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ABSTRACT

We theoretically explore the relationship between sample-efficiency and adaptiv-
ity in reinforcement learning. An algorithm is sample-efficient if it uses a number
of queries n to the environment that is polynomial in the dimension d of the prob-
lem. Adaptivity refers to the frequency at which queries are sent and feedback is
processed to update the querying strategy. To investigate this interplay, we employ
a learning framework that allows sending queries in K batches, with feedback be-
ing processed and queries updated after each batch. This model encompasses the
whole adaptivity spectrum, ranging from non-adaptive ‘offline’ (K “ 1) to fully
adaptive (K “ n) scenarios, and regimes in between. For the problems of policy
evaluation and best-policy identification under d-dimensional linear function ap-
proximation, we establish Ωplog log dq lower bounds on the number of batches K
required for sample-efficient algorithms with n “ Oppolypdqq queries. Our results
show that just having adaptivity (K ą 1) does not necessarily guarantee sample-
efficiency. Notably, the adaptivity-boundary for sample-efficiency is not between
offline reinforcement learning (K “ 1), where sample-efficiency was known to
not be possible, and adaptive settings. Instead, the boundary lies between different
regimes of adaptivity and depends on the problem dimension.

1 INTRODUCTION

Data collection in Reinforcement Learning (RL) usually falls into two main paradigms: online and
offline. An online learner interacts with the environment, immediately receiving feedback and adapt-
ing its decisions in real-time. In contrast in offline RL, the dataset is collected in a single batch prior
to observing any feedback. Many practical applications consider RL algorithms with limited adap-
tivity, which fall between online and offline RL. For example, in clinical trials, groups of patients
undergo multiple treatments simultaneously and the treatment allocations are only be updated once
the outcomes of the all the previous group have been observed (Yu et al., 2021). Similar settings
with parallelized data-collection include marketing, advertising and numerical simulations (Esfan-
diari et al., 2021). There are also applications where the data collection needs to be validated prior to
deployment by a human due to concerns of safety (Dann et al., 2019) and fairness (Koenecke et al.,
2020), which with large scale data collection, is not feasible to have at every data point.

This motivates considering the multi-batch learning model (Perchet et al., 2015) where a data-set
of size n is collected in K batches, and feedback from within a batch is only observed at the end
of a batch. This means only data from previous batches can be used to select how the next batch is
collected. This is also known as growing batch RL (Lange et al., 2012). We refer to it as multi-batch
RL to avoid any confusion with offline RL, also called batch RL, which considers a single batch.

The multi-batch setting covers different levels of adaptivity to feedback, which refers to how fre-
quently the learner can process feedback and use it to update its data collection strategy. We measure
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it by the number of batches K. At one extreme, all the data is collected in a single batch (K “ 1,
offline-RL, no adaptivity). At the other extreme, each batch contains a single data-point (K “ n, full
adaptivity1). We say a learner is adaptive when K ą 1. In some of the applications that parallelize
data-collection mentioned above, algorithms with low-adaptivity where K is as small as possible
are of interest since there may be a cost associated to unifying and processing the parallelized data.

We study adaptivity in infinite-horizon discounted Markov Decision Processes (MDPs). We focus
on 1) the policy evaluation (PE) problem, where the learner is tasked with estimating the value of
a target policy, and 2) the best policy identification (BPI) problem, where the learner is tasked with
finding a near-optimal policy. A desirable property of the learner is that it is sample-efficient, i.e. it
only needs a dataset size that is polynomial in the dimension of the problem (e.g. state space size).
We aim to understand the minimum level of adaptivity necessary for sample efficient learning.

Linear Function Approximation: MDPs faced in practice often have state spaces S or action
spaces A that are infinite or too large to handle directly (Silver et al., 2016). Function approximation
is used to reduce the learning problem to a smaller set of parameters that leverage structure in the
problem. We consider a form of linear function approximation (Bellman et al., 1963) that assumes
the (action)-value of a policy is a linear combination of known features of the state-action pair with
an unknown parameter, each of dimension d. The sample complexity of algorithms is then measured
with respect to the smaller dimension d instead of the dimensions of the MDP (|S|, |A|).

Adaptive vs Non-Adaptive: It is known there is a sample-efficiency separation between offline RL
(K “ 1) and fully-adaptive RL (K “ n) under linear function approximation. Algorithms have been
shown to be sample-efficient in the fully-adaptive setting (Lattimore et al., 2020) and under various
assumptions in the offline setting (Duan et al., 2020; Xie & Jiang, 2020). Without assumptions in the
offline setting, it has been shown information-theoretically that no sample-efficient algorithms can
solve the PE or BPI problem (Zanette, 2021) even under the best possible offline dataset, showing
the separation. However, the MDP constructions of Zanette (2021) are easily solved with algorithms
using K “ 2 batches (see proofs of their Theorems 1 and 3), suggesting that the boundary of this
separation may be between offline RL (K “ 1) and RL with adaptivity (K ą 1). This motivates
studying the values of K where sample-efficiency is not possible and asking the following questions:

Does the boundary of sample-efficiency under linear function approximation lie between offline RL
(K “ 1) and RL with adaptivity (K ą 1)? If not, is the boundary dimension-dependent?

In this paper, we establish an Ωplog log dq lower-bound on the number of adaptive updates, K,
required to solve both PE and BPI problems sample-efficiently. This answers the first question neg-
atively and the second positively. This is achieved through a non-trivial extension of the framework
of (Zanette, 2021) for the offline setting to the multi-batch setting, which we describe next.

Learning Process: When faced with an unknown MDP within a known class of MDPs, we consider
a learner over K rounds. In a round, the learner chooses a set of state-action queries with knowledge
of the feedback from previous rounds. The following characteristics strengthen our lower bounds:

• Exact feedback: the feedback for a state-action query is the reward and transition functions, not a
single sample. This makes a query equivalent to observing infinite samples from the reward and
transition functions if these are stochastic and removes any hardness due to uncertainty.

• We consider two ways for the learner to specify the set of queries. The first (policy-induced) is
through trajectories induced by chosen policies. The second (policy-free) explicitly specifies the
state-action queries. Our results hold for any such set of queries whose size is polynomial in d.

• Realizability: the MDPs considered satisfy the linear representation of the action-values.

Tabular and finite-horizon MDPs and linear bandits are easily solved in the offline setting (K “ 1)
under this framework but infinite-horizon discounted MDPs are not (Zanette, 2021). Our work
studies what happens beyond the offline setting (K ą 1) for infinite-horizon discounted MDPs.

Contributions: Our results show that a number of batches K constant with respect to the dimension
d is not enough to solve PE or BPI problems sample-efficiently. Specifically, we show that if we
restrict the total number of queries (over all batches) to be polynomial in d (sample-efficiency), then

1Typically, online refers to a setting with full-adaptivity along a single trajectory (sequence of transitions
from a starting state, potentially with restarts). Our notion of full-adaptivity covers this, but is more general
since we allow settings with a generative model where samples from any state-action pair can be drawn.
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• there are PE problems that require K “ Ωplog log dq to be solved to arbitrary accuracy.
• with only policy-free queries, there are PE and BPI problems that require K “ Ωplog log dq to be

solved to arbitrary accuracy, even if all policies satisfy linear realizability of their action-values.

These results show that adaptivity (K ą 1) does not guarantee sample-efficiency. The level of
adaptivity, or number of batches K, needed to guarantee sample-efficiency scales with the dimension
d of the linear representation. In particular, the boundary of sample-efficiency does not lie between
offline RL (K “ 1) and adaptive RL (K ą 1). Instead this boundary must lie within a regime of
adaptivity scaling with dimension: Ωplog log dq ď K ď n.

Interestingly, the class of MDPs considered in Zanette (2021) can be solved with d ` 1 queries
and K “ 2 batches (observing feedback from the first batch is enough to select queries in the
second that fully solve the MDPs) [Zanette (2021), Theorem 4]. Our results show that this is not
possible in general and that the class of MDPs we use for our results is fundamentally harder. From a
technical perspective, our work uses tools from the theory of subspace packing with chordal distance
(Soleymani & Mahdavifar, 2021). This enables the environment to erase information across multiple
dimensions (m-dimensional subspaces, see Section 5) in response to queries, instead of a single
direction as in Zanette (2021), which ultimately allows us to achieve lower-bounds for K ą 1.

2 PRELIMINARIES

A Markov Decision Process (MDP) (Puterman, 1994) is a discrete-time stochastic process com-
prised of a set of states S, a set of actions A “

Ť

sPStAsu where As is the action space in state
s P S and, for each state-action pair ps, aq P S ˆ As, a next-state transition function given by a
measure pp¨|s, aq and a (deterministic) reward function rps, aq P r´1, 1s (in fact, even the value
functions defined below are in r´1, 1s for our constructions). In a state s, an agent chooses an action
a, receives a reward rps, aq and transitions to a new state according to pp¨|s, aq. Once in the new
state, the process continues. The actions chosen by an agent are formalised by policies. A deter-
ministic policy π : S Ñ A is a mapping from a state to an action. In each state s P S, an agent
following policy π chooses action πpsq P As. We do not consider stochastic policies.

In this work, for a discount factor γ P r0, 1q, we consider γ-discounted infinite-horizon MDPs. We
measure the performance of a policy π with respect to the value function V π : S Ñ R,

V πpsq “ E
”

8
ÿ

t“0

γtrpst, πpstqq|π, s0 “ s
ı

,

where st, at are the state and action in time-step t and the expectation is with respect to the random-
ness in the transitions. This is a notion of long-term reward that describes the discounted rewards
accumulated over future time-steps when following policy π and starting in state s. We consider γ
as fixed throughout. It is also useful to work with the action-value function Qπ : S ˆ A Ñ R,

Qπps, aq “ E
”

8
ÿ

t“0

γtrpst, πpstqq|π, s0 “ s, a0 “ a
ı

,

which is similar to V π , with the additional constraint of taking action a in the first time-step. For a
policy π, we define the Bellman evaluation operator T π for action-value functions as:

pT πQqps, aq “ rps, aq ` γEs1„pp¨|s,aqrQps1, πps1qqs.

The action-value Qπ of a policy π is the unique fixed-point of the Bellman evaluation operator T π .

Under certain conditions on the state and action space, it is known that there exists a deterministic
policy that simultaneously maximises V π and Qπ for all states and actions [Puterman (1994), The-
orem 6.2.12]. We call such a policy an optimal policy and denote it by π‹. We will also denote
V π‹

“ V ‹ and Qπ‹

“ Q‹. Given an MDP M , we will sometimes write V π
M to denote the value of

a policy π in the MDP M (similarly for V ‹
M , Qπ

M , Q‹
M , pM , rM , T π

M ). We denote the unit Euclidean
ball in Rd by B “ tx P Rd : }x}2 ď 1u and its boundary by BB “ tx P Rd : }x}2 “ 1u. For n vec-
tors v1, ..., vn P BB, we denote the subspace spanning the vectors by xv1, ..., vny. For two positive
functions f and g, we say fpxq “ Ωpgpxqq if Dc ą 0, N such that for all x ą N , fpxq ě cgpxq.
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3 PROBLEM SETTING

In this section, we formally define the RL problems and the learning model we consider. We borrow
the framework from the work of Zanette (2021) and extend it beyond the offline RL setting.

3.1 POLICY EVALUATION (PE)

Let M be a class of MDPs with the same S and A. For M P M, let ΠM be a set of (deterministic)
policies and Π “ tΠMuMPM. A PE problem defined by pM,Πq consists of:

1. An instance ps̄,M,M, πM ,Πq, where M P M is an MDP, πM P ΠM is a target policy and
s̄ P S is a starting state. M, Π and s̄ are known but M and πM are unknown.

2. An interaction procedure with the MDP M to collect a dataset D (see Section 3.3).
3. An objective: Following the collection of the dataset D, the target policy πM becomes known to

the learner. Based on D and πM , the learner produces an output pQDps̄, ¨q estimating the action-
value QπM

M ps̄, ¨q of the target policy πM . The performance of the learner is evaluated by the
accuracy of the output on any instance, formalized aspε, δq-soundness (Definition 3.1).

Definition 3.1. A learner is pε, δq-sound for PE problems characterised by pM,Πq if for all M P

M, πM P ΠM , the learner faced with instance ps̄,M,M, πM ,Πq outputs pQD that is ε-accurate

with probability2 at least 1 ´ δ, i.e. it satisfies P
´

supaPA |QπM

M ps̄, aq ´ pQDps̄, aq| ă ε
¯

ą 1 ´ δ.

