

000 001 002 003 004 005 006 007 008 ROBOMEMORY: A BRAIN-INSPIRED MULTI-MEMORY 009 AGENTIC FRAMEWORK FOR INTERACTIVE ENVIRON- 010 MENTAL LEARNING IN PHYSICAL EMBODIED SYS- 011 TEMS

012 **Anonymous authors**
013 Paper under double-blind review

024
025
026
027
028
029 Figure 1: RoboMemory adopts a brain-inspired architecture that maps neural components to agent
030 modules, enabling long-term planning and interactive learning across diverse environments (real-
031 world, Habitat, ALFRED) and robotic hardware.

032 ABSTRACT

034 Embodied agents face persistent challenges in real-world environments, including
035 partial observability, limited spatial reasoning, and high-latency multi-memory
036 integration. We present RoboMemory, a brain-inspired framework that unifies
037 Spatial, Temporal, Episodic, and Semantic memory under a parallelized archi-
038 tecture for efficient long-horizon planning and interactive environmental learning.
039 A dynamic spatial knowledge graph (KG) ensures scalable and consistent mem-
040 ory updates, while a closed-loop planner with a critic module supports adaptive
041 decision-making in dynamic settings. **Experiments on EmbodiedBench show that**
042 **RoboMemory, built on Qwen2.5-VL-72B-Ins, improves average success rates by**
043 **26.5% over its baseline and exceeds the closed-source state-of-the-art (SOTA)**
044 **Claude3.5-Sonnet by 1%.** Real-world trials further confirm its capacity for cumu-
045 lative learning, with performance improving across repeated tasks. These results
046 highlight RoboMemory as a scalable foundation for memory-augmented embod-
047 ied intelligence, bridging the gap between cognitive neuroscience and robotic au-
048 tonomy.

049 1 INTRODUCTION

052 Recent advances in Vision-Language Models (VLMs) (Hurst et al., 2024; Bai et al., 2025) have
053 enabled their growing use in embodied tasks (Park et al., 2023; Hu et al., 2023). VLM-based em-
054 bodied agents can process multimodal inputs and generate high-level textual commands (e.g., “Pick

054 up the cup”), which require translation via tool APIs to become executable robot actions. In contrast, Vision-Language-Action models (VLAs) (Kim et al., 2024; Black et al., 2024; Bjorck et al., 055 2025; Chi et al., 2023) produce low-level control signals directly but generally rely only on the latest 056 observation. This limits their ability to perform long-horizon, multi-step tasks that require reasoning 057 over task history. In summary, VLA models enable direct robot control but lack high-level planning 058 capabilities, and VLM-based embodied agents support strategic planning but struggle with direct 059 motor control. This highlights a key gap inherent in two distinct technical approaches to embodied 060 intelligence.

061 To bridge this gap, recent work (Yuan et al., 2025; Shi et al., 2025; Tan et al., 2025) proposes a 062 “VLM planner + VLA executor” paradigm. Here, VLM-based embodied agents serve as high-level 063 planners that decompose complex tasks (e.g., “make a coffee”) into executable sub-instructions (e.g., 064 “grasp the cup”) that VLAs can complete. Although this paradigm improves performance on multi- 065 step tasks, prior work suffers from two key limitations in real-world settings. First, real-world tasks 066 (e.g., kitchen operations) require navigating across multiple locations to gather objects and tools, but 067 the environment remains only partially observable at any time due to robots’ limited field of view 068 and dynamic occlusions. This necessitates a planner with robust spatial awareness and long-term 069 memory to maintain a consistent spatial awareness across viewpoints. However, most VLM-based 070 agents rely on chat-style context windows (e.g., logging instruction – feedback pairs (Yao et al., 071 2022)), which lack mechanisms for maintaining an overview of the environment’s spatial layout. 072 Consequently, agents cannot reliably track object locations or recognize previously visited states. 073 Second, pretrained VLMs are rarely trained on embodied planning trajectories, especially long- 074 horizon, spatially grounded ones. So VLM-based agents often struggle to generalize to real-world 075 settings (Yang et al., 2025a). To overcome these challenges, VLM-based planners must support 076 interactive environmental learning — the ability to acquire, integrate, and retrieve spatial, episodic, 077 and semantic knowledge during task execution, thereby enabling adaptation through experience.

078 To support long-horizon planning and interactive learning in real-world settings, agents require a 079 comprehensive memory system with multiple specialized modules. Recent frameworks (Tan et al., 080 2024; Glocker et al., 2025; Wang et al., 2023; Agashe et al., 2024; Fu et al., 2024a; Zhao et al., 2024; 081 Chen et al., 2024a) have integrated Retrieval-Augmented Generation (RAG)-based memory to 082 enhance planning and interactive environmental learning (Gao et al., 2023), but most are designed for 083 simulated environments. A key limitation for real-world deployment is the absence of spatial mem- 084 ory, which is critical for building spatial awareness and providing context for planning. Additionally, 085 existing multi-module memory systems often incur significant inference latency.

086 To overcome these limitations, especially the need for memory that is efficient, spatially grounded, 087 and persistent in dynamic environments, we return to the essence of intelligence — how does the 088 human brain plan, remember, and learn in dynamic environments? Inspired by cognitive neuro- 089 science, we have designed RoboMemory, a parallel multi-memory architecture that simulates key 090 functional regions of the brain. RoboMemory features a hierarchical and parallelized architecture 091 enabling long-term planning and continuous adaptation. Drawing inspiration from cognitive neuro- 092 science (Milner, 1998), RoboMemory comprises four core components (Figure 1): (1) Information 093 Preprocessor (thalamus-inspired) for multimodal sensory integration. (2) Comprehensive Embod- 094 ied Memory System (hippocampus-inspired), which organizes experiential and spatial knowledge 095 through a three-tier structure (long-term, short-term, and sensory memory). Within this tiered sys- 096 tem, four memory modules: Spatial, Temporal, Episodic, and Semantic operate under a unified, 097 parallel-update paradigm to enable coherent knowledge integration while minimizing latency. (3) 098 Closed-Loop Planning Module (prefrontal cortex-inspired) for high-level action sequencing. These 099 three modules provide a high-level planner with comprehensive sensory and memorization ability. 100 (4) Low-level Executor (cerebellum-inspired), consisting of a VLA-based operation model and a 101 SLAM-based navigation model. The Low-level Executor directly controls the robot with low-level 102 control signals to navigate and operate in the real-world environment.

102 To verify whether RoboMemory truly addresses the problems of long-horizon planning and inter- 103 active learning, we evaluate RoboMemory on EmbodiedBench, a long-horizon planning benchmark 104 (Yang et al., 2025a). Using Qwen2.5-VL-72B as the base model, RoboMemory improves aver- 105 age success rates by 26.5% over its base model and 1% over the closed-source state-of-the-art 106 model, Claude3.5-Sonnet Anthropic (2024). In real-world trials, RoboMemory executed diverse 107 tasks twice consecutively: once for environmental familiarization (learning phase) and once for 108 memory-augmented execution (testing phase) without resetting memory. The observed performance

improvement validates RoboMemory’s capacity for interactive environmental learning. We further conduct ablation studies and error analysis to quantify component contributions and identify remaining limitations. We summarize our contribution as follows:

- We propose a brain-inspired unified embodied memory system, integrating four concurrently updated modules (Spatial, Temporal, Episodic, Semantic) into a single framework. It enables efficient, comprehensive memory operations and coherent knowledge integration, which are critical for interactive environmental learning in real-world embodied scenarios.
- We design a retrieval-based incremental update algorithm for real-time evolution of Spatial Knowledge Graphs (KGs). By retrieving relevant subgraphs, detecting local inconsistencies, and merging new observations, it ensures efficient, consistent KG maintenance and addresses the scalability bottleneck of previous KG-based methods in embodied settings.
- RoboMemory supports interactive environmental learning for real-world physical robots: it enables sequential diverse tasks without memory reset, with experience accumulation driving steady performance improvements, demonstrating practical long-term autonomous learning in physical scenarios.

2 RELATED WORK

2.1 VLM/LLM-BASED AGENTIC FRAMEWORKS IN EMBODIED TASKS

The rapid advancement of VLMs/LLMs has led to diverse agent frameworks in embodied environments (Yao et al., 2022; Song et al., 2023; Lin et al., 2024). Embodied tasks involve partial observability and long-horizon planning, requiring memory systems to retain context. Some use time-ordered context buffers for short-term memory (due to VLMs/LLMs’ limited long-context processing) (Yao et al., 2022; Packer et al., 2023); others adopt experience buffers as long-term semantic memory (Fu et al., 2024a; Shinn et al., 2024). For long-duration tasks, skill libraries serve as procedural memory, with agents accumulating skills via interaction (Wang et al., 2023; Tan et al., 2024). However, in real-world settings, the low-level executor may fail to complete the task, making it challenging to construct a reusable, code-based skill library. So, explicit procedural memory still needs to be improved in real-world settings. Moreover, Recent efforts integrate diverse memories (Zhang et al., 2023; Tan et al., 2024; Agashe et al., 2024) but focus on virtual/GUI environments, leaving real-world multi-modal memory support for long-term planning under-explored.

2.2 VISION LANGUAGE ACTION MODEL

Current work on VLA models uses imitation learning to output low-level controls from language and visuals (Black et al., 2024; Zhao et al., 2023; Bjorck et al., 2025; Kim et al., 2024) but is limited to tabletop tasks and single actions, restricting long-horizon planning. VLAs lack long-term execution abilities, while high-level agents excel at planning. Recent works combine high-level frameworks with VLA executors, some augmented with simple memory (Shi et al., 2025; Tan et al., 2025; Yuan et al., 2025; Yang et al., 2025b) for longer tasks. However, real-world robots need more sophisticated memory to handle continuous multi-task operations over extended periods.

2.3 MEMORY FRAMEWORKS

Many previous works improve long-term planning via memory systems: Voyager (Wang et al., 2023) uses a skill library in Minecraft but lacks diverse memory types; CoELA (Zhang et al., 2023) includes procedural, semantic, and episodic memory with a task-specific 2D map; MSI-Agent (Fu et al., 2024a) utilizes insight as long-term memory for in-task learning. Hippo Retrieval Augmented Generation (RAG) (Gutiérrez et al., 2024) mimics the hippocampus and introduces KGs as long-term memory indices (Burgess et al., 2002; Chen et al., 2020), enhancing retrieval. However, the previous approach is mainly focused on constructing a KG with a static long context, such as a book, but it is hard to update the graph. We need to update the information in KG for the embodied task. Our approach builds a more general LLM-based memory system using a dynamic KG like Hippo RAG, which is designed for embodied tasks. Furthermore, we summarize the differences among different memory systems in previous work. The comparison is shown in the Table 3 in Appendix D.

