yunfan Gao, Yun Xiong, Xinyu Gao, Kangxiang Jia, Jinliu Pan, Yuxi Bi, Yixin Dai, Jiawei Sun,
Haofen Wang, and Haofen Wang. Retrieval-augmented generation for large language models: A
survey. arXiv preprint arXiv:2312.10997, 2(1), 2023.

Marc Glocker, Peter Honig, Matthias Hirschmanner, and Markus Vincze. Llm-empowered em-
bodied agent for memory-augmented task planning in household robotics. arXiv preprint
arXiv:2504.21716, 2025.

10

https://www.anthropic.com/news/claude-3-5-sonnet
https://blog.google/technology/google-deepmind/google-gemini-ai-update-december-2024/

Under review as a conference paper at ICLR 2026

Bernal Jiménez Gutiérrez, Yiheng Shu, Yu Gu, Michihiro Yasunaga, and Yu Su. Hipporag:
Neurobiologically inspired long-term memory for large language models. arXiv preprint
arXiv:2405.14831, 2024.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
Weizhu Chen, et al. Lora: Low-rank adaptation of large language models. ICLR, 1(2):3, 2022.

Yafei Hu, Quanting Xie, Vidhi Jain, Jonathan Francis, Jay Patrikar, Nikhil Keetha, Seungchan Kim,
Yagqi Xie, Tianyi Zhang, Hao-Shu Fang, et al. Toward general-purpose robots via foundation
models: A survey and meta-analysis. arXiv preprint arXiv:2312.08782, 2023.

Aaron Hurst, Adam Lerer, Adam P Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark, AJ Os-
trow, Akila Welihinda, Alan Hayes, Alec Radford, et al. Gpt-4o system card. arXiv preprint
arXiv:2410.21276, 2024.

Moo Jin Kim, Karl Pertsch, Siddharth Karamcheti, Ted Xiao, Ashwin Balakrishna, Suraj Nair,
Rafael Rafailov, Ethan Foster, Grace Lam, Pannag Sanketi, et al. Openvla: An open-source
vision-language-action model. arXiv preprint arXiv:2406.09246, 2024.

Mingcong Lei, Ge Wang, Yiming Zhao, Zhixin Mai, Qing Zhao, Yao Guo, Zhen Li, Shuguang Cui,
Yatong Han, and Jinke Ren. Clea: Closed-loop embodied agent for enhancing task execution in
dynamic environments. arXiv preprint arXiv:2503.00729, 2025.

Bill Yuchen Lin, Yicheng Fu, Karina Yang, Faeze Brahman, Shiyu Huang, Chandra Bhagavatula,
Prithviraj Ammanabrolu, Yejin Choi, and Xiang Ren. Swiftsage: A generative agent with fast and
slow thinking for complex interactive tasks. Advances in Neural Information Processing Systems,
36, 2024.

Kourosh Maboudi, Bapun Giri, Hiroyuki Miyawaki, Caleb Kemere, and Kamran Diba. Retuning of
hippocampal representations during sleep. Nature, 629(8012):630-638, 2024.

Meta. Llama 3.2: Revolutionizing edge ai and vision with open, customizable models, 2024. URL
https://ai.meta.com/blog/llama-3-2-connect-2024- vision-edge-mobile-devices/.

David Milner. Cognitive neuroscience: the biology of the mind and findings and current opinion in
cognitive neuroscience. Trends in cognitive sciences, 2(11):463, 1998.

OpenAl. Gpt-40 mini: advancing cost-efficient intelligence, 2024. URL https://openai.com/index/
gpt-4o-mini-advancing-cost-efficient-intelligence/.

Charles Packer, Sarah Wooders, Kevin Lin, Vivian Fang, Shishir G. Patil, Ion Stoica, and Joseph E.
Gonzalez. MemGPT: Towards llms as operating systems. arXiv preprint arXiv:2310.08560,
2023.

Joon Sung Park, Joseph O’Brien, Carrie Jun Cai, Meredith Ringel Morris, Percy Liang, and
Michael S Bernstein. Generative agents: Interactive simulacra of human behavior. In Proceedings
of the 36th annual acm symposium on user interface software and technology, pp. 1-22, 2023.

Lucy Xiaoyang Shi, Brian Ichter, Michael Equi, Liyiming Ke, Karl Pertsch, Quan Vuong, James
Tanner, Anna Walling, Haohuan Wang, Niccolo Fusai, et al. Hi robot: Open-ended instruction
following with hierarchical vision-language-action models. arXiv preprint arXiv:2502.19417,
2025.

Noah Shinn, Federico Cassano, Ashwin Gopinath, Karthik Narasimhan, and Shunyu Yao. Reflexion:
Language agents with verbal reinforcement learning. Advances in Neural Information Processing
Systems, 36, 2024.

Chan Hee Song, Jiaman Wu, Clayton Washington, Brian M Sadler, Wei-Lun Chao, and Yu Su.
Llm-planner: Few-shot grounded planning for embodied agents with large language models. In
Proceedings of the IEEE/CVF international conference on computer vision, pp. 2998-3009, 2023.

Huajie Tan, Xiaoshuai Hao, Cheng Chi, Minglan Lin, Yaoxu Lyu, Mingyu Cao, Dong Liang, Zhuo
Chen, Mengsi Lyu, Cheng Peng, et al. Roboos: A hierarchical embodied framework for cross-
embodiment and multi-agent collaboration. arXiv preprint arXiv:2505.03673, 2025.