3.2 BEST POLICY IDENTIFICATION (BPI)

Let M be a class of MDPs with the same S and A. A BPI problem defined by M consists of:

1. An instance ps̄,M,Mq, where M P M is an MDP in M and s̄ P S is a starting state. M and s̄
are known but M is unknown.

2. An interaction procedure with the MDP M to collect a dataset D (see Section 3.3).
3. An objective: Based on D, the learner produces an output pπD of a near-optimal policy for M .

The performance of the learner is evaluated by pε, δq-soundness (Definition 3.2), i.e. the sub-
optimality of the output policy on any instance (see 1.).

Definition 3.2. A learner is pε, δq-sound for BPI problems characterised by M if for all M P M,
the learner faced with instance ps̄,M,Mq outputs pπD that is ε-optimal with probability2 at least

1 ´ δ, i.e. it satisfies P
´

pV ‹
M ´ V pπD

M qps̄q ă ε
¯

ą 1 ´ δ.

3.3 MULTI-BATCH LEARNING MODEL

We define some important notions related to our learning model. A query is a state-action pair
ps, aq P S ˆ As that is submitted to the unknown MDP M and for which feedback is returned. A
query formalises how the learner interacts with an MDP, the feedback received is defined next.
Definition 3.3 (Query-Feedback). In return for a query ps, aq the environment provides feedback
to the learner. For BPI, the feedback is the reward rM ps, aq and the transition function pM p¨|s, aq.
For PE, the learner also receives evaluations of the target policy πM for all states in the support of
pM p¨|s, aq, i.e. tπM ps1q : s1 P S s.t. pM ps1|s, aq ą 0u.
Remark 3.4. The learner receives the transition function pM p¨|s, aq for a query ps, aq, instead of a
sample from pM p¨|s, aq. This removes any statistical uncertainty and is equivalent to observing in-
finite samples, which strengthens any lower-bounds proven under this frame-work. The evaluations
of the target policy πM are motivated by giving partial information about πM to the learner.

We summarise the learning model in Algorithm 1. We consider two mechanisms for the learner to
specify the set of queries µk at round k (line 4). For both, we denote nk “ |µk| the number of
queries at round k and n “

řK
k“1 nk the total number of queries.

2There is no randomness in the feedback of the dataset D (see Section 3.3) so the probabilities are with
respect to randomness arising from the learner’s query selection or output strategies.
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Algorithm 1 Multi-Batch Learning Model
1: (Input) PE or BPI problem and a number of batches K.
2: Initialise sD0 “ H.
3: for k “ 1, ...,K do
4: (Query Selection) With knowledge of sDk´1, learner chooses a set of queries µk.
5: (Data Collection) Environment receives queries µk and returns to learner Dk (set of queries

+ feedback for all queries in µk - see Definition 3.3). Learner updates sDk “
Ťk

i“1 Di.
6: Set D “ sDK ”

ŤK
i“1 Di (and for PE, πM becomes known).

7: (Output) Learner returns pQD (PE) or pπD (BPI).

1. Policy-Free Queries: In the first mechanism, the learner explicitly selects the set of queries µk

by selecting a set of state-action pairs. The learner has access to the dataset sDk´1, which contains
the feedback of the queries from the previous rounds from the MDP M the learner is faced with.
Let Mk Ă M be the set of MDPs in M that would produce exactly the feedback in dataset sDk´1

given the queries in the previous rounds. Given the queries this is deterministic since there is no
randomness in the feedback of a query (see Definition 3.3). The learner can use Mk in the selection
of the queries at round k but the specific MDP it is interacting with remains unknown if |Mk| ą 1.

2. Policy-Induced Queries: The second mechanism produces queries indirectly by selecting poli-
cies and using the queries along trajectories induced by these policies interacting with the MDP M .
Stochastic transitions imply different realizations of a trajectory for a policy from a same starting-
state. We allow the queries to be the state-actions pairs along all realizations of the trajectories.
Definition 3.5 (Policy-Induced Queries (Zanette (2021), Definition 2)). Fix a set Tk “

tpsk0i, π
k
i , c

k
i qu

κk
i“1 of κk triplets, each containing a starting state sk0i, a deterministic policy πk

i and
a trajectory length cki . Then the query set µk induced by Tk is defined as

µk “
ď

ps0,π,cqPTk

Reachps0, π, cq

where Reachps0, π, cq “ tps, aq|Dt ă c s.t. Pppst, atq “ ps, aq|π, s0q ą 0u

are the state-action pairs reachable in c or less time-steps from s0 using policy π. Note pst, atq is
the random state-action pair encountered at time-step t upon following π from s0.

The learner specifies a set Tk from which a set of queries µk is induced3. Similarly to policy-free
queries, the learner can use Mk in the selection of Tk at round k but the specific MDP it is interacting
with remains unknown if |Mk| ą 1.
Remark 3.6. Policy-induced queries include policy-free queries as a special case (cki “ 1). How-
ever, if the dynamics of all MDPs in the class M are the same, then policy-induced queries are also
policy free because the learner knows the dynamics of the MDP it is interacting with. So it knows
exactly the queries that any set Tk will induce and can specify these as policy-free queries. If the
dynamics of all MDPs in the class M are not the same, then policy-induced queries can reveal more
information because a trajectory is guided by the dynamics of the MDP while policy-free queries
only reveal information about individual distinct transitions. Because of this, we will obtain slightly
stronger results for policy-free queries in Section 4.

Adaptivity: The multi-batch learning model encompasses different levels of adaptivity to feedback,
which is measured by the number of batches K:

• For K “ 1, the learner is non-adaptive and the dataset D is collected in a single batch. This is
the model considered by Zanette (2021) for offline RL that we extend for general K.

• For K ą 1, the learner is adaptive and the dataset D is collected in multiple batches. Queries for
a batch are selected based on feedback from previous batches.

• For K “ n (i.e. each batch contains a single data-point), the learner is fully-adaptive. The queries
are selected sequentially and depend on the feedback from previous queries.

3A sample-efficient learner requires |µk| to be polynomial in d but the learner does not directly select µk.
For example, if the transition function is stochastic it is possible that Tk induces a µk with |µk| “ 8 or
non-polynomial in dimension. The MDPs we consider all have deterministic transitions so this is not an issue.
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4 MAIN RESULTS

In this section, we present our main results: lower-bounds on the number of rounds K for sample-
efficient algorithms. First, we state some assumptions. We assume γ ą

a

3{4. We also consider
a linear representation of the action-values for a known feature map of state-action pairs. This is a
form of linear function approximation that is strictly more general than linear MDPs (Zanette et al.,
2020), which assume the reward and transition functions are linearly representable. Specifically:

Assumption 4.1 (Qπ
M -Realizability (Zanette (2021), Assumption 1)). Given any PE problem in-

stance ps̄,M,M, πM ,Πq, there exists a known feature map ϕ : S ˆ A Ñ Rd s.t. }ϕp¨, ¨q}2 ď 1 and
there exists θπM

M P B such that for all ps, aq P S ˆ A,

QπM

M ps, aq “ ϕps, aqT θπM

M .

Assumption 4.2 (Qπ-Realizability for every policy (Zanette (2021), Assumption 3)). Given any
BPI ps̄,M,Mq or PE ps̄,M,M, πM ,Πq problem instance, there exists a known feature map ϕ :
S ˆ A Ñ Rd s.t. }ϕp¨, ¨q}2 ď 1 and for any policy π there exists θπM P B s.t. for all ps, aq P S ˆ A,

Qπ
M ps, aq “ ϕps, aqT θπM .

This first assumption is used for PE problems. The second is stronger as it concerns the action-value
of every policy (not just policies in Π) and in particular it holds for Q‹. We assume the learner is
aware when these assumptions hold. Finally, we formally define a sample-efficient learner:

Definition 4.3. A learner for PE or BPI problems under Assumptions 4.1 or 4.2 is sample-efficient
if its total number of queries n “

řK
k“1 nk is polynomial in d.

4.1 POLICY-INDUCED QUERIES

We first present a result for PE under policy-induced queries. Since all MDPs in the class used in
the proof share the same dynamics, policy-induced queries are equivalent to policy-free queries (see
Remark 3.6) and the result holds for both. The full proof can be found in Appendix E.

Theorem 4.4. Fix d sufficiently large. There exists a class of MDPs M and policies Π defining PE
problems ps̄,M,M, πM ,Πq satisfying Assumption 4.1 such that any sample-efficient learner better
than p1, 1{2q-sound using policy-induced or policy-free queries requires K “ Ωplog log dq.

In the class of MDPs used for Theorem 4.4 we can hide information about M P M in the target-
policy for PE but cannot for BPI. Instead, we could hide information in the transitions but this can be
revealed by following policy trajectories (policy-induced queries) in our constructions. In the next
section, we restrict the learner to policy-free queries and provide results for both PE and BPI. Note
that a p1, 1{2q-sound learner performs poorly since the MDP class has value functions in r´1, 1s.

4.2 POLICY-FREE QUERIES

We now consider only policy-free queries, which gives the environment freedom to hide information
in the transition function of the MDP and leads to lower-bounds for PE and BPI that hold for the
stronger Assumption 4.2 of all-policy realizability. The full proof can be found in Appendix F.

Theorem 4.5. Fix d sufficiently large. There exists a class of MDPs M and policies Π defining prob-
lems for PE ps̄,M,M, πM ,Πq and BPI ps̄,M,Mq satisfying Assumption 4.2 such that any sample-
efficient learner better than p1, 1{2q-sound using policy-free queries requires K “ Ωplog log dq.

4.3 DISCUSSION

The results indicate that K “ Ωplog log dq batches are necessary for solving PE or BPI tasks sample-
efficiently under realizable linear function approximation. Beyond the exact dependence on d, the
significance of these results is that just having K ą 1 is insufficient. In particular, more adaptivity is
needed as the dimension of the linear representation increases. These results demonstrate that sam-
ple efficiency is impossible not only in offline RL, but also in settings with some level of adaptivity
(K “ oplog log dq). Therefore, the boundary at which sample-efficiency becomes impossible is at a
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dimension-dependent level of adaptivity between offline and full-adaptivity. This leaves interesting
open directions on the existence of a sample-efficient algorithm using K “ Oplog log dq batches.

Our lower-bounds no longer hold if the action space A is finite or with coverage assumptions on
the collected data (for BPI). While it may be necessary to have coverage assumptions in an offline
setting, this assumption need not be made when data is collected adaptively, as in our setting.

Furthermore, in Appendix B we provide results for the fully adaptive setting where the number of
batches K is equal to the number of total queries n (i.e. each batch contains a single query). We
show that if the feature-space covers B, there is a learner that solves any realizable (Assumption 4.1)
PE problem in d queries. Assuming a known target policy π, a linear dependence on d was already
known to be possible using roll-outs from π (Lattimore et al., 2020), however the dependence on d
was coupled with other quantities such as the effective horizon 1{p1´γq and desired accuracy ε. Our
result states that d-queries are sufficient to find Qπ exactly (ε “ 0), independently of γ. Our result
relies heavily on the condition that the learner observes the transition function pM p¨|s, aq rather than
a sample s1 „ pM p¨|s, aq for a query ps, aq (see Section 3.3), though our result under this condition
is strong since using this condition with the roll-outs from π would not give exact convergence in
d-queries. We also provide a matching lower-bound (that also holds for BPI). These results serve to
illustrate the trade-off between sample-efficiency and low-adaptivity for PE under our framework.
Full-adaptivity allows low sample-complexity, while reducing adaptivity below K “ oplog log dq

comes at the cost of high sample-complexity (losing sample-efficiency).

4.4 RELATED WORKS

The works discussed below are for infinite-horizon discounted MDPs unless stated otherwise.

Tabular MDPs (|A|, |S| are “small”) can be solved in the offline setting under policy-free queries:
model-based approaches (Li et al., 2020; Agarwal et al., 2020) under a generative model are
minimax-optimal (Azar et al., 2013) with sample-complexity linear in the dimension of the MDP
|A| ˆ |S|. These methods estimate the MDP by sampling equally from all state-action pair and
then use dynamic programming approaches on the estimated MDP. In particular, all the samples are
drawn in a single-batch. Beyond the generative model and under a restricted form of our policy-
induced queries (Definition 3.5), tabular offline RL is no longer sample efficient (Xiao et al., 2022)
and requires a number of samples exponential in |S| or 1{p1 ´ γq.