Figure 2: (a) Left: The loop where the Planner, Critic, and Embodied Memory interact to adjust plans based on real-time visual inputs. Colored text denotes the execution status of actions (success/rejected/replanned). (b) Right: Spatial memory maintains a relevance/similarity-updated KG, and Semantic/Episodic memory manages a Vector DB with analogous logic. Besides, Temporal memory is implemented as a linear FIFO buffer that stores step-wise summaries generated by the Step Summarizer.

3 ROBOMEMORY

RoboMemory is a hierarchical embodied agent system that equips robots with three core memory capabilities: historical interaction logs, dynamically updated spatial layouts, and accumulated task knowledge. As illustrated in Figure 2, each iteration, RoboMemory follows a process of “Perception – Memory – Retrieval – Planning – Execution” process, ensuring that the agent continuously calibrates its memory and behavior in dynamic environments.

First, the information preprocessor converts multimodal sensor inputs into a textual summary of the current scene, which serves as the primary input to the Comprehensive Embodied Memory. Next, the Comprehensive Embodied Memory updates its internal representations, including action histories, object locations, and experiential knowledge. After information is updated, the memory system retrieves contextually relevant entries to inform the Closed-Loop Planning Module. Then, leveraging this contextual memory, the Closed-Loop Planning Module generates high-level, text-based action instructions. Finally, these commands are dispatched to low-level executors, who will directly control the robot and complete the instructions. [The algorithm is demonstrated in Appendix B.](#)

3.1 INFORMATION PREPROCESSOR

At each time step t , RoboMemory receives a visual observation \mathcal{O}_t : an RGB frame (in simulation) or a short video clip (on physical robots), representing the agent’s observations.

Since raw visual data is unsuitable for direct use in memory construct and retrieval, RoboMemory first employs an information preprocessor to convert multimodal observations into textual representations, thereby providing a semantic interface for subsequent memory and planning modules. The information preprocessor executes two Vision-Language Models (VLMs) in parallel: (1) *Step summarizer* \mathcal{S} : Transforms \mathcal{O}_t into a concise textual description s_t of the just-executed action. The string s_t is stored in the system’s working memory. (2) *Query generator* \mathcal{Q} : Derives a list of queries $q_t = [q_t^{(1)}, q_t^{(2)}, \dots, q_t^{(N)}]$ from the same observation \mathcal{O}_t . Each query $q_t^{(i)}$ is a natural language-based query. These queries are used to query information from the memory system that may be useful.

Together, \mathcal{S} and \mathcal{Q} provide a swift, text-based interface between raw sensory data and provide basic information in each iteration for RoboMemory’s Comprehensive Embodied Memory System.

3.2 COMPREHENSIVE EMBODIED MEMORY SYSTEM

216 To address the long-term memory limitations in current embodied agent frameworks, we propose the
 217 Comprehensive Embodied Memory System. This system consists of multiple memory modules. We
 218 denote the memory system containing L distinct modules as $M_t = [M_t^{(1)}, M_t^{(2)}, \dots, M_t^{(L)}]$, where
 219 M_t represents the memory stored at step t , and $M_t^{(l)}$ denotes the l -th memory module. Generally,
 220 the memory update and retrieval process of iteration t is shown below:
 221

$$M_t = \mathcal{U}(M_{t-1}, s_t) \quad (1)$$

$$r_t = \mathcal{R}(M_t, q_t) \quad (2)$$

225 First, we update memory modules with algorithm \mathcal{U} , where we update the previous memory M_{t-1}
 226 using the latest summarization s_t . Then, with updated M_t , we use an algorithm \mathcal{R} to retrieve the
 227 information that is useful for the planning module. In \mathcal{R} , We use queries q_t to query M_t , yielding
 228 retrieval results from each module: $r_t = [r_t^{(1)}, r_t^{(2)}, \dots, r_t^{(L)}]$. These results are then passed to
 229 the planning module, which helps it plan future movements. However, sequentially updating and
 230 retrieving from L modules would be a slow process. Therefore, we parallelize these steps across all
 231 modules, which significantly enhances the system’s efficiency.

232 In implementation, the memory system consists of four distinct modules ($L = 4$): Temporal Memory,
 233 Spatial Memory, Semantic Memory, and Episodic Memory. For efficiency, all memory modules
 234 are updated and retrieved in parallel. Thus, even with multiple modules, the system remains highly
 235 efficient. Functionally, inspired by cognitive psychology Liu et al. (2025), our modules handle mem-
 236 ory at different levels. In cognitive psychology, memory is divided into Sensory Memory, Short-term
 237 Memory, and Long-term Memory. Mirroring this hierarchy, our modules are organized as follows.
 238 First of all, the Information Preprocessor’s \mathcal{S} summarizes the agent’s interactions with the environ-
 239 ment at each iteration. It acts as Sensory Memory. Secondly, Temporal Memory and Spatial Memory
 240 function as short-term memory. These two memories will update at each iteration. They are designed
 241 to store the information of sensory memory in every iteration. For Temporal Memory, we record
 242 the agent’s action history sequentially, while for Spatial Memory, we dynamically record the spatial
 243 relationships between different objects in the environment based on Sensory Memory in each iteration.
 244 These memories can provide a relatively long and detailed history of the current task for the
 245 Agent to make a future plan. Thirdly, Semantic Memory and Episodic Memory serve as Long-term
 246 Memory. They update only when meaningful information arises (e.g., after task completion). These
 247 memories store highly abstract knowledge, not limited to the current task, but synthesized from past
 248 experiences. This knowledge—factual, event-based, and experiential—improves the agent’s future
 249 task performance. It is the source of RoboMemory’s interactive learning capability. We now detail
 250 each module.

251 **Temporal Memory.** In the Temporal Memory, we record Interactions between the robot and the
 252 environment (i.e., Sensory Memory) of each iteration sequentially. This information can provide
 253 the embodied agent with simple awareness of “What I have done”. For such temporally sequential
 254 memory, a simple structure is sufficient: a sequential buffer with automatic summarization triggered
 255 when the record sequence reaches its capacity. In a specific design, temporal memory can store
 256 up to N interaction summaries, each generated by an information preprocessor. When the buffer
 257 is full, we compress the oldest N steps into a single summarized entry using a VLM, which is
 258 then reinserted at the front of the buffer, ensuring continuous context retention without unbounded
 259 growth. However, the information from previous memories will gradually be lost as we summarize
 260 it multiple times. For retrieval, we provide all existed memory in text to downstream modules.

261 **Spatial Memory.** The spatial memory is designed to dynamically record the high-level spatial
 262 relationships of different entities in the environment. However, Current spatial memory approaches
 263 often rely on RGB-D cameras to reconstruct 3D point clouds (Zhang et al., 2023; Chang et al.,
 264 2023). These representations are too detailed for high-level planning in embodied agents. For
 265 example, Precise geometric relationships (e.g., exact distances between objects) are unnecessary.

266 To address these problems, inspired by Gutiérrez et al. (2024), we use Dynamic KG to store high-
 267 level spatial information: objects and positions in the environment become vertices of KG, and
 268 spatial relations between objects or positions are encoded as edges. The KG focuses on high-level
 269 spatial relations (e.g., “cup on table”, “key left of drawer”). By these settings, spatial KG focuses
 270 on semantically meaningful, task-relevant relations. This spatial information enhances the agent’s
 271 spatial reasoning capability in dynamic environments.

270 However, as related work shows, most KG construction algorithms are designed for static long
 271 content. This does not meet the demand of using KG as spatial memory for the agent. The KG needs
 272 to update efficiently in response to new information. To address this issue, we introduce a retrieval-
 273 driven, incremental KG update algorithm that maintains a locally modifiable, globally consistent,
 274 and dynamically adaptive spatial memory. As illustrated in the right panel of Figure 2, the update
 275 process proceeds in four steps: (1) retrieves the most relevant sub-KG around new observations. (2)
 276 Injects new relations from the current observation by a VLM-based Relation Retriever. (3) Detects
 277 and resolves conflicts between newly extracted relations and existing ones (e.g., “cup on table” vs.
 278 ‘cup in drawer’) using a VLM-based resolver, which decides whether to add, delete, or modify
 279 edges. (4) Merges back and prunes isolated vertices. Moreover, our retrieval-based incremental
 280 update algorithm is accompanied by provable efficiency guarantees. For a KG with n vertices and
 281 maximum degree D , the number of vertices processed per update is bounded by $O(D^K)$, where
 282 K is the retrieval hop distance (see Appendix E.3 for formal analysis). Further architectural and
 283 implementation details are provided in Appendix E.1.

284 **Semantic Memory.** In cognitive psychology, semantic memory stores time-independent facts.
 285 These facts are stable, update slowly, and require long-term retention. In RoboMemory, semantic
 286 memory records task-relevant experiences and environmental knowledge during execution. This
 287 information can help RoboMemory adapt to new environments or tasks. This information is highly
 288 abstract and does not need to be updated frequently. In RoboMemory, Semantic memory updates
 289 when new information is encountered during execution, for example, after completing a subtask or
 290 encountering important information. To store and update memories efficiently, we design a mem-
 291 ory management system based on a vector database. In the vector database, each experience/fact is
 292 described in natural language (denoted as a memory item). Each memory item is converted into a se-
 293 mantic vector for querying. For dynamic updates, we adapt a framework from prior work Chhikara
 294 et al. (2025). As shown in the bottom-right of Figure 2, the semantic memory update algorithm in-
 295 volves two VLM-based modules. Firstly, Long-term Memory Creator generates new memory items
 296 based on short-term memory. We retrieve the top- S most similar existing memory items from exist-
 297 ing memory via cosine similarity. A VLM-based updater then compares new and existing items to
 298 decide whether to: *add* the new item, *update* an existing item, *remove* an outdated item, or perform
 299 *Noop* (if redundant). Since updates only involve a maximum of S previous memory items and the
 300 update process is parallelized across all memory modules, this update method ensures that semantic
 301 memory remains efficient even as the database grows. For retrieval, we use the same process as a
 302 traditional vector database. We use queries to extract top- N relevant information for downstream
 303 modules.

304 **Episodic Memory.** In cognitive psychology, Episodic Memory is another important part of long-
 305 term memory. It can store task-specific execution summaries (i.e., “autobiographical” records of
 306 past attempts). In RoboMemory, the Episodic Memory module is responsible for recording every
 307 interaction trajectory it has gone through. Including the sequence of actions the robot did and the
 308 feedback from the environment. The trajectory information can help to improve the planning ability
 309 of RoboMemory. For example, if a trajectory for completing a similar task is stored in episodic
 310 memory, it can guide the agent in completing the current task. As the agent only needs to follow
 311 the successful trajectory in the memory, it can reduce hallucinations or errors in the VLM planner.
 312 Technically, Episodic Memory shares the same storage and VLM-driven vector database update
 313 mechanism as Semantic Memory, ensuring consistent architectural design.

