
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

ROBOMEMORY: A BRAIN-INSPIRED MULTI-MEMORY
AGENTIC FRAMEWORK FOR INTERACTIVE ENVIRON-
MENTAL LEARNING IN PHYSICAL EMBODIED SYS-
TEMS

Anonymous authors
Paper under double-blind review

Figure 1: RoboMemory adopts a brain-inspired architecture that maps neural components to agent
modules, enabling long-term planning and interactive learning across diverse environments (real-
world, Habitat, ALFRED) and robotic hardware.

ABSTRACT

Embodied agents face persistent challenges in real-world environments, including
partial observability, limited spatial reasoning, and high-latency multi-memory
integration. We present RoboMemory, a brain-inspired framework that unifies
Spatial, Temporal, Episodic, and Semantic memory under a parallelized archi-
tecture for efficient long-horizon planning and interactive environmental learning.
A dynamic spatial knowledge graph (KG) ensures scalable and consistent mem-
ory updates, while a closed-loop planner with a critic module supports adaptive
decision-making in dynamic settings. Experiments on EmbodiedBench show that
RoboMemory, built on Qwen2.5-VL-72B-Ins, improves average success rates by
26.5% over its baseline and exceeds the closed-source state-of-the-art (SOTA)
Claude3.5-Sonnet by 1%. Real-world trials further confirm its capacity for cumu-
lative learning, with performance improving across repeated tasks. These results
highlight RoboMemory as a scalable foundation for memory-augmented embod-
ied intelligence, bridging the gap between cognitive neuroscience and robotic au-
tonomy.

1 INTRODUCTION

Recent advances in Vision-Language Models (VLMs) (Hurst et al., 2024; Bai et al., 2025) have
enabled their growing use in embodied tasks (Park et al., 2023; Hu et al., 2023). VLM-based em-
bodied agents can process multimodal inputs and generate high-level textual commands (e.g., “Pick

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

up the cup”), which require translation via tool APIs to become executable robot actions. In con-
trast, Vision-Language-Action models (VLAs) (Kim et al., 2024; Black et al., 2024; Bjorck et al.,
2025; Chi et al., 2023) produce low-level control signals directly but generally rely only on the latest
observation. This limits their ability to perform long-horizon, multi-step tasks that require reasoning
over task history. In summary, VLA models enable direct robot control but lack high-level planning
capabilities, and VLM-based embodied agents support strategic planning but struggle with direct
motor control. This highlights a key gap inherent in two distinct technical approaches to embodied
intelligence.

To bridge this gap, recent work (Yuan et al., 2025; Shi et al., 2025; Tan et al., 2025) proposes a
“VLM planner + VLA executor” paradigm. Here, VLM-based embodied agents serve as high-level
planners that decompose complex tasks (e.g., “make a coffee”) into executable sub-instructions (e.g.,
“grasp the cup”) that VLAs can complete. Although this paradigm improves performance on multi-
step tasks, prior work suffers from two key limitations in real-world settings. First, real-world tasks
(e.g., kitchen operations) require navigating across multiple locations to gather objects and tools, but
the environment remains only partially observable at any time due to robots’ limited field of view
and dynamic occlusions. This necessitates a planner with robust spatial awareness and long-term
memory to maintain a consistent spatial awareness across viewpoints. However, most VLM-based
agents rely on chat-style context windows (e.g., logging instruction – feedback pairs (Yao et al.,
2022)), which lack mechanisms for maintaining an overview of the environment’s spatial layout.
Consequently, agents cannot reliably track object locations or recognize previously visited states.
Second, pretrained VLMs are rarely trained on embodied planning trajectories, especially long-
horizon, spatially grounded ones. So VLM-based agents often struggle to generalize to real-world
settings (Yang et al., 2025a). To overcome these challenges, VLM-based planners must support
interactive environmental learning — the ability to acquire, integrate, and retrieve spatial, episodic,
and semantic knowledge during task execution, thereby enabling adaptation through experience.

To support long-horizon planning and interactive learning in real-world settings, agents require a
comprehensive memory system with multiple specialized modules. Recent frameworks (Tan et al.,
2024; Glocker et al., 2025; Wang et al., 2023; Agashe et al., 2024; Fu et al., 2024a; Zhao et al., 2024;
Chen et al., 2024a) have integrated Retrieval-Augmented Generation (RAG)-based memory to en-
hance planning and interactive environmental learning (Gao et al., 2023), but most are designed for
simulated environments. A key limitation for real-world deployment is the absence of spatial mem-
ory, which is critical for building spatial awareness and providing context for planning. Additionally,
existing multi-module memory systems often incur significant inference latency.

To overcome these limitations, especially the need for memory that is efficient, spatially grounded,
and persistent in dynamic environments, we return to the essence of intelligence — how does the
human brain plan, remember, and learn in dynamic environments? Inspired by cognitive neuro-
science, we have designed RoboMemory, a parallel multi-memory architecture that simulates key
functional regions of the brain. RoboMemory features a hierarchical and parallelized architecture
enabling long-term planning and continuous adaptation. Drawing inspiration from cognitive neuro-
science (Milner, 1998), RoboMemory comprises four core components (Figure 1): (1) Information
Preprocessor (thalamus-inspired) for multimodal sensory integration. (2) Comprehensive Embod-
ied Memory System (hippocampus-inspired), which organizes experiential and spatial knowledge
through a three-tier structure (long-term, short-term, and sensory memory). Within this tiered sys-
tem, four memory modules: Spatial, Temporal, Episodic, and Semantic operate under a unified,
parallel-update paradigm to enable coherent knowledge integration while minimizing latency. (3)
Closed-Loop Planning Module (prefrontal cortex-inspired) for high-level action sequencing. These
three modules provide a high-level planner with comprehensive sensory and memorization ability.
(4) Low-level Executor (cerebellum-inspired), consisting of a VLA-based operation model and a
SLAM-based navigation model. The Low-level Executor directly controls the robot with low-level
control signals to navigate and operate in the real-world environment.

To verify whether RoboMemory truly addresses the problems of long-horizon planning and inter-
active learning, we evaluate RoboMemory on EmbodiedBench, a long-horizon planning benchmark
(Yang et al., 2025a). Using Qwen2.5-VL-72B as the base model, RoboMemory improves aver-
age success rates by 26.5% over its base model and 1% over the closed-source state-of-the-art
model, Claude3.5-Sonnet Anthropic (2024). In real-world trials, RoboMemory executed diverse
tasks twice consecutively: once for environmental familiarization (learning phase) and once for
memory-augmented execution (testing phase) without resetting memory. The observed performance

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

improvement validates RoboMemory’s capacity for interactive environmental learning. We further
conduct ablation studies and error analysis to quantify component contributions and identify remain-
ing limitations. We summarize our contribution as follows:

• We propose a brain-inspired unified embodied memory system, integrating four concur-
rently updated modules (Spatial, Temporal, Episodic, Semantic) into a single framework. It
enables efficient, comprehensive memory operations and coherent knowledge integration,
which are critical for interactive environmental learning in real-world embodied scenarios.

• We design a retrieval-based incremental update algorithm for real-time evolution of Spatial
Knowledge Graphs (KGs). By retrieving relevant subgraphs, detecting local inconsisten-
cies, and merging new observations, it ensures efficient, consistent KG maintenance and
addresses the scalability bottleneck of previous KG-based methods in embodied settings.

• RoboMemory supports interactive environmental learning for real-world physical robots:
it enables sequential diverse tasks without memory reset, with experience accumulation
driving steady performance improvements, demonstrating practical long-term autonomous
learning in physical scenarios.

2 RELATED WORK

2.1 VLM/LLM-BASED AGENTIC FRAMEWORKS IN EMBODIED TASKS

The rapid advancement of VLMs/LLMs has led to diverse agent frameworks in embodied envi-
ronments (Yao et al., 2022; Song et al., 2023; Lin et al., 2024). Embodied tasks involve partial
observability and long-horizon planning, requiring memory systems to retain context. Some use
time-ordered context buffers for short-term memory (due to VLMs/LLMs’ limited long-context
processing) (Yao et al., 2022; Packer et al., 2023); others adopt experience buffers as long-term
semantic memory (Fu et al., 2024a; Shinn et al., 2024). For long-duration tasks, skill libraries serve
as procedural memory, with agents accumulating skills via interaction (Wang et al., 2023; Tan et al.,
2024). However, in real-world settings, the low-level executor may fail to complete the task, making
it challenging to construct a reusable, code-based skill library. So, explicit procedural memory still
needs to be improved in real-world settings. Moreover, Recent efforts integrate diverse memories
(Zhang et al., 2023; Tan et al., 2024; Agashe et al., 2024) but focus on virtual/GUI environments,
leaving real-world multi-modal memory support for long-term planning under-explored.

2.2 VISION LANGUAGE ACTION MODEL

Current work on VLA models uses imitation learning to output low-level controls from language and
visuals (Black et al., 2024; Zhao et al., 2023; Bjorck et al., 2025; Kim et al., 2024) but is limited to
tabletop tasks and single actions, restricting long-horizon planning. VLAs lack long-term execution
abilities, while high-level agents excel at planning. Recent works combine high-level frameworks
with VLA executors, some augmented with simple memory (Shi et al., 2025; Tan et al., 2025; Yuan
et al., 2025; Yang et al., 2025b) for longer tasks. However, real-world robots need more sophisticated
memory to handle continuous multi-task operations over extended periods.