11

https://ai.meta.com/blog/llama-3-2-connect-2024-vision-edge-mobile-devices/
https://openai.com/index/gpt-4o-mini-advancing-cost-efficient-intelligence/
https://openai.com/index/gpt-4o-mini-advancing-cost-efficient-intelligence/

Under review as a conference paper at ICLR 2026

Weihao Tan, Wentao Zhang, Xinrun Xu, Haochong Xia, Ziluo Ding, Boyu Li, Bohan Zhou, Junpeng
Yue, Jiechuan Jiang, Yewen Li, et al. Cradle: Empowering foundation agents towards general
computer control. arXiv preprint arXiv:2403.03186, 2024.

Gemini Team, Petko Georgiev, Ving Ian Lei, Ryan Burnell, Libin Bai, Anmol Gulati, Garrett Tanzer,
Damien Vincent, Zhufeng Pan, Shibo Wang, et al. Gemini 1.5: Unlocking multimodal under-
standing across millions of tokens of context. arXiv preprint arXiv:2403.05530, 2024.

Qwen Team. Qwen2.5: A party of foundation models, September 2024. URL https://qwenlm.
github.io/blog/qwen2.5/.

Guanzhi Wang, Yuqi Xie, Yunfan Jiang, Ajay Mandlekar, Chaowei Xiao, Yuke Zhu, Linxi Fan,
and Anima Anandkumar. Voyager: An open-ended embodied agent with large language models.
arXiv preprint arXiv:2305.16291, 2023.

Colin White, Samuel Dooley, Manley Roberts, Arka Pal, Ben Feuer, Siddhartha Jain, Ravid Shwartz-
Ziv, Neel Jain, Khalid Saifullah, Siddartha Naidu, et al. Livebench: A challenging, contamination-
free llm benchmark. arXiv preprint arXiv:2406.19314, 2024.

Rui Yang, Hanyang Chen, Junyu Zhang, Mark Zhao, Cheng Qian, Kangrui Wang, Qineng Wang,
Teja Venkat Koripella, Marziyeh Movahedi, Manling Li, et al. Embodiedbench: Comprehen-
sive benchmarking multi-modal large language models for vision-driven embodied agents. arXiv
preprint arXiv:2502.09560, 2025a.

Zhejian Yang, Yongchao Chen, Xueyang Zhou, Jiangyue Yan, Dingjie Song, Yinuo Liu, Yuting
Li, Yu Zhang, Pan Zhou, Hechang Chen, et al. Agentic robot: A brain-inspired framework for
vision-language-action models in embodied agents. arXiv preprint arXiv:2505.23450, 2025b.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629,
2022.

Haoqi Yuan, Yu Bai, Yuhui Fu, Bohan Zhou, Yicheng Feng, Xinrun Xu, Yi Zhan, Borje F Karlsson,
and Zongqing Lu. Being-0: A humanoid robotic agent with vision-language models and modular
skills. arXiv preprint arXiv:2503.12533, 2025.

Hongxin Zhang, Weihua Du, Jiaming Shan, Qinhong Zhou, Yilun Du, Joshua B Tenenbaum, Tian-
min Shu, and Chuang Gan. Building cooperative embodied agents modularly with large language
models. arXiv preprint arXiv:2307.02485, 2023.

Yanzhao Zhang, Mingxin Li, Dingkun Long, Xin Zhang, Huan Lin, Baosong Yang, Pengjun Xie,
An Yang, Dayiheng Liu, Junyang Lin, et al. Qwen3 embedding: Advancing text embedding and
reranking through foundation models. arXiv preprint arXiv:2506.05176, 2025.

Andrew Zhao, Daniel Huang, Quentin Xu, Matthieu Lin, Yong-Jin Liu, and Gao Huang. Expel: LIm
agents are experiential learners. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 38, pp. 19632-19642, 2024.

Tony Z Zhao, Vikash Kumar, Sergey Levine, and Chelsea Finn. Learning fine-grained bimanual
manipulation with low-cost hardware. arXiv preprint arXiv:2304.13705, 2023.

Jinguo Zhu, Weiyun Wang, Zhe Chen, Zhaoyang Liu, Shenglong Ye, Lixin Gu, Hao Tian, Yuchen
Duan, Weijie Su, Jie Shao, et al. Internvl3: Exploring advanced training and test-time recipes for
open-source multimodal models. arXiv preprint arXiv:2504.10479, 2025.

12

https://qwenlm.github.io/blog/qwen2.5/
https://qwenlm.github.io/blog/qwen2.5/

Under review as a conference paper at ICLR 2026

A STATEMENT OF LLM USAGE

In this article, the LLM participated in the following tasks: (1) assisting in revising and polishing
the manuscript, and (2) serving as an experimental subject in various experiments.

B RELATED WORK

B.1 VLM/LLM-BASED AGENTIC FRAMEWORKS IN EMBODIED TASKS

The rapid advancement of VLMs/LLMs has led to diverse agent frameworks in embodied envi-
ronments (Yao et al., |2022; Song et al.l 2023} [Lin et al., 2024). Embodied tasks involve partial
observability and long-horizon planning, requiring memory systems to retain context. Some use
time-ordered context buffers for short-term memory (due to VLMs/LLMs’ limited long-context
processing) (Yao et al.l 2022 [Packer et al., 2023)); others adopt experience buffers as long-term
semantic memory (Fu et al.|2024aj Shinn et al.,|2024). For long-duration tasks, skill libraries serve
as procedural memory, with agents accumulating skills via interaction (Wang et al.,2023; Tan et al.,
2024). However, in real-world settings, the low-level executor may fail to complete the task, making
it challenging to construct a reusable, code-based skill library. So, explicit procedural memory still
needs to be improved in real-world settings. Moreover, Recent efforts integrate diverse memories
(Zhang et al.| 2023} [Tan et al.| |2024; |Agashe et al., 2024)) but focus on virtual/GUI environments,
leaving real-world multi-modal memory support for long-term planning under-explored.