313 3.3 CLOSED-LOOP PLANNING MODULE FOR DYNAMIC ENVIRONMENT

314 The Closed-Loop Planning Module integrates information about the current task provided by the
 315 Spatial-Temporal Memory, Semantic and Episodic information recorded in long-term memory, and
 316 current observations to perform action planning. Each action is planned and passed on to the low-
 317 level executor for execution.

318 To enable closed-loop control in embodied environments, the Closed-Loop Planning Module adopts
 319 the Planner-Critic mechanism (Lei et al., 2025), which consists of the planner and the critic module.
 320 We denote the planner module as \mathcal{P} , while the critic module as \mathcal{C} . For each planning step, the
 321 planner generates a long-term plan consisting of multiple steps. However, due to the dynamics of
 322 embodied environments, the action sequence in the long-term plan may become outdated during the
 323 execution of the plan. Thus, before executing each step, we use the Critic model to evaluate whether

324 the proposed action in this step remains appropriate under the latest environment. If not, the planner
 325 will re-plan based on the latest information. The demonstration of this process is shown in Figure 2.
 326

327 However, our experiments reveal that the original Planner-Critic mechanism may suffer from infinite
 328 loops. In the original mechanism, the first step of the action sequence output by the Planner is
 329 evaluated by the Critic before execution, which can lead to an infinite loop: if the Critic always
 330 demands replanning, no action will ever be executed. To address this, we modified the Planner-
 331 Critic mechanism so that the first step is not evaluated by the Critic. This ensures that even if the
 332 Critic persistently demands replanning, the RoboMemory will still execute actions. [The detailed
 333 algorithm is shown in Appendix B.](#)

334 3.4 LOW-LEVEL EXECUTOR

335 The RoboMemory framework is a two-layer hierarchical agent framework. This design enables
 336 RoboMemory to accomplish longer-term tasks in the real world. The upper layer is responsible only
 337 for high-level planning, while the Low-level Executor carries out the actions planned by the upper
 338 layer in the real environment.

339 We employ a LoRA-finetuned VLA model, π_0 (Hu et al., 2022; Black et al., 2024), to generate
 340 manipulation actions, and a SLAM-based navigation model for locomotion. The low-level executor
 341 then translates high-level actions planned by RoboMemory into concrete arm and chassis move-
 342 ments in the real world.

343 Table 1: Comparison of Success Rates (SR) and Goal Condition Success Rates (GC) across dif-
 344 ficulty levels (Base/Long) on EB-ALFRED and EB-Habitat benchmarks. Values are reported in
 345 percentages (%).

346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366	351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366	351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366	351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366	351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366				351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366						
				351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366		351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366		351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366						
				351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366										
<i>Single VLM-Agents</i>														
GPT-4o GPT-4o-mini Claude-3.7-Sonnet Claude-3.5-Sonnet Gemini-1.5-Pro Gemini-2.0-flash	Closed-source	40.5 47.0 37.5 49.5 44.0	67.0 30.5 68.5 69.5 57.0	74.9 40.9 - 71.8 61.5	64.0 34.0 68.0 72.0 62.0	74.0 47.8 - 52.0 58.0	54.0 0.0 70.0 54.5 65.7	62.5 17.0 - 58.0 58.0	86.0 74.0 90.0 96.0 62.0	90.7 77.5 - 97.5 62.0	64.0 14.0 46.0 58.0 82.0	72.2 21.3 - 63.3 36.2		
				46.6 52.9 42.6 - 50.0	38.0 38.0 36.0 - -	43.7 42.3 37.3 36.0 34.0	16.0 42.0 26.0 36.0 8.0	24.0 49.0 36.5 - 13.2	94.0 80.0 60.0 84.0 28.0	94.5 82.0 61.5 40.0 18.0	14.0 28.0 28.0 - -	24.3 38.2 35.0 - -		
				40.5 47.0 37.5 49.5 44.0	46.6 52.9 42.6 - -	38.0 38.0 36.0 38.0 50.0	43.7 42.3 37.3 36.0 34.0	24.0 49.0 36.5 - -	94.0 80.0 60.0 84.0 74.0	94.5 82.0 61.5 40.0 -	14.0 28.0 28.0 - -	24.3 38.2 35.0 - -		
				46.5 38.3 44.5 25.5 20.0	66.4 51.1 57.0 33.0 25.7	56.0 48.0 54.0 32.0 32.0	73.2 54.0 67.9 38.4 37.2	32.0 10.0 32.0 12.0 8.0	54.2 33.0 41.0 38.0 13.2	76.0 80.0 62.0 38.0 28.0	87.0 84.2 67.0 47.8 34.8	22.0 15.0 30.0 20.0 12.0	51.0 33.0 52.1 28.2 17.4	
				Ours	70.5	79.7	68.0	75.5	66.0	81.3	86.0	88.0	62.0	74.0
<i>VLM-Agent Frameworks</i>														
Voyager (Qwen2.5-VL-72B-Ins) Reflexion (Qwen2.5-VL-72B-Ins) Cradle (Qwen2.5-VL-72B-Ins) RoboOS (Qwen2.5-VL-72B-Ins) RoboOS (RoboBrain2-32B)	Baselines	46.5 38.3 44.5 25.5 20.0	66.4 51.1 57.0 33.0 25.7	56.0 48.0 54.0 32.0 32.0	73.2 54.0 67.9 38.4 37.2	32.0 10.0 32.0 12.0 8.0	54.2 33.0 41.0 38.0 13.2	76.0 80.0 62.0 38.0 28.0	87.0 84.2 67.0 47.8 34.8	22.0 15.0 30.0 20.0 12.0	51.0 33.0 52.1 28.2 17.4			

367 4 EXPERIMENTS

368 4.1 BENCHMARKS

369 To evaluate RoboMemory’s task planning ability, we select a subset of the EmbodiedBench EB-
 370 ALFRED and EB-Habitat benchmark (Yang et al., 2025a). We selected the Base and Long subsets
 371 because they aim to test the agent’s planning ability. The Base and Long subsets of the two bench-
 372 marks comprise 200 tasks for complex embodied tasks. The EB-ALFRED and EB-Habitat bench-
 373 marks provide a visually grounded operational setting that closely mimics real-world conditions (see
 374 Appendix F for environment details), enabling direct comparison with established baselines.
 375

376 Moreover, we set up an environment to test the interactive environmental learning ability of
 377 RoboMemory in the real world.

378 4.2 SETTINGS & BASELINES
379

380 To facilitate comparisons, we consider two types of baselines. First, we choose the advanced closed-
381 source and open-source VLMs as a single agent. We compare their performance with RoboMemory.
382 For closed source VLMs, we choose GPT-4o and GPT-4o-mini (OpenAI, 2024; Hurst et al., 2024),
383 Claude3.5-Sonnet and Claude-3.7-Sonnet (Anthropic, 2024), Gemini-1.5-Pro and Gemini-2.0-flash
384 (Team et al., 2024; DeepMind, 2024). For open source VLMs, we choose Llama-3.2-90B-Vision-
385 Ins (Meta, 2024), InternVL-2.5-78B/28B (Chen et al., 2024b), InternVL-3-72B (Zhu et al., 2025),
386 and Qwen2.5-VL-72B-Ins (Bai et al., 2025). Secondly, we choose three agent frameworks: (1)
387 Reflexion (Shinn et al., 2024), which introduces a simple long-term memory and a self-reflection
388 module. Reflexion uses the self-reflection module to summarize experiences as long-term memory,
389 thereby enhancing the model’s capabilities. (2) Voyager (Wang et al., 2023), which utilizes a skill
390 library as its procedural memory, is a widely used baseline for embodied agent planning. (3) Cradle
391 (Tan et al., 2024), which proposes a general agent framework with episodic and procedural memory
392 and gains good performances at various multi-model agent tasks. (4) RoboOS (Tan et al., 2025),
393 which proposes an embodied agent framework that consists of Scene-Graph based Spatial Memory.
394

395 In our experiments, each agent framework is tested using Qwen2.5-VL-72b-Ins (Team, 2024) with
396 temperature set as 0. For the RoboOS framework, we test it on RoboBrain2-32B (Team et al., 2025),
397 where the RoboBrain2-32B model is designed for the RoboOS framework.
398

399 The Qwen2.5-VL-72b-Ins represents a high-performing open-source alternative. Notably, the
400 Qwen2.5-VL-72b-Ins demonstrates performance comparable to advanced closed-source VLMs in
401 several benchmark tasks (White et al., 2024). We use the Qwen3-Embedding model (Zhang et al.,
402 2025) to create embedding vectors for RAGs in RoboMemory. For the Low-level Executor, since
403 EB-ALFRED provides high-level action APIs, we use the low-level executor provided by Embod-
404 iedBench instead of the VLA-based method.
405

406 We define two evaluation metrics to assess the performance: (1) Success Rate (SR), which is the
407 ratio of completed tasks to the total number of tasks in each difficulty level. This metric reflects the
408 agent’s ability to complete tasks across randomly generated scenarios. (2) Goal Condition Success
409 Rate (GC), which is the ratio of intermediate conditions achieved to the maximum possible score in
410 each scenario. An GC of 100% indicates that the task is completed in the given scenario. These two
411 metrics can be computed as:
412

$$SR = \mathbb{E}_{x \in \mathcal{X}} [\mathbb{1}_{SCN_x = GCN_x}] \quad (3)$$

$$GC = \mathbb{E}_{x \in \mathcal{X}} \left[\frac{SCN_x}{GCN_x} \right] \quad (4)$$

413 Where \mathcal{X} denotes the test subset, and x represents a test task. The success condition number (SCN_x)
414 refers to the number of conditions the agent has accomplished, while the global condition number
415 (GCN_x) indicates the total number of conditions required for task completion. The task is consid-
416 ered successful if $SCN_x = GCN_x$.
417

418 Figure 3: Efficiency improvement of Comprehensive
419 Embodied Memory System
420

421 Table 2: Ablation Study on RoboMemory’s Suc-
422 cess Rate (SR)
423

Method	Avg.	Base	Long
RoboMemory	67%	68%	66%
- w/o critic	55 %	60 %	50%
- w/o spatial memory	47 %	52 %	42 %
- w/o long-term memory	57%	66%	48%
- w/o episodic memory	62%	68%	56%
- w/o semantic memory	58%	66%	50%

432
433

4.3 MAIN RESULTS

434
435
436
437
438
439
440
441
442
443
444

As shown in Table 1, our model achieves significant improvements over both single VLM agents and Agent frameworks on the EB-ALFRED and EB-Habitat. Compared to the SOTA Single VLM-Agent model, [Claude3.5-Sonnet, RoboMemory with Qwen2.5-VL-72B-Ins backbone improves the average SR by 1% and GC by 7.9%](#). This demonstrates RoboMemory’s superiority over single VLM-Agents, proving that an Agent framework with open-source models can outperform closed-source SOTA models. Furthermore, when tested against other VLM-Agent frameworks, RoboMemory also shows substantial gains. This is because, unlike other frameworks, RoboMemory’s brain-like memory system provides embodied models with more accurate and persistent contextual information. Additionally, the Planner-Critic mechanism provides a closed-loop planning ability, which helps the RoboMemory gain better performance in long-term tasks. Because the RoboMemory can detect and try to overcome possible failures. And it is more robust when encountering unexpected situations.