Linear Function Approximation: In the offline setting, there are lower-bounds showing OPE or
BPI is not possible with samples polynomial in the effective horizon 1{p1 ´ γq or the linear dimen-
sion (Amortila et al., 2020; Chen et al., 2021; Zanette, 2021). The bound of Zanette (2021) is the
strongest as it holds for any data-distribution. These exponential lower-bounds can be overcome
with assumptions such as low-distribution shift (Chen et al., 2021), low inherent Bellman-error (Xie
& Jiang, 2020; Duan et al., 2020) or low local inherent Bellman error (Zanette, 2023). We refer
the reader to the work of Zanette (2021) for a more in depth discussion of offline RL. In the fully-
adaptive setting, there are sample-efficient algorithms under all-policy realizability (Lattimore et al.,
2020), under V ‹-realizability only (Weisz et al., 2021) (if the action space is finite) and under linear
MDPs (Taupin et al., 2023; Kitamura et al., 2023).

The multi-batch learning model has been studied extensively for bandit algorithms (Perchet et al.,
2015; Jun et al., 2016; Gao et al., 2019; Esfandiari et al., 2021; Duchi et al., 2018; Han et al., 2020;
Ruan et al., 2021). In RL, it has been studied in the regret-minimisation setting for finite-horizon
tabular (Zihan et al., 2022) and linear MDPs (Wang et al., 2021) and MDPs under general function
approximation (Xiong et al., 2023). A closely related notion is deployment efficiency (Matsushima
et al., 2021), which constrains batches to be of a fixed size consisting of trajectories from a single
policy. In finite-horizon linear MDPs, it has been shown that BPI can be solved to arbitrary accuracy
with a number of deployments independent of the dimension d (Huang et al., 2022; Qiao & Wang,
2023) where the deployed policy is a finite mixture of deterministic policies. Our results suggest
that infinite-horizon discounted MDPs under more general linear representation of action-values are
fundamentally harder since the number of deployments must scale with dimension.

Please refer to Appendix A for a discussion of works related to low-switching cost (Qiao et al., 2022;
Bai et al., 2019; Zhang et al., 2020; Gao et al., 2021; Wang et al., 2021; Qiao & Wang, 2023; Qiao
et al., 2023) and policy fine-tuning (Xie et al., 2021; Zhang & Zanette, 2023).
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5 PROOF SKETCH

In this section, we provide intuition for the proof of Theorem 4.4. We extend the ideas of Zanette
(2021) beyond offline RL to our multi-batch problem (see the end of this section for a comparison).
We consider the PE problem with policy-free queries under Assumption 4.1 for feature vectors ϕp¨, ¨q

covering the unit Euclidean ball B (see Figure 1). The intuition for Theorem 4.5 is closely related.

Consider the first batch of data with n1 queries and let psi, aiq be the i-th query and ps`
i , πM ps`

i qq

the corresponding (assumed deterministic) successor state and target policy evaluation. Define

Φ “

»

–

ϕps1, a1qT

...
ϕpsn1

, an1
qT

fi

fl , r “

«

rps1, a1q

...
rpsn1

, an1
q

ff

, Φ` “

»

–

ϕps`
1 , πM ps`

1 qT

...
ϕps`

n1
, πM ps`

n1
qqT

fi

fl .

Since QπM is the fixed point of the Bellman evaluation operator: QπM ps, aq “ pT πMQπM qps, aq

and by Assumption 4.1 there exists θπM

M such that QπM ps, aq “ ϕps, aqT θπM

M for any ps, aq, the
learner aims to find a solution θ satisfying the (local) Bellman equation

Φθ “ r ` γΦ`θ ùñ pΦ ´ γΦ`qθ “ r.

If X “ Φ ´ γΦ` is not full-rank, this equation does not have a unique solution. The learner only
chooses Φ. The environment, with knowledge of Φ, can pick Φ` to maximise the dimension of the
null-space4 of X , which can be viewed as erasing information along many directions (see Figure
1 left). This phenomenon where the value of a policy in a state depends on the same value in the
successor states is known as bootstrapping and is the mechanism inducing hardness in our setting as
it allows the environment to choose these successor states adversarially to erase information.

Figure 1: Left: Information can be erased in multiple directions: Consider the setting where
information is being erased along the pink plane N : the learner’s queries ϕpsi, aiq are shown
in blue and the environment’s responses ´γϕps`

i , πM ps`
i qq are shown in black. The rows of X ,

ϕpsi, aiq ´ γϕps`
i , πM ps`

i qq (blue + black vectors) all lie on the yellow line so the learner acquires
no information in the directions of the pink subspace N , the null-space of X . Right: Information
cannot be erased in all directions: Consider the opposite setting where information is being erased
along the pink line N . Because of the constraint }ϕps, aq}2 ď 1 and γ ă 1, a query ϕ1 (in blue)
in the pink cap cannot have ϕ1 ´ γϕ`

1 (blue + black vector) projected back onto the yellow plane
(unless }γϕ1}2 ą γ ùñ }ϕ1}2 ą 1). Despite the environment not being able to erase information
in certain directions, if the number of queries is ”small”, it can always find directions to erase.

Although the learner can prevent the environment from erasing information along certain directions
(see Figure 1 right), since n1 is polynomial in d this only prevents the environment from erasing in-
formation in a limited number of directions. Specifically, we show that if n1 is less than exponential
in d1{4 then there is a subspace of dimension d1{4 that can be included in the null-space of X .

Prior to choosing n2 queries for the 2nd batch, the learner observes the feedback from the first
batch. It becomes aware of the directions of the null-space and can focus its queries for the next
round on these directions. However, the null-space is still at least d1{4-dimensional and so the same

4By the rank-nullity theorem, this is equivalent to minimising the rank of X .
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reasoning as in the first round can be applied where the original dimension is now d1{4. So if n2 is
less than exponential in d1{16 then there is a subspace of dimension d1{16 that can be included in the
null-space of the new local Bellman equation that includes the data from the 1st and 2nd batch.

After k rounds if the number of queries at round k, nk is less than exponential in d1{4k , then the null-
space of the local Bellman equation is still at least d1{4k -dimensional. If exppd1{4kq is more than
polynomial in d, the sample-efficient learner cannot prevent a non-zero null-space and the problem
cannot be solved. The learner must reach a round K where exppd1{4K q becomes polynomial in d,
requiring K “ Ωplog log dq rounds, from which we get our lower-bound.

Description of the MDP construction for which the learner cannot do better than p1, 1{2q-
soundness. Consider an MDP class M with S “ A “ B and a feature map ϕ such that ϕps, aq “ a.
The successor state of ps, aq is deterministic and is the action a. Fix w P BB and consider two
MDPs: Mw,` and Mw,´. We denote the reward function for either MDP with the same subscript:

for z P t`,´u : on Mw,z : rw,zps, aq “

"

0, if a R Cγpwq Y Cγp´wq

zp1 ´ γqaTw, otherwise,

where Cγpwq “ tx P B : xTw{}w}2 ą γu is the γ-hyperspherical cap of w. For a w P BB and
a carefully designed target policy πw, we show that Assumption 4.1 holds. We also show with the
reasoning described above that if nk “ polypdq for all k and K “ oplog log dq, then none of the
learner’s queries are in Cγpwq Y Cγp´wq. Therefore the feedback observed contains no information
about the sign of the rewards in Cγpwq Y Cγp´wq. Mw,` is indistinguishable from Mw,´. Since
Qπw

Mw,`
ps̄, wq “ 1 and Qπw

Mw,´
ps̄, wq “ ´1, the learner must incur an error of 1 with probability at

least 1{2. All the details are in Appendix E, including further illustrations in Appendix E.5. The
construction for Theorem 4.5 is similar but the transitions differ across MDPs (see Appendix F).

To improve the lower-bound with the current construction, we require the existence of a sub-
space packing (of size exponential in d and subspace dimension cd (instead of d1{4), for some c ă 1)
with minimal chordal distance (see Appendix D) between subspaces dminpCq ě

a

d ´ p2γ2 ´ 1q2.
After k rounds, information would be missing along a subspace of dimension ckd, (instead of d1{4k )
from which we could get a log d lower-bound. As far as we are aware, such a result is not available
in the literature, nor is a subspace covering result that would rule out the possibility of such a pack-
ing. We highlight that our MDP construction can be combined with any subspace packing result,
paving the way for improved lower-bounds should new subspace packing procedures be developed.

Comparison to Zanette (2021): The work of Zanette (2021) erases information along a 1-
dimensional subspace (X is of rank d ´ 1). Therefore after having observed one round of feed-
back, a single additional query is sufficient to distinguish the MDP and solve the problem. Our
constructions erase information along m-dimensional subspaces where we attempt to maximise m
so that even after having observed feedback revealing this subspace, a polynomial number of queries
remains insufficient to distinguish the MDP, more adaptive rounds are needed.

6 CONCLUSION

In this work, we have studied the connection between adaptivity and sample-efficiency for RL al-
gorithms solving PE and BPI problems under d-dimensional linear function approximation. For
multi-batch learning, we have established Ωplog log dq lower-bounds on the number of batches K
needed to solve the RL problems sample-efficiently (number of queries polynomial in d). In particu-
lar, having adaptivity (K ą 1) does not guarantee sample-efficiency. Consequently the boundary of
sample efficiency must not lie between batch RL (K “ 1) and adaptive RL (K ą 1) but rather within
a regime of adaptivity scaling with dimension. These insights contribute to a deeper understanding
of the trade-offs and possibilities in designing sample-efficient RL algorithms with low-adaptivity.

It remains unclear if the log log d dependence on d is tight. An upper-bound similar to the one we
have given for the fully-adaptive PE problem in Appendix B could be established by developing new
tools in the theory of subspace covering. These would formalise the number of directions for which
the learner can prevent information erasure. It is also unclear if Theorem 4.4 under policy-induced
queries also holds for BPI or if the sample-efficiency of BPI-algorithms in low-adaptivity settings
differs for policy-induced and policy-free queries. We leave these as future work.
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A FURTHER RELATED WORKS

The works discussed below are for infinite-horizon discounted MDPs unless stated otherwise.

Low-Switching Cost: Limited adaptivity in RL has mostly been studied in the context of regret-
minimisation algorithms with low-switching cost for finite-horizon episodic MDPs, i.e. minimising
the number of times the policy used changes from one episode to the next. These works are not
directly comparable because they study regret-minimisation for finite-horizon MDPs and we study
BPI and PE in the discounted setting. Nevertheless, there are works on tabular MDPs (Qiao et al.,
2022; Bai et al., 2019; Zhang et al., 2020), linear MDPs (Gao et al., 2021; Wang et al., 2021; Qiao
& Wang, 2023) and MDPs with a linear representation for the action values (Qiao et al., 2023).

The policy finetuning setting assumes access to an offline dataset that can be complemented with
online trajectories (Xie et al., 2021) but is different from our setting since there is no adaptivity
constraint in the online algorithm, i.e. once the initial dataset has been collected, the query selection
strategy can be updated after each new observation (or episode in the episodic setting). However, if
the additional trajectories are collected using a non-adaptive policy instead of an online algorithm,
we can recover our setting with K “ 2 batches. This is studied by Zhang & Zanette (2023) who
show that for finite-horizon tabular MDPs, K “ 2 is enough to solve the BPI problem to arbitrary
accuracy. Our results rule out achieving a similar result for infinite-horizon discounted MDPs under
policy-free queries and linear function approximation.

B BOUNDS FOR THE FULLY ADAPTIVE SETTING

In this section, we show an upper-bound result for the fully adaptive setting (K “ n - see Section
3.3). In this setting, the oracle selects one query in each round or batch of data, so chooses psk, akq

at round k with knowledge of the feedback from queries up to time k ´ 1. The number of rounds
K coincides with the number of queries n (each batch contains one query). In particular, since it is
one query at a time, there is no difference between policy-induced or policy-free queries. The upper
bound we show relies on the following assumptions on the feature space:

Assumption B.1 (Feature Map). Fix a feature map ϕ. Given any orthonormal set of vectors
tu1, ..., unu with n ă d, it is possible to choose a state-action pair ps, aq such that ϕps, aq P

xu1, ..., unyK and }ϕps, aq}2 “ 1.

The superscript K on a subspace refers to the orthogonal complememnt of the subspace.

Theorem B.2. Fix d ą 0. Consider any PE problem ps̄,M,M, πM ,Πq satisfying Assumptions 4.1
and B.1 for the same feature map ϕ, then there exists a fully-adaptive learner that solves the PE
problem exactly in at most d queries.

We complement our upper-bound with a matching lower-bound, which holds for both PE and BPI.

Theorem B.3. Fix d ą 0. There exists a class of MDPs M and target policies Π characterising
PE problems ps̄,M,M, πM ,Πq and BPI problems ps̄,M,Mq that satisfy Assumption 4.2 and share
the same s̄ and M such that any fully-adaptive learner that is better than p1, 1{2q-sound requires
K “ n ě d.