B.2 VISION LANGUAGE ACTION MODEL

Current work on VLA models uses imitation learning to output low-level controls from language and
visuals (Black et al.| [2024; Zhao et al.l 2023} Bjorck et al.| [2025; Kim et al., [2024)) but is limited to
tabletop tasks and single actions, restricting long-horizon planning. VLAs lack long-term execution
abilities, while high-level agents excel at planning. Recent works combine high-level frameworks
with VLA executors, some augmented with simple memory (Shi et al.| 20255 [Tan et al., 2025}, [Yuan
et al.,|2025;|Yang et al., 2025b) for longer tasks. However, real-world robots need more sophisticated
memory to handle continuous multi-task operations over extended periods.

B.3 MEMORY FRAMEWORKS

Many previous works improve long-term planning via memory systems: Voyager (Wang et al.,
2023) uses a skill library in Minecraft but lacks diverse memory types; CoELA (Zhang et al., [2023)
includes procedural, semantic, and episodic memory with a task-specific 2D map; MSI-Agent (Fu
et al.| [2024a)) utilizes insight as long-term memory for in-task learning. Hippo Retrieval Augmented
Generation (RAG) (Gutiérrez et al. 2024) mimics the hippocampus and introduces KGs as long-
term memory indices (Burgess et al.|, 2002} |Chen et al., |2020), enhancing retrieval. However, the
previous approach is mainly focused on constructing a KG with a static long context, such as a book,
but it is hard to update the graph. We need to update the information in KG for the embodied task.
Our approach builds a more general LLM-based memory system using a dynamic KG like Hippo
RAG, which is designed for embodied tasks. Furthermore, we summarize the differences among
different memory systems in previous work. The comparison is shown in the Table

C ADDITIONAL EXPERIMENTS

C.1 ERROR ANALYSIS

We summarize the common errors of RoboMemory in the previous experiments. We classify errors
into three main types: planning errors, reasoning errors, and perception errors.

The planning errors occur when the planner fails to generate correct actions. The reasoning errors
occur when the planner and critic cannot properly process input information (including current ob-
servations and memory), even when the input is correct. Perception errors occur when incorrect
information is provided to the planner-critic module.

13

Under review as a conference paper at ICLR 2026

Table 3: Comparison of Memory-Related Methods in Embodied Agent

Method Multimodal Episodic Semantic Spatial Temporal Procedural Memory Implementation Real Robot
NeSyC (Choi et al.}|2025) ' ' v Symbolic logic rules v
Reflexion (Shinn et al.;[2024) v v Buffer
Voyager (Wang et al.|2023) v RAG
MSI-Agent (Fu et al.|[2024a) v v Database, RAG
CoELA (Zhang et al.||2023) v v v v Top-down semantic map
Cradle (Tan et al.|[2024) v v v v RAG
Agent-S (Agashe et al.}2024) ' v v v RAG
Expel (Zhao et al.[[2024) v v Buffer
AutoManual (Chen et al.}|[2024a) v v v Buffer
HiRobot (Shi et al.}2025) v / v
Being-0 (Yuan et al.|2025) v v ' Buffer v
RoboOS (Tan et al.|[2025) ' v v Scene graph, database v
RoboMemory (Ours) v v v v v RAG.KG v
We analyze RoboMemory trajectories for failed
tasks. We identify error types based on the
above definitions. A single task may con-
tain multiple errors. We calculate the occur- L
rence probability of each error type to show) Insufficient
, Exploration b
RoboMemory’s strengths and weaknesses. The N7
. . Inaccurate Action
results are shown in Figure 6] o Reasoning Error
Planning Error 28% Rf;’:;;’;:lg
We can observe that among all error types, the T .
planning errors are the most common. This
means that even though the memory modules Spatial
. . . . Perception Error Understanding
can provide comprehensive information about oy
33%

the RoboMemory agent’s previous experience
and spatial and temporal memory for the cur-
rent task, the planner module may still not pro- S—
vide good action plans. This may be due to the e
capability of the pretrained base model.

Wrong Recognition
10%

The most common perception error is the hal-
lucination error. We can observe that although
some hallucinations can be handled by the critic
module or memory information, there are still some cases in which the planner ignores all insights
from memory and critic and fails to complete the task.

Figure 6: The reason why RoboMemory failed to
complete the task.

The detailed examples and discussions are provided in Appendix [

C.2 EVALUATE ON EB-HABITAT

Similar to EB-ALFRED, we also deploy RoboMemory to EB-Habitat. Both EB-Habitat and EB-
HALFRED are subsets of EmbodiedBench. We evaluate our model on the Base and Long subsets.
Each subset contains 50 different trails. The results are shown in Figure[7]

The results demonstrate that our RoboMemory can adapt well to different environments. It achieves
significant improvements over the baseline across various settings. On average, the success rate
increases by 24% compared to the SOTA Multi-Agent Method. The goal-conditioned success rate
improves by 12%.

These improvements indicate that RoboMemory enhances the agent’s embodied intelligence in var-
ious environments. The key factor is its complete memory system.