445
446

4.4 EFFICIENCY ANALYSIS

447
448
449
450
451
452
453
454
455
456

To evaluate the efficiency of the Comprehensive Embodied Memory module, we tasked RoboMemory with executing 10 long-horizon tasks, each comprising approximately 50 steps. We exclusively measured the wall-clock time consumed by memory update and retrieval operations. We analyzed the scaling behavior of memory update latency across three distinct configurations: (1) fully parallel update and retrieval across all memory modules; (2) sequential update of each memory module without parallelism; and (3) update of only the most fundamental memory component: the Temporal Memory. Results are presented in Figure 3. As shown, our parallel update strategy enables updating a multi-module memory system with latency comparable to that of updating a single base memory module. This demonstrates the critical efficiency gains afforded by parallelization across the memory architecture.

457
458

4.5 ABLATION STUDIES

459
460
461

We used the full Base and Long Subset from EB-ALFRED to validate RoboMemory’s effectiveness. We removed each component systematically and observed performance changes across task categories. We use the success rate as our metric. Results are shown in Table 2.

462
463
464
465
466
467
468

Long-term Memory Adding long-term memory significantly improved RoboMemory’s success rate. The experiment shows that it enables interactive environmental learning while attempting to complete tasks. The semantic memory learns low-level skills’ properties, such as in what circumstances an action may fail. The temporal memory records all task attempts (successful/failed), providing valuable experience at the task level and giving insight into how to complete a task successfully. This helps the RoboMemory predict action outcomes and avoid ineffective attempts. This ability indicates that the RoboMemory has an interactive environmental learning capability.

469
470
471
472
473

Spatial Memory Spatial memory is crucial for embodied agents, especially given that current pre-trained VLMs have limited spatial understanding ability. Our novel dynamic KG update algorithm enables KG-based spatial memory in dynamic environments. This spatial reasoning helps RoboMemory handle partially observable embodied settings.

474
475
476

Critic Module Table 2 shows performance without the critic module (55% vs 67% with full system). This drop highlights how the critic’s closed-loop planning adapts to dynamic environments. It helps RoboMemory recover from failures faster and handle unexpected situations better.

477
478

4.6 REAL-WORLD ROBOT DEPLOYMENT

479
480
481
482
483
484
485

To evaluate RoboMemory’s interactive environmental learning capability in the real world, we designed a kitchen environment inspired by EB-ALFRED and EB-Habitat. The scene contains 5 navigable points, 8 interactive objects, and over 10 non-interactive (but potentially distracting) items. The environment is shown in Figure 4. In the real world, we use interactive environmental video recordings captured during action execution (rather than static snapshots taken after action completion) as RoboMemory’s input. This provides a more temporally coherent perception. We created three task categories (5 tasks each). Tasks are matched to EB-ALFRED’s Base subset (avg. oracle: 10–20 steps), though actual executions often exceed 20 steps due to search and error recovery.

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Figure 4: Visualization of the experimental environment.

Due to search and error recovery, the robot often exceeds 20 steps per task. Additional hardware experiment details are in Appendix F.

To test the interactive environmental learning ability of RoboMemory, we run each task twice without clearing long-term memory between attempts. Meanwhile, We compared RoboMemory against RoboOS as baselines. The success rates for first and second attempts and different settings of RoboOS are shown in Figure 5.

The second attempt showed significantly higher success rates. This proves RoboMemory’s long-term memory effectively guides subsequent tasks in real embodied environments. Key observations include: (1) Closed-loop error recovery: RoboMemory retries failed actions when possible, even if the low-level executor (VLA model) fails. (2) Spatial reasoning: RoboMemory remembers object locations and spatial relationships using its memory. (3) Interactive environmental learning: RoboMemory analyzes failure causes reasonably. These analyses guide future decisions. Detailed examples demonstrating these capabilities and further discussions are provided in Appendix G.

Moreover, we observed a significant drop in task success rates when deploying the agent with the Low-level Executor in real-world environments. This performance degradation primarily stems from the executor’s inherent limitations: (1) The VLA model exhibits unreliable instruction-following capabilities, frequently failing during grasping actions or selecting incorrect objects; (2) Pre-trained VLM models demonstrate inadequate video understanding - while capable of recognizing static objects, they struggle to interpret dynamic visual information such as action failures or state changes. These limitations collectively contribute to the reduced performance compared to simulated environments.

5 CONCLUSION AND FUTURE WORK

In summary, RoboMemory, a brain-inspired multi-memory framework, facilitates long-horizon planning and interactive environmental learning in real-world embodied systems by addressing key challenges such as memory latency, task correlation capture, and planning loops. Experiments on EmbodiedBench demonstrate that RoboMemory outperforms state-of-the-art closed-source VLMs and agent frameworks, with ablation studies confirming the critical roles of the Critic module and spatial/long-term memory. Real-world deployment further validates its interactive learning capability through improved success rates in repeated tasks. Despite limitations arising from reasoning errors and executor dependence, RoboMemory provides a foundation for generalizable, memory-augmented agents, with future work aimed at refining reasoning and enhancing execution robustness.

A notable open challenge in hierarchical embodied agents, including RoboMemory, lies in the interface between high-level planners and low-level executors. Existing frameworks typically rely on language instructions to convey actions, yet some execution details (e.g., precise grasp points) are difficult to describe textually and are better captured through other modalities, such as vision. While our current work emphasizes long-term planning and interactive learning, future research may improve generalization by developing richer multimodal interactions between the agent and executor.

Figure 5: Real-world experiment results. “Qwen” denotes Qwen2.5-VL-72B-Ins; “RoboBrain” denotes RoboBrain2.0-32B.

540 REFERENCES
541

542 Saaket Agashe, Jiuzhou Han, Shuyu Gan, Jiachen Yang, Ang Li, and Xin Eric Wang. Agent s: An
543 open agentic framework that uses computers like a human. *arXiv preprint arXiv:2410.08164*,
544 2024.

545 Anthropic. Claude 3.5 sonnet, 2024. URL <https://www.anthropic.com/news/clause-3-5-sonnet>.

546

547 Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,
548 Shijie Wang, Jun Tang, et al. Qwen2. 5-vl technical report. *arXiv preprint arXiv:2502.13923*,
549 2025.

550 Johan Bjorck, Fernando Castañeda, Nikita Cherniadev, Xingye Da, Runyu Ding, Linxi Fan,
551 Yu Fang, Dieter Fox, Fengyuan Hu, Spencer Huang, et al. Gr00t n1: An open foundation model
552 for generalist humanoid robots. *arXiv preprint arXiv:2503.14734*, 2025.

553

554 Kevin Black, Noah Brown, Danny Driess, Adnan Esmail, Michael Equi, Chelsea Finn, Niccolò
555 Fusai, Lachy Groom, Karol Hausman, Brian Ichter, et al. π_0 : A vision-language-action flow
556 model for general robot control. *arXiv preprint arXiv:2410.24164*, 2024.

557 Neil Burgess, Eleanor A Maguire, and John O’Keefe. The human hippocampus and spatial and
558 episodic memory. *Neuron*, 35(4):625–641, 2002.

559

560 Matthew Chang, Theophile Gervet, Mukul Khanna, Sriram Yenamandra, Dhruv Shah, So Yeon
561 Min, Kavit Shah, Chris Paxton, Saurabh Gupta, Dhruv Batra, et al. Goat: Go to any thing. *arXiv
562 preprint arXiv:2311.06430*, 2023.

563 Minghao Chen, Yihang Li, Yanting Yang, Shiyu Yu, Binbin Lin, and Xiaofei He. Automanual:
564 Constructing instruction manuals by llm agents via interactive environmental learning. *Advances
565 in Neural Information Processing Systems*, 37:589–631, 2024a.

566

567 Xiaojun Chen, Shengbin Jia, and Yang Xiang. A review: Knowledge reasoning over knowledge
568 graph. *Expert systems with applications*, 141:112948, 2020.

569

570 Zhe Chen, Weiyun Wang, Yue Cao, Yangzhou Liu, Zhangwei Gao, Erfei Cui, Jinguo Zhu, Shen-
571 glong Ye, Hao Tian, Zhaoyang Liu, et al. Expanding performance boundaries of open-source
572 multimodal models with model, data, and test-time scaling. *arXiv preprint arXiv:2412.05271*,
573 2024b.

574

575 Prateek Chhikara, Dev Khant, Saket Aryan, Taranjeet Singh, and Deshraj Yadav. Mem0: Building
576 production-ready ai agents with scalable long-term memory. *arXiv preprint arXiv:2504.19413*,
577 2025.

578

579 Cheng Chi, Zhenjia Xu, Siyuan Feng, Eric Cousineau, Yilun Du, Benjamin Burchfiel, Russ Tedrake,
580 and Shuran Song. Diffusion policy: Visuomotor policy learning via action diffusion. *The Inter-
581 national Journal of Robotics Research*, pp. 02783649241273668, 2023.

582

583 Wonje Choi, Jinwoo Park, Sanghyun Ahn, Daehee Lee, and Honguk Woo. Nesyc: A neuro-symbolic
584 continual learner for complex embodied tasks in open domains. *arXiv preprint arXiv:2503.00870*,
585 2025.

586

587 Google DeepMind. Introducing gemini 2.0: our new ai model for the agentic era, 2024. URL
588 <https://blog.google/technology/google-deepmind/google-gemini-ai-update-december-2024/>.

589

590 Dayuan Fu, Binqing Qi, Yihuai Gao, Che Jiang, Guanting Dong, and Bowen Zhou. Msi-agent: In-
591 corporating multi-scale insight into embodied agents for superior planning and decision-making.
592 *arXiv preprint arXiv:2409.16686*, 2024a.

593

594 Zipeng Fu, Tony Z Zhao, and Chelsea Finn. Mobile aloha: Learning bimanual mobile manipulation
595 with low-cost whole-body teleoperation. *arXiv preprint arXiv:2401.02117*, 2024b.