2.3 MEMORY FRAMEWORKS

Many previous works improve long-term planning via memory systems: Voyager (Wang et al.,
2023) uses a skill library in Minecraft but lacks diverse memory types; CoELA (Zhang et al., 2023)
includes procedural, semantic, and episodic memory with a task-specific 2D map; MSI-Agent (Fu
et al., 2024a) utilizes insight as long-term memory for in-task learning. Hippo Retrieval Augmented
Generation (RAG) (Gutiérrez et al., 2024) mimics the hippocampus and introduces KGs as long-
term memory indices (Burgess et al., 2002; Chen et al., 2020), enhancing retrieval. However, the
previous approach is mainly focused on constructing a KG with a static long context, such as a
book, but it is hard to update the graph. We need to update the information in KG for the embodied
task. Our approach builds a more general LLM-based memory system using a dynamic KG like
Hippo RAG, which is designed for embodied tasks. Furthermore, we summarize the differences
among different memory systems in previous work. The comparison is shown in the Table 3 in
Appendix D.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Figure 2: (a) Left: The loop where the Planner, Critic, and Embodied Memory interact to adjust
plans based on real-time visual inputs. Colored text denotes the execution status of actions (suc-
cess/rejected/replanned). (b) Right: Spatial memory maintains a relevance/similarity-updated KG,
and Semantic/Episodic memory manages a Vector DB with analogous logic. Besides, Temporal
memory is implemented as a linear FIFO buffer that stores step-wise summaries generated by the
Step Summarizer.
3 ROBOMEMORY

RoboMemory is a hierarchical embodied agent system that equips robots with three core memory
capabilities: historical interaction logs, dynamically updated spatial layouts, and accumulated task
knowledge. As illustrated in Figure 2, each iteration, RoboMemory follows a process of “Percep-
tion – Memory – Retrieval – Planning – Execution” process, ensuring that the agent continuously
calibrates its memory and behavior in dynamic environments.

First, the information preprocessor converts multimodal sensor inputs into a textual summary of the
current scene, which serves as the primary input to the Comprehensive Embodied Memory. Next,
the Comprehensive Embodied Memory updates its internal representations, including action histo-
ries, object locations, and experiential knowledge. After information is updated, the memory system
retrieves contextually relevant entries to inform the Closed-Loop Planning Module. Then, lever-
aging this contextual memory, the Closed-Loop Planning Module generates high-level, text-based
action instructions. Finally, these commands are dispatched to low-level executors, who will directly
control the robot and complete the instructions. The algorithm is demonstrated in Appendix B.

3.1 INFORMATION PREPROCESSOR

At each time step t, RoboMemory receives a visual observation Ot: an RGB frame (in simulation)
or a short video clip (on physical robots), representing the agent’s observations.

Since raw visual data is unsuitable for direct use in memory construct and retrieval, RoboMemory
first employs an information preprocessor to convert multimodal observations into textual repre-
sentations, thereby providing a semantic interface for subsequent memory and planning modules.
The information preprocessor executes two Vision-Language Models (VLMs) in parallel: (1) Step
summarizer S: Transforms Ot into a concise textual description st of the just-executed action. The
string st is stored in the system’s working memory. (2) Query generator Q: Derives a list of queries

qt = [q
(1),q

(2)
t ,...,q

(N)
t

t] from the same observation Ot. Each query q
(i)
t is a natural language-based

query. These queries are used to query information from the memory system that may be useful.

Together, S andQ provide a swift, text-based interface between raw sensory data and provide basic
information in each iteration for RoboMemory’s Comprehensive Embodied Memory System.

3.2 COMPREHENSIVE EMBODIED MEMORY SYSTEM

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

To address the long-term memory limitations in current embodied agent frameworks, we propose the
Comprehensive Embodied Memory System. This system consists of multiple memory modules. We
denote the memory system containing L distinct modules as Mt = [M

(1)
t ,M

(2)
t , ...,M

(L)
t], where

Mt represents the memory stored at step t, and M
(l)
t denotes the l-th memory module. Generally,

the memory update and retrieval process of iteration t is shown below:

Mt = U(Mt−1, st) (1)

rt = R(Mt, qt) (2)

First, we update memory modules with algorithm U , where we update the previous memory Mt−1

using the latest summarization st. Then, with updated Mt, we use an algorithm R to retrieve the
information that is useful for the planning module. In R, We use queries qt to query Mt, yielding
retrieval results from each module: rt = [r

(1)
t , r

(2)
t , ..., r

(L)
t]. These results are then passed to

the planning module, which helps it plan future movements. However, sequentially updating and
retrieving from L modules would be a slow process. Therefore, we parallelize these steps across all
modules, which significantly enhances the system’s efficiency.

In implementation, the memory system consists of four distinct modules (L = 4): Temporal Mem-
ory, Spatial Memory, Semantic Memory, and Episodic Memory. For efficiency, all memory modules
are updated and retrieved in parallel. Thus, even with multiple modules, the system remains highly
efficient. Functionally, inspired by cognitive psychology Liu et al. (2025), our modules handle mem-
ory at different levels. In cognitive psychology, memory is divided into Sensory Memory, Short-term
Memory, and Long-term Memory. Mirroring this hierarchy, our modules are organized as follows.
First of all, the Information Preprocessor’s S summarizes the agent’s interactions with the environ-
ment at each iteration. It acts as Sensory Memory. Secondly, Temporal Memory and Spatial Memory
function as short-term memory. These two memories will update at each iteration. They are designed
to store the information of sensory memory in every iteration. For Temporal Memory, we record
the agent’s action history sequentially, while for Spatial Memory, we dynamically record the spatial
relationships between different objects in the environment based on Sensory Memory in each itera-
tion. These memories can provide a relatively long and detailed history of the current task for the
Agent to make a future plan. Thirdly, Semantic Memory and Episodic Memory serve as Long-term
Memory. They update only when meaningful information arises (e.g., after task completion). These
memories store highly abstract knowledge, not limited to the current task, but synthesized from past
experiences. This knowledge—factual, event-based, and experiential—improves the agent’s future
task performance. It is the source of RoboMemory’s interactive learning capability. We now detail
each module.

Temporal Memory. In the Temporal Memory, we record Interactions between the robot and the
environment (i.e., Sensory Memory) of each iteration sequentially. This information can provide
the embodied agent with simple awareness of “What I have done”. For such temporally sequential
memory, a simple structure is sufficient: a sequential buffer with automatic summarization triggered
when the record sequence reaches its capacity. In a specific design, temporal memory can store
up to N interaction summaries, each generated by an information preprocessor. When the buffer
is full, we compress the oldest N steps into a single summarized entry using a VLM, which is
then reinserted at the front of the buffer, ensuring continuous context retention without unbounded
growth. However, the information from previous memories will gradually be lost as we summarize
it multiple times. For retrieval, we provide all existed memory in text to downstream modules.

Spatial Memory. The spatial memory is designed to dynamically record the high-level spatial
relationships of different entities in the environment. However, Current spatial memory approaches
often rely on RGB-D cameras to reconstruct 3D point clouds (Zhang et al., 2023; Chang et al.,
2023). These representations are too detailed for high-level planning in embodied agents. For
example, Precise geometric relationships (e.g., exact distances between objects) are unnecessary.

To address these problems, inspired by Gutiérrez et al. (2024), we use Dynamic KG to store high-
level spatial information: objects and positions in the environment become vertices of KG, and
spatial relations between objects or positions are encoded as edges. The KG focuses on high-level
spatial relations (e.g., “cup on table”, “key left of drawer”). By these settings, spatial KG focuses
on semantically meaningful, task-relevant relations. This spatial information enhances the agent’s
spatial reasoning capability in dynamic environments.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

However, as related work shows, most KG construction algorithms are designed for static long
content. This does not meet the demand of using KG as spatial memory for the agent. The KG needs
to update efficiently in response to new information. To address this issue, we introduce a retrieval-
driven, incremental KG update algorithm that maintains a locally modifiable, globally consistent,
and dynamically adaptive spatial memory. As illustrated in the right panel of Figure 2, the update
process proceeds in four steps: (1) retrieves the most relevant sub-KG around new observations. (2)
Injects new relations from the current observation by a VLM-based Relation Retriever. (3) Detects
and resolves conflicts between newly extracted relations and existing ones (e.g., “cup on table” vs.
‘cup in drawer”) using a VLM-based resolver, which decides whether to add, delete, or modify
edges. (4) Merges back and prunes isolated vertices. Moreover, our retrieval-based incremental
update algorithm is accompanied by provable efficiency guarantees. For a KG with n vertices and
maximum degree D, the number of vertices processed per update is bounded by O(DK), where
K is the retrieval hop distance (see Appendix E.3 for formal analysis). Further architectural and
implementation details are provided in Appendix E.1.

Semantic Memory. In cognitive psychology, semantic memory stores time-independent facts.
These facts are stable, update slowly, and require long-term retention. In RoboMemory, seman-
tic memory records task-relevant experiences and environmental knowledge during execution. This
information can help RoboMemory adapt to new environments or tasks. This information is highly
abstract and does not need to be updated frequently. In RoboMemory, Semantic memory updates
when new information is encountered during execution, for example, after completing a subtask or
encountering important information. To store and update memories efficiently, we design a mem-
ory management system based on a vector database. In the vector database, each experience/fact is
described in natural language (denoted as a memory item). Each memory item is converted into a se-
mantic vector for querying. For dynamic updates, we adapt a framework from prior work Chhikara
et al. (2025). As shown in the bottom-right of Figure 2, the semantic memory update algorithm in-
volves two VLM-based modules. Firstly, Long-term Memory Creator generates new memory items
based on short-term memory. We retrieve the top-S most similar existing memory items from exist-
ing memory via cosine similarity. A VLM-based updater then compares new and existing items to
decide whether to: add the new item, update an existing item, remove an outdated item, or perform
Noop (if redundant). Since updates only involve a maximum of S previous memory items and the
update process is parallelized across all memory modules, this update method ensures that semantic
memory remains efficient even as the database grows. For retrieval, we use the same process as a
traditional vector database. We use queries to extract top-N relevant information for downstream
modules.

Episodic Memory. In cognitive psychology, Episodic Memory is another important part of long-
term memory. It can store task-specific execution summaries (i.e., “autobiographical” records of
past attempts). In RoboMemory, the Episodic Memory module is responsible for recording every
interaction trajectory it has gone through. Including the sequence of actions the robot did and the
feedback from the environment. The trajectory information can help to improve the planning ability
of RoboMemory. For example, if a trajectory for completing a similar task is stored in episodic
memory, it can guide the agent in completing the current task. As the agent only needs to follow
the successful trajectory in the memory, it can reduce hallucinations or errors in the VLM planner.
Technically, Episodic Memory shares the same storage and VLM-driven vector database update
mechanism as Semantic Memory, ensuring consistent architectural design.