C.3 ADDITIONAL EFFICIENCY ANALYSIS

We analyze the evolution of the spatial KG during long trajectories in EB-ALFRED, focusing on the
first 20 iterations (with 95% confidence intervals). As shown in Figure[§] the total number of spatial
relationships in the KG (red line) increases gradually over iterations as RoboMemory is exploring
the environment. In contrast, the number of relationships retrieved for update at each iteration (blue

14

Under review as a conference paper at ICLR 2026

756 Success Rate (SR) Goal Condition Success Rate (GC)
+1.0%

757 100% +6.0% I
+12.0%

. 88.0%
758 +24.0% s6.0% AL +21.9%

81.0%

759 80%
760
761
762
763
764
765
766 20% 1
767
768 0% -
769

770

771

772

773 Figure 7: Comparison of Success Rates (SR) and Goal Condition Success Rates (GC) across diffi-
74 culty levels between RoboMemory and baseline methods on EB-Habitat.

60% q

40% -

Success Rate (%)
Goal Condition Success Rate (%)

Average Base Long Average Base Long

s Voyager - Reflexion s Cradle s RoboMemory

775

776

777 line) remains relatively stable, typically ranging around 10 edges per iteration. This stability is

778 achieved because our method only updates a local subgraph relevant to the current observation.

e We define the retrieval ratio as the proportion of relationships updated at each iteration relative to the

780 total number of relationships in the KG. As shown in Figure 8] this ratio (illustrated by gray bars)

781 decreases steadily from 76% initially to 28% at iteration 20. This trend indicates that, as the KG

782 grows, each update affects a progressively smaller fraction of the entire graph. This demonstrates

783 that our spatial KG update mechanism effectively localizes modifications, ensuring computational

784 efficiency and mitigating interference through context-aware incremental updates.

785

786 50{ —e— Retrieved Relations W Retrieval Ratio | 100%

787 —o— Total Relations

788

789 40 80%

790 .

791 L) % £
< 30 &

792 : z
E :

793 E a0% =

794 20

795

796 20%

797 10

798 0%

799 1 2 3 4 5 6 7 8 9 ll?:eraﬁo: 12 13 14 15 16 17 18 19 20

800

801 Figure 8: Average relationships related to update in spatial memory in each step.

802

803

804 D DYNAMIC SPATIAL MEMORY UPDATE ALGORITHM

805

806 D.1 DETAILED ALGORITHM OF SPATIAL KG UPDATE

807

808 Spatial Memory is a dynamically updated KG-based module designed to overcome agents’ lim-

809 itations in spatial reasoning. Specifically, our Spatial Memory is formulated as a directed KG

G = (V,E), where V denotes the set of all objects in the environment. Each object is a vertex

15

Under review as a conference paper at ICLR 2026

Algorithm 1 Retrieval-based Incremental Knowledge Graph Update Algorithm

Require: New spatial knowledge graph Grew = (View, Enew), main spatial knowledge graph G =
(V,E), queries ¢ € Q, entity & query embeddings £ : V U Q — R%, maximum number of
retrieved vertices n, maximum k hops k, vim-base conflict resolver ResolveConflict(-)

Ensure: Updated consistent knowledge graph G’

1t Vimitar < U,eq TopK,, ({v € V' | cosine_sim(£(q), £(v))}) {For each query entity g, retrieve
its top-n most similar vertices in G by cosine similarity of embeddings; take the union over all
qeQ.}

Vexpand <= K-hop,, (Vimilar, G) {all nodes within k hops from any node in Vimilar }

V;etrieved — ‘/;imilar U V;:xpand

Vmerged — ‘/retrieved) ‘/new

Gunion < (VU View, E U Eqew) {Combine the main graph and new observations into a unified

graph.}

6: Giocal — InducedSubgraph(Vinerged; Gunion) {ExXtract the subgraph induced by Viserged, contain-
ing all old and new edges among these nodes. }

7: Gupdated <— ResolveConflict(Glocat, Gnew) {based on Grew, VLM update the relationship among
different vertices in Gioca }

8: G’ < (G \ Gioca) U Gpaated {Replace the old subgraph in G with the conflict-resolved updated
subgraph. }

9: Remove isolated vertices from G’

10: return G’

in the KG. Each object’s name is encoded into a single semantic embedding vector via a pretrained
embedding model (Zhang et al., 2025). The edge set E captures spatial relationships between ob-
jects, each represented as a triple (e.g., [0bj1, relationship, objs]). To update the Spatial KG, we need
to continuously extract new relationships from current observations and update the old relationships
in the Spatial KG. We use a VLM-based conflict resolver to address this problem. However, the
more relationships provided to the conflict resolver, the more time it needs to update the KG. So we
need to update relationships that are only related to the current situation. We design an algorithm
that retrieves a sub-graph of KG that includes all vertices related to the current situation and both old
and new relationships among them. We provide the sub-graph and new relationships to the conflict
resolver. We need the conflict resolver to update the sub-graph based on information from the new
relationships. The algorithm is shown in Algorithm i}

To update G, we make use of the information provided by the step summarizer and query generator
from the information preprocessor introduced in Sec. First, a pretrained VLM-based Relation
Retriever extracts the latest spatial relationships Gpew = (View, Enew) from the information provided
by the step summarizer, which records high-level information in the current observation. Next,
natural language queries (represented as ¢ € () (provided by the query generator) are used to
retrieve relevant object vertices from G via cosine similarity search. We select the top n similar
vertices compared with the query. These vertices are represent by Viimitar-