596

597 Yunfan Gao, Yun Xiong, Xinyu Gao, Kangxiang Jia, Jinliu Pan, Yuxi Bi, Yixin Dai, Jiawei Sun,
598 Haofen Wang, and Haofen Wang. Retrieval-augmented generation for large language models: A
599 survey. *arXiv preprint arXiv:2312.10997*, 2(1), 2023.

594 Marc Glocker, Peter Höning, Matthias Hirschmanner, and Markus Vincze. Llm-empowered em-
 595 bodied agent for memory-augmented task planning in household robotics. *arXiv preprint*
 596 *arXiv:2504.21716*, 2025.

597 Bernal Jiménez Gutiérrez, Yiheng Shu, Yu Gu, Michihiro Yasunaga, and Yu Su. Hipporag:
 598 Neurobiologically inspired long-term memory for large language models. *arXiv preprint*
 599 *arXiv:2405.14831*, 2024.

600 Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
 601 Weizhu Chen, et al. Lora: Low-rank adaptation of large language models. *ICLR*, 1(2):3, 2022.

602 Yafei Hu, Quanting Xie, Vidhi Jain, Jonathan Francis, Jay Patrikar, Nikhil Keetha, Seungchan Kim,
 603 Yaqi Xie, Tianyi Zhang, Hao-Shu Fang, et al. Toward general-purpose robots via foundation
 604 models: A survey and meta-analysis. *arXiv preprint arXiv:2312.08782*, 2023.

605 Aaron Hurst, Adam Lerer, Adam P Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark, AJ Os-
 606 trow, Akila Welihinda, Alan Hayes, Alec Radford, et al. Gpt-4o system card. *arXiv preprint*
 607 *arXiv:2410.21276*, 2024.

608 Moo Jin Kim, Karl Pertsch, Siddharth Karamcheti, Ted Xiao, Ashwin Balakrishna, Suraj Nair,
 609 Rafael Rafailev, Ethan Foster, Grace Lam, Pannag Sanketi, et al. Openvla: An open-source
 610 vision-language-action model. *arXiv preprint arXiv:2406.09246*, 2024.

611 Mingcong Lei, Ge Wang, Yiming Zhao, Zhixin Mai, Qing Zhao, Yao Guo, Zhen Li, Shuguang Cui,
 612 Yatong Han, and Jinke Ren. Clea: Closed-loop embodied agent for enhancing task execution in
 613 dynamic environments. *arXiv preprint arXiv:2503.00729*, 2025.

614 Bill Yuchen Lin, Yicheng Fu, Karina Yang, Faeze Brahman, Shiyu Huang, Chandra Bhagavatula,
 615 Prithviraj Ammanabrolu, Yejin Choi, and Xiang Ren. Swiftsage: A generative agent with fast and
 616 slow thinking for complex interactive tasks. *Advances in Neural Information Processing Systems*,
 617 36, 2024.

618 Bang Liu, Xinfeng Li, Jiayi Zhang, Jinlin Wang, Tanjin He, Sirui Hong, Hongzhang Liu, Shaokun
 619 Zhang, Kaitao Song, Kunlun Zhu, et al. Advances and challenges in foundation agents: From
 620 brain-inspired intelligence to evolutionary, collaborative, and safe systems. *arXiv preprint*
 621 *arXiv:2504.01990*, 2025.

622 Meta. Llama 3.2: Revolutionizing edge ai and vision with open, customizable models, 2024. URL
 623 <https://ai.meta.com/blog/llama-3-2-connect-2024-vision-edge-mobile-devices/>.

624 David Milner. Cognitive neuroscience: the biology of the mind and findings and current opinion in
 625 cognitive neuroscience. *Trends in cognitive sciences*, 2(11):463, 1998.

626 OpenAI. Gpt-4o mini: advancing cost-efficient intelligence, 2024. URL <https://openai.com/index/gpt-4o-mini-advancing-cost-efficient-intelligence/>.

627 Charles Packer, Sarah Wooders, Kevin Lin, Vivian Fang, Shishir G. Patil, Ion Stoica, and Joseph E.
 628 Gonzalez. MemGPT: Towards llms as operating systems. *arXiv preprint arXiv:2310.08560*,
 629 2023.

630 Joon Sung Park, Joseph O'Brien, Carrie Jun Cai, Meredith Ringel Morris, Percy Liang, and
 631 Michael S Bernstein. Generative agents: Interactive simulacra of human behavior. In *Proceedings
 632 of the 36th annual acm symposium on user interface software and technology*, pp. 1–22, 2023.

633 Lucy Xiaoyang Shi, Brian Ichter, Michael Equi, Liyiming Ke, Karl Pertsch, Quan Vuong, James
 634 Tanner, Anna Walling, Haohuan Wang, Niccolò Fusai, et al. Hi robot: Open-ended instruction
 635 following with hierarchical vision-language-action models. *arXiv preprint arXiv:2502.19417*,
 636 2025.

637 Noah Shinn, Federico Cassano, Ashwin Gopinath, Karthik Narasimhan, and Shunyu Yao. Reflexion:
 638 Language agents with verbal reinforcement learning. *Advances in Neural Information Processing
 639 Systems*, 36, 2024.

648 Chan Hee Song, Jiaman Wu, Clayton Washington, Brian M Sadler, Wei-Lun Chao, and Yu Su.
 649 Llm-planner: Few-shot grounded planning for embodied agents with large language models. In
 650 *Proceedings of the IEEE/CVF international conference on computer vision*, pp. 2998–3009, 2023.
 651

652 Huajie Tan, Xiaoshuai Hao, Cheng Chi, Minglan Lin, Yaoxu Lyu, Mingyu Cao, Dong Liang, Zhuo
 653 Chen, Mengsi Lyu, Cheng Peng, et al. Roboos: A hierarchical embodied framework for cross-
 654 embodiment and multi-agent collaboration. *arXiv preprint arXiv:2505.03673*, 2025.

655 Weihao Tan, Wentao Zhang, Xinrun Xu, Haochong Xia, Ziluo Ding, Boyu Li, Bohan Zhou, Junpeng
 656 Yue, Jiechuan Jiang, Yewen Li, et al. Cradle: Empowering foundation agents towards general
 657 computer control. *arXiv preprint arXiv:2403.03186*, 2024.

658 BAAI RoboBrain Team, Mingyu Cao, Huajie Tan, Yuheng Ji, Xiansheng Chen, Minglan Lin, Zhiyu
 659 Li, Zhou Cao, Pengwei Wang, Enshen Zhou, et al. Robobrain 2.0 technical report. *arXiv preprint*
 660 *arXiv:2507.02029*, 2025.

661 Gemini Team, Petko Georgiev, Ving Ian Lei, Ryan Burnell, Libin Bai, Anmol Gulati, Garrett Tanzer,
 662 Damien Vincent, Zhufeng Pan, Shibo Wang, et al. Gemini 1.5: Unlocking multimodal under-
 663 standing across millions of tokens of context. *arXiv preprint arXiv:2403.05530*, 2024.

664 Qwen Team. Qwen2.5: A party of foundation models, September 2024. URL <https://qwenlm.github.io/blog/qwen2.5/>.

665 Guanzhi Wang, Yuqi Xie, Yunfan Jiang, Ajay Mandlekar, Chaowei Xiao, Yuke Zhu, Linxi Fan,
 666 and Anima Anandkumar. Voyager: An open-ended embodied agent with large language models.
 667 *arXiv preprint arXiv:2305.16291*, 2023.

668 Colin White, Samuel Dooley, Manley Roberts, Arka Pal, Ben Feuer, Siddhartha Jain, Ravid Shwartz-
 669 Ziv, Neel Jain, Khalid Saifullah, Siddartha Naidu, et al. Livebench: A challenging, contamination-
 670 free llm benchmark. *arXiv preprint arXiv:2406.19314*, 2024.

671 Rui Yang, Hanyang Chen, Junyu Zhang, Mark Zhao, Cheng Qian, Kangrui Wang, Qineng Wang,
 672 Teja Venkat Koripella, Marziyeh Movahedi, Manling Li, et al. Embodiedbench: Compre-
 673 hensive benchmarking multi-modal large language models for vision-driven embodied agents. *arXiv*
 674 *preprint arXiv:2502.09560*, 2025a.

675 Zhejian Yang, Yongchao Chen, Xueyang Zhou, Jiangyue Yan, Dingjie Song, Yinuo Liu, Yuting
 676 Li, Yu Zhang, Pan Zhou, Hechang Chen, et al. Agentic robot: A brain-inspired framework for
 677 vision-language-action models in embodied agents. *arXiv preprint arXiv:2505.23450*, 2025b.

678 Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
 679 React: Synergizing reasoning and acting in language models. *arXiv preprint arXiv:2210.03629*,
 680 2022.

681 Haoqi Yuan, Yu Bai, Yuhui Fu, Bohan Zhou, Yicheng Feng, Xinrun Xu, Yi Zhan, Börje F Karlsson,
 682 and Zongqing Lu. Being-0: A humanoid robotic agent with vision-language models and modular
 683 skills. *arXiv preprint arXiv:2503.12533*, 2025.

684 Hongxin Zhang, Weihua Du, Jiaming Shan, Qinhong Zhou, Yilun Du, Joshua B Tenenbaum, Tian-
 685 min Shu, and Chuang Gan. Building cooperative embodied agents modularly with large language
 686 models. *arXiv preprint arXiv:2307.02485*, 2023.

687 Yanzhao Zhang, Mingxin Li, Dingkun Long, Xin Zhang, Huan Lin, Baosong Yang, Pengjun Xie,
 688 An Yang, Dayiheng Liu, Junyang Lin, et al. Qwen3 embedding: Advancing text embedding and
 689 reranking through foundation models. *arXiv preprint arXiv:2506.05176*, 2025.

690 Andrew Zhao, Daniel Huang, Quentin Xu, Matthieu Lin, Yong-Jin Liu, and Gao Huang. Expel: Llm
 691 agents are experiential learners. In *Proceedings of the AAAI Conference on Artificial Intelligence*,
 692 volume 38, pp. 19632–19642, 2024.

693 Tony Z Zhao, Vikash Kumar, Sergey Levine, and Chelsea Finn. Learning fine-grained bimanual
 694 manipulation with low-cost hardware. *arXiv preprint arXiv:2304.13705*, 2023.

695 Jinguo Zhu, Weiyun Wang, Zhe Chen, Zhaoyang Liu, Shenglong Ye, Lixin Gu, Hao Tian, Yuchen
 696 Duan, Weijie Su, Jie Shao, et al. Internvl3: Exploring advanced training and test-time recipes for
 697 open-source multimodal models. *arXiv preprint arXiv:2504.10479*, 2025.