3.3 CLOSED-LOOP PLANNING MODULE FOR DYNAMIC ENVIRONMENT

The Closed-Loop Planning Module integrates information about the current task provided by the
Spatial-Temporal Memory, Semantic and Episodic information recorded in long-term memory, and
current observations to perform action planning. Each action is planned and passed on to the low-
level executor for execution.

To enable closed-loop control in embodied environments, the Closed-Loop Planning Module adopts
the Planner-Critic mechanism (Lei et al., 2025), which consists of the planner and the critic module.
We denote the planner module as P , while the critic module as C. For each planning step, the
planner generates a long-term plan consisting of multiple steps. However, due to the dynamics of
embodied environments, the action sequence in the long-term plan may become outdated during the
execution of the plan. Thus, before executing each step, we use the Critic model to evaluate whether

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

the proposed action in this step remains appropriate under the latest environment. If not, the planner
will re-plan based on the latest information. The demonstration of this process is shown in Figure 2.

However, our experiments reveal that the original Planner-Critic mechanism may suffer from infinite
loops. In the original mechanism, the first step of the action sequence output by the Planner is
evaluated by the Critic before execution, which can lead to an infinite loop: if the Critic always
demands replanning, no action will ever be executed. To address this, we modified the Planner-
Critic mechanism so that the first step is not evaluated by the Critic. This ensures that even if the
Critic persistently demands replanning, the RoboMemory will still execute actions. The detailed
algorithm is shown in Appendix B.

3.4 LOW-LEVEL EXECUTOR

The RoboMemory framework is a two-layer hierarchical agent framework. This design enables
RoboMemory to accomplish longer-term tasks in the real world. The upper layer is responsible only
for high-level planning, while the Low-level Executor carries out the actions planned by the upper
layer in the real environment.

We employ a LoRA-finetuned VLA model, π0 (Hu et al., 2022; Black et al., 2024), to generate
manipulation actions, and a SLAM-based navigation model for locomotion. The low-level executor
then translates high-level actions planned by RoboMemory into concrete arm and chassis move-
ments in the real world.

Table 1: Comparison of Success Rates (SR) and Goal Condition Success Rates (GC) across dif-
ficulty levels (Base/Long) on EB-ALFRED and EB-Habitat benchmarks. Values are reported in
percentages (%).

Method Type
EB-ALFRED EB-Habitat

Average Base Long Base Long

SR GC SR GC SR GC SR GC SR GC

Single VLM-Agents

GPT-4o

Closed-source

67.0 74.9 64.0 74.0 54.0 62.5 86.0 90.7 64.0 72.2
GPT-4o-mini 30.5 40.9 34.0 47.8 0.0 17.0 74.0 77.5 14.0 21.3
Claude-3.7-Sonnet 68.5 - 68.0 - 70.0 - 90.0 - 46.0 -
Claude-3.5-Sonnet 69.5 71.8 72.0 72.0 52.0 54.5 96.0 97.5 58.0 63.3
Gemini-1.5-Pro 68.0 73.3 70.0 74.3 58.0 65.0 92.0 92.5 52.0 61.2
Gemini-2.0-flash 57.0 61.5 62.0 65.7 58.0 62.0 82.0 82.0 26.0 36.2

Llama-3.2-90B-Vision-Ins

Open-source

40.5 46.6 38.0 43.7 16.0 24.0 94.0 94.5 14.0 24.3
InternVL2.5-78B 47.0 52.9 38.0 42.3 42.0 49.0 80.0 82.0 28.0 38.2
InternVL2.5-38B 37.5 42.6 36.0 37.3 26.0 36.5 60.0 61.5 28.0 35.0
InternVL3-78B 49.5 - 38.0 - 36.0 - 84.0 - 40.0 -
Qwen2.5-VL-72B-Ins 44.0 - 50.0 - 34.0 - 74.0 - 18.0 -

VLM-Agent Frameworks

Voyager (Qwen2.5-VL-72B-Ins)

Baselines

46.5 66.4 56.0 73.2 32.0 54.2 76.0 87.0 22.0 51.0
Reflexion (Qwen2.5-VL-72B-Ins) 38.3 51.1 48.0 54.0 10.0 33.0 80.0 84.2 15.0 33.0
Cradle (Qwen2.5-VL-72B-Ins) 44.5 57.0 54.0 67.9 32.0 41.0 62.0 67.0 30.0 52.1
RoboOS (Qwen2.5-VL-72B-Ins) 25.5 33.0 32.0 38.4 12.0 17.6 38.0 47.8 20.0 28.2
RoboOS (RoboBrain2-32B) 20.0 25.7 32.0 37.2 8.0 13.2 28.0 34.8 12.0 17.4

RoboMemory (Qwen2.5-VL-72B-Ins) Ours 70.5 79.7 68.0 75.5 66.0 81.3 86.0 88.0 62.0 74.0

4 EXPERIMENTS

4.1 BENCHMARKS

To evaluate RoboMemory’s task planning ability, we select a subset of the EmbodiedBench EB-
ALFRED and EB-Habitat benchmark (Yang et al., 2025a). We selected the Base and Long subsets
because they aim to test the agent’s planning ability. The Base and Long subsets of the two bench-
marks comprise 200 tasks for complex embodied tasks. The EB-ALFRED and EB-Habitat bench-
marks provide a visually grounded operational setting that closely mimics real-world conditions (see
Appendix F for environment details), enabling direct comparison with established baselines.

Moreover, we set up an environment to test the interactive environmental learning ability of
RoboMemory in the real world.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

4.2 SETTINGS & BASELINES

To facilitate comparisons, we consider two types of baselines. First, we choose the advanced closed-
source and open-source VLMs as a single agent. We compare their performance with RoboMemory.
For closed source VLMs, we choose GPT-4o and GPT-4o-mini (OpenAI, 2024; Hurst et al., 2024),
Claude3.5-Sonnet and Claude-3.7-Sonnet (Anthropic, 2024), Gemini-1.5-Pro and Gemini-2.0-flash
(Team et al., 2024; DeepMind, 2024). For open source VLMs, we choose Llama-3.2-90B-Vision-
Ins (Meta, 2024), InternVL-2.5-78B/28B (Chen et al., 2024b), InternVL-3-72B (Zhu et al., 2025),
and Qwen2.5-VL-72B-Ins (Bai et al., 2025). Secondly, we choose three agent frameworks: (1)
Reflexion (Shinn et al., 2024), which introduces a simple long-term memory and a self-reflection
module. Reflexion uses the self-reflection module to summarize experiences as long-term memory,
thereby enhancing the model’s capabilities. (2) Voyager (Wang et al., 2023), which utilizes a skill
library as its procedural memory, is a widely used baseline for embodied agent planning. (3) Cradle
(Tan et al., 2024), which proposes a general agent framework with episodic and procedural memory
and gains good performances at various multi-model agent tasks. (4) RoboOS (Tan et al., 2025),
which proposes an embodied agent framework that consists of Scene-Graph based Spatial Memory.

In our experiments, each agent framework is tested using Qwen2.5-VL-72b-Ins (Team, 2024) with
temperature set as 0. For the RoboOS framework, we test it on RoboBrain2-32B (Team et al., 2025),
where the RoboBrain2-32B model is designed for the RoboOS framework.

The Qwen2.5-VL-72b-Ins represents a high-performing open-source alternative. Notably, the
Qwen2.5-VL-72b-Ins demonstrates performance comparable to advanced closed-source VLMs in
several benchmark tasks (White et al., 2024). We use the Qwen3-Embedding model (Zhang et al.,
2025) to create embedding vectors for RAGs in RoboMemory. For the Low-level Executor, since
EB-ALFRED provides high-level action APIs, we use the low-level executor provided by Embod-
iedBench instead of the VLA-based method.

We define two evaluation metrics to assess the performance: (1) Success Rate (SR), which is the
ratio of completed tasks to the total number of tasks in each difficulty level. This metric reflects the
agent’s ability to complete tasks across randomly generated scenarios. (2) Goal Condition Success
Rate (GC), which is the ratio of intermediate conditions achieved to the maximum possible score in
each scenario. An GC of 100% indicates that the task is completed in the given scenario. These two
metrics can be computed as:

SR = Ex∈X [1SCNx=GCNx] (3)

GC = Ex∈X

[
SCNx

GCNx

]
(4)

WhereX denotes the test subset, and x represents a test task. The success condition number (SCNx)
refers to the number of conditions the agent has accomplished, while the global condition number
(GCNx) indicates the total number of conditions required for task completion. The task is consid-
ered successful if SCNx = GCNx.

Figure 3: Efficiency improvement of Compre-
hensive Embodied Memory System

Table 2: Ablation Study on RoboMemory’s Suc-
cess Rate (SR)

Method Avg. Base Long

RoboMemory 67% 68% 66%
- w/o critic 55 % 60 % 50%
- w/o spatial memory 47 % 52 % 42 %
- w/o long-term memory 57% 66% 48%
- w/o episodic memory 62% 68% 56%
- w/o semantic memory 58% 66% 50%

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

4.3 MAIN RESULTS

As shown in Table 1, our model achieves significant improvements over both single VLM agents and
Agent frameworks on the EB-ALFRED and EB-Habitat. Compared to the SOTA Single VLM-Agent
model, Claude3.5-Sonnet, RoboMemory with Qwen2.5-VL-72B-Ins backbone improves the aver-
age SR by 1% and GC by 7.9%. This demonstrates RoboMemory’s superiority over single VLM-
Agents, proving that an Agent framework with open-source models can outperform closed-source
SOTA models. Furthermore, when tested against other VLM-Agent frameworks, RoboMemory also
shows substantial gains. This is because, unlike other frameworks, RoboMemory’s brain-like mem-
ory system provides embodied models with more accurate and persistent contextual information.
Additionally, the Planner-Critic mechanism provides a closed-loop planning ability, which helps the
RoboMemory gain better performance in long-term tasks. Because the RoboMemory can detect and
try to overcome possible failures. And it is more robust when encountering unexpected situations.