Theorem B.2 together with Theorem B.3 shows that exactly d queries are optimal for solving a PE
problem under our feedback model and Assumption B.1. The lower-bound is to be expected because
the learner is operating in a d-dimensional feature space so has to learn in d directions. However,
it is interesting that the structure imposed by Assumption B.1 on the learner’s capacity to explore
the feature space is sufficient for the learner to fully solve the problem in only d queries. A similar
assumption was studied by Jia et al. (2023) to obtain a sample-efficient algorithm for BPI in finite-
horizon MDPs. We can obtain this result for PE with a simple analysis because the learner can
exploit that the action-value of a policy is the fixed point of a linear operator, the Bellman evaluation
operator. An equivalent approach does not work for BPI since the action-value of the optimal policy
is not the fixed point of a linear operator.

The proofs of the theorems in this section can be found in Appendix G.
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C HYPER-SPHERICAL CAPS AND SECTORS FOR SUBSPACES

Recall that B “ tx P Rd : }x}2 ď 1u is the d-dimensional unit hyper-sphere.
Definition C.1. Fix w P B. Define the γ-hyperspherical cap of w as:

Cγpwq “

!

x P B :
xTw

}w}2
ą γ

)

.

A vector x is in the γ-hyperspherical cap of w if the angle θ between x and w satisfies

γ ă }x}2 cos θ ðñ θ ă arccosp
γ

}x}2
q.

With γ close to 1, these represent a set of vectors in the hyper-cone around w that are close to the
boundary of B (see Figure 1 right). The key property that motivates considering vectors in this set is
that they require a vector of norm greater than γ to be projected in a direction orthogonal to w. We
extend the notion of γ-hyperspherical caps to subspaces of multiple dimensions.
Definition C.2. Fix a subspace H of Rd. Define the γ-hyperspherical sector of H as

△
CγpHq “

!

x P B : Dv P H s.t.
xT v

}v}2}x}2
ą γ

)

.

See Figure 2 for an illustration.

Figure 2: Illustration of a hyperspherical sector of a 1-dimensional subspace (left) and a 2-
dimensional subspace (right - all vectors whose direction is within the two pink bands). In both
cases, the subspace H is in yellow.

Beyond the extension to subspaces of multiple dimensions, Definition C.2 differs from Definition
C.1 in two ways. It is a hyper-spherical sector rather than cap, which does not restrict the vectors to

be close to the boundary of B. It is two sided meaning that if x P
△
CγpHq, then ´v P

△
CγpHq. Note

that the subspace H is defined on Rd but
△
CγpHq Ă B.

Similar to the intuition in the 1-dimensional case, a vector x is in
△
CγpHq if there is a vector in

H whose angle with x is ”small”. It is equivalent to taking the unions of the 1-dimensional γ-
hyperspherical sectors of all the vectors in H . Again, the key property that motivates considering
vectors in this set is that they require a vector of norm greater than γ to be projected in a direction
orthogonal to H .

We also note that a vector x is not in
△
CγpHq if the subspace H does not intersect

△
Cγpxxyq, the

γ-hyperspherical sector of xxy. This allows us to work with the γ-hyperspherical sectors of one
dimensional subspaces (span of a single vector) instead of subspaces of multiple dimensions. We

will also abuse notation and write
△
Cγpxq instead of

△
Cγpxxyq
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D SUBSPACE PACKING

D.1 PRELIMINARIES

Denote the set of all m-dimensional subspaces of Rd as Gm,dpRq, which is called the Grassmannian
space. An element A P Gm,dpRq is an m-dimensional subspace of Rd.

We present a measure of distance between subspaces known as the chordal distance (Conway et al.,
1996). Fix two subspaces A,B P Gm,dpRq. The principal angles θ1, ..., θm P r0, π{2s between A
and B are defined as

cos θi “ max
aPA

max
BPB

aT b

}a}2}b}2
“ aTi bi,

for i “ 1, ...,m such that }ai}2 “ }bi}2 “ 1, aTaj “ 0, bT bj “ 0 for 1 ď j ď i ´ 1. The chordal
distance dc is then defined as

dcpA,Bq “

b

sin2 θ1 ` sin2 θ2 ` ... ` sin2 θm.

We define the notion of subspace packing, which is the usual notion of a packing where the set is
the Grassmanian space Gm,dpRq and the distance is the chordal distance.

Definition D.1. A subspace packing C of Gm,dpRq is a set of m-dimensional subspaces in Rd of size
|C|, i.e. it is a subset of Gm,dpRq. The minimum distance between elements of C is measured by the
chordal distance and is denoted

dminpCq “ min
A,BPC,A‰B

dcpA,Bq.

D.2 A SUBSPACE PACKING BOUND

Lemma D.2 (Soleymani & Mahdavifar (2021), Theorem 4). Fix d “ 2N for some N P N and

integers k ă d and m ă d. There exists a packing C in Gm,dpRq of size |C| “

´

d
2

¯rk{2s´1

t d
m u s.t

dminpCq ě
?
m

c

1 ´
mpk ´ 1q2

d
.

Theorem 4 from Soleymani & Mahdavifar (2021) is presented for packings in Gm,dpCq but they give
(in Remark 1) a mapping from a packing in Gm{2,d{2pCq to a packing in Gm,dpRq that preserves
the normalized distance δc (“ dminpCq{

?
m) between the elements of the packing, giving the result

presented above.

D.3 EXISTENCE OF AN ISOLATED SUBSPACE

The following lemma is the key result for the construction of the class of MDPs used in the proof
of our main results. It establishes that if a number of points n is “small”, then for any n points
there exists a subspace whose γ-sector contains none of the n points. The environment can erase

information along this subspace (see Section 5). See Appendix C for the definition of
△
CγpHq for a

subspace H . The proof is given in Appendix D.3.2.

Throughout, we will use gpγq “ 2γ2 ´ 1.
Lemma D.3. Fix d “ 2N for some N ě 8. Consider D “ ty1, ..., ynu, a set of n points s.t. yi P B
for all i P rns. If

n ` 1 ď

´d

2

¯
1
8 gpγqd1{4

,

then there exists a subspace A P G2rN{4s,dpRq of dimension 2rN{4s s.t.

@x P D, x R
△
CγpAq.
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D.3.1 PRELIMINARY LEMMAS

The proof of Lemma D.3 relies on the following lemmas. See Appendix D for the definition of
Gm,dpRq and the definition of a subspace packing C.
Lemma D.4. Fix d “ 2N for some N P N. If there exists a packing C in Gm,dpRq of size |C| ě n`1

s.t. dminpCq ě
a

m ´ gpγq2, then given a set ty1, ..., ynu of n queries s.t. yi P B for all i P rns,

there exists a subspace H P Gm,dpRq of dimension m s.t. yi R
△
CγpAq for all i.

This lemma establishes that if n ` 1 subspaces are sufficiently far in terms of chordal distance, then
for any n points there is a subspace whose γ-sector does not contain any of the n points. The proof
is given in Appendix D.3.3
Lemma D.5. Consider pn ` 1q subspaces A1, ..., An`1 of dimension m s.t. for any i ‰ j,

max
xPAi,zPAj

xT z

}x}2}z}2
ă gpγq.

Given n vectors y1, ..., yn P B (w.l.o.g. all unit norm), then there is a subspace H P tA1, ..., An`1u

s.t. for all y P ty1, ..., ynu,

max
wPH

yTw

}w}2
ď γ,

meaning yi R
△
CγpHq for i “ 1, ..., n.

This lemma is similar to Lemma D.4 but uses a more explicit notion of distance between subspaces.
The proof is given in Appendix D.3.4.

D.3.2 PROOF OF LEMMA D.3

To prove Lemma D.3, we show the existence of a subspace packing C in Gm,dpRq (with m “ 2rN{4s)
and use Lemma D.4. The subspace packing must satisfy two conditions:

• |C| ě n ` 1.

• dminpCq ě
a

m ´ gpγq2.

To show the existence of a suitable subspace packing, we use Lemma D.2 with k “ t
gpγq

m

?
d ` 1u

(ď d). Lemma D.2 gives a packing C of size |C| ě

´

d
2

¯

gpγq

2m

?
d´1

t d
m u s.t

dminpCq ě
a

m ´ gpγq2.

Substituting in m “ 2rN{4s into the lower-bound on the size of C gives

t
d

m
u

´d

2

¯

gpγq
?

d
2m ´1

“ t
d

m
u

´d

2

¯´3{4´d

2

¯

gpγq

2 2N{2´rN{4s
´ 1

4

ě 23{4 t23N{4u

23N{4

´d

2

¯

gpγq

4 2N{4
´ 1

4

ě

´d

2

¯

gpγq

8 d1{4

,

where we used

• N{2 ´ rN{4s ě N{4 ´ 1 because rxs ď x ` 1.

• 23{4 t23N{4
u

23N{4 ě 1 if N ě 2.

• gpγq

4 2N{4 ´ 1
4 ě

gpγq

8 2N{4 if N ě 8 and γ ě
a

3{4.

Since the condition given in the statement of the lemma is

n ` 1 ď

´d

2

¯

gpγq

8 d1{4

ď |C|,

the packing C satisfies |C| ě n ` 1 and dminpCq ě
a

m ´ gpγq2. By Lemma D.4 there exists a
subspace A P Gm,dpRq of dimension m “ 2rN{4s s.t.

@x P D, x R
△
CγpAq,

which concludes the proof of the lemma.
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D.3.3 PROOF OF LEMMA D.4

Consider distinct A,B P C, i.e A,B are subspaces of dimension m s.t.

dCpA,Bq ą
a

m ´ gpγq2.

Now letting 0 ď θ1 ď ... ď θm ď π{2 be the principal angles between A and B (see Appendix D),
we have

dCpH,Aq “

b

sin2pθ1q ` ... ` sin2pθmq ď

b

m ´ 1 ` sin2 θ1.

Combining with the inequality above,
a

m ´ gpγq2 ď

b

m ´ 1 ` sin2 θ1 ùñ sin2pθ1q ą 1 ´ gpγq2.

The first principal angle θ1 “ arccos aT b where a P A, b P B are unit vectors chosen s.t.

aT b “ max
xPA,yPB

xT y

}x}2}y}2
.

So we have

max
xPA,yPB

xT y

}x}2}y}2
“ aT b “ cos θ1 “

b

1 ´ sin2pθ1q ă gpγq.

Since this applies to arbitrary distinct A,B P C, there are pn ` 1q subspaces A1, ..., An`1 P C of
dimension m s.t. for any i ‰ j,

max
xPAi,zPAj

xT z

}x}2}z}2
ă gpγq “ 2γ2 ´ 1.

By Lemma D.5, there exists a subspace H in tA1, ..., An`1u s.t. for all y P ty1, ..., ynu,

max
wPH

yTw

}w}2
ď γ,

i.e. yi R
△
CγpHq for i “ 1, ..., n, which concludes the proof.

D.3.4 PROOF OF LEMMA D.5

Recall that we consider pn ` 1q subspaces A1, ..., An`1 of dimension m s.t. for any i ‰ j,

max
xPAi,zPAj

xT z

}x}2}z}2
ă gpγq “ 2γ2 ´ 1. (1)

Identify each yi to the subspace Ahpiq that is closest to yi in terms of inner product or angle, formally

hpiq “ argmax
j

max
uPAj

yTi u{}u}2.

Since there are n vectors yi, there will be at least one subspace in tA1, ..., An`1u that is not associ-
ated to any of the yis. Call this subspace H.

We show that for any y P tyiu
n
i“1, maxwPH

yTw
}w}2

ď γ.

Fix y P tyiu
n
i“1 and let A be its corresponding subspace Ahpiq. Let

w “ argmaxw1PH

yTw1

}w1}2
.

a “ argmaxa1PA

yTa1

}a1}2
.

Assume both w and a are of unit norm w.l.o.g. We know:
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• 1. wT y ď aT y from the definition of hpiq.
• 2. wTa ă gpγq from (1).

Let x “ w`a
}w`a}2

be the average of w and a, with }w ` a}22 “ wTw ` 2aTw ` aTa “ 2 ` 2aTw “

2p1 ` aTwq.

Claim: wT y ď wTx (intuition: y is “closer” to a than w, so w should be ”closer” to average of a
and w than to y).

Proof of claim: Assume wT y ą wTx. From 1. this implies aT y ą wTx. Now

wTx “ wT w ` a

}w ` a}2
“

wTw ` wTa

}w ` a}2
“

1 ` wTa

}w ` a}2
“

aTa ` wTa

}w ` a}2
“ aTx.

