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Abstract

We introduce PHLoRA? (Post-hoc LoRA), a simple yet powerful method to extract
low-rank adaptation adapters from full-rank fine-tuned models without requiring
access to training data or gradients. By computing the low-rank decomposition
of weight differences between a base model and its fine-tuned counterpart, our
method reconstructs adapter modules that can be merged or dynamically routed at
inference time via S-LoRA, or served in scalable, industry settings using platforms
like NVIDIA NIM. This approach amortizes latency overhead across requests and
yields substantial cost savings. Unlike prior work that trains each adapter explicitly,
our approach decouples fine-tuning from adapter generation, allowing adapter
extraction from existing full-rank models or third-party checkpoints. Experiments
on text, image, and video benchmarks using the Amazon Nova model family
demonstrate that extracted adapters preserve high energy from the full weight
delta, can be pruned safely, and yield negligible degradation in downstream task
performance when re-merged. Overall, PHLoRA provides a practical path for
making all existing full-rank checkpoints adapter-ready, democratizing scalable
inference for all models.

1 Introduction

The Low-Rank Adapters (LoRA) technique [Hu et al., 2022] is a popular way to reduce memory
during training, and it offers an additional advantage at inference: it allows a single server to host
adapters for hundreds or thousands of users in a shared inference API, as in S-LoRA [Sheng et al.,
2024]. Modern industry platforms such as NVIDIA NIM? support scalable, low-latency serving of
LoRA-based adapters in production. However, many practitioners have existing models trained with
full-rank fine-tuning, including through the use of other training methods beyond standard fine-tuning
like DPO [Rafailov et al., 2024] or PPO [Schulman et al., 2017]. To serve these users, we introduce
and evaluate a method for compressing full-rank updates into low-rank adapters compatible with
dynamic serving frameworks, called Post-hoc Low-Rank Adapter Extraction (PHLoRA). Our
contributions include the following:

*This is a non-archival workshop version. The archival version will be in Findings of IICNLP-AACL 2025.
*Pronounced “flora”.
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* Post-hoc LoRA formulation: We pose adapter extraction as a low-rank decomposition
solved with truncated SVD over the checkpoint’s weight delta, it doesn’t require any
gradients or data.

* LoRA Rank compression: PHLoRA can also be used to compress rank of existing LoRA
adapters (e.g., convert LoRA trained with rank 128 to rank 32)

* Flexible deployment and fast start-up: Compact adapters cut model-load latency by
over 10x compared to full-rank checkpoints and can be merged for static inference or
dynamically routed via shared-adapter execution (e.g., S-LoRA), and are compatible with
scalable industry platforms such as NVIDIA NIM, to minimize run-time cost.

* Multimodal results: We evaluate on three text, one image, and one video understanding
benchmark, showing PHLoRA preserves performance while reducing inference cost by up
to 4x.

We provide all dataset processing code, modeling code, and evaluation prompts.

2 Background and Related Work

PHLoRA uniquely provides constant-cost, post-hoc adapter generation that is fully LoRA-inference-
compatible for both text and multimodal settings [Sung et al., 2022], with further comparisons in
Table 1.

Method Stage Input SVD On Output LoRA-comp. Task-spec. Train? Needs Data?
PHLoORA (ours) Post-hoc AW AW LoRA A, B 4 X X
SLiM Post-hoc w w LR+Q weights X X X
SVD-LLM Post-hoc w w Trunc. LR model X X X
SVDQuant Post-hoc w w LR+Q weights X X X
Dobi-SVD Post-hoc+Grad w Diff. SVD  Compressed model X v v
SORSA PEFT init w w Struct. adapter A v v
PiSSA PEFT init w w Init. adapter v v v

Table 1: Qualitative comparison of PHLoRA and related approaches. v': yes; X: no; A: partially.