Spatial KG maintains the relationships among different objects, so if we want to retrieve spatial
information from spatial KG, we need to search for other objects that are related to the objects we
observed in the current observation. In this way, we not only remember objects we can see, but also
know the spatial information of the objects we cannot see. So we choose the k-hop algorithm to
expand Viimilar using a K-hop neighborhood algorithm to capture contextually related objects. The
K-hop algorithm is represented as K-hop, (V, G), which returns all vertices reachable within < k
hops from any vertices in V. The retrieved vertices are Vexpana. We combine the vertices retrieved
by cosine similarity and their K-hop neighbors to Vieyieved-

However, we need to resolve the conflict between new and old relationships. S0 Viegieved and the
relationships among Viegieved 1S not enough. We need new vertices and relationships involved in the
graph we provided to the VLM-based conflict resolver. To extract all vertices and relationships for
the VLM-based conflict resolver and relationships, we not only need the relationships from KG (old
information) and Gy, Which represent new information. We need to connect old information and
new information. To achieve this goal, we merge Gy to GG, which add new edges and vertices to
G. We denote the merged KG as G pion- In Gpion, Wwe mix out-of-date and latest information. Then,

16

Under review as a conference paper at ICLR 2026

we extract an induced sub-graph of Vinerged = Vietrieved U Vaew from Gunion. As both vertices from old
graph G and new graph is mixed in Vperged and both edges from old and new graph is in Gyupjon, the
retrieved induced sub-graph G|,y contains all out-of-date and latest relationships among vertices
that is related to current situation.

As Gl contains all out-of-date and latest relationships and those relationships may have conflicts,
a VLM-based conflict resolver (represent as ResolveConflict(-)) is designed to resolve conflicts in
Ghocal, and make sure that the relationship is the latest. The conflict resolver will take in Gpey and
Glocal, Where Glocq is the graph waiting for update and Gy provide update signal. The VLM-based
conflict resolver will perform necessary updates such as adding vertices or inserting, deleting, or
modifying relationships in Gl based on Gyey. The reconciled subgraph is then merged back into
G, and any vertices that have lost all connections to other vertices during the update are pruned.

This design offers two key advantages: (1) Efficiency via localized updates: By restricting modifica-
tions to a context-relevant subgraph, we significantly reduce the number of relationships processed
per update. Since VLMs struggle with reasoning over large sets of relationships, this constraint sub-
stantially improves both the efficiency and effectiveness of VLM-based KG updates. (2) Dynamic
adaptability: The system continuously maintains up-to-date spatial knowledge, enabling agents to
operate robustly in dynamic real-world environments.

Figure 9: Visualization of Spatial Memory’s dynamic update process.

D.2 EXAMPLE OF DYNAMIC SPATIAL MEMORY UPDATE PROCESS

In RoboMemory’s Spatial Memory, the KG is dynamically constructed during environment explo-
ration. As illustrated in Figure 0] we demonstrate the progressive expansion of the KG in Spatial
Memory as the agent navigates through the environment. The figure indicates a continuous growth
in the number of both vertices and edges of the KG as exploration progresses.

Notably, the KG undergoes dynamic updates through RoboMemory’s environmental interactions.
For example, the initial KG state displays the relation “I am near the apple. But as the agent picks
up the apple in the third step, in the fourth KG, the relationship becomes “I hold the apple”. This
demonstrates RoboMemory’s capability for dynamic KG maintenance and expansion.

17

Under review as a conference paper at ICLR 2026

By querying this KG, the Planner-Critic module gains access to rich spatial information, empower-
ing RoboMemory with robust spatial memory capabilities that significantly enhance its performance
in both TextWorld and EmbodiedBench environments.

D.3 PROOF OF DYNAMIC SPATIAL MEMORY UPDATE ALGORITHM

Theorem 1 (Upper Bound on K-hop Vertex Extraction in Directed Graphs). Let G = (V, E) be a
finite directed graph with maximum out-degree D > 1, and let S C 'V be a set of M source vertices.
Define the K-hop neighborhood N (s) of a vertex s € S as the set of vertices reachable from s
via directed paths of length at most K. Then the total number of distinct vertices in the union of all
K-hop neighborhoods,
Ni(S) = [Nk(s),
seS
Satisfies the following upper bound:
DK+1 -1

Ne@)| <M —p—1 ¥P>1
M- (K+1), ifD=1

Proof. For any vertex s € S, the number of distinct vertices reachable from s within ¢ hops is at most
D*, assuming the worst-case scenario where each vertex encountered has the maximum out-degree
D, and all neighbors are distinct and non-overlapping.

Thus, the size of the K-hop neighborhood of a single vertex satisfies:

K DE+L _1
i —, ifD>1,
Wi(s) <Y Di=¢ D1 "7~
i=0 K+1, if D=1.

Since there are M such source vertices and assuming no overlaps between their K-hop neighbor-
hoods (worst case), the union size satisfies:

Nk (S)| < M - [Nk (s)].

Substituting the bound on [Nk (s)| gives the result. O

Theorem 2 (Upper Bound for K-hop Vertex Extraction in Normalized Directed Graphs). Let G =
(V, E) be a finite directed graph with |V| = n vertices. Assume the maximum out-degree is at
most Diax = Dn, and the maximum in-degree is at most Nyax = Nn, where D, N € (0,1] are
constants. Let S C V be a set of M source vertices. Define N (S) as the union of all vertices
reachable from S via paths of length at most K, using only outgoing edges. Then the number of
extracted vertices satisfies:

Dn—1

K+1 _
Nk (S)| < min{n, M - (Dn)l}

In particular, when Dn > 1, we have the approximation:

Wic(S)I £ M - (Dn)".