So we have aT y ą aTx ùñ aT py´xq ą 0. From the initial assumption we also have wT py´xq ą

0. Combining:

pw ` aqT py ´ xq ą 0 ùñ xT py ´ xq ą 0

ùñ xT y ´ xTx ą 0

ùñ xT y ´ 1 ą 0

ùñ xT y ą 1,

which is a contradiction since both x and y are of unit-norm. End of proof of claim.

We now show wTx ď γ. Using 2.,

wTx “
1 ` wTa

}w ` a}2
“

?
1 ` aTw

?
2

ď

a

1 ` gpγq
?
2

“

a

1 ` 2γ2 ´ 1
?
2

“

a

2γ2

?
2

“ γ.

Combining with the claim we have that wT y ď γ. Given the definition of w and that y was arbitrary,
we have shown

argmax
i

max
wPH

yTi w

}w}2
ď γ,

which concludes the proof.
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E PROOF OF THEOREM 4.4

E.1 MDP CLASS

The PE problems used in the proof of Theorem 4.4 are characterised by a class of MDPs M and
target policies Π. In this section, we define the class of MDPs M. All MDPs M P M in the class
share the same state-space S, action space A, feature map and transition function p but differ in
the reward function rM and target policy πM . This class of MDPs is the same as the one used by
Zanette (2021) in the proof of their Theorem 1. Our constructions differ in the set of target policies
ΠM P Π which are defined in Appendix E.2.

• State-space: S “ B and the starting state is the origin s̄ “ 0 P B.
• Action-space: For all s P S, As “ A “ B.
• Feature-map: The feature map ϕ maps a state-action pair ps, aq to the action a, i.e.

@ps, aq, ϕps, aq “ a. Since a P B, the feature space is the unit-hypersphere B and
}ϕp¨, ¨q}2 ď 1 holds for all inputs.

• Transition-function: The successor state of a state-action pair ps, aq is deterministic and
is the action a. This is well-defined because both the action and state space are B. This
only depends on the chosen action (and not the current state), so we will denote the unique
successor state when taking action a by s`paq “ a.

The MDP class M is known to the learner (see Section 3). Therefore the learner knows the transition
function and that all MDPs share it. Therefore only the feedback of the reward function and target
policy is useful to the learner, as both of these are unknown. We define them in the following section.

E.2 INSTANCE OF THE CLASS

Every MDP M P M is fully characterised by a vector w P BB and a sign ` or ´. Hence, they are
denoted by Mw,` or Mw,´ and the reward function associated to either MDP will be denoted with
the same subscript. Specifically it is defined as follows:

on Mw,` : rw,`ps, aq “

"

0, if a R Cγpwq Y Cγp´wq.

`p1 ´ γqaTw, otherwise.

on Mw,´ : rw,´ps, aq “

"

0, if a R Cγpwq Y Cγp´wq.

´p1 ´ γqaTw, otherwise.
See Appendix C for the definition of hyper-spherical caps Cγpxq. Note that the transition function is
the same for all MDPs in the class M and is defined in Appendix E.1. In particular, the two MDPs
Mw,` or Mw,´ only differ in their reward functions, which are opposite.

Target policy: The set of target policies ΠM for an MDP M P M depends on the vector w P BB
that partially characterises the MDP but not on the sign ˘. The set of target policies is therefore the
same for Mw,` and Mw,´.

Fix K ą 0 and consider a sequence of K nested (not necessarily strictly) subspaces of Rd:
BK Ă BK´1 Ă ... Ă B2 Ă B1 Ă B0 “ Rd,

s.t. dimBK ą 0 and w P BK . Set BK`1 “ xwy. Let Hw “ tB1, ..., BK , BK`1u denote the
set of nested subspaces (including xwy). This is not defined as an ordered set, but for notational
purposes the order can always be recovered since the sequence must be nested. If A is a subspace
of Rd, let projApxq denote the orthogonal projection of x onto A. See Appendix C for the definition

of hyper-spherical caps Cγpwq and sectors
△
CγpHq. A target policy πHw

is specified by the set of
nested subspaces Hw and is defined as:

πHw
psq “

$

’

’

’

&

’

’

’

%

1
γ projBk`1

psq, if s P
△
CγpBkqz

△
CγpBk`1q for k “ 0, ...,K.

1
γ projBK`1

psq, if s P
△
CγpBK`1qzpCγpwq

Ť

Cγp´wqq.

s, if s P Cγpwq
Ť

Cγp´wq.
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The target policy is defined for all s P S “ B:

”

K
ď

k“0

△
CγpBkqz

△
CγpBk`1q

ı

ď

”△
CγpBK`1qzpCγpwq

ď

Cγp´wqq

ı

ď

”

Cγpwq
ď

Cγp´wq

ı

“
△
CγpB0q

“ B0

“ B.

and the pair-wise intersections are all empty (so they form a partition). The actions taken are also
well-defined:

• For k “ 0, ...,K, if s P
△
CγpBkqz

△
CγpBk`1q, then s R

△
CγpBk`1q and from Definition C.2,

this means that for any u P Bk`1, |uT s|{}u}2}s}2 ď γ. Denoting x “ projBk`1
psq P

Bk`1,

}x}2 “
xTx

}x}2
“

|xT s|

}x}2
ď γ}s}2 ď γ,

meaning that 1
γ projBk`1

psq P B.

• If s P
△
CγpBK`1qzpCγpwq Y Cγp´wqq, , then s R pCγpwq Y Cγp´wqq and from Definition

C.1, this means that |wT s| ď γ. Denoting x “ projBK`1
psq P BK`1,

}x}2 “
xTx

}x}2
“

|xT s|

}x}2
ď γ,

meaning that 1
γ projBK`1

psq P B.

The set of target policies ΠMw,˘
for the MDP Mw,˘ is the set of (deterministic) policies πHw

for
any sequence of nested subspaces Hw satisfying the above conditions (w P BK). We sometimes use
a w,˘ subscript to refer to both MDPs simultaneously.

Crucially observing actions in
△
CγpBkqz

△
CγpBk`1q for k ď K may not reveal w. Without the knowl-

edge of w, the reward function is unknown and even with the knowledge of w or the target policy
the reward function is not fully identified, in which case Mw,` and Mw,´ cannot be distinguished.

E.3 REALIZABILITY:

We show that the action-value of any target policy for any MDP M P M can be linearly represented
with the feature map defined in Appendix E.1. The action-value of a target policy πHw only depends
on w and the sign ˘ of the reward function of the MDP, the sequence of nested subspace does not
matter beyond w.
Lemma E.1 (Qπ Realizability). For any w P BB let Qw,` and Qw,´ be the action-value functions
of any π P ΠMw,˘

(a target policy) on Mw,` and Mw,´, respectively. Then it holds that

@ps, aq,

"

Qw,`ps, aq “ `ϕps, aqTw on Mw,`.

Qw,´ps, aq “ ´ϕps, aqTw on Mw,´.

Proof: Consider Mw,` and set Qps, aq “ ϕps, aqTw. We will show that Q satisfies the Bellman
evaluation equations for π at all state-actions pairs, which will imply that Qps, aq “ Qw,`ps, aq.
Apply T π

Mw,`
to Q at ps, aq:

T π
Mw,`

pQqps, aq “ rw,`ps, aq ` γQps`paq, πps`paqqq

“ rw,`ps, aq ` γQpa, πpaqq,

since s`paq “ a is the successor state of ps, aq. We consider the RHS of the above for all possible
cases.
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Case 1: If a P
△
CγpBkqz

△
CγpBk`1q for some k P r0, ...,Ks:

rw,`ps, aq ` γQpa, πpaqq “ 0 ` γQpa,
1

γ
projBk`1

paqq

“ γϕpa,
1

γ
projBk`1

paqqTw

“ γ
1

γ
projTBk`1

paqw

“ projTBk`1
paqw.

However, recall that w P Bk`1. Since projBk`1
paq is the orthogonal projection of a:

wT projBk`1
paq “ wTa. Plugging into the above, we have: rw,`ps, aq ` γQpa, πpaqq “ aTw “

ϕps, aqTw “ Qps, aq, which satisfies the Bellman evaluation equation.

Case 2: If a P
△
CγpBK`1qzpCγpwq Y Cγp´wqq, as above (recalling BK`1 “ xwy) :

rw,`ps, aq ` γQpa, πpaqq “ 0 ` γQpa,
1

γ
projBK`1

paqq

“ γϕpa,
1

γ
projBK`1

paqqTw

“ γ
1

γ
projTBK`1

paqw

“ projTBK`1
paqw

“ pwTaqwTw “ wTa “ ϕps, aqTw “ Qps, aq,

which satisfies the Bellman evaluation equation.

Case 3: If a P Cγpwq Y Cγp´wq, the reward is no longer 0 and we have:

rw,`ps, aq ` γQpa, πpaqq “ p1 ´ γqaTw ` γQpa, aq

“ p1 ´ γqaTw ` γϕpa, aqTw

“ p1 ´ γqaTw ` γaTw

“ aTw “ ϕps, aqTw “ Qps, aq,

which satisfies the Bellman evaluation equation.

For all cases, Q satisfies the Bellman evaluation equations, so it is the fixed point of the Bellman
evaluation operator. In particular, it is the action-value of the target policy π on Mw,`.

Now consider Mw,´ and set Qps, aq “ ´ϕps, aqTw. We will show that Q satisfies the Bellman
evaluation equations for π at all state-actions pairs, which will imply that Qps, aq “ Qw,´ps, aq. As
above, apply T π

Mw,´
at ps, aq to Q:

T π
Mw,´

pQqps, aq “ rw,´ps, aq ` γQpa, πpaqq,

and consider the RHS of the above for all possible cases.

Case 1: If a P
△
CγpBkqz

△
CγpBk`1q for some k P r0, ...,Ks:

rw,´ps, aq ` γQpa, πpaqq “ 0 ` γQpa,
1

γ
projBk`1

paqq

“ ´γϕpa,
1

γ
projBk`1

paqqTw

“ ´γ
1

γ
projTBk`1

paqw

“ ´projTBk`1
paqw

“ ´aTw “ ´ϕps, aqTw “ Qps, aq.
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Case 2: If a P
△
CγpBK`1qzpCγpwq Y Cγp´wqq, as above:

rw,´ps, aq ` γQpa, πpaqq “ 0 ` γQpa,
1

γ
projBK`1

paqq

“ ´γϕpa,
1

γ
projBK`1

paqqTw

“ ´γ
1

γ
projTBK`1

paqw

“ ´projTBK`1
paqw

“ ´pwTaqwTw “ ´wTa “ ´ϕps, aqTw “ Qps, aq.

Case 3: If a P Cγpwq Y Cγp´wq, the reward is no longer 0 and we have:

rw,´ps, aq ` γQpa, πpaqq “ ´p1 ´ γqaTw ` γQpa, aq

“ ´p1 ´ γqaTw ´ γϕpa, aqTw

“ ´p1 ´ γqaTw ´ γaTw

“ ´aTw “ ´ϕps, aqTw “ Qps, aq,

which satisfies the Bellman evaluation equation.

For all cases, Q satisfies the Bellman evaluation equations, so it is the fixed point of the Bellman
evaluation operator. In particular, it is the action-value of the target policy π on Mw,´.

E.4 PROOF OF THEOREM 4.4

Consider the MDP class described in Appendix E.1 and Appendix E.2. First, we know from Lemma
E.1 (Qπ Realizability) that all instances of the PE problem characterised by the MDP class M and
target policies Π satisfy Assumption 4.1 (Qπ is Realizable) with the feature map ϕp¨, ¨q defined in
Appendix E.1.

The dynamics of the MDPs in the class M are the same, which as discussed in Remark 3.6 means
that policy-induced and policy-free queries are equivalent. We provide a proof for policy-free
queries.

We specify the instance with MDP M P M and target policy πM P ΠM according to the queries
selected by the learner. Fix K ą 0. Recall that nk is the number of queries made by the learner at
round k and n “

řK
k“1 nk is the total number of queries. Let Ak be the set of actions queried by

the learner at round k (i.e. |Ak| “ nk). Set sAk “
Ťk

i“1 Ak to be the set of all actions queried up to
round k.