4.4 EFFICIENCY ANALYSIS

To evaluate the efficiency of the Comprehensive Embodied Memory module, we tasked RoboMem-
ory with executing 10 long-horizon tasks, each comprising approximately 50 steps. We exclusively
measured the wall-clock time consumed by memory update and retrieval operations. We analyzed
the scaling behavior of memory update latency across three distinct configurations: (1) fully paral-
lel update and retrieval across all memory modules; (2) sequential update of each memory module
without parallelism; and (3) update of only the most fundamental memory component: the Tem-
poral Memory. Results are presented in Figure 3. As shown, our parallel update strategy enables
updating a multi-module memory system with latency comparable to that of updating a single base
memory module. This demonstrates the critical efficiency gains afforded by parallelization across
the memory architecture.

4.5 ABLATION STUDIES

We used the full Base and Long Subset from EB-ALFRED to validate RoboMemory’s effective-
ness. We removed each component systematically and observed performance changes across task
categories. We use the success rate as our metric. Results are shown in Table 2.

Long-term Memory Adding long-term memory significantly improved RoboMemory’s success
rate. The experiment shows that it enables interactive environmental learning while attempting
to complete tasks. The semantic memory learns low-level skills’ properties, such as in what cir-
cumstances an action may fail. The temporal memory records all task attempts (successful/failed),
providing valuable experience at the task level and giving insight into how to complete a task suc-
cessfully. This helps the RoboMemory predict action outcomes and avoid ineffective attempts. This
ability indicates that the RoboMemory has an interactive environmental learning capability.

Spatial Memory Spatial memory is crucial for embodied agents, especially given that current pre-
trained VLMs have limited spatial understanding ability. Our novel dynamic KG update algo-
rithm enables KG-based spatial memory in dynamic environments. This spatial reasoning helps
RoboMemory handle partially observable embodied settings.

Critic Module Table 2 shows performance without the critic module (55% vs 67% with full system).
This drop highlights how the critic’s closed-loop planning adapts to dynamic environments. It helps
RoboMemory recover from failures faster and handle unexpected situations better.

4.6 REAL-WORLD ROBOT DEPLOYMENT

To evaluate RoboMemory’s interactive environmental learning capability in the real world, we de-
signed a kitchen environment inspired by EB-ALFRED and EB-Habitat. The scene contains 5 nav-
igable points, 8 interactive objects, and over 10 non-interactive (but potentially distracting) items.
The environment is shown in Figure 4. In the real world, we use interactive environmental video
recordings captured during action execution (rather than static snapshots taken after action comple-
tion) as RoboMemory’s input. This provides a more temporally coherent perception. We created
three task categories (5 tasks each). Tasks are matched to EB-ALFRED’s Base subset (avg. ora-
cle: 10–20 steps), though actual executions often exceed 20 steps due to search and error recovery.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Figure 4: Visualization of the experimental en-
vironment.

0 10 20 30 40 50

Success Rate (%)

46.67% RoboMemory (Second attempt)

26.67% RoboMemory (First attempt)

6.67% RoboOS (RoboBrain)

20.0% RoboOS (Qwen)

Figure 5: Real-world experiment results. “Qwen”
denotes Qwen2.5-VL-72B-Ins; “RoboBrain” de-
notes RoboBrain2.0-32B.

Due to search and error recovery, the robot often exceeds 20 steps per task. Additional hardware
experiment details are in Appendix F.

To test the interactive environmental learning ability of RoboMemory, we run each task twice with-
out clearing long-term memory between attempts. Meanwhile, We compared RoboMemory against
RoboOS as baselines. The success rates for first and second attempts and different settings of Ro-
boOS are shown in Figure 5.

The second attempt showed significantly higher success rates. This proves RoboMemory’s long-
term memory effectively guides subsequent tasks in real embodied environments. Key observations
include: (1) Closed-loop error recovery: RoboMemory retries failed actions when possible, even
if the low-level executor (VLA model) fails. (2) Spatial reasoning: RoboMemory remembers ob-
ject locations and spatial relationships using its memory. (3) Interactive environmental learning:
RoboMemory analyzes failure causes reasonably. These analyses guide future decisions. Detailed
examples demonstrating these capabilities and further discussions are provided in Appendix G.

Moreover, we observed a significant drop in task success rates when deploying the agent with the
Low-level Executor in real-world environments. This performance degradation primarily stems from
the executor’s inherent limitations: (1) The VLA model exhibits unreliable instruction-following ca-
pabilities, frequently failing during grasping actions or selecting incorrect objects; (2) Pre-trained
VLM models demonstrate inadequate video understanding - while capable of recognizing static ob-
jects, they struggle to interpret dynamic visual information such as action failures or state changes.
These limitations collectively contribute to the reduced performance compared to simulated envi-
ronments.

5 CONCLUSION AND FUTURE WORK

In summary, RoboMemory, a brain-inspired multi-memory framework, facilitates long-horizon
planning and interactive environmental learning in real-world embodied systems by addressing key
challenges such as memory latency, task correlation capture, and planning loops. Experiments on
EmbodiedBench demonstrate that RoboMemory outperforms state-of-the-art closed-source VLMs
and agent frameworks, with ablation studies confirming the critical roles of the Critic module and
spatial/long-term memory. Real-world deployment further validates its interactive learning capa-
bility through improved success rates in repeated tasks. Despite limitations arising from reasoning
errors and executor dependence, RoboMemory provides a foundation for generalizable, memory-
augmented agents, with future work aimed at refining reasoning and enhancing execution robust-
ness.

A notable open challenge in hierarchical embodied agents, including RoboMemory, lies in the in-
terface between high-level planners and low-level executors. Existing frameworks typically rely on
language instructions to convey actions, yet some execution details (e.g., precise grasp points) are
difficult to describe textually and are better captured through other modalities, such as vision. While
our current work emphasizes long-term planning and interactive learning, future research may im-
prove generalization by developing richer multimodal interactions between the agent and executor.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

REFERENCES

Saaket Agashe, Jiuzhou Han, Shuyu Gan, Jiachen Yang, Ang Li, and Xin Eric Wang. Agent s: An
open agentic framework that uses computers like a human. arXiv preprint arXiv:2410.08164,
2024.

Anthropic. Claude 3.5 sonnet, 2024. URL https://www.anthropic.com/news/claude-3-5-sonnet.

Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,
Shijie Wang, Jun Tang, et al. Qwen2. 5-vl technical report. arXiv preprint arXiv:2502.13923,
2025.

Johan Bjorck, Fernando Castañeda, Nikita Cherniadev, Xingye Da, Runyu Ding, Linxi Fan,
Yu Fang, Dieter Fox, Fengyuan Hu, Spencer Huang, et al. Gr00t n1: An open foundation model
for generalist humanoid robots. arXiv preprint arXiv:2503.14734, 2025.

Kevin Black, Noah Brown, Danny Driess, Adnan Esmail, Michael Equi, Chelsea Finn, Niccolo
Fusai, Lachy Groom, Karol Hausman, Brian Ichter, et al. π0: A vision-language-action flow
model for general robot control. arXiv preprint arXiv:2410.24164, 2024.

Neil Burgess, Eleanor A Maguire, and John O’Keefe. The human hippocampus and spatial and
episodic memory. Neuron, 35(4):625–641, 2002.

Matthew Chang, Theophile Gervet, Mukul Khanna, Sriram Yenamandra, Dhruv Shah, So Yeon
Min, Kavit Shah, Chris Paxton, Saurabh Gupta, Dhruv Batra, et al. Goat: Go to any thing. arXiv
preprint arXiv:2311.06430, 2023.

Minghao Chen, Yihang Li, Yanting Yang, Shiyu Yu, Binbin Lin, and Xiaofei He. Automanual:
Constructing instruction manuals by llm agents via interactive environmental learning. Advances
in Neural Information Processing Systems, 37:589–631, 2024a.

Xiaojun Chen, Shengbin Jia, and Yang Xiang. A review: Knowledge reasoning over knowledge
graph. Expert systems with applications, 141:112948, 2020.

Zhe Chen, Weiyun Wang, Yue Cao, Yangzhou Liu, Zhangwei Gao, Erfei Cui, Jinguo Zhu, Shen-
glong Ye, Hao Tian, Zhaoyang Liu, et al. Expanding performance boundaries of open-source
multimodal models with model, data, and test-time scaling. arXiv preprint arXiv:2412.05271,
2024b.

Prateek Chhikara, Dev Khant, Saket Aryan, Taranjeet Singh, and Deshraj Yadav. Mem0: Building
production-ready ai agents with scalable long-term memory. arXiv preprint arXiv:2504.19413,
2025.

Cheng Chi, Zhenjia Xu, Siyuan Feng, Eric Cousineau, Yilun Du, Benjamin Burchfiel, Russ Tedrake,
and Shuran Song. Diffusion policy: Visuomotor policy learning via action diffusion. The Inter-
national Journal of Robotics Research, pp. 02783649241273668, 2023.

Wonje Choi, Jinwoo Park, Sanghyun Ahn, Daehee Lee, and Honguk Woo. Nesyc: A neuro-symbolic
continual learner for complex embodied tasks in open domains. arXiv preprint arXiv:2503.00870,
2025.

Google DeepMind. Introducing gemini 2.0: our new ai model for the agentic era, 2024. URL
https://blog.google/technology/google-deepmind/google-gemini-ai-update-december-2024/.

Dayuan Fu, Biqing Qi, Yihuai Gao, Che Jiang, Guanting Dong, and Bowen Zhou. Msi-agent: In-
corporating multi-scale insight into embodied agents for superior planning and decision-making.
arXiv preprint arXiv:2409.16686, 2024a.

Zipeng Fu, Tony Z Zhao, and Chelsea Finn. Mobile aloha: Learning bimanual mobile manipulation
with low-cost whole-body teleoperation. arXiv preprint arXiv:2401.02117, 2024b.