Proof.{ For each vertex s € S, the maximum number of reachable vertices within i-hops is at most
(Dn)* under the assumption of maximum out-degree and no overlap.

Summing over hops from 0 to K, we get for each root:

K , n)E+1 _
Nie(s) < 3 (Dn)' = o

18

Under review as a conference paper at ICLR 2026

Assuming no overlap among the M source vertex expansions (worst case), we have:

Dn)K+t —1

Nic(§)| < a2 =1

Wi(S)] < M

Since the total number of vertices in the graph is n, this quantity is also trivially bounded above by
n, yielding the result. O

E ADDITIONAL ENVIRONMENT SETTINGS

E.1 EB-ALFRED AND EB-HABITAT

We adopt the same environment parameters as in EmbodiedBench. The maximum steps per task
are set to 30, with image inputs of size 500 x 500. The temporal memory buffer length is set to 3.
However, we modified the action formats of EB-ALFRED and EB-Habitat to simulate real-world
scenarios better. Specifically, we define different action APIs (Python functions), where each action
takes an object parameter indicating its target. We extract all possible objects from the environment
as inputs to the Agent. The Agent must select appropriate actions and object parameters based on
task requirements. Compared to the original interaction method in EmbodiedBench (which enumer-
ates all possible actions, including both action names and target objects, and requires the Agent to
choose), our approach offers greater flexibility. The detailed action APIs are presented in Table 4]

Since EB-ALFRED and EB-Habitat provide comprehensive high-level action APIs, we do not em-
ploy the VLA-Based Low-Level Executor in these environments. Instead, we utilize the built-in
low-level controllers from EmbodiedBench.

E.2 REAL-WORLD EXPERIMENTS

Table 4: Robot Action Command For different environments

Action Type EB-ALFRED EB-Habitat Real World
Navigation find (ob7j) navigate (point) | navigate_to (point)
Pick Up Object pick_up (obj) pick (obj) pick_up (ob3j)
Drop to Ground drop () - -

Place to Receptacle put_down () place (rec) put_down_to (rec)
Open Object open (ob7j) open (ob7j) open (ob7j)
Close Object close (obj) close (obj) close (obj)
Turn On turn_on (ob7j) — turn_on (ob7j)
Turn Off turn_off (obj) - turn_off (obj)
Slice Object slice (obj) - -

Task Complete - — task_complete ()

We construct a common kitchen scenario to evaluate the RoboMemory framework’s interactive en-
vironmental learning capabilities in real-world settings. Using Mobile ALOHA (Fu et al., 2024b)
as our physical robotic platform, we design three categories of tasks: (1) Pick up & put down: The
agent must locate a specified object among all possible positions and place it at a designated loca-
tion. This task tests the model’s basic object-searching and planning abilities. (2) Pick up, operate
& put down: Building upon the first task, the agent must additionally perform operations such as
heating or cleaning the object. This task requires longer-term planning, which is crucial in embod-
ied environments. (3) Pick up, gather & put down: The agent must place specified objects into a
movable container and then move the container to a target location. This task evaluates the agent’s
understanding of object relationships, requiring it to remember the positions of at least two objects
(the container and the target item) and their spatial relationship. For each type of task, we design 5
tasks. So our experiments include 15 long-term real-world tasks.

To adapt to the real-world setup, we define high-level action APIs similar to those in EB-ALFRED
and EB-Habitat. Additionally, we train a VLA-based model to execute tasks according to our action
APIs. The detailed action APIs are presented in Table

19

Under review as a conference paper at ICLR 2026

For the low-level executor, we use one main camera and two arm-mounted cameras as input, each
with a resolution of 640 x 480. The temporal memory buffer length is set to 3.

In our experiments, we set the maximum steps per task to 25. We also provide an API for actively
terminating tasks. Since real-world environments lack direct success/failure feedback, RoboMem-
ory must autonomously determine task completion. To prevent excessively long task execution, we
enforce termination after 25 steps if no success is achieved. A single main camera (640 x 480 reso-
lution) records video during action execution as input for RoboMemory’s higher-level processing.

Table 5: Dataset statistics and training hyperparameters for robotic manipulation tasks.

Dataset Statistics Training Configuration
Action Type #Episodes | Parameter Value
Turning on/off faucet 142 | Optimizer AdamW
Picking up & Placing basket on counter 63 | Batch size 32x6
Picking up & Placing basket in sink 72 | Training steps | 10,000
Picking up & Placing banana into basket 114 | Learning rate | 6.12 x 1075
Throwing bottle into trash bin 132 | warmup step | 500
Placing gum box on dish 120 LoRA Configuration
Picking up & Placing cup on plate 51 | rank 16
Picking up & Placing dish into sink 69 | « 16
Throwing paper ball into trash bin 135 Resource Usage
Open/close oven 142 | GPU A100-80GB x 6
Total episodes 1040 | Training time | 12 hours

E.3 TRAINING DETAILS OF LOW-LEVEL EXECUTOR

We use the my model as our foundation model. We collected 1,040 data samples over 10 types of
tasks for fine-tuning. We use LoRA fine-tuning to save resources during fine-tuning. The specific
fine-tuning parameters and action types are given in Table[5] For tasks involving both pick-up and
place actions, we split these tasks into separate pick-up and place actions. These are then treated
as two distinct data samples during training. The separation of pick-up and place action allows the
VLA to carry an object in its hand. For training, we used a server with six A100-80GB GPUs. The
total training time was 12 hours.