LoRA inserts rank-r matrices in parallel with linear layers and trains only these additions, reducing
memory and compute [Hu et al., 2022]. LoRA+ further re-balances the optimizer by raising the
learning rate on the B matrix [Hayou et al., 2024]. Other variants explore dynamic rank schedules
(AdaLoRA [Zhang et al., 2023]), quantized training (QLoRA [Dettmers et al., 2023]), and selective
layer targeting. Soft prompt-tuning [Lester et al., 2021], BitFit [Zaken et al., 2021], AdapterFu-
sion [Pfeiffer et al., 2021], and VL-Adapter [Sung et al., 2022] trade different portions of trainable
parameters for efficiency, but all require task-specific optimization. Recent methods extend parameter-
efficient transfer to vision-language models [Sung et al., 2022]. PiSSA initializes LoRA adapters with
principal singular vectors before adapter training, accelerating convergence but not eliminating the
need for training [Meng et al., 2025]. SLiM [Mozaffari et al., 2025], SVD-LLM [Wang et al., 2025b],
and SVDQuant [Li et al., 2025] apply low-rank decomposition (often combined with quantization)
directly to pretrained weights W for inference compression and acceleration. GPTQ [Frantar et al.,
2023] is another widely-used post-hoc quantization approach. However, these methods do not expose
LoRA-compatible factors nor leverage the fine-tuning delta. Dobi-SVD [Wang et al., 2025a] makes
SVD differentiable and tunes the factors with task supervision, achieving lower reconstruction error at
the cost of additional gradient steps. SORSA [Cao, 2024] proposes a structured low-rank adaptation
that replaces dense LoRA matrices but still requires full adapter training.

While prior works have explored low-rank approximation techniques for fine-tuning (e.g., Hu et al.,
2022, Zhang et al., 2023), we also found a recent GitHub implementation, LoRD [Gauthier-Caron,
20241], that performs similar post-hoc low-rank extraction, though without an associated peer-reviewed
manuscript.



3 Methodology

3.1 Problem Setup

Given a pretrained model and a fine-tuned model, each consisting of weights, we define the weight
delta as

AW = Wy — Whase, Where W € R¥*F €))
Our objective is to approximate each AW with a rank-r factorization in the LoRA form:
AW =~ BA,where A € R"™** B ¢ R¥*" 2)

Once A and B are obtained, they can be deployed as standard LoRA adapters (for dynamic or
conditional routing) or merged back into the backbone via Wyyee < Whase + BA. This process is
repeated for all target components (typically attention and MLP submodules).

3.2 Post-hoc LoRA Extraction

We perform a truncated singular value decomposition (SVD) on AW:

UXVT = SVD(AW), where

UeR™, 2 eR>F  VeRFXF ®)
The low-rank LoRA factorization is then:
B = U[:vir]z%r r
A [rre7] (4)
A= E[Zr 7] ‘/[—:“,]

where the first  columns of U, the first r rows of V', and the first » rows and columns of X are taken,
and the % exponent represents the element-wise square root. This SVD-based decomposition ensures
that BA is the best rank-r approximation of AW [Eckart and Young, 1936]. All computations are
performed independently for each target weight matrix (e.g., Gproj> Kproj> MUPsc1)-

Merged inference computes Wy, + B A once, fully restoring the original fine-tuned model up to
truncation error (no runtime adapter overhead). Dynamic routing, as in S-LoRA [Sheng et al., 2024],
loads A and B as lightweight adapters and activates them on demand, enabling low-cost serving of
multiple adapters in a single process.

PHLORA is compatible with the HuggingFace PEFT library [Hugging Face, 2023], PyTorch LoRA
implementations, and multi-adapter serving frameworks. No access to gradients or training data is
needed, but only the base and fine-tuned checkpoints.

3.3 Energy-Based Analysis

In low-rank matrix approximation, the energy of a matrix refers to the sum of the squares of its
singular values, quantifying the total information content or signal present in the matrix. For a weight
delta AW with singular values o1, 02, . . . 04, we define the preserved energy at rank r as
> i1 07

=L 5)
> im1 0
Intuitively, F, measures what fraction of the “important” weight update is retained by the top-r
singular directions. High preserved energy typically correlates with the adapter’s ability to recover
full-rank performance. In Figure 1, we present the values of E,. as the rank parameter varies across
three modalities and three Nova model sizes. We observe a consistent pattern: energy preservation
improves with higher rank values, independent of modality or model size. Instead of exploring all
possible ranks, this paper focuses on three representative settings, 32, 64, and 512, which correspond
to low, medium, and high energy levels, respectively. This selection enables us to analyze the
approach’s performance under different energy conditions. Although we fix r globally in this paper,
our code supports per-layer adaptive rank selection based on a desired energy threshold.

E, =
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Figure 1: Preserved energy vs rank.
Dataset Metric(s)
TAT-QA [Zhu et al., 2021] Accuracy, Exact Match (EM)
MKFE [Owkin, 2024] Key Overlap Mean, Value Overlap Mean (%)
MedMCQA [Pal et al., 2022] Accuracy, F1
VQA-RAD [Lau et al., 2018] Avg. Normalized Similarity

CaptionGen [Chen and Dolan, 2011] ROUGE_L, CIDEr

Table 2: Primary evaluation metrics and citations for each benchmark.