702 A STATEMENT OF LLM USAGE
703704 In this article, the LLM participated in the following tasks: (1) assisting in revising and polishing
705 the manuscript, and (2) serving as an experimental subject in various experiments.
706707 B ADDITIONAL ALGORITHMS
708710 **Algorithm 1** RoboMemory Execution Process

711 **Require:** Task description \mathcal{T} , Initial observation \mathcal{O}_0 , Max steps T_{max}
 712 **Require:** Modules: Step Summarizer \mathcal{S} , Query Generator \mathcal{Q} ; Memory \mathcal{U}, \mathcal{R} ; Planner \mathcal{P} ; Critic \mathcal{C} ;
 713 Executor \mathcal{E}

714 1: **Initialize:** Global step $t \leftarrow 0$, Memory $M_t \leftarrow \emptyset$

715 2: **Initial Perception:**

716 3: $s_t, q_t \leftarrow \mathcal{S}\mathcal{Q}(\mathcal{O}_t)$ {call the step summarizer and query generator in parallel}

717 4: $M_t \leftarrow \mathcal{U}(M_t, s_t)$ {Initialize Memory with first observation}

718 5: **while** $t < T_{max}$ and Task \mathcal{T} not completed **do**

719 6: **Retrieval Phase:**

720 7: $r_t \leftarrow \mathcal{R}(M_t, q_t)$ {Parallel retrieval from L memory modules}

721 8: **Planning Phase:**

722 9: $\mathbf{A} \leftarrow \mathcal{P}(r_t, \mathcal{O}_t, \mathcal{T})$ {Generate action sequence $\mathbf{A} = [a_1, a_2, \dots, a_K]$ }

723 10: **Execution Phase (Closed-Loop):**

724 11: **for** $k = 1$ to $|\mathbf{A}|$ **do**

725 12: Let a_k be the current action to execute

726 13: $execute_flag \leftarrow \text{False}$

727 14: **if** $k = 1$ **then**

728 15: $execute_flag \leftarrow \text{True}$ {Skip Critic for the first step to avoid infinite loops}

729 16: **else**

730 17: {Re-evaluate context for subsequent steps}

731 18: $r_{curr} \leftarrow \mathcal{R}(M_t, q_{curr})$

732 19: **if** $\mathcal{C}(a_k, r_{curr}, \mathcal{O}_t, \mathcal{T})$ is **True** **then**

733 20: $execute_flag \leftarrow \text{True}$

734 21: **else**

735 22: **break** {Critic rejects action; trigger re-planning}

736 23: **end if**

737 24: **end if**

738 25: **if** $execute_flag$ is **True** **then**

739 26: $\mathcal{O}_{t+1} \leftarrow \mathcal{E}(a_k)$ {Execute action via low-level executors}

740 27: $t \leftarrow t + 1$

741 28: **Memory Update (Perception \rightarrow Memory):** $s_t, q_t \leftarrow \mathcal{S}\mathcal{Q}(\mathcal{O}_t)$ {Generate query and
742 summary in parallel}

743 29: $M_t \leftarrow \mathcal{U}(M_{t-1}, s_t)$ {Parallel update of all modules}

744 30: **end if**

745 31: **end for**

746 32: **end while**

747 C ADDITIONAL EXPERIMENTS

748 C.1 ERROR ANALYSIS

750 We summarize the common errors of RoboMemory in the previous experiments. We classify errors
751 into three main types: planning errors, reasoning errors, and perception errors.
752753 The planning errors occur when the planner fails to generate correct actions. The reasoning errors
754 occur when the planner and critic cannot properly process input information (including current ob-
755 servations and memory), even when the input is correct. Perception errors occur when incorrect
information is provided to the planner-critic module.

756 We analyze RoboMemory trajectories for failed
 757 tasks. We identify error types based on the
 758 above definitions. A single task may con-
 759 tain multiple errors. We calculate the occur-
 760 rence probability of each error type to show
 761 RoboMemory’s strengths and weaknesses. The
 762 results are shown in Figure 6.

763 We can observe that among all error types, the
 764 planning errors are the most common. This
 765 means that even though the memory modules
 766 can provide comprehensive information about
 767 the RoboMemory agent’s previous experience
 768 and spatial and temporal memory for the cur-
 769 rent task, the planner module may still not pro-
 770 vide good action plans. This may be due to the
 771 capability of the pretrained base model.

772 The most common perception error is the hal-
 773 lucination error. We can observe that although
 774 some hallucinations can be handled by the critic
 775 module or memory information, there are still some cases in which the planner ignores all insights
 776 from memory and critic and fails to complete the task.

777 The detailed examples and discussions are provided in Appendix G.

779 C.2 ADDITIONAL EFFICIENCY ANALYSIS

781 We analyze the evolution of the spatial KG during long trajectories in EB-ALFRED, focusing on the
 782 first 20 iterations (with 95% confidence intervals). As shown in Figure 7, the total number of spatial
 783 relationships in the KG (red line) increases gradually over iterations as RoboMemory is exploring
 784 the environment. In contrast, the number of relationships retrieved for update at each iteration (blue line)
 785 remains relatively stable, typically ranging around 10 edges per iteration. This stability is
 786 achieved because our method only updates a local subgraph relevant to the current observation.

787 We define the retrieval ratio as the proportion of relationships updated at each iteration relative to the
 788 total number of relationships in the KG. As shown in Figure 7, this ratio (illustrated by gray bars)
 789 decreases steadily from 76% initially to 28% at iteration 20. This trend indicates that, as the KG
 790 grows, each update affects a progressively smaller fraction of the entire graph. This demonstrates
 791 that our spatial KG update mechanism effectively localizes modifications, ensuring computational
 792 efficiency and mitigating interference through context-aware incremental updates.

Figure 6: The reason why RoboMemory failed to complete the task.

The detailed examples and discussions are provided in Appendix G.

C.2 ADDITIONAL EFFICIENCY ANALYSIS

We analyze the evolution of the spatial KG during long trajectories in EB-ALFRED, focusing on the first 20 iterations (with 95% confidence intervals). As shown in Figure 7, the total number of spatial relationships in the KG (red line) increases gradually over iterations as RoboMemory is exploring the environment. In contrast, the number of relationships retrieved for update at each iteration (blue line) remains relatively stable, typically ranging around 10 edges per iteration. This stability is achieved because our method only updates a local subgraph relevant to the current observation.

We define the retrieval ratio as the proportion of relationships updated at each iteration relative to the total number of relationships in the KG. As shown in Figure 7, this ratio (illustrated by gray bars) decreases steadily from 76% initially to 28% at iteration 20. This trend indicates that, as the KG grows, each update affects a progressively smaller fraction of the entire graph. This demonstrates that our spatial KG update mechanism effectively localizes modifications, ensuring computational efficiency and mitigating interference through context-aware incremental updates.

Figure 7: Average relationships related to update in spatial memory in each step.

810 D ADDITIONAL RELATED WORK
811812 Table 3: Comparison of Memory-Related Methods in Embodied Agent
813

Method	Multimodal	Episodic	Semantic	Spatial	Temporal	Procedural	Memory Implementation	Real Robot
NeSyC (Choi et al., 2025)	✓		✓		✓		Symbolic logic rules	✓
Reflexion (Shinn et al., 2024)			✓		✓		Buffer	
Voyager (Wang et al., 2023)						✓	RAG	
MSI-Agent (Fu et al., 2024a)			✓		✓	✓	Database, RAG	
CoELA (Zhang et al., 2023)	✓	✓	✓		✓	✓	Top-down semantic map	
Cradle (Tan et al., 2024)	✓	✓			✓	✓	RAG	
Agent-S (Agashio et al., 2024)	✓	✓	✓		✓	✓	RAG	
Expel (Zhao et al., 2024)			✓		✓		Buffer	
AutoManual (Chen et al., 2024a)	✓		✓			✓	Buffer	
HiRobot (Shi et al., 2025)	✓						/	✓
Being-0 (Yuan et al., 2025)	✓		✓		✓		Buffer	✓
RoboOS (Tan et al., 2025)	✓			✓	✓		Scene graph, database	✓
RoboMemory (Ours)	✓	✓	✓	✓	✓		RAG, KG	✓

824
825 E DYNAMIC SPATIAL MEMORY UPDATE ALGORITHM
826827 E.1 DETAILED ALGORITHM OF SPATIAL KG UPDATE
828829 **Algorithm 2 Retrieval-based Incremental Knowledge Graph Update Algorithm**
830

831 **Require:** New spatial knowledge graph $G_{\text{new}} = (V_{\text{new}}, E_{\text{new}})$, main spatial knowledge graph $G = (V, E)$, queries $q \in Q$, entity & query embeddings $\mathcal{E} : V \cup Q \rightarrow \mathbb{R}^d$, maximum number of retrieved vertices n , maximum k hops k , vlm-base conflict resolver $\text{ResolveConflict}(\cdot)$
832 **Ensure:** Updated consistent knowledge graph G'
833 1: $V_{\text{similar}} \leftarrow \bigcup_{q \in Q} \text{TopK}_n(\{v \in V \mid \text{cosine_sim}(\mathcal{E}(q), \mathcal{E}(v))\})$ {For each query entity q , retrieve its top- n most similar vertices in G by cosine similarity of embeddings; take the union over all $q \in Q\}$
834 2: $V_{\text{expand}} \leftarrow \text{K-hop}_k(V_{\text{similar}}, G)$ {all nodes within k hops from any node in V_{similar} }
835 3: $V_{\text{retrieved}} \leftarrow V_{\text{similar}} \cup V_{\text{expand}}$
836 4: $V_{\text{merged}} \leftarrow V_{\text{retrieved}} \cup V_{\text{new}}$
837 5: $G_{\text{union}} \leftarrow (V \cup V_{\text{new}}, E \cup E_{\text{new}})$ {Combine the main graph and new observations into a unified graph.}
838 6: $G_{\text{local}} \leftarrow \text{InducedSubgraph}(V_{\text{merged}}, G_{\text{union}})$ {Extract the subgraph induced by V_{merged} , containing all old and new edges among these nodes.}
839 7: $G_{\text{updated}} \leftarrow \text{ResolveConflict}(G_{\text{local}}, G_{\text{new}})$ {based on G_{new} , VLM update the relationship among different vertices in G_{local} }
840 8: $G' \leftarrow (G \setminus G_{\text{local}}) \cup G_{\text{updated}}$ {Replace the old subgraph in G with the conflict-resolved updated subgraph.}
841 9: Remove isolated vertices from G'
842 10: **return** G'

843
844
845
846
847
848
849
850
851
852 Spatial Memory is a dynamically updated KG-based module designed to overcome agents' limitations in spatial reasoning. Specifically, our Spatial Memory is formulated as a directed KG $G = (V, E)$, where V denotes the set of all objects in the environment. Each object is a vertex in the KG. Each object's name is encoded into a single semantic embedding vector via a pretrained embedding model (Zhang et al., 2025). The edge set E captures spatial relationships between objects, each represented as a triple (e.g., $[obj_1, \text{relationship}, obj_2]$). To update the Spatial KG, we need to continuously extract new relationships from current observations and update the old relationships in the Spatial KG. We use a VLM-based conflict resolver to address this problem. However, the more relationships provided to the conflict resolver, the more time it needs to update the KG. So we need to update relationships that are only related to the current situation. We design an algorithm that retrieves a sub-graph of KG that includes all vertices related to the current situation and both old and new relationships among them. We provide the sub-graph and new relationships to the conflict resolver. We need the conflict resolver to update the sub-graph based on information from the new relationships. The algorithm is shown in Algorithm 2.