Besides, we use the built-in LIDAR SLAM system of the Mobile ALOHA robot base as the naviga-
tion action actuator. We define five typical navigation points, similar to EB-Habitat. We used SLAM
to navigate between these navigation points.

E.4 HYPERPARAMETERS OF ROBOMEMORY

In this section, we describe the hyperparameter settings for the upper brain of RoboMemory: the
information preprocessor and the Comprehensive Embodied Memory. Importantly, we use a unified
set of hyperparameters across all experimental settings, including EB-ALFRED, EB-Habitat, and
real-world deployments.

The information preprocessor consists of two components: a step summarizer and a query generator.
Given multimodal inputs at each step, the step summarizer produces a single natural language de-
scription, while the query generator concurrently formulates 4 — 5 distinct natural language queries.

The Comprehensive Embodied Memory integrates four memory modules: Temporal, Spatial, Se-
mantic, and Episodic Memory. The Temporal Memory is implemented as a fixed-size buffer with
a maximum capacity of 4 entries. For Spatial Memory, during similarity-based retrieval, we first
identify the top /N = 3 most relevant vertices and then perform a K-hop graph traversal with K = 2.
The Episodic Memory retrieves the top N = 5 most relevant past experiences for each query. The
Semantic Memory maintains hierarchical summaries at both the action and task levels; during re-
trieval, it returns Ny = 2 action-level and N; = 2 task-level summaries. Furthermore, memory

20

Under review as a conference paper at ICLR 2026

updates (e.g., insertion, modification, or deletion) are applied only to the top Nypdgae = 10 most
relevant entries in the Semantic Memory to ensure efficiency and coherence.

F SUPPLEMENTARY EXAMPLES FOR QUALITATIVE ANALYSIS

F.1 REAL WORLD

Task: Place banana into the oven

The first time

o o o
Step 1: Navigate to the Step 2: Navigate to the Step 3: Navigate in Step 4~15: Navigate to
left side of the desk right side of the desk front of the oven these three points in an

infinite loop, but failed
to explore new areas.

S ———

p T N N R (S ([(L [([[(L (L ([(L [(L (L (L [(L (L L R ~
: ‘:
H (; e ; ; ; '

H {ee The robot should avoid navigating to places that do not contain the target object again and : :
! | again. H !
: i' ... The task is to place a banana into the oven. The robot navigated to the left side of the desk, ! H
H P Y) | the right side of the desk, and in front of the oven multiple times, but failed to find the banana. | :
1 1
\ g

\
1 1
| 1
H 1
| 1
H 1
| 1
H 1
H 1
| 1
| 1
H 1
| 1
| 1
H 1
- !
1
! Step 1: Navigate to the Step 2: Navigate to the Step 3: Navigate to the |
| left side of the desk right side of the desk kitchen counter banana :
1

1
| 1
H 1
| 1
H 1
| 1
H 1
H 1
| 1
| 1
H 1
| 1
H 1
| !
i Step 7: Put down i
| oven (banana) to the oven !
1
N -"

Figure 10: Case that a task is failed, but the experience can help RoboMemory to succeed in the
next try.

In Figure[T0] we demonstrate an example of RoboMemory learning through trial and error in a real-
world environment. Our task is “place a banana into the oven.” This task required RoboMemory

21

Under review as a conference paper at ICLR 2026

to complete the objectives of finding the banana, picking it up, and transporting it to the oven. We
observed that RoboMemory became stuck in an infinite loop during the first attempt. The banana
was randomly placed on the “kitchen counter,” but RoboMemory overlooked this navigation target
and remained trapped, exploring other navigation targets instead.

However, based on this bad attempt, the semantic memory summarized that the robot should not
repeatedly search in locations where the “banana” could not be found. Meanwhile, the episodic
memory recorded what RoboMemory had done and the outcomes during the first attempt. Based on
the information provided by semantic and episodic memory, in the second attempt, RoboMemory
recognized that it had not previously tried navigating to the “kitchen counter.” After attempting this,
it successfully completed the task. This example illustrates the role of RoboMemory’s long-term
memory.

Task: Place a box of gum into the basket and put the basket to
the kitchen counter

Step 1: Navigate to the Step 2: Navigate to the
left side of the desk kitchen counter

Step 4: Navigate to the
left side of the desk

Step 5: Put down (gum Step 6: Pick up the Step 7: Navigate to the Step 8: Put down
box) to the basket basket kitchen counter (basket) to the kitchen
counter

Figure 11: Case that a task is successful.

We also provide an example that completes the task in the first attempt. The example is shown
in Figure [TI} This example demonstrates that the RoboMemory has the ability to handle some
relatively complex tasks in the real world. The task in this example is “Place a box of gum into the
basket and put the basket on the kitchen counter”. Because two objects in different positions are
involved in this task, RoboMemory has to memorize the position of at least one object to achieve
the goal. With the help of the spatial memory, RoboMemory completes the task successfully.

F.2 EB-ALFRED

We select three examples in EB-ALFRED to show the errors that RoboMemory may encounter and
the reasons why or why not RoboMemory can achieve the goal.

F.2.1 SUCCESSFUL EXAMPLE

We select a successful example to show how RoboMemory performed in the EB-ALFRED environ-
ment. The example trajectory is shown in Figure[12]

The task of this example is “set a plate with a spoon on it on the kitchen table”. However, in step
10, the Planner seems to ignore the temporal information from memory modules. RoboMemory
thinks that it still needs to pick up the spoon (even though it has already placed a spoon in the
plate). However, with the help of the critic, it finally becomes aware that picking up another spoon
is redundant, so RoboMemory goes back to the current trajectory and successfully completes the
task at the end.