The learner is sample-efficient so n is polynomial in d. Specifically, there exists some constant
α ą 0 and some integer T such that n ď αdT . Consider N P N s.t. 2N ď d ă 2N`1 and set
d` “ 2N . Note that d` ě d{2. Fix W “ expp 1

8gpγqd
1{4K

` q. If n ď W , we can show the learner
cannot solve the PE problem. Consider both cases:
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E.4.1 CASE 1

Suppose W ă n, then

W ă n ùñ W ă αdT

ùñ
gpγq

8
d
1{4K

` ă logpαdT q

ùñ
gpγq

8
pd{2q1{4K ă logpαdT q using that d` ě

d

2

ùñ pd{2q1{4K ă
8

gpγq
logpαdT q

ùñ
1

4K
logpd{2q ă log

´ 8

gpγq
logpαdT q

¯

ùñ
logpd{2q

log
´

8
gpγq

logpαdT q

¯ ă 4K

ùñ
1

log 4
log

” logpd{2q

log
´

8
gpγq

logpαdT q

¯

ı

ă K

ùñ K ě c1 log log d for a constant c1 ą 0 and d sufficiently large.

E.4.2 CASE 2

n ď W ùñ nk ď expp 1
8gpγqd

1{4k

` q for k “ 1, ...,K. We inductively define the sequence of
nested subspaces BK Ă ... Ă B1 characterising w (P BK) and used by the target policy πM s.t. for
k “ 1, ...,K, dimBk “ 2rN{4ks ě 28 and

@a P sAk, a R
△
CγpBkq.

Proof of existence of nested subspaces:

We proceed by induction. Let BK Ă ... Ă B1 be an arbitrary sequence of subspaces and w P BKXB
arbitrary. We will define these but for now consider the target policy πHw (see Appendix E.2) with
Hw “ txwy, BK , ..., B1u.

Base Case: At round k “ 1, the learner has observed no feedback and chooses a set of action queries
A1 “ sA1 (we ignore the queried states since the reward and transitions functions only depend on
the action) such that:

|A1| “ n1 ď expp
1

8
gpγqd

1{4
` q ď

´d`

2

¯
1
8 gpγqd

1{4
`

´ 1 (if d` ě 12) ,

so by Lemma D.3 there exists a subspace H P G2rN{4s,d`
pRq of dimension 2rN{4s (ě d

1{4
` ) such that

@x P A1 “ sA1, x R
△
CγpHq.

Set B1 “ H . The learner then observes the feedback for A1 (The state s in the reward does not
matter):

tprw,˘ps, aq, πHw
ps`paqqq : a P A1u.

Not having fixed B2, ..., BK , w does not cause problems with the feedback even though πHw
and

rw,˘ depend on them since the feedback of A1 only depends on B1: the learner only observes the
projection of the actions in A1 into B1,

@a P sA1, a R
△
CγpB1q

ùñ @a P sA1, πHwps`paqq “ πHwpaq “
1

γ
projB1

paq, rw,˘ps, aq “ 0.
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In particular, there is no dependence on w or B1`i Ă B1 for i ě 1, which can be arbitrary and fixed
in later rounds.

Inductive Step: Suppose that at round k, there exists a sequence of nested subspaces Bk Ă ... Ă B1

used by the target policy πHw s.t. for i “ 1, ..., k, dimBi “ 2rN{4is ě 28 and

@a P sAi, a R
△
CγpBiq.

Bk`1 need not be fixed yet since the feedback of sAk only depends on B1, ..., Bk:

@a P Ak, a R
△
CγpBkq

ùñ @a P Ak, πHwps`paqq “ πHwpaq “
1

γ
projBj

paq for some j ď k, rw,˘ps, aq “ 0.

The learner only observes the projection of actions in sAk into B1, B2, ..., Bk. Note that the only
constraint on M up to this step is w P Bk.

Now Bk is such that @x P sAk, x R
△
CγpBkq with dk “ dimBk “ 2rN{4ks ě d

1{4k

` ě 28. The
learner has observed the feedback from sAk and chooses a set of action queries Ak`1 such that

|Ak`1| “ nk`1 ď expp
1

8
gpγqd

1{4k`1

` q ď

´dk
2

¯
1
8 gpγqd

1{4k`1

`

´ 1 ď

´dk
2

¯
1
8 gpγqd

1{4
k

´ 1 (if d` ě 12) .

Then we know that the number of those queries that are in Bk is also less than
´

dk

2

¯
1
8 gpγqd

1{4
k

.

Therefore by Lemma D.3, there exists a subspace H Ă Bk of dimension 2rrN{4ks{4s ě dk`1 “

2rN{4k`1
s (can reduce the dimension if they do not match, removing dimensions will not add queries

to
△
CγpHq) such that

@x P Ak`1, x R
△
CγpHq.

In particular, Ak`1 can be entirely contained in Bk or can depend on Bk, ..., B1 in any arbitrary

way. Set Bk`1 “ H . We know that @x P sAk, x R
△
CγpBkq and Bk`1 Ă Bk so we have

@x P sAk`1, x R
△
CγpBk`1q.

The learner then observes the feedback for Ak`1 (The state s in the reward does not matter):

tprw,˘ps, aq, πHw
ps`paqqq : a P Ak`1u.

Not having fixed Bk`2, ..., BK , w does not cause problems with the feedback even though πHw

and rw,˘ depend on them since the feedback observed up to this round of sAk`1 only depends on
B1, ..., Bk`1: the learner only observes the projection of the actions in sAk`1 into B1, ..., Bk`1,

@a P sAk`1, a R
△
CγpBk`1q

ùñ @a P sAk`1, πHw
ps`paqq “ πHw

paq “
1

γ
projBj

paq for some j ď k ` 1, rw,˘ps, aq “ 0.

In particular, there is no dependence on w or Bk`1`i Ă Bk`1 for i ě 1, which can be arbitrary and
fixed in later rounds.

We remark Lemma D.3 establishes the existence of a subspace in G
2rrN{4ks{4s,dk

pRq where the am-
bient space is Rdk instead of Rd. Any dk-dimensional subspace of Rd is isomorphic to Rdk , so we
can consider Bk, project the points of Ak`1 into Bk, apply Lemma D.3 to get H within Bk, and
extend H to be defined in Rd. We omit these steps here for clarity but detail them fully in Appendix
E.4.3. This also holds for the base case (where d` is used as the ambient dimension instead of d)
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When applying Lemma D.3 with ambient dimension dk “ 2rN{4ks, we require rN{4ks ě 8. Since

dk ě d
1{4k

` and d` ě d{2, it is enough to have

pd{2q1{4k ě 28 ðñ K ď
1

log 4
log

´ 1

8 log 2
log

d

2

¯

ðù K ď c log log d,

for a constant c ą 0 and d sufficiently large. If this condition on K does not hold, then

K ą c log log d. (2)

Suppose it does hold. Then the steps above go through and we have the existence of our nested
subspaces. We also have dk ě 28 ą 12 for all k “ 1, ...,K, which was needed in some of the steps.

End of proof of existence of nested subspaces.

We now fully specify M . The complete set of queried actions by the learner is sAK , and

@a P sAK , a R
△
CγpBKq.

Since dimBK ě 28 ą 0, we can pick some w P BK X BB and let Hw “ tB1, ..., BK , BK`1u

with BK`1 “ xwy. From the proof of the existence of nested spaces, we can consider the PE
problem instances with MDPs Mw,` and Mw,´ and πHw

as target policy. The transition function
and target policy are the same on Mw,` and Mw,´. Since @a P sAK , a R Cγpwq Y Cγp´wq because

a R
△
CγpBKq, the reward function for any query a P sAK is 0. Thus, the learner cannot distinguish

Mw,` between Mw,´ from the submitted queries.

The learner has to produce an estimate of QπHw ps̄, ¨q for s̄ “ 0. But from Lemma E.1,

QπHw ps̄, wq “ ϕps̄, wqTw “ wTw “ 1 on Mw,`.

QπHw ps̄, wq “ ´ϕps̄, wqTw “ ´wTw “ ´1 on Mw,´.

If the learner predicts a positive value for QπHw ps̄, wq, it will incur an error greater than 1 on Mw,´

and similarly for Mw,` if it predicts a negative value. Even if it randomizes between both, with
probability at least 1{2 it will incur an error of at least 1 on one of the MDPs. Therefore, the learner
can be at most p1, 1{2q-sound.

Therefore, to be more than p1, 1{2q-sound, we must either be in Case 1 or be in Case 2 and satisfy
condition (2). In either case, we have the condition

K ą c log log d,

for some constant c ą 0 and d sufficiently large, which gives K “ Ωplog log dq, showing the
result.
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E.4.3 DEALING WITH SWITCHES IN AMBIENT SPACE

In this section we write out the missing details of the proof of Theorem 4.4 in Appendix E.4. In
particular, assuming the condition on nk`1 is satisfied, we show that we can use Lemma D.3 for the
existence of a subspace H Ă Bk Ă Rd of dimension dk`1 s.t.

@x P Ak`1, x R
△
CγpHq. (3)

Fix k P t0, 1, ...,K ´ 1u and set d0 “ d` and B0 to any d`-dimensional subspace of Rd. Picking
up the proof of in Appendix E.4, the condition on nk`1 “ |Ak`1| for Lemma D.3 is satisfied.
Bk P Gdk,dpRq is a dk-dimensional subspace within Rd. We find an orthonormal basis for Bk:

Dv1, ..., vdk
P Rd s.t. Bk “ xv1, ..., vdk

y and vTi vi “ 1, vTi vj “ 0 for i ‰ j.

Any vector in Bk can be written as
řdk

m“1 αmvm for some pαmq
dk
m“1. Bk is isomorphic to Rdk

through the linear transformation T : Bk Ñ Rdk (which can be shown to be a bijection) defined as

T p

dk
ÿ

m“1

αmvmq “ rα1, ..., αdk
sT P Rdk .

Letting projBk
pxq denote the orthogonal projection of x P Rd onto Bk, consider

Ap
k`1 “ tT pprojBk

pxqq : x P Ak`1u Ă Rdk .

The size of Ap
k`1 is |Ap

k`1| ď |Ak`1| “ nk`1 so we can apply Lemma D.3: there exists a subspace
Hp P Gdk`1,dk

pRq s.t.

@xp P Ap
k`1, x R

△
CγpHpq.

Recall dk “ 2rN{4ks and the lemma gives a subspace of dimension 2rrN{4ks{4s ě dk`1 “ 2rN{4k`1
s

but we can reduce the dimension if they do not match.

Hp P Gdk`1,dk
pRq is a dk`1-dimensional subspace within Rdk . We find an orthonormal basis for

Hp:
Dup

1, ..., udp
k`1

P Rdk s.t. Hp “ xup
1, ..., u

p
dk`1

y and pup
i qTup

i “ 1, pup
i qTup

j “ 0 for i ‰ j.

Define
H “ xT´1pup

1q, ..., T´1pup
dk`1

qy.

Remark that T´1pup
i q “

řdk

m“1 u
p
i pmqvm P Bk Ă Rd so H Ă Bk. We use the notation xpmq for a

vector x to refer to the m-th coordinate of x. Since tv1, ..., vdk
u is an orthonormal set:

pT´1pup
i qqTT´1pup

j q “

dk
ÿ

m“1

up
i pmqup

j pmq “ pup
i qTup

j “

"

1, if i “ j.

0, if i ‰ j.

So tT´1pup
1q, ..., T´1pup

dk`1
qu is an orthonormal basis for H , which means H P Gdk`1,dpRq is a

dk`1 dimensional subspace within Rd. H is the subspace we are trying to show the existence of, it
remains to verify the condition (3). The following claim concludes this section.

Claim: @x P Ak`1, x R
△
CγpHq.

Proof of Claim: Suppose not: Dx P Ak`1 s.t. x P
△
CγpHq. Then there exists a unit-normed

h P H Ă Bk such that xTh ą γ. Since h P Bk, we also have projBk
pxqTh ą γ. h, projBk

pxq are
both in Bk so

Dα1, ..., αdk
P R s.t. h “

dk
ÿ

m“1

αmvm,

Dβ1, ..., βdk
P R s.t. projBk

pxq “

dk
ÿ

m“1

βmvm.
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and we have

projBk
pxqTh ą γ ùñ

dk
ÿ

m“1

αmβm ą γ

ùñ T pprojBk
pxqqTT phq ą γ

ùñ T pprojBk
pxqq P

△
CγpHpq,

since T phq P Hp as h P H . But T pprojBk
pxqq P Ap

k`1, which contradicts the definition of Hp.
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E.5 ILLUSTRATION OF MDP CONSTRUCTION

In this section, we provide a high-level illustration of how the hard instance M P M is constructed
when d “ 3 and the learner makes three queries per round. The reward vector of the MDP is

0 everywhere except in the γ-hyper-spherical sector
△
Cγpwq (see Appendix C) of a vector w P B,

which is unknown to the learner. The target policy will be constructed in such a way that Qπps, aq “

˘ϕps, aqTw. If the learner can identify w and make a query in its γ hyper-spherical sector (to
distinguish between the ` and the ´), then it can fully solve the PE problem. Therefore the aim of
the learner in choosing its queries is to identify this vector w.