To update G , we make use of the information provided by the step summarizer and query generator from the information preprocessor introduced in Section 3.1. First, a pretrained VLM-based Relation Retriever extracts the latest spatial relationships $G_{\text{new}} = (V_{\text{new}}, E_{\text{new}})$ from the information provided by the step summarizer, which records high-level information in the current observation. Next, natural language queries (represented as $q \in Q$) (provided by the query generator) are used to retrieve relevant object vertices from G via cosine similarity search. We select the top n similar vertices compared with the query. These vertices are represent by V_{similar} .

Spatial KG maintains the relationships among different objects, so if we want to retrieve spatial information from spatial KG, we need to search for other objects that are related to the objects we observed in the current observation. In this way, we not only remember objects we can see, but also know the spatial information of the objects we cannot see. So we choose the k-hop algorithm to expand V_{similar} using a K-hop neighborhood algorithm to capture contextually related objects. The K-hop algorithm is represented as $\text{K-hop}_k(V, G)$, which returns all vertices reachable within $\leq k$ hops from any vertices in V . The retrieved vertices are V_{expand} . We combine the vertices retrieved by cosine similarity and their K-hop neighbors to $V_{\text{retrieved}}$.

However, we need to resolve the conflict between new and old relationships. So $V_{\text{retrieved}}$ and the relationships among $V_{\text{retrieved}}$ is not enough. We need new vertices and relationships involved in the graph we provided to the VLM-based conflict resolver. To extract all vertices and relationships for the VLM-based conflict resolver and relationships, we not only need the relationships from KG (old information) and G_{new} , which represent new information. We need to connect old information and new information. To achieve this goal, we merge G_{new} to G , which add new edges and vertices to G . We denote the merged KG as G_{union} . In G_{union} , we mix out-of-date and latest information. Then, we extract an induced sub-graph of $V_{\text{merged}} = V_{\text{retrieved}} \cup V_{\text{new}}$ from G_{union} . As both vertices from old graph G and new graph is mixed in V_{merged} and both edges from old and new graph is in G_{union} , the retrieved induced sub-graph G_{local} contains all out-of-date and latest relationships among vertices that is related to current situation.

As G_{local} contains all out-of-date and latest relationships and those relationships may have conflicts, a VLM-based conflict resolver (represent as $\text{ResolveConflict}(\cdot)$) is designed to resolve conflicts in G_{local} , and make sure that the relationship is the latest. The conflict resolver will take in G_{new} and G_{local} , where G_{local} is the graph waiting for update and G_{new} provide update signal. The VLM-based conflict resolver will perform necessary updates such as adding vertices or inserting, deleting, or modifying relationships in G_{local} based on G_{new} . The reconciled subgraph is then merged back into G , and any vertices that have lost all connections to other vertices during the update are pruned.

This design offers two key advantages: (1) Efficiency via localized updates: By restricting modifications to a context-relevant subgraph, we significantly reduce the number of relationships processed per update. Since VLMs struggle with reasoning over large sets of relationships, this constraint substantially improves both the efficiency and effectiveness of VLM-based KG updates. (2) Dynamic adaptability: The system continuously maintains up-to-date spatial knowledge, enabling agents to operate robustly in dynamic real-world environments.

E.2 EXAMPLE OF DYNAMIC SPATIAL MEMORY UPDATE PROCESS

In RoboMemory’s Spatial Memory, the KG is dynamically constructed during environment exploration. As illustrated in Figure 8, we demonstrate the progressive expansion of the KG in Spatial Memory as the agent navigates through the environment. The figure indicates a continuous growth in the number of both vertices and edges of the KG as exploration progresses.

Notably, the KG undergoes dynamic updates through RoboMemory’s environmental interactions. For example, the initial KG state displays the relation “I am near the apple. But as the agent picks up the apple in the third step, in the fourth KG, the relationship becomes “I hold the apple”. This demonstrates RoboMemory’s capability for dynamic KG maintenance and expansion.

By querying this KG, the Planner-Critic module gains access to rich spatial information, empowering RoboMemory with robust spatial memory capabilities that significantly enhance its performance in both TextWorld and EmbodiedBench environments.

Figure 8: Visualization of Spatial Memory’s dynamic update process.

E.3 PROOF OF DYNAMIC SPATIAL MEMORY UPDATE ALGORITHM

Theorem 1 (Upper Bound on K-hop Vertex Extraction in Directed Graphs). *Let $G = (V, E)$ be a finite directed graph with maximum out-degree $D \geq 1$, and let $\mathcal{S} \subseteq V$ be a set of M source vertices. Define the K-hop neighborhood $\mathcal{N}_K(s)$ of a vertex $s \in \mathcal{S}$ as the set of vertices reachable from s via directed paths of length at most K . Then the total number of distinct vertices in the union of all K-hop neighborhoods,*

$$\mathcal{N}_K(\mathcal{S}) = \bigcup_{s \in \mathcal{S}} \mathcal{N}_K(s),$$

Satisfies the following upper bound:

$$|\mathcal{N}_K(\mathcal{S})| \leq \begin{cases} M \cdot \frac{D^{K+1} - 1}{D - 1}, & \text{if } D > 1, \\ M \cdot (K + 1), & \text{if } D = 1. \end{cases}$$

Proof. For any vertex $s \in \mathcal{S}$, the number of distinct vertices reachable from s within i hops is at most D^i , assuming the worst-case scenario where each vertex encountered has the maximum out-degree D , and all neighbors are distinct and non-overlapping.

Thus, the size of the K-hop neighborhood of a single vertex satisfies:

$$|\mathcal{N}_K(s)| \leq \sum_{i=0}^K D^i = \begin{cases} \frac{D^{K+1} - 1}{D - 1}, & \text{if } D > 1, \\ K + 1, & \text{if } D = 1. \end{cases}$$

Since there are M such source vertices and assuming no overlaps between their K-hop neighborhoods (worst case), the union size satisfies:

$$|\mathcal{N}_K(\mathcal{S})| \leq M \cdot |\mathcal{N}_K(s)|.$$

Substituting the bound on $|\mathcal{N}_K(s)|$ gives the result. \square

972 **Theorem 2** (Upper Bound for K-hop Vertex Extraction in Normalized Directed Graphs). *Let $G =$
973 (V, E) be a finite directed graph with $|V| = n$ vertices. Assume the maximum out-degree is at
974 most $D_{\max} = Dn$, and the maximum in-degree is at most $N_{\max} = Nn$, where $D, N \in (0, 1]$ are
975 constants. Let $\mathcal{S} \subseteq V$ be a set of M source vertices. Define $\mathcal{N}_K(\mathcal{S})$ as the union of all vertices
976 reachable from \mathcal{S} via paths of length at most K , using only outgoing edges. Then the number of
977 extracted vertices satisfies:*

$$978 \quad |\mathcal{N}_K(\mathcal{S})| \leq \min \left\{ n, M \cdot \frac{(Dn)^{K+1} - 1}{Dn - 1} \right\}.$$

$$979$$

$$980$$

981 In particular, when $Dn \gg 1$, we have the approximation:

$$982$$

$$983 \quad |\mathcal{N}_K(\mathcal{S})| \lesssim M \cdot (Dn)^K.$$

$$984$$

985 *Proof.* For each vertex $s \in \mathcal{S}$, the maximum number of reachable vertices within i -hops is at most
986 $(Dn)^i$ under the assumption of maximum out-degree and no overlap.

$$987$$

988 Summing over hops from 0 to K , we get for each root:

$$989$$

$$990 \quad |\mathcal{N}_K(s)| \leq \sum_{i=0}^K (Dn)^i = \frac{(Dn)^{K+1} - 1}{Dn - 1}.$$

$$991$$

$$992$$

993 Assuming no overlap among the M source vertex expansions (worst case), we have:

$$994$$

$$995 \quad |\mathcal{N}_K(\mathcal{S})| \leq M \cdot \frac{(Dn)^{K+1} - 1}{Dn - 1}.$$

$$996$$

$$997$$

998 Since the total number of vertices in the graph is n , this quantity is also trivially bounded above by
999 n , yielding the result. \square

$$1000$$

1001 F ADDITIONAL ENVIRONMENT SETTINGS

$$1002$$

1003 F.1 EB-ALFRED AND EB-HABITAT

$$1004$$

1005 We adopt the same environment parameters as in EmbodiedBench. The maximum steps per task
1006 are set to 30, with image inputs of size 500×500 . The temporal memory buffer length is set to 3.
1007 However, we modified the action formats of EB-ALFRED and EB-Habitat to simulate real-world
1008 scenarios better. Specifically, we define different action APIs (Python functions), where each action
1009 takes an object parameter indicating its target. We extract all possible objects from the environment
1010 as inputs to the Agent. The Agent must select appropriate actions and object parameters based on
1011 task requirements. Compared to the original interaction method in EmbodiedBench (which enumerates
1012 all possible actions, including both action names and target objects, and requires the Agent to
1013 choose), our approach offers greater flexibility. The detailed action APIs are presented in Table 4.

1014 Since EB-ALFRED and EB-Habitat provide comprehensive high-level action APIs, we do not em-
1015 ploy the VLA-Based Low-Level Executor in these environments. Instead, we utilize the built-in
1016 low-level controllers from EmbodiedBench.

$$1017$$

1018 F.2 ADDITIONAL SETTINGS FOR BASELINES

$$1019$$

1020 **EB-ALFRED.** For our single VLM-Agent baseline, we utilized the reported results from Embod-
1021 iedBench paper to establish a consistent benchmark, where the agent relies on a basic interaction
1022 history as its memory module. For other VLM frameworks, we replicated the experimental setups
1023 as described in both EmbodiedBench and the respective original papers. Crucially, to familiarize
1024 all baseline agents with the EmbodiedBench environment, we supplemented them with a few-shot
1025 example and a comprehensive catalog of actionable objects—applying the exact same conditions as
 those used for the single VLM-Agent benchmark.