22

Under review as a conference paper at ICLR 2026

Task: Set plate with a spoon in it on the kitchen table

/7~
[‘.
! I
! I
! I
! I
! I
! I
! I
! I
! I
! I
! I
I

| Step 1: Initialize Step 2: Find the Step 3: Pick up Step 4: Find the |
: plate the plate spoon :
I

| |
! . I
! I
I > :
! I
! I
! - I
! —" e I
! I
! I
! I
1

: Step 5: Put down Step 6: Pick up Step 7: Put down Step 8: Find the i
: the plate the spoon plate :
| i
! I
! I
! I
! I
! I
! I
! I
! I
! I
! I
! I
: Step 9: Pick up Step 10: Drop Step 12: Pick up Step 13: Find the |
: the plate (Hallucination) spoon 2 plate :
I

| |
! I
! I
! I
! I
! I
! I
! I
! I
! I
! I
! I
! I
| Step 14: Drop Step 15: Pick up Step 16: Find the Step 17: Put .
! the plate table down I
\ /

N i o e S S S S S S S R S S S S S S S S R S S S S S S - ’,

Figure 12: Case that a task is successful with the help of the critic and spatial memory modules.

In this example, RoboMemory successfully overcame the hallucination and eventually achieved the
goal. This example demonstrates that the critic module can help RoboMemory to overcome error
cases.

F.2.2 FAILED EXAMPLE

We demonstrate a representative example of the Critical Error. The example trajectory is shown in
Figure [I3] In this example, the task involves slicing and heating a tomato and moving the heated
tomato slice to the trash can. Initially, RoboMemory successfully sliced the tomato with a knife.
But when the planner plans the whole sequence, it forgets to drop the knife before picking up the
tomato (this is necessary because in EB-ALFRED, the robot can only hold one object at a time).
The critic and the planner should notice this situation and ask the critic to replan, as RoboMemory
failed to pick up a tomato slice. However, the critic module ignores this issue, and thus, after it heats
the knife instead of a tomato slice, it stacks in an infinite loop.

23

Under review as a conference paper at ICLR 2026

Task: Cook a sliced tomato and throw it in the trash

i \
[[
1 1
1 1
1 1
[[
1 1
1 1
1 1
[[
1 1
1 1
1 1

[
i Step 1: Initialize Step 2: Find the Step 3: Find the Step 4: Pick up I
: tomato knife the knife .
[[
1 1
1 1
1 1
[[
1 1
1 1
1 1
[[
1 1
1 1
1 1
[[
| Step 5: Slice the Step 6: Find Step 7: Slice the Step 8: Pick up :
: tomato tomato tomato the tomato :
1 1
1 1
1 1
[[
1 1
1 1
1 e o o]
[[
1 1
1 1
1 1
[[
: Step 9: Find the Step 10: Open Step 12: Put Step 13 ~ 30: :
: microwave the microwave down Infinite loop :
\ Y

N ———————————— - - - ' d

Figure 13: Case that a task fails in an infinite loop because the critic module failed to stop the agent
when its planned action is no longer suitable.

Besides, we provide another example demonstrating a representative failure caused by inaccurate
action planning. The example trajectory is shown in Figure[T4] In the trajectory, RoboMemory is
asked to place two CDs into the drawer. However, at step 6, the robot failed to select correct CD
object. In this experiment, RoboMemory has already put CD_2 into the drawer, but it keeps pick-
ing up CD_2 even though the memory has clearly indicated that CD_2 has already been put down.
So we classify this as inaccurate action error. This indicates that the planner failed to comprehen-
sively integrate information from both the memory and information-gathering modules, resulting in
inaccurate action planning.

24

Under review as a conference paper at ICLR 2026

Task: Move two CDs to the bottom drawer of the desk

Step 1: Find Step 2: pick up Step 3: Find the Step 4: Open the
CD 2 CD 2 drawer drawer

Step 5: Put down Step 6: Find the Step 7: Pick up Step 8: Put down
CD 2 CD 2

e o o
Step 9: Find Step 10: Pick up Step 11~30:
CD 2 CD 2 Infinite loop
N e e 7

Figure 14: Case that a task fails in an infinite loop because of inaccurate action planning.

25

	Introduction
	RoboMemory
	Information Preprocessor
	Comprehensive Embodied Memory System
	Spatial-Temporal Memory System
	Interactive Environmental Learning System

	Closed-Loop Planning Module for Dynamic Environment
	Low-level Executor

	Experiments
	Benchmarks
	Settings & Baselines
	Main results
	Efficiency Analysis
	Ablation Studies
	Real-world Robot Deployment

	Conclusion and Future Work
	Statement of LLM Usage
	Related Work
	VLM/LLM-based Agentic Frameworks in Embodied Tasks
	Vision Language Action Model
	Memory Frameworks

	Additional Experiments
	Error Analysis
	Evaluate on EB-Habitat
	Additional Efficiency analysis

	Dynamic Spatial Memory Update Algorithm
	Detailed Algorithm of Spatial KG Update
	Example of Dynamic Spatial Memory Update process
	Proof of Dynamic Spatial Memory Update Algorithm

	Additional Environment settings
	EB-ALFRED and EB-Habitat
	Real-world experiments
	Training Details of Low-Level Executor
	Hyperparameters of RoboMemory

	Supplementary Examples for Qualitative Analysis
	Real World
	EB-ALFRED
	Successful example
	Failed example