Yunfan Gao, Yun Xiong, Xinyu Gao, Kangxiang Jia, Jinliu Pan, Yuxi Bi, Yixin Dai, Jiawei Sun,
Haofen Wang, and Haofen Wang. Retrieval-augmented generation for large language models: A
survey. arXiv preprint arXiv:2312.10997, 2(1), 2023.

11

https://www.anthropic.com/news/claude-3-5-sonnet
https://blog.google/technology/google-deepmind/google-gemini-ai-update-december-2024/

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Marc Glocker, Peter Hönig, Matthias Hirschmanner, and Markus Vincze. Llm-empowered em-
bodied agent for memory-augmented task planning in household robotics. arXiv preprint
arXiv:2504.21716, 2025.

Bernal Jiménez Gutiérrez, Yiheng Shu, Yu Gu, Michihiro Yasunaga, and Yu Su. Hipporag:
Neurobiologically inspired long-term memory for large language models. arXiv preprint
arXiv:2405.14831, 2024.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
Weizhu Chen, et al. Lora: Low-rank adaptation of large language models. ICLR, 1(2):3, 2022.

Yafei Hu, Quanting Xie, Vidhi Jain, Jonathan Francis, Jay Patrikar, Nikhil Keetha, Seungchan Kim,
Yaqi Xie, Tianyi Zhang, Hao-Shu Fang, et al. Toward general-purpose robots via foundation
models: A survey and meta-analysis. arXiv preprint arXiv:2312.08782, 2023.

Aaron Hurst, Adam Lerer, Adam P Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark, AJ Os-
trow, Akila Welihinda, Alan Hayes, Alec Radford, et al. Gpt-4o system card. arXiv preprint
arXiv:2410.21276, 2024.

Moo Jin Kim, Karl Pertsch, Siddharth Karamcheti, Ted Xiao, Ashwin Balakrishna, Suraj Nair,
Rafael Rafailov, Ethan Foster, Grace Lam, Pannag Sanketi, et al. Openvla: An open-source
vision-language-action model. arXiv preprint arXiv:2406.09246, 2024.

Mingcong Lei, Ge Wang, Yiming Zhao, Zhixin Mai, Qing Zhao, Yao Guo, Zhen Li, Shuguang Cui,
Yatong Han, and Jinke Ren. Clea: Closed-loop embodied agent for enhancing task execution in
dynamic environments. arXiv preprint arXiv:2503.00729, 2025.

Bill Yuchen Lin, Yicheng Fu, Karina Yang, Faeze Brahman, Shiyu Huang, Chandra Bhagavatula,
Prithviraj Ammanabrolu, Yejin Choi, and Xiang Ren. Swiftsage: A generative agent with fast and
slow thinking for complex interactive tasks. Advances in Neural Information Processing Systems,
36, 2024.

Bang Liu, Xinfeng Li, Jiayi Zhang, Jinlin Wang, Tanjin He, Sirui Hong, Hongzhang Liu, Shaokun
Zhang, Kaitao Song, Kunlun Zhu, et al. Advances and challenges in foundation agents: From
brain-inspired intelligence to evolutionary, collaborative, and safe systems. arXiv preprint
arXiv:2504.01990, 2025.

Meta. Llama 3.2: Revolutionizing edge ai and vision with open, customizable models, 2024. URL
https://ai.meta.com/blog/llama-3-2-connect-2024-vision-edge-mobile-devices/.

David Milner. Cognitive neuroscience: the biology of the mind and findings and current opinion in
cognitive neuroscience. Trends in cognitive sciences, 2(11):463, 1998.

OpenAI. Gpt-4o mini: advancing cost-efficient intelligence, 2024. URL https://openai.com/index/
gpt-4o-mini-advancing-cost-efficient-intelligence/.

Charles Packer, Sarah Wooders, Kevin Lin, Vivian Fang, Shishir G. Patil, Ion Stoica, and Joseph E.
Gonzalez. MemGPT: Towards llms as operating systems. arXiv preprint arXiv:2310.08560,
2023.

Joon Sung Park, Joseph O’Brien, Carrie Jun Cai, Meredith Ringel Morris, Percy Liang, and
Michael S Bernstein. Generative agents: Interactive simulacra of human behavior. In Proceedings
of the 36th annual acm symposium on user interface software and technology, pp. 1–22, 2023.

Lucy Xiaoyang Shi, Brian Ichter, Michael Equi, Liyiming Ke, Karl Pertsch, Quan Vuong, James
Tanner, Anna Walling, Haohuan Wang, Niccolo Fusai, et al. Hi robot: Open-ended instruction
following with hierarchical vision-language-action models. arXiv preprint arXiv:2502.19417,
2025.

Noah Shinn, Federico Cassano, Ashwin Gopinath, Karthik Narasimhan, and Shunyu Yao. Reflexion:
Language agents with verbal reinforcement learning. Advances in Neural Information Processing
Systems, 36, 2024.

12

https://ai.meta.com/blog/llama-3-2-connect-2024-vision-edge-mobile-devices/
https://openai.com/index/gpt-4o-mini-advancing-cost-efficient-intelligence/
https://openai.com/index/gpt-4o-mini-advancing-cost-efficient-intelligence/

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Chan Hee Song, Jiaman Wu, Clayton Washington, Brian M Sadler, Wei-Lun Chao, and Yu Su.
Llm-planner: Few-shot grounded planning for embodied agents with large language models. In
Proceedings of the IEEE/CVF international conference on computer vision, pp. 2998–3009, 2023.

Huajie Tan, Xiaoshuai Hao, Cheng Chi, Minglan Lin, Yaoxu Lyu, Mingyu Cao, Dong Liang, Zhuo
Chen, Mengsi Lyu, Cheng Peng, et al. Roboos: A hierarchical embodied framework for cross-
embodiment and multi-agent collaboration. arXiv preprint arXiv:2505.03673, 2025.

Weihao Tan, Wentao Zhang, Xinrun Xu, Haochong Xia, Ziluo Ding, Boyu Li, Bohan Zhou, Junpeng
Yue, Jiechuan Jiang, Yewen Li, et al. Cradle: Empowering foundation agents towards general
computer control. arXiv preprint arXiv:2403.03186, 2024.

BAAI RoboBrain Team, Mingyu Cao, Huajie Tan, Yuheng Ji, Xiansheng Chen, Minglan Lin, Zhiyu
Li, Zhou Cao, Pengwei Wang, Enshen Zhou, et al. Robobrain 2.0 technical report. arXiv preprint
arXiv:2507.02029, 2025.

Gemini Team, Petko Georgiev, Ving Ian Lei, Ryan Burnell, Libin Bai, Anmol Gulati, Garrett Tanzer,
Damien Vincent, Zhufeng Pan, Shibo Wang, et al. Gemini 1.5: Unlocking multimodal under-
standing across millions of tokens of context. arXiv preprint arXiv:2403.05530, 2024.

Qwen Team. Qwen2.5: A party of foundation models, September 2024. URL https://qwenlm.
github.io/blog/qwen2.5/.

Guanzhi Wang, Yuqi Xie, Yunfan Jiang, Ajay Mandlekar, Chaowei Xiao, Yuke Zhu, Linxi Fan,
and Anima Anandkumar. Voyager: An open-ended embodied agent with large language models.
arXiv preprint arXiv:2305.16291, 2023.

Colin White, Samuel Dooley, Manley Roberts, Arka Pal, Ben Feuer, Siddhartha Jain, Ravid Shwartz-
Ziv, Neel Jain, Khalid Saifullah, Siddartha Naidu, et al. Livebench: A challenging, contamination-
free llm benchmark. arXiv preprint arXiv:2406.19314, 2024.

Rui Yang, Hanyang Chen, Junyu Zhang, Mark Zhao, Cheng Qian, Kangrui Wang, Qineng Wang,
Teja Venkat Koripella, Marziyeh Movahedi, Manling Li, et al. Embodiedbench: Comprehen-
sive benchmarking multi-modal large language models for vision-driven embodied agents. arXiv
preprint arXiv:2502.09560, 2025a.

Zhejian Yang, Yongchao Chen, Xueyang Zhou, Jiangyue Yan, Dingjie Song, Yinuo Liu, Yuting
Li, Yu Zhang, Pan Zhou, Hechang Chen, et al. Agentic robot: A brain-inspired framework for
vision-language-action models in embodied agents. arXiv preprint arXiv:2505.23450, 2025b.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629,
2022.

Haoqi Yuan, Yu Bai, Yuhui Fu, Bohan Zhou, Yicheng Feng, Xinrun Xu, Yi Zhan, Börje F Karlsson,
and Zongqing Lu. Being-0: A humanoid robotic agent with vision-language models and modular
skills. arXiv preprint arXiv:2503.12533, 2025.

Hongxin Zhang, Weihua Du, Jiaming Shan, Qinhong Zhou, Yilun Du, Joshua B Tenenbaum, Tian-
min Shu, and Chuang Gan. Building cooperative embodied agents modularly with large language
models. arXiv preprint arXiv:2307.02485, 2023.

Yanzhao Zhang, Mingxin Li, Dingkun Long, Xin Zhang, Huan Lin, Baosong Yang, Pengjun Xie,
An Yang, Dayiheng Liu, Junyang Lin, et al. Qwen3 embedding: Advancing text embedding and
reranking through foundation models. arXiv preprint arXiv:2506.05176, 2025.

Andrew Zhao, Daniel Huang, Quentin Xu, Matthieu Lin, Yong-Jin Liu, and Gao Huang. Expel: Llm
agents are experiential learners. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 38, pp. 19632–19642, 2024.

Tony Z Zhao, Vikash Kumar, Sergey Levine, and Chelsea Finn. Learning fine-grained bimanual
manipulation with low-cost hardware. arXiv preprint arXiv:2304.13705, 2023.

Jinguo Zhu, Weiyun Wang, Zhe Chen, Zhaoyang Liu, Shenglong Ye, Lixin Gu, Hao Tian, Yuchen
Duan, Weijie Su, Jie Shao, et al. Internvl3: Exploring advanced training and test-time recipes for
open-source multimodal models. arXiv preprint arXiv:2504.10479, 2025.