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

Table 4: Robot Action Command For different environments

Action Type	EB-ALFRED	EB-Habitat	Real World
Navigation	find(obj)	navigate(point)	navigate_to(point)
Pick Up Object	pick_up(obj)	pick(obj)	pick_up(obj)
Drop to Ground	drop()	—	—
Place to Receptacle	put_down()	place(rec)	put_down_to(rec)
Open Object	open(obj)	open(obj)	open(obj)
Close Object	close(obj)	close(obj)	close(obj)
Turn On	turn_on(obj)	—	turn_on(obj)
Turn Off	turn_off(obj)	—	turn_off(obj)
Slice Object	slice(obj)	—	—
Task Complete	—	—	task_complete()

F.3 REAL-WORLD EXPERIMENTS

We construct a common kitchen scenario to evaluate the RoboMemory framework’s interactive environmental learning capabilities in real-world settings. Using Mobile ALOHA (Fu et al., 2024b) as our physical robotic platform, we design three categories of tasks: (1) Pick up & put down: The agent must locate a specified object among all possible positions and place it at a designated location. This task tests the model’s basic object-searching and planning abilities. (2) Pick up, operate & put down: Building upon the first task, the agent must additionally perform operations such as heating or cleaning the object. This task requires longer-term planning, which is crucial in embodied environments. (3) Pick up, gather & put down: The agent must place specified objects into a movable container and then move the container to a target location. This task evaluates the agent’s understanding of object relationships, requiring it to remember the positions of at least two objects (the container and the target item) and their spatial relationship. For each type of task, we design 5 tasks. So our experiments include 15 long-term real-world tasks.

To adapt to the real-world setup, we define high-level action APIs similar to those in EB-ALFRED and EB-Habitat. Additionally, we train a VLA-based model to execute tasks according to our action APIs. The detailed action APIs are presented in Table 4.

For the low-level executor, we use one main camera and two arm-mounted cameras as input, each with a resolution of 640×480 . The temporal memory buffer length is set to 3.

In our experiments, we set the maximum steps per task to 25. We also provide an API for actively terminating tasks. Since real-world environments lack direct success/failure feedback, RoboMemory must autonomously determine task completion. To prevent excessively long task execution, we enforce termination after 25 steps if no success is achieved. A single main camera (640×480 resolution) records video during action execution as input for RoboMemory’s higher-level processing.

Table 5: Dataset statistics and training hyperparameters for robotic manipulation tasks.

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

Dataset Statistics		Training Configuration	
Action Type	#Episodes	Parameter	Value
Turning on/off faucet	142	Optimizer	AdamW
Picking up & Placing basket on counter	63	Batch size	32×6
Picking up & Placing basket in sink	72	Training steps	10,000
Picking up & Placing banana into basket	114	Learning rate	6.12×10^{-5}
Throwing bottle into trash bin	132	warm up step	500
Placing gum box on dish	120	LoRA Configuration	
Picking up & Placing cup on plate	51	rank	16
Picking up & Placing dish into sink	69	α	16
Throwing paper ball into trash bin	135	Resource Usage	
Open/close oven	142	GPU	A100-80GB $\times 6$
Total episodes	1040	Training time	12 hours

1080
1081

F.4 TRAINING DETAILS OF LOW-LEVEL EXECUTOR

1082
1083
1084
1085
1086
1087
1088

We use the π_0 model as our foundation model. We collected 1,040 data samples over 10 types of tasks for fine-tuning. We use LoRA fine-tuning to save resources during fine-tuning. The specific fine-tuning parameters and action types are given in Table 5. For tasks involving both pick-up and place actions, we split these tasks into separate pick-up and place actions. These are then treated as two distinct data samples during training. The separation of pick-up and place action allows the VLA to carry an object in its hand. For training, we used a server with six A100-80GB GPUs. The total training time was 12 hours.

1089
1090
1091

Besides, we use the built-in LiDAR SLAM system of the Mobile ALOHA robot base as the navigation action actuator. We define five typical navigation points, similar to EB-Habitat. We used SLAM to navigate between these navigation points.

1092
1093
1094

F.5 HYPERPARAMETERS OF ROBOMEMORY

1095
1096
1097
1098

In this section, we describe the hyperparameter settings for the upper brain of RoboMemory: the information preprocessor and the Comprehensive Embodied Memory. Importantly, we use a unified set of hyperparameters across all experimental settings, including EB-ALFRED, EB-Habitat, and real-world deployments.

1099
1100
1101

The information preprocessor consists of two components: a step summarizer and a query generator. Given multimodal inputs at each step, the step summarizer produces a single natural language description, while the query generator concurrently formulates 4 – 5 distinct natural language queries.

1102
1103
1104
1105
1106
1107
1108
1109
1110
1111

The Comprehensive Embodied Memory integrates four memory modules: Temporal, Spatial, Semantic, and Episodic Memory. The Temporal Memory is implemented as a fixed-size buffer with a maximum capacity of 4 entries. For Spatial Memory, during similarity-based retrieval, we first identify the top $N = 3$ most relevant vertices and then perform a K-hop graph traversal with $K = 2$. The Episodic Memory retrieves the top $N = 5$ most relevant past experiences for each query. The Semantic Memory maintains hierarchical summaries at both the action and task levels; during retrieval, it returns $N_s = 2$ action-level and $N_t = 2$ task-level summaries. Furthermore, memory updates (e.g., insertion, modification, or deletion) are applied only to the top $N_{\text{update}} = 10$ most relevant entries in the Semantic Memory to ensure efficiency and coherence.

1112
1113
1114
1115

G SUPPLEMENTARY EXAMPLES FOR QUALITATIVE ANALYSIS

G.1 REAL WORLD

1116
1117
1118
1119
1120
1121

In Figure 9, we demonstrate an example of RoboMemory learning through trial and error in a real-world environment. Our task is “place a banana into the oven.” This task required RoboMemory to complete the objectives of finding the banana, picking it up, and transporting it to the oven. We observed that RoboMemory became stuck in an infinite loop during the first attempt. The banana was randomly placed on the “kitchen counter,” but RoboMemory overlooked this navigation target and remained trapped, exploring other navigation targets instead.

1122
1123
1124
1125
1126
1127
1128

However, based on this bad attempt, the semantic memory summarized that the robot should not repeatedly search in locations where the “banana” could not be found. Meanwhile, the episodic memory recorded what RoboMemory had done and the outcomes during the first attempt. Based on the information provided by semantic and episodic memory, in the second attempt, RoboMemory recognized that it had not previously tried navigating to the “kitchen counter.” After attempting this, it successfully completed the task. This example illustrates the role of RoboMemory’s long-term memory.

1129
1130
1131
1132
1133

We also provide an example that completes the task in the first attempt. The example is shown in Figure 10. This example demonstrates that the RoboMemory has the ability to handle some relatively complex tasks in the real world. The task in this example is “Place a box of gum into the basket and put the basket on the kitchen counter”. Because two objects in different positions are involved in this task, RoboMemory has to memorize the position of at least one object to achieve the goal. With the help of the spatial memory, RoboMemory completes the task successfully.

Figure 9: Case that a task is failed, but the experience can help RoboMemory to succeed in the next try.

G.2 EB-ALFRED

We select three examples in EB-ALFRED to show the errors that RoboMemory may encounter and the reasons why or why not RoboMemory can achieve the goal.

G.2.1 SUCCESSFUL EXAMPLE

We select a successful example to show how RoboMemory performed in the EB-ALFRED environment. The example trajectory is shown in Figure 11.

1188

Task: Place a box of gum into the basket and put the basket to
the kitchen counter

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

Step 1: Navigate to the left side of the desk

Step 2: Navigate to the kitchen counter

Step 3: Pick up the gum box

Step 4: Navigate to the left side of the desk

Step 5: Put down (gum box) to the basket

Step 6: Pick up the basket

Step 7: Navigate to the kitchen counter

Step 8: Put down (basket) to the kitchen counter

Figure 10: Case that a task is successful.

The task of this example is “set a plate with a spoon on it on the kitchen table”. However, in step 10, the Planner seems to ignore the temporal information from memory modules. RoboMemory thinks that it still needs to pick up the spoon (even though it has already placed a spoon in the plate). However, with the help of the critic, it finally becomes aware that picking up another spoon is redundant, so RoboMemory goes back to the current trajectory and successfully completes the task at the end.

In this example, RoboMemory successfully overcame the hallucination and eventually achieved the goal. This example demonstrates that the critic module can help RoboMemory to overcome error cases.

G.2.2 FAILED EXAMPLE

We demonstrate a representative example of the Critical Error. The example trajectory is shown in Figure 12. In this example, the task involves slicing and heating a tomato and moving the heated tomato slice to the trash can. Initially, RoboMemory successfully sliced the tomato with a knife. But when the planner plans the whole sequence, it forgets to drop the knife before picking up the tomato (this is necessary because in EB-ALFRED, the robot can only hold one object at a time). The critic and the planner should notice this situation and ask the critic to replan, as RoboMemory failed to pick up a tomato slice. However, the critic module ignores this issue, and thus, after it heats the knife instead of a tomato slice, it stacks in an infinite loop.

Besides, we provide another example demonstrating a representative failure caused by inaccurate action planning. The example trajectory is shown in Figure 13. In the trajectory, RoboMemory is asked to place two CDs into the drawer. However, at step 6, the robot failed to select correct CD object. In this experiment, RoboMemory has already put CD_2 into the drawer, but it keeps picking up CD_2 even though the memory has clearly indicated that CD_2 has already been put down. So we classify this as inaccurate action error. This indicates that the planner failed to comprehensively integrate information from both the memory and information-gathering modules, resulting in inaccurate action planning.

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

Task: Set plate with a spoon in it on the kitchen table

Step 1: Initialize

Step 2: Find the plate

Step 3: Pick up the plate

Step 4: Find the spoon

Step 5: Put down the plate

Step 6: Pick up the spoon

Step 7: Put down

Step 8: Find the plate

Step 9: Pick up the plate

Step 10: Drop (Hallucination)

Step 12: Pick up spoon 2

Step 13: Find the plate

Step 14: Drop

Step 15: Pick up the plate

Step 16: Find the table

Step 17: Put down

1337 Figure 12: Case that a task fails in an infinite loop because the critic module failed to stop the agent
1338 when its planned action is no longer suitable.

1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361

1362 **Task: Move two CDs to the bottom drawer of the desk**

1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391

1392 Figure 13: Case that a task fails in an infinite loop because of inaccurate action planning.

1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403