A B

C D

Round 1

Figure 3: Round 1.

Round 1 (Figure 3).

• A: Three queries ϕi “ ϕpsi, aiq “ ai (i “ 1, 2, 3) are made by the learner.

• B: The three queries with their hyper-spherical sectors
△
Cγpϕiq (i “ 1, 2, 3) (we only show

one side of the sector for clarity).
• C: There exists a 2-dimensional subspace B1 that does not intersect the hyper-spherical

sectors of the queries which the environment can use to further hide w - if B1 does not
intersect the γ hyper-spherical sectors of the queries, then the queries ϕi will not be in the
γ hyper-spherical sector of any point in B1 (in particular w and cannot identify the ` or ´

in the reward).
• D: The target-policy πM is constructed in such a way that realizability is satisfied with
w P B1. In particular, πM ps`

i q “ 1
γ projB1

ps`
i q “ 1

γ projB1
paiq is valid because B1

does not intersect the sectors of the queries (see Appendix E.2). This choice allows the
component of ϕ in the direction of w to grow by 1{γ in ϕ`, this will cancel with the γ
discount in the bellman equation and is a key step in satisfying realizability.
Since the orthogonal projection is the same for all vectors in B1, this definition of the
target-policy (allowing realizability to be satisfied - see Appendix E.3) does not reveal any
additional information about w other than w P B1. In addition, w or the actions taken by
the policy within B1 do not need to be specified yet and can depend on queries made by
the learner in later rounds.
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Since ϕi–γϕ
`
i “ ai ´projB1

paiq is orthogonal to B1, this construction admits the interpre-
tation of erasing information along the directions of the subspace B1. Hence, this provides
the intuition discussed in Section 5 but is in fact exactly what is required to hide the w
vector within the subspace B1.

E F

G H

Round 2

Figure 4: Round 2.

Round 2 (Figure 4). Without loss of generality, we assume the queries made by the learner are
within B1 (the MDP is fully identified outside of B1 so the learner can gain no further information
from queries outside of B1) and only visualise B1 as a circle embedded in the sphere from Figure 3.

• E: Three queries ϕi “ ϕpsi, aiq “ ai (i “ 4, 5, 6) are made by the learner.

• F: The three queries with their (2-dimensional) hyper-spherical sectors
△
Cγpϕiq (i “ 4, 5, 6).

• G: There exists a 1-dimensional subspace B2 “ xwy that does not intersect the hyper-
spherical sectors of the queries. As in C above, if xwy does not intersect the γ hyper-
spherical sectors of the queries, then the queries ϕi will not be in the γ hyper-spherical
sector of w.

• H: Similar to D, the target-policy πM is constructed within B1 in such a way that realiz-
ability is satisfied. In particular, πM ps`

i q “ 1
γ projB2

ps`
i q “ 1

γ pwTaiqw is valid because

B2 “ xwy does not intersect the sectors of the queries. The reward inside
△
Cγpwq is char-

acterised by a sign ` or ´. No queries have been made inside
△
Cγpwq and so a third round

is required to identify the sign ` or ´.

This illustration uses three queries per round. In the proof, we formally show that if the number of
queries in the first round is polynomial in d, then there always exists a subspace of dimension d1{4

that does not intersect the sectors of the queries in the first round. We make a similar argument for
later rounds to show log log d rounds are required to identify the vector w. See the earlier sections
for all the details.
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F PROOF OF THEOREM 4.5

F.1 MDP CLASS

The BPI and PE problems used in the proof of Theorem 4.5 are characterised by a class of MDPs
M and target policies Π. In this section, we define the class of MDPs M. All MDPs M P M in
the class share the same state-space S, action space A, feature map and target policy π (for the PE
problem) but differ in the transition function pM and reward function rM . This class of MDPs is
similar to the one used by Zanette (2021) in the proof of their Theorem 3. Our construction differs
in the transition functions which are defined in Appendix F.2.

• State-space: S “ ts̄u
Ť

B where s̄ is the starting state disjoint from B (i.e. ts̄u XB “ H).
• Action-space: Each state has a single action (which we denote by the state itself for con-

venience) other than the starting state s̄ which can take actions in B. Formally:

Apsq “

"

B if s “ s̄.

tsu if s P B.
This notation enables that @s P S,Apsq Ă B.

• Feature-map: The feature map ϕ maps a state-action pair ps, aq to the action a, i.e.
@ps, aq, ϕps, aq “ a. Since a P B, the feature space is the unit-hypersphere B and
}ϕp¨, ¨q}2 ď 1 holds for all inputs.

• Target policy: For the PE problem, the target policy π is the same for all MDPs in the
class: it takes action 0 in the starting state s̄ and in the other states, there is a single action.
In particular ΠM “ tπu for all M P M.

F.2 INSTANCE OF THE CLASS

Fix K ą 0 and consider a sequence of K nested subspaces of Rd:
BK Ă BK´1 Ă ... Ă B2 Ă B1 Ă B0 “ Rd.

s.t. dimBK ą 0 and fix some w P BK X BB. Set BK`1 “ xwy. Let Hw “ tB1, ..., BK , BK`1u

denote the set of nested subspaces (including xwy). This is not defined as an ordered set, but for
notational purposes the order can always be recovered since the sequence must be nested.

Every MDP M P M is fully characterised by the sequence of nested subspaces Hw and a sign ` or
´. Hence, they are denoted by MHw,` or MHw,´.

Reward function: The reward function only depends on the vector w and the sign ˘ but we denote
them with the same subscript as the MDP. Specifically it is defined as follows:

on MHw,` : rHw,`ps, aq “

"

0, if a R Cγpwq Y Cγp´wq.

`p1 ´ γqaTw, otherwise.

on MHw,´ : rHw,´ps, aq “

"

0, if a R Cγpwq Y Cγp´wq.

´p1 ´ γqaTw, otherwise.
See Appendix C for the definition of hyper-spherical caps Cγpwq. We sometimes use a w,˘ sub-
script to refer to both MDPs simultaneously.

Transition Function: The transition function for an MDP M P M depends on the sequence of
nested subspaces Hw but not on the sign ˘. The transition function is therefore the same for MHw,`

and MHw,´. If A is a subspace of Rd, let projApxq denote the orthogonal projection of x onto A.

See Appendix C for the definition of hyper-spherical caps Cγpwq and sectors
△
CγpHq. The successor

state of a state-action pair ps, aq is deterministic and only depends on the chosen action (and not the
current state), so we will denote the unique successor state when taking action a by s`

Hw
paq “ a,

which is defined as:

s`
Hw

paq “

$

’

’

’

&

’

’

’

%

1
γ projBk`1

paq, if a P
△
CγpBkqz

△
CγpBk`1q for k “ 0, ...,K.

1
γ projBK`1

paq, if a P
△
CγpBK`1qzpCγpwq Y Cγp´wqq.

a, if a P Cγpwq Y Cγp´wq.
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Note that the starting state s̄ is not a successor state so a policy trajectory can never return to s̄.
Showing that the transition function and successor states are well defined follows the same steps as
showing the target policy is well defined in the proof of Theorem 4.4 in Section E.2.

Crucially actions queried in
△
CγpBkqz

△
CγpBk`1q for k ď K may not reveal w. Without the knowl-

edge of w, the reward function is unknown and even with the knowledge of w the reward function
is not fully identified, in which case MHw,` and MHw,´ cannot be distinguished.

F.3 REALIZABILITY

We show that the action-value of any policy (not just the target policy) for any MDP M P M can
be linearly represented with the feature map defined in Appendix F.1. The action-value of a policy
π only depends on w and the sign ˘ of the reward function of the MDP, the sequence of nested
subspace does not matter beyond w.
Lemma F.1 (Realizability). For any w P BB and sequence of nested subspaces Hw satisfying the
construction from Appendix F.2, let Qπ

Hw,` and Qπ
Hw,´ be the action-value functions of an arbitrary

policy π on MHw,` and MHw,´, respectively. Then it holds that

@ps, aq,

#

Qπ
Hw,`ps, aq “ `ϕps, aqTw on MHw,`.

Qπ
Hw,´ps, aq “ ´ϕps, aqTw on MHw,´.

Proof: Consider Mw,` and set Qps, aq “ ϕps, aqTw. We will show that Q satisfies the Bellman
evaluation equations for π at all state-actions pairs, which will imply that Qps, aq “ Qπ

Hw,`ps, aq.
Apply T π

MHw,`
to Q at ps, aq:

T π
MHw,`

pQqps, aq “ rHw,`ps, aq ` γQps`
Hw

paq, πps`
Hw

paqqq.

We consider the RHS of the above for all possible cases.

Case 1: If a P
△
CγpBkqz

△
CγpBk`1q for some k P r0, ...,Ks, s`

Hw
paq “ 1

γ projBk`1
paq. Furthermore,

π must return the only action available in the successor state (and the successor state is never s̄), so
πps`

Hw
paqq “ s`

Hw
paq and we have:

rHw,`ps, aq ` γQps`
Hw

paq, πps`
Hw

paqqq “ 0 ` γQps`
Hw

paq, s`
Hw

paqq

“ γϕps`
Hw

paq, s`
Hw

paqqTw

“ γs`
Hw

paqTw

“ γ
1

γ
projTBk`1

paqw

“ projTBk`1
paqw.

However, recall that w P Bk`1. Since projBk`1
paq is the orthogonal projection of a:

wT projBk`1
paq “ wTa. Plugging into the above, we have: T π

MHw,`
pQqps, aq “ aTw “

ϕps, aqTw “ Qps, aq, which satisfies the Bellman evaluation equation.

Case 2: If a P
△
CγpBK`1qzpCγpwq Y Cγp´wqq, s`

Hw
paq “ 1

γ projBK`1
paq, and as before the policy

can only take the only action available there, giving:
rHw,`ps, aq ` γQps`

Hw
paq, πps`

Hw
paqqq “ 0 ` γQps`

Hw
paq, s`

Hw
paqq

“ γϕps`
Hw

paq, s`
Hw

paqqTw

“ γs`
Hw

paqTw

“ γ
1

γ
projTBK`1

paqw

“ projTBK`1
paqw

“ aTw “ ϕps, aqTw “ Qps, aq,
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which satisfies the Bellman evaluation equation.

Case 3: If a P Cγpwq Y Cγp´wq, the reward is no longer 0 and s`
Hw

paq “ a, and again as before the
policy can only take the only action available there so we have:

rHw,`ps, aq ` γQps`
Hw

paq, πps`
Hw

paqqq “ `p1 ´ γqaTw ` γQpa, aq

“ p1 ´ γqaTw ` γϕpa, aqTw

“ p1 ´ γqaTw ` γaTw

“ aTw “ ϕps, aqTw “ Qps, aq,

which satisfies the Bellman evaluation equation.

For all cases, Q satisfies the Bellman evaluation equations, so it is the fixed point of the Bellman
evaluation operator. In particular, it is the action-value of the policy π on MHw,`. The argument is
identical for Mw,´ with Qps, aq “ ´ϕps, aqTw.

F.4 PROOF OF THEOREM 4.5

Consider the MDP class described in Appendix F.1 and Appendix F.2. First, we know from Lemma
F.1 that all instances of the BPI and PE problem characterised by the MDP class M and target
policies Π satisfy Assumption 4.2 (Qπ is realizable for every π) with the feature map ϕp¨, ¨q defined
in Appendix F.1. The proof follows the same reasoning as in Appendix E.4. We consider policy-free
queries.

We specify the instance with MDP M P M according to the queries selected by the learner. Fix
K ą 0. Recall that nk is the number of queries made by the learner at round k and n “

řK
k“1 nk

is the total number of queries. Let Ak be the set of (policy-free) actions queried by the learner at
round k (i.e. |Ak| “ nk). Set sAk “

Ťk
i“1 Ak to be the set of all actions queried up to round k.