13

https://qwenlm.github.io/blog/qwen2.5/
https://qwenlm.github.io/blog/qwen2.5/

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A STATEMENT OF LLM USAGE

In this article, the LLM participated in the following tasks: (1) assisting in revising and polishing
the manuscript, and (2) serving as an experimental subject in various experiments.

B ADDITIONAL ALGORITHMS

Algorithm 1 RoboMemory Execution Process

Require: Task description T , Initial observation O0, Max steps Tmax

Require: Modules: Step Summarizer S,Query GeneratorQ; Memory U ,R; Planner P; Critic C;
Executor E

1: Initialize: Global step t← 0, Memory Mt ← ∅
2: Initial Perception:
3: st, qt ← SQ(Ot) {call the step summarizer and query generator in parallel}
4: Mt ← U(Mt, st) {Initialize Memory with first observation}
5: while t < Tmax and Task T not completed do
6: Retrieval Phase:
7: rt ← R(Mt, qt) {Parallel retrieval from L memory modules}
8: Planning Phase:
9: A← P(rt,Ot, T) {Generate action sequence A = [a1, a2, . . . , aK]}

10: Execution Phase (Closed-Loop):
11: for k = 1 to |A| do
12: Let ak be the current action to execute
13: execute flag← False
14: if k = 1 then
15: execute flag← True {Skip Critic for the first step to avoid infinite loops}
16: else
17: {Re-evaluate context for subsequent steps}
18: rcurr ← R(Mt, qcurr)
19: if C(ak, rcurr,Ot, T) is True then
20: execute flag← True
21: else
22: break {Critic rejects action; trigger re-planning}
23: end if
24: end if
25: if execute flagisTrue then
26: Ot+1 ← E(ak) {Execute action via low-level executors}
27: t← t+ 1
28: Memory Update (Perception → Memory): st, qt ← SQ(Ot) {Generate query and

summary in parallel}
29: Mt ← U(Mt−1, st) {Parallel update of all modules}
30: end if
31: end for
32: end while

C ADDITIONAL EXPERIMENTS

C.1 ERROR ANALYSIS

We summarize the common errors of RoboMemory in the previous experiments. We classify errors
into three main types: planning errors, reasoning errors, and perception errors.

The planning errors occur when the planner fails to generate correct actions. The reasoning errors
occur when the planner and critic cannot properly process input information (including current ob-
servations and memory), even when the input is correct. Perception errors occur when incorrect
information is provided to the planner-critic module.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Figure 6: The reason why RoboMemory failed to
complete the task.

We analyze RoboMemory trajectories for failed
tasks. We identify error types based on the
above definitions. A single task may con-
tain multiple errors. We calculate the occur-
rence probability of each error type to show
RoboMemory’s strengths and weaknesses. The
results are shown in Figure 6.

We can observe that among all error types, the
planning errors are the most common. This
means that even though the memory modules
can provide comprehensive information about
the RoboMemory agent’s previous experience
and spatial and temporal memory for the cur-
rent task, the planner module may still not pro-
vide good action plans. This may be due to the
capability of the pretrained base model.

The most common perception error is the hal-
lucination error. We can observe that although
some hallucinations can be handled by the critic
module or memory information, there are still some cases in which the planner ignores all insights
from memory and critic and fails to complete the task.

The detailed examples and discussions are provided in Appendix G.

C.2 ADDITIONAL EFFICIENCY ANALYSIS

We analyze the evolution of the spatial KG during long trajectories in EB-ALFRED, focusing on the
first 20 iterations (with 95% confidence intervals). As shown in Figure 7, the total number of spatial
relationships in the KG (red line) increases gradually over iterations as RoboMemory is exploring
the environment. In contrast, the number of relationships retrieved for update at each iteration (blue
line) remains relatively stable, typically ranging around 10 edges per iteration. This stability is
achieved because our method only updates a local subgraph relevant to the current observation.

We define the retrieval ratio as the proportion of relationships updated at each iteration relative to the
total number of relationships in the KG. As shown in Figure 7, this ratio (illustrated by gray bars)
decreases steadily from 76% initially to 28% at iteration 20. This trend indicates that, as the KG
grows, each update affects a progressively smaller fraction of the entire graph. This demonstrates
that our spatial KG update mechanism effectively localizes modifications, ensuring computational
efficiency and mitigating interference through context-aware incremental updates.

Figure 7: Average relationships related to update in spatial memory in each step.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

D ADDITIONAL RELATED WORK

Table 3: Comparison of Memory-Related Methods in Embodied Agent

Method Multimodal Episodic Semantic Spatial Temporal Procedural Memory Implementation Real Robot

NeSyC (Choi et al., 2025) ✓ ✓ ✓ Symbolic logic rules ✓
Reflexion (Shinn et al., 2024) ✓ ✓ Buffer
Voyager (Wang et al., 2023) ✓ RAG
MSI-Agent (Fu et al., 2024a) ✓ ✓ Database, RAG
CoELA (Zhang et al., 2023) ✓ ✓ ✓ ✓ Top-down semantic map
Cradle (Tan et al., 2024) ✓ ✓ ✓ ✓ RAG
Agent-S (Agashe et al., 2024) ✓ ✓ ✓ ✓ RAG
Expel (Zhao et al., 2024) ✓ ✓ Buffer
AutoManual (Chen et al., 2024a) ✓ ✓ ✓ Buffer
HiRobot (Shi et al., 2025) ✓ / ✓
Being-0 (Yuan et al., 2025) ✓ ✓ ✓ Buffer ✓
RoboOS (Tan et al., 2025) ✓ ✓ ✓ Scene graph, database ✓

RoboMemory (Ours) ✓ ✓ ✓ ✓ ✓ RAG,KG ✓

E DYNAMIC SPATIAL MEMORY UPDATE ALGORITHM

E.1 DETAILED ALGORITHM OF SPATIAL KG UPDATE

Algorithm 2 Retrieval-based Incremental Knowledge Graph Update Algorithm
Require: New spatial knowledge graph Gnew = (Vnew, Enew), main spatial knowledge graph G =

(V,E), queries q ∈ Q, entity & query embeddings E : V ∪ Q → Rd, maximum number of
retrieved vertices n, maximum k hops k, vlm-base conflict resolver ResolveConflict(·)

Ensure: Updated consistent knowledge graph G′

1: Vsimilar ←
⋃

q∈Q TopKn ({v ∈ V | cosine sim(E(q), E(v))}) {For each query entity q, retrieve
its top-n most similar vertices in G by cosine similarity of embeddings; take the union over all
q ∈ Q.}

2: Vexpand ← K-hopk(Vsimilar, G) {all nodes within k hops from any node in Vsimilar}
3: Vretrieved ← Vsimilar ∪ Vexpand
4: Vmerged ← Vretrieved ∪ Vnew
5: Gunion ← (V ∪ Vnew, E ∪ Enew) {Combine the main graph and new observations into a unified

graph.}
6: Glocal ← InducedSubgraph(Vmerged, Gunion) {Extract the subgraph induced by Vmerged, contain-

ing all old and new edges among these nodes.}
7: Gupdated ← ResolveConflict(Glocal, Gnew) {based on Gnew, VLM update the relationship among

different vertices in Glocal}
8: G′ ← (G \Glocal)∪Gupdated {Replace the old subgraph in G with the conflict-resolved updated

subgraph.}
9: Remove isolated vertices from G′

10: return G′

Spatial Memory is a dynamically updated KG-based module designed to overcome agents’ lim-
itations in spatial reasoning. Specifically, our Spatial Memory is formulated as a directed KG
G = (V,E), where V denotes the set of all objects in the environment. Each object is a vertex
in the KG. Each object’s name is encoded into a single semantic embedding vector via a pretrained
embedding model (Zhang et al., 2025). The edge set E captures spatial relationships between ob-
jects, each represented as a triple (e.g., [obj1, relationship, obj2]). To update the Spatial KG, we need
to continuously extract new relationships from current observations and update the old relationships
in the Spatial KG. We use a VLM-based conflict resolver to address this problem. However, the
more relationships provided to the conflict resolver, the more time it needs to update the KG. So we
need to update relationships that are only related to the current situation. We design an algorithm
that retrieves a sub-graph of KG that includes all vertices related to the current situation and both old
and new relationships among them. We provide the sub-graph and new relationships to the conflict
resolver. We need the conflict resolver to update the sub-graph based on information from the new
relationships. The algorithm is shown in Algorithm 2.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

To update G, we make use of the information provided by the step summarizer and query generator
from the information preprocessor introduced in Section 3.1. First, a pretrained VLM-based Relation
Retriever extracts the latest spatial relationships Gnew = (Vnew, Enew) from the information provided
by the step summarizer, which records high-level information in the current observation. Next,
natural language queries (represented as q ∈ Q) (provided by the query generator) are used to
retrieve relevant object vertices from G via cosine similarity search. We select the top n similar
vertices compared with the query. These vertices are represent by Vsimilar.

Spatial KG maintains the relationships among different objects, so if we want to retrieve spatial
information from spatial KG, we need to search for other objects that are related to the objects we
observed in the current observation. In this way, we not only remember objects we can see, but also
know the spatial information of the objects we cannot see. So we choose the k-hop algorithm to
expand Vsimilar using a K-hop neighborhood algorithm to capture contextually related objects. The
K-hop algorithm is represented as K-hopk(V,G), which returns all vertices reachable within ≤ k
hops from any vertices in V . The retrieved vertices are Vexpand. We combine the vertices retrieved
by cosine similarity and their K-hop neighbors to Vretrieved.

However, we need to resolve the conflict between new and old relationships. So Vretrieved and the
relationships among Vretrieved is not enough. We need new vertices and relationships involved in the
graph we provided to the VLM-based conflict resolver. To extract all vertices and relationships for
the VLM-based conflict resolver and relationships, we not only need the relationships from KG (old
information) and Gnew, which represent new information. We need to connect old information and
new information. To achieve this goal, we merge Gnew to G, which add new edges and vertices to
G. We denote the merged KG as Gunion. In Gunion, we mix out-of-date and latest information. Then,
we extract an induced sub-graph of Vmerged = Vretrieved ∪ Vnew from Gunion. As both vertices from old
graph G and new graph is mixed in Vmerged and both edges from old and new graph is in Gunion, the
retrieved induced sub-graph Glocal contains all out-of-date and latest relationships among vertices
that is related to current situation.

As Glocal contains all out-of-date and latest relationships and those relationships may have conflicts,
a VLM-based conflict resolver (represent as ResolveConflict(·)) is designed to resolve conflicts in
Glocal, and make sure that the relationship is the latest. The conflict resolver will take in Gnew and
Glocal, where Glocal is the graph waiting for update and Gnew provide update signal. The VLM-based
conflict resolver will perform necessary updates such as adding vertices or inserting, deleting, or
modifying relationships in Glocal based on Gnew. The reconciled subgraph is then merged back into
G, and any vertices that have lost all connections to other vertices during the update are pruned.

This design offers two key advantages: (1) Efficiency via localized updates: By restricting modifica-
tions to a context-relevant subgraph, we significantly reduce the number of relationships processed
per update. Since VLMs struggle with reasoning over large sets of relationships, this constraint sub-
stantially improves both the efficiency and effectiveness of VLM-based KG updates. (2) Dynamic
adaptability: The system continuously maintains up-to-date spatial knowledge, enabling agents to
operate robustly in dynamic real-world environments.

E.2 EXAMPLE OF DYNAMIC SPATIAL MEMORY UPDATE PROCESS

In RoboMemory’s Spatial Memory, the KG is dynamically constructed during environment explo-
ration. As illustrated in Figure 8, we demonstrate the progressive expansion of the KG in Spatial
Memory as the agent navigates through the environment. The figure indicates a continuous growth
in the number of both vertices and edges of the KG as exploration progresses.

Notably, the KG undergoes dynamic updates through RoboMemory’s environmental interactions.
For example, the initial KG state displays the relation “I am near the apple. But as the agent picks
up the apple in the third step, in the fourth KG, the relationship becomes “I hold the apple”. This
demonstrates RoboMemory’s capability for dynamic KG maintenance and expansion.

By querying this KG, the Planner-Critic module gains access to rich spatial information, empower-
ing RoboMemory with robust spatial memory capabilities that significantly enhance its performance
in both TextWorld and EmbodiedBench environments.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Figure 8: Visualization of Spatial Memory’s dynamic update process.

E.3 PROOF OF DYNAMIC SPATIAL MEMORY UPDATE ALGORITHM

Theorem 1 (Upper Bound on K-hop Vertex Extraction in Directed Graphs). Let G = (V,E) be a
finite directed graph with maximum out-degree D ≥ 1, and let S ⊆ V be a set of M source vertices.
Define the K-hop neighborhood NK(s) of a vertex s ∈ S as the set of vertices reachable from s
via directed paths of length at most K. Then the total number of distinct vertices in the union of all
K-hop neighborhoods,

NK(S) =
⋃
s∈S
NK(s),

Satisfies the following upper bound:

|NK(S)| ≤

M · D
K+1 − 1

D − 1
, if D > 1,

M · (K + 1), if D = 1.

Proof. For any vertex s ∈ S, the number of distinct vertices reachable from s within i hops is at most
Di, assuming the worst-case scenario where each vertex encountered has the maximum out-degree
D, and all neighbors are distinct and non-overlapping.

Thus, the size of the K-hop neighborhood of a single vertex satisfies:

|NK(s)| ≤
K∑
i=0

Di =

DK+1 − 1

D − 1
, if D > 1,

K + 1, if D = 1.

Since there are M such source vertices and assuming no overlaps between their K-hop neighbor-
hoods (worst case), the union size satisfies:

|NK(S)| ≤M · |NK(s)|.

Substituting the bound on |NK(s)| gives the result.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Theorem 2 (Upper Bound for K-hop Vertex Extraction in Normalized Directed Graphs). Let G =
(V,E) be a finite directed graph with |V | = n vertices. Assume the maximum out-degree is at
most Dmax = Dn, and the maximum in-degree is at most Nmax = Nn, where D,N ∈ (0, 1] are
constants. Let S ⊆ V be a set of M source vertices. Define NK(S) as the union of all vertices
reachable from S via paths of length at most K, using only outgoing edges. Then the number of
extracted vertices satisfies:

|NK(S)| ≤ min

{
n, M · (Dn)K+1 − 1

Dn− 1

}
.

In particular, when Dn≫ 1, we have the approximation:

|NK(S)| ⪅ M · (Dn)K .

Proof. For each vertex s ∈ S, the maximum number of reachable vertices within i-hops is at most
(Dn)i under the assumption of maximum out-degree and no overlap.

Summing over hops from 0 to K, we get for each root:

|NK(s)| ≤
K∑
i=0

(Dn)i =
(Dn)K+1 − 1

Dn− 1
.

Assuming no overlap among the M source vertex expansions (worst case), we have:

|NK(S)| ≤M · (Dn)K+1 − 1

Dn− 1
.

Since the total number of vertices in the graph is n, this quantity is also trivially bounded above by
n, yielding the result.

F ADDITIONAL ENVIRONMENT SETTINGS

F.1 EB-ALFRED AND EB-HABITAT

We adopt the same environment parameters as in EmbodiedBench. The maximum steps per task
are set to 30, with image inputs of size 500 × 500. The temporal memory buffer length is set to 3.
However, we modified the action formats of EB-ALFRED and EB-Habitat to simulate real-world
scenarios better. Specifically, we define different action APIs (Python functions), where each action
takes an object parameter indicating its target. We extract all possible objects from the environment
as inputs to the Agent. The Agent must select appropriate actions and object parameters based on
task requirements. Compared to the original interaction method in EmbodiedBench (which enumer-
ates all possible actions, including both action names and target objects, and requires the Agent to
choose), our approach offers greater flexibility. The detailed action APIs are presented in Table 4.

Since EB-ALFRED and EB-Habitat provide comprehensive high-level action APIs, we do not em-
ploy the VLA-Based Low-Level Executor in these environments. Instead, we utilize the built-in
low-level controllers from EmbodiedBench.

F.2 ADDITIONAL SETTINGS FOR BASELINES

EB-ALFRED. For our single VLM-Agent baseline, we utilized the reported results from Embod-
iedBench paper to establish a consistent benchmark, where the agent relies on a basic interaction
history as its memory module. For other VLM frameworks, we replicated the experimental setups
as described in both EmbodiedBench and the respective original papers. Crucially, to familiarize
all baseline agents with the EmbodiedBench environment, we supplemented them with a few-shot
example and a comprehensive catalog of actionable objects—applying the exact same conditions as
those used for the single VLM-Agent benchmark.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Table 4: Robot Action Command For different environments

Action Type EB-ALFRED EB-Habitat Real World
Navigation find(obj) navigate(point) navigate to(point)
Pick Up Object pick up(obj) pick(obj) pick up(obj)
Drop to Ground drop() – –
Place to Receptacle put down() place(rec) put down to(rec)
Open Object open(obj) open(obj) open(obj)
Close Object close(obj) close(obj) close(obj)
Turn On turn on(obj) – turn on(obj)
Turn Off turn off(obj) – turn off(obj)
Slice Object slice(obj) – –
Task Complete – – task complete()

F.3 REAL-WORLD EXPERIMENTS

We construct a common kitchen scenario to evaluate the RoboMemory framework’s interactive en-
vironmental learning capabilities in real-world settings. Using Mobile ALOHA (Fu et al., 2024b)
as our physical robotic platform, we design three categories of tasks: (1) Pick up & put down: The
agent must locate a specified object among all possible positions and place it at a designated loca-
tion. This task tests the model’s basic object-searching and planning abilities. (2) Pick up, operate
& put down: Building upon the first task, the agent must additionally perform operations such as
heating or cleaning the object. This task requires longer-term planning, which is crucial in embod-
ied environments. (3) Pick up, gather & put down: The agent must place specified objects into a
movable container and then move the container to a target location. This task evaluates the agent’s
understanding of object relationships, requiring it to remember the positions of at least two objects
(the container and the target item) and their spatial relationship. For each type of task, we design 5
tasks. So our experiments include 15 long-term real-world tasks.

To adapt to the real-world setup, we define high-level action APIs similar to those in EB-ALFRED
and EB-Habitat. Additionally, we train a VLA-based model to execute tasks according to our action
APIs. The detailed action APIs are presented in Table 4.

For the low-level executor, we use one main camera and two arm-mounted cameras as input, each
with a resolution of 640 × 480. The temporal memory buffer length is set to 3.

In our experiments, we set the maximum steps per task to 25. We also provide an API for actively
terminating tasks. Since real-world environments lack direct success/failure feedback, RoboMem-
ory must autonomously determine task completion. To prevent excessively long task execution, we
enforce termination after 25 steps if no success is achieved. A single main camera (640 × 480 reso-
lution) records video during action execution as input for RoboMemory’s higher-level processing.

Table 5: Dataset statistics and training hyperparameters for robotic manipulation tasks.

Dataset Statistics Training Configuration
Action Type #Episodes Parameter Value
Turning on/off faucet 142 Optimizer AdamW
Picking up & Placing basket on counter 63 Batch size 32× 6

Picking up & Placing basket in sink 72 Training steps 10,000
Picking up & Placing banana into basket 114 Learning rate 6.12× 10−5

Throwing bottle into trash bin 132 warm up step 500
Placing gum box on dish 120 LoRA Configuration
Picking up & Placing cup on plate 51 rank 16
Picking up & Placing dish into sink 69 α 16
Throwing paper ball into trash bin 135 Resource Usage
Open/close oven 142 GPU A100-80GB × 6
Total episodes 1040 Training time 12 hours

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

F.4 TRAINING DETAILS OF LOW-LEVEL EXECUTOR

We use the π0 model as our foundation model. We collected 1,040 data samples over 10 types of
tasks for fine-tuning. We use LoRA fine-tuning to save resources during fine-tuning. The specific
fine-tuning parameters and action types are given in Table 5. For tasks involving both pick-up and
place actions, we split these tasks into separate pick-up and place actions. These are then treated
as two distinct data samples during training. The separation of pick-up and place action allows the
VLA to carry an object in its hand. For training, we used a server with six A100-80GB GPUs. The
total training time was 12 hours.