The learner is sample-efficient so n is polynomial in d. Specifically, there exists some constant
α ą 0 and some integer T such that n ď αdT . Consider N P N s.t. 2N ď d ă 2N`1 and set
d` “ 2N . Note that d` ě d{2. Fix W “ expp 1

8gpγqd
1{4K

` q. If n ď W , we can show the learner
cannot solve the PE or BPI problems. Consider both cases:

F.4.1 CASE 1

Suppose W ă n, then following the same steps as in E.4.1,

W ă n ùñ K ě c1 log log d for a constant c1 ą 0 and d sufficiently large. (4)

F.4.2 CASE 2

n ď W ùñ nk ď expp 1
8gpγqd

1{4k

` q for k “ 1, ...,K. Using the same steps as in E.4.2 in
the proof of Theorem 4.4 but with πHw

ps`paqq replaced by s`
Hw

paq, we can inductively define the
sequence of nested subspaces BK Ă ... Ă B1 characterising w (P BK) and used in the successor
state function s`

M s.t. for k “ 1, ...,K, dimBk “ 2rN{4ks ě 28 and

@a P sAk, a R
△
CγpBkq.

We now fully specify M . The complete set of queried actions by the learner is sAK , and

@a P sAK , a R
△
CγpBKq.

Since dimBK ě 28 ą 0, we can pick some w P BK X BB and let Hw “ tB1, ..., BK , BK`1u with
BK`1 “ xwy. From the proof of the existence of nested spaces, we can consider the BPI and PE
problem instances with MDPs MHw,` and MHw,´. The transition function is the same on MHw,`
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and MHw,´. Since @a P sAK , a R Cγpwq Y Cγp´wq because a R
△
CγpBKq, the reward function for

any queried action a P sAK is 0. Thus, the learner cannot distinguish MHw,` between MHw,´ from
the submitted queries.

For PE, the learner has to produce an estimate of Qπps̄, ¨q. But

Qπps̄, wq “ ϕps̄, wqTw “ wTw “ 1 on MHw,`.

Qπps̄, wq “ ´ϕps̄, wqTw “ ´wTw “ ´1 on MHw,´.

If the learner predicts a positive value for Qπps̄, wq, it will incur an error greater than 1 on MHw,´

and similarly for MHw,` if it predicts a negative value. Even if it randomizes between both, with
probability at least 1{2 it will incur an error of at least 1 on one of the MDPs.

Similarly for BPI, the learner has to produce a near-optimal policy in the starting state s̄. But

V ‹
MHw,`

ps̄q “ Q‹
MHw,`

ps̄, wq “ ϕps̄, wqTw “ wTw “ 1.

V ‹
MHw,´

ps̄q “ Q‹
MHw,´

ps̄, wq “ ´ϕps̄, wqTw “ ´wTw “ ´1.

If the learner outputs a policy taking action a s.t. aTw ą 0, it will incur an error greater than 1 on
MHw,´ and similarly for MHw,` if it produces an action a s.t. aTw ď 0. Even if it randomizes
between both, with probability at least 1{2 it will incur an error of at least 1 on one of the MDPs.

Therefore, to be more than p1, 1{2q-sound, we must either be in Case 1 or be in Case 2 and satisfy
condition (4). In either case, we have the condition

K ą c log log d,

for some constant c ą 0 and d sufficiently large, which gives K “ Ωplog log dq, showing the
result.

33



Published as a conference paper at ICLR 2024

G PROOFS FOR FULLY-ADAPTIVE SETTING

G.1 PROOF OF THEOREM B.2

Fix an unknown MDP M . Consider a learning algorithm with the following procedure:

Step 1: The learner selects an arbitrary query ps1, a1q s.t. }ϕps1, a1q}2 “ 1 (possible by Assumption
B.1). The learner receives from the environment the reward rM ps1, a1q, the transition function
pM p¨|s1, a1q and evaluations of the target policy πM for all states in the support of the transition
function pM p¨|s1, a1q.

Step k ď d: For i ă k, let psi, aiq be the query at round i. Define vi “ ϕpsi, aiq ´

γEs1„pM p¨|si,aiqrϕps1, πM ps1qqs. Select the query psk, akq s.t

ϕpsk, akq P xv1, ..., vk´1yK and }ϕpsk, akq}2 “ 1.

The feedback to the learner up to round k means the learner has access to v1, ..., vk´1. This together
with Assumption B.1 ensures the query-choice is possible.

Denote vk “ ϕpsk, akq ´ γEs1„pM p¨|sk,akqrϕps1, πM ps1qqs.

Claim: vk R xv1, ..., vk´1y.

Proof. Suppose the claim is not true, then vk P xv1, ..., vk´1y and vTk ϕpsk, akq “ 0 since
ϕpsk, akq P xv1, ..., vk´1yK. Using this,

}Es1„pM p¨|sk,akqrϕps1, πM ps1qqs}22 “
1

γ2
pvk ´ ϕpsk, akqqT pvk ´ ϕpsk, akqq

“
1

γ2
pvTk vk ´ 2vTk ϕpsk, akq ` ϕpsk, akqTϕpsk, akqq

“
1

γ2
p}vk}22 ` 1q

ě
1

γ2
ą 1,

which is not possible since ϕps, aq P B for all state-actions pairs ps, aq, and by Jensen’s inequality

}Es1„pM p¨|sk,akqrϕps1, πM ps1qqs}2 ď Es1„pM p¨|sk,akqr}ϕps1, πM ps1qq}2s ď 1.

This proves the claim.

The claim implies that tviu
k
i“1 is a linearly independent set of vectors. To see why this is the case,

suppose it is not true:

Dpαiq
k
i“1 s.t. one of them is non-zero and

k
ÿ

i“1

αivi “ 0.

Let j be the largest index s.t. αj ‰ 0, then

vj “
1

αj

´

ÿ

iăj

αivi

¯

P xv1, ..., vj´1y,

which contradicts the claim. So tviu
k
i“1 is a linearly independent set of vectors.

Under realizability, we must have QπM

M psi, aiq “ ϕpsi, aiq
T θπM

M for some θπM

M and since it is the
fixed point of the Bellman evaluation operator we also have

QπM

M psi, aiq “ rpsi, aiq ` γEs1„pM p¨|si,aiqrQπM

M ps1, πM ps1qqs.

Let Φ “

»

–

ϕps1, a1qT

...
ϕpsd, adqT

fi

fl, r “

«

rM ps1, a1q

...
rM psd, adq

ff

and Φ` “

»

–

Es1„pM p¨|s1,a1qrϕps1, πM ps1qqT s

...
Es1„pM p¨|sd,adqrϕps1, πM ps1qqT s

fi

fl.
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Combining the realizability assumption with the Bellman fixed point equation with the above nota-
tion we have:

ΦθπM

M “ r ` γΦ`θπM

M ðñ

´

Φ ´ γΦ`
¯

θπM

M “ r.

Noticing that vi is the ith row of Φ´γΦ` and using that they are all linearly independent, Φ´γΦ`

is a square full rank matrix and is thus invertible, giving the unique solution of the policy evaluation
problem θπM

M in terms of quantities known to the learner at the d-th round.

G.2 PROOF OF THEOREM B.3

G.2.1 MDP CLASS

We consider the same MDP class as for Theorem F - see Appendix F.1.

G.2.2 INSTANCE OF THE CLASS

Consider a sequence of d strictly nested subspaces of Rd:

Bd´1 Ă Bd´1 Ă ... Ă B2 Ă B1 Ă B0 “ Rd,

s.t. dimBk “ d ´ k. Since dimBd´1 “ 1, there is some w P BK X BB s.t. Bd´1 “ xwy. Let
Hw “ tB1, ..., Bd´1u denote the set of nested subspaces. Every MDP M P M is fully characterised
by the sequence of subspaces Hw and a sign ` or ´. Hence, they are denoted by MHw,` or MHw,´.

Reward function: The reward function only depends on the vector w and the sign ˘ but we denote
them with the same subscript as the MDP. Specifically it is defined

on MHw,` : rHw,`ps, aq “

"

0, if a R Cγpwq Y Cγp´wq.

`p1 ´ γqaTw, otherwise.

on MHw,´ : rHw,´ps, aq “

"

0, if a R Cγpwq Y Cγp´wq.

´p1 ´ γqaTw, otherwise.

See Appendix C for the definition of hyper-spherical caps Cγpwq.

Transition Function: The transition function for an MDP M P M depends on the sequence of
nested subspaces Hw but not on the sign ˘. The transition function is therefore the same for MHw,`

and MHw,´. If A is a subspace of Rd, let projApxq denote the orthogonal projection of x onto A.

See Appendix C for the definition of hyper-spherical caps Cγpwq and sectors
△
CγpHq. The successor

state of a state-action pair ps, aq is deterministic and only depends on the chosen action (and not the
current state), so we will denote the unique successor state when taking action a by s`

Hw
paq “ a,

which is defined as:

s`
Hw

paq “

$

’

’

’

&

’

’

’

%

1
γ projBk`1

paq, if a P
△
CγpBkqz

△
CγpBk`1q for k “ 0, ..., d ´ 2.

1
γ projBd´1

paq, if a P
△
CγpBK`1qzpCγpwq Y Cγp´wqq.

a, if a P Cγpwq Y Cγp´wq.

This is defined in the same way as in the proof of Theorem F - we refer the reader to Appendix F.1
for an explanation of why this definition is well defined.

Crucially actions queried in
△
CγpBkqz

△
CγpBk`1q for k ď d ´ 2 does not reveal w. Without the

knowledge of w, the reward function is unknown and even with the knowledge of w the reward
function is not fully identified, in which case MHw,` and MHw,´ cannot be distinguished.

G.2.3 PROOF OF THEOREM B.3

Consider the MDP class described in Appendix G.2.1 and Appendix G.2.2. First, we know from
Lemma F.1 that all instances of the BPI and PE problem characterised by the MDP class M and
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target policies Π satisfy Assumption 4.2 (Qπ is realizable for every π) with the feature map ϕp¨, ¨q

defined in Appendix F.1.

Defining the subspaces in Hw: Denote the first d ´ 1 queries chosen by the learner by
ps1, a1q, ..., psd´1, ad´1q. In the feature space, these are a1, ..., ad´1. Let Bk be the orthogonal
complement of xa1, ..., aky, i.e.

Bk “ xa1, ..., akyK “

!

x P B : xTa “ 0 @a P xa1, ..., aky

)

,

and w P Bd´1. The definition of Bk is well defined since the feedback of ta1, ..., ak´1u only
depends on B1, ..., Bk´1: for i “ 1, ..., k ´ 1, s`

Hw
paiq “ 1

γ projBi
paiq, rw,˘ps, aiq “ 0. The

learner only observes the projection of actions in ta1, ..., ak´1u into B1, B2, ..., Bk´1. In particular,
Bk can be fixed as any subspace nested in Bk´1 once the learner has chosen the action-query ak at
round.

In Appendix G.2.2, we fixed dimBk “ d ´ k. If a1, ..., ak are not linearly independent, the di-
mension of Bk may be greater than d ´ k. In this case, we just restrict Bk arbitrarily such that the
sequence remains nested. In particular, we have dimBd´1 “ 1 and Bd´1 “ xwy for some w P BB.
Let Hw “ tB1, ..., Bd´1u. Consider the BPI and PE problem instances with MDPs MHw,` and
MHw,´. The transition function is the same on MHw,` and MHw,´.

By construction ai R
△
CγpBd´1q for all i ď d´1. In particular, ai R Cγpwq

Ť

Cγp´wq for i ď d´1
and the reward function for any queried action is 0. Thus, the learner cannot distinguish MHw,`

between MHw,´ from the submitted queries.

For PE, the learner has to produce an estimate of Qπps̄, ¨q. But

Qπps̄, wq “ ϕps̄, wqTw “ wTw “ 1 on MHw,`.

Qπps̄, wq “ ´ϕps̄, wqTw “ ´wTw “ ´1 on MHw,´.

If the learner predicts a positive value for Qπps̄, wq, it will incur an error greater than 1 on MHw,´

and similarly for MHw,` if it predicts a negative value. Even if it randomizes between both, with
probability at least 1{2 it will incur an error of at least 1 on one of the MDPs.

Similarly for BPI, the learner has to produce a near-optimal policy in the starting state s̄. But

V ‹
MHw,`

ps̄q “ Q‹
MHw,`

ps̄, wq “ ϕps̄, wqTw “ wTw “ 1.

V ‹
MHw,´

ps̄q “ Q‹
MHw,´

ps̄, wq “ ´ϕps̄, wqTw “ w ´T w “ ´1.

If the learner outputs a policy taking action a s.t. aTw ą 0, it will incur an error greater than 1 on
MHw,´ and similarly for MHw,` if it produces an action a s.t. aTw ď 0. Even if it randomizes
between both, with probability at least 1{2 it will incur an error of at least 1 on one of the MDPs.

Therefore, the learner can be at most p1, 1{2q-sound for both PE and BPI problems with n “ K ď

d ´ 1 queries. To be more than p1, 1{2q-sound, n “ K ě d queries are required.
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