Besides, we use the built-in LiDAR SLAM system of the Mobile ALOHA robot base as the naviga-
tion action actuator. We define five typical navigation points, similar to EB-Habitat. We used SLAM
to navigate between these navigation points.

F.5 HYPERPARAMETERS OF ROBOMEMORY

In this section, we describe the hyperparameter settings for the upper brain of RoboMemory: the
information preprocessor and the Comprehensive Embodied Memory. Importantly, we use a unified
set of hyperparameters across all experimental settings, including EB-ALFRED, EB-Habitat, and
real-world deployments.

The information preprocessor consists of two components: a step summarizer and a query generator.
Given multimodal inputs at each step, the step summarizer produces a single natural language de-
scription, while the query generator concurrently formulates 4− 5 distinct natural language queries.

The Comprehensive Embodied Memory integrates four memory modules: Temporal, Spatial, Se-
mantic, and Episodic Memory. The Temporal Memory is implemented as a fixed-size buffer with
a maximum capacity of 4 entries. For Spatial Memory, during similarity-based retrieval, we first
identify the top N = 3 most relevant vertices and then perform a K-hop graph traversal with K = 2.
The Episodic Memory retrieves the top N = 5 most relevant past experiences for each query. The
Semantic Memory maintains hierarchical summaries at both the action and task levels; during re-
trieval, it returns Ns = 2 action-level and Nt = 2 task-level summaries. Furthermore, memory
updates (e.g., insertion, modification, or deletion) are applied only to the top Nupdate = 10 most
relevant entries in the Semantic Memory to ensure efficiency and coherence.

G SUPPLEMENTARY EXAMPLES FOR QUALITATIVE ANALYSIS

G.1 REAL WORLD

In Figure 9, we demonstrate an example of RoboMemory learning through trial and error in a real-
world environment. Our task is “place a banana into the oven.” This task required RoboMemory
to complete the objectives of finding the banana, picking it up, and transporting it to the oven. We
observed that RoboMemory became stuck in an infinite loop during the first attempt. The banana
was randomly placed on the “kitchen counter,” but RoboMemory overlooked this navigation target
and remained trapped, exploring other navigation targets instead.

However, based on this bad attempt, the semantic memory summarized that the robot should not
repeatedly search in locations where the “banana” could not be found. Meanwhile, the episodic
memory recorded what RoboMemory had done and the outcomes during the first attempt. Based on
the information provided by semantic and episodic memory, in the second attempt, RoboMemory
recognized that it had not previously tried navigating to the “kitchen counter.” After attempting this,
it successfully completed the task. This example illustrates the role of RoboMemory’s long-term
memory.

We also provide an example that completes the task in the first attempt. The example is shown
in Figure 10. This example demonstrates that the RoboMemory has the ability to handle some
relatively complex tasks in the real world. The task in this example is “Place a box of gum into the
basket and put the basket on the kitchen counter”. Because two objects in different positions are
involved in this task, RoboMemory has to memorize the position of at least one object to achieve
the goal. With the help of the spatial memory, RoboMemory completes the task successfully.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Step 1: Navigate to the

left side of the desk

Step 2: Navigate to the

right side of the desk

Step 3: Navigate in

front of the oven

Task: Place banana into the oven

…

Step 4~15: Navigate to

these three points in an

infinite loop, but failed

to explore new areas.

Step 1: Navigate to the

left side of the desk

Step 2: Navigate to the

right side of the desk

Step 3: Navigate to the

kitchen counter

Step 4: Pick up the

banana

Step 5: Navigate to the

oven

Step 6: Open the oven Step 7: Put down

(banana) to the oven

Step 8: Close the oven

The first time

Semantic Memory
… The robot should avoid navigating to places that do not contain the target object again and

again.

Episodic Memory
… The task is to place a banana into the oven. The robot navigated to the left side of the desk,

the right side of the desk, and in front of the oven multiple times, but failed to find the banana.

The second time

Figure 9: Case that a task is failed, but the experience can help RoboMemory to succeed in the next
try.

G.2 EB-ALFRED

We select three examples in EB-ALFRED to show the errors that RoboMemory may encounter and
the reasons why or why not RoboMemory can achieve the goal.

G.2.1 SUCCESSFUL EXAMPLE

We select a successful example to show how RoboMemory performed in the EB-ALFRED environ-
ment. The example trajectory is shown in Figure 11.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Task: Place a box of gum into the basket and put the basket to

the kitchen counter

Step 1: Navigate to the

left side of the desk

Step 2: Navigate to the

kitchen counter

Step 3: Pick up the gum

box

Step 4: Navigate to the

left side of the desk

Step 5: Put down (gum

box) to the basket

Step 6: Pick up the

basket

Step 8: Put down

(basket) to the kitchen

counter

Step 7: Navigate to the

kitchen counter

Figure 10: Case that a task is successful.

The task of this example is “set a plate with a spoon on it on the kitchen table”. However, in step
10, the Planner seems to ignore the temporal information from memory modules. RoboMemory
thinks that it still needs to pick up the spoon (even though it has already placed a spoon in the
plate). However, with the help of the critic, it finally becomes aware that picking up another spoon
is redundant, so RoboMemory goes back to the current trajectory and successfully completes the
task at the end.

In this example, RoboMemory successfully overcame the hallucination and eventually achieved the
goal. This example demonstrates that the critic module can help RoboMemory to overcome error
cases.

G.2.2 FAILED EXAMPLE

We demonstrate a representative example of the Critical Error. The example trajectory is shown in
Figure 12. In this example, the task involves slicing and heating a tomato and moving the heated
tomato slice to the trash can. Initially, RoboMemory successfully sliced the tomato with a knife.
But when the planner plans the whole sequence, it forgets to drop the knife before picking up the
tomato (this is necessary because in EB-ALFRED, the robot can only hold one object at a time).
The critic and the planner should notice this situation and ask the critic to replan, as RoboMemory
failed to pick up a tomato slice. However, the critic module ignores this issue, and thus, after it heats
the knife instead of a tomato slice, it stacks in an infinite loop.

Besides, we provide another example demonstrating a representative failure caused by inaccurate
action planning. The example trajectory is shown in Figure 13. In the trajectory, RoboMemory is
asked to place two CDs into the drawer. However, at step 6, the robot failed to select correct CD
object. In this experiment, RoboMemory has already put CD 2 into the drawer, but it keeps pick-
ing up CD 2 even though the memory has clearly indicated that CD 2 has already been put down.
So we classify this as inaccurate action error. This indicates that the planner failed to comprehen-
sively integrate information from both the memory and information-gathering modules, resulting in
inaccurate action planning.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Task: Set plate with a spoon in it on the kitchen table

Step 1: Initialize Step 2: Find the

plate

Step 3: Pick up

the plate
Step 4: Find the

spoon

Step 5: Put down

the plate

Step 6: Pick up

the spoon

The PaperPlaza Conference/Journal Management System

Step 7: Put down Step 8: Find the

plate

Step 9: Pick up

the plate

Step 10: Drop

(Hallucination)

Step 12: Pick up

spoon 2

Step 13: Find the

plate

Step 14: Drop Step 15: Pick up

the plate

Step 16: Find the

table

Step 17: Put

down

Figure 11: Case that a task is successful with the help of the critic and spatial memory modules.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

The PaperPlaza Conference/Journal Management System

Task: Cook a sliced tomato and throw it in the trash

Step 1: Initialize Step 2: Find the

tomato

Step 3: Find the

knife
Step 4: Pick up

the knife

Step 5: Slice the

tomato

Step 6: Find

tomato

Step 7: Slice the

tomato

Step 8: Pick up

the tomato

Step 9: Find the

microwave

Step 10: Open

the microwave

Step 12: Put

down

Step 13 ~ 30:

Infinite loop

…

Figure 12: Case that a task fails in an infinite loop because the critic module failed to stop the agent
when its planned action is no longer suitable.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Task: Move two CDs to the bottom drawer of the desk

Step 1: Find

CD_2

Step 2: pick up

CD_2

Step 3: Find the

drawer
Step 4: Open the

drawer

Step 5: Put down Step 6: Find the

CD_2

Step 7: Pick up

CD_2

Step 8: Put down

Step 10: Pick up

CD_2
Step 9: Find

CD_2

…

Step 11~30:

Infinite loop

Figure 13: Case that a task fails in an infinite loop because of inaccurate action planning.

26

	Introduction
	Related Work
	VLM/LLM-based Agentic Frameworks in Embodied Tasks
	Vision Language Action Model
	Memory Frameworks

	RoboMemory
	Information Preprocessor
	Comprehensive Embodied Memory System
	Closed-Loop Planning Module for Dynamic Environment
	Low-level Executor

	Experiments
	Benchmarks
	Settings & Baselines
	Main results
	Efficiency Analysis
	Ablation Studies
	Real-world Robot Deployment

	Conclusion and Future Work
	Statement of LLM Usage
	Additional Algorithms
	Additional Experiments
	Error Analysis
	Additional Efficiency analysis

	Additional Related Work
	Dynamic Spatial Memory Update Algorithm
	Detailed Algorithm of Spatial KG Update
	Example of Dynamic Spatial Memory Update process
	Proof of Dynamic Spatial Memory Update Algorithm

	Additional Environment settings
	EB-ALFRED and EB-Habitat
	Additional Settings for Baselines
	Real-world experiments
	Training Details of Low-Level Executor
	Hyperparameters of RoboMemory

	Supplementary Examples for Qualitative Analysis
	Real World
	EB-ALFRED
	Successful example
	Failed example