4 Experiments

4.1 Experimental Setup

We benchmark PHLoRA on three text only datasets, TAT-QA [Zhu et al., 2021], Medical Knowledge
from Extracts (MKFE) [Owkin, 2024], MedMCQA [Pal et al., 2022]; one image and text dataset,
VQOA-RAD [Lau et al., 2018]; and one video and text dataset, CaptionGen [Chen and Dolan, 2011].
We sub-sample and reformat the datasets. See Table 2 for primary metrics, and Appendix A for
detailed statistics. All experiments use the Nova model family.

We compare: (i) the base model, (ii) the full-rank fine-tuned model, (iii) LoORA+ with rank 32, and
(iv) PHLoRA with rank 32 (default) and 64 (see Section 4.3 for larger 7). We use an evaluation
prompt that does not specify formatting, which results in many formatting errors in the base model.
Though the base model could be improved substantially with prompt optimization, our choice of
prompts accentuates the effect of fine-tuning.

4.2 Results and Analysis

Table 3 reports test-set performance across all model sizes and benchmarks. For each task, we
include one or two evaluation metrics (e.g., Accuracy / Exact Match), with the best score for each
metric shown in bold. PHLoRA demonstrates consistency with full-rank fine-tuning across the Nova
Micro, Lite, and Pro model families, often coming within 1% performance while occasionally even
surpassing full-rank results.



Table 3: Test set results for Nova Micro (text-only), Lite, and Pro. Where two metrics are shown, the
best per metric is bolded. The evaluation prompts do not provide formatting instructions, substantially
increasing the difficulty of the task for the base model prior to fine-tuning.

Dataset (Metric) Base Model Full-Rank LoRA+ (r32) PHLoRA (r32) PHLoRA (r64)
Nova Micro
TAT-QA (Acc / Exact Match) 0/0 84.95 / 51.68 82.47/48.49 83.54/48.14 84.07/49.02
MKEFE (Key Overlap / Val Overlap) 50.0/22.0 100.0/ 28.0 100.0/26.75 99.0/27.75 99.0/28.0
MedMCQA (Accuracy / F1) 0.03/0.05 60.49 / 60.52 60.52/60.52 60.79 / 60.85 60.60 / 60.63
Nova Lite
TAT-QA (Acc / Exact Match) 0/0 83.89/48.85 82.48 /48.50 85.84/52.39 86.02 /53.45
MKEFE (Key Overlap / Val Overlap) 49.50/19.50 99.50/22.75 99.0/24.75 99.50 / 26.50 99.50/26.0
MedMCQA (Accuracy / F1) 0.19/0.38 63.40/63.33 59.52/59.52 64.11/64.07 64.30 / 64.25
VQA-RAD (Avg Norm Similarity) 23.22 54.87 57.15 58.56 57.56
CaptionGen (ROUGE_L / CIDEr) 31.37/0.81 49.40/1.43 48.26/1.46 49.19/1.51 49.43/1.50
Nova Pro
TAT-QA (Acc / Exact Match) 0/0 89.38/ 62.48 87.79/53.98 87.96/55.22 89.00/58.00
MKEFE (Key Overlap / Val Overlap) 50.0/17.0 99.50/24.75 99.50/25.50 100.0/24.0 100.0/25.0
MedMCQA (Accuracy / F1) 0/0 69.40/69.42 71.14/71.16 70.0/70.0 70.0/70.0
VQA-RAD (Avg Norm Similarity) 27.03 56.20 56.57 57.58 56.92
CaptionGen (ROUGE_L / CIDEr) 37.63/1.13 48.94/1.37 50.12/1.55 48.55/1.45 48.85/1.48

On Nova Micro, full-rank leads on TAT-QA, but PHLoRA remains close and even surpasses it on
MedMCQA, with only minor gaps on MKFE. On Nova Lite, PHLoRA (r64) delivers the best scores
on TAT-QA, MedMCQA, VQA-RAD, and CaptionGen, which highlights its strength in reasoning
and multimodal tasks. Nova Pro further demonstrates scalability: PHLoRA nearly matches full-rank
on TAT-QA and outperforms it on MedMCQA and VQA-RAD, while it also remains competitive on
CaptionGen. Overall, the margin between PHLoRA and Full-Rank shrinks as Nova model scales,
with PHLoRA often taking the lead.

Inference Cost and Latency. PHLoRA, when merged into the backbone (“m-packed” as in S-
LoRA [Sheng et al., 2024]), is computationally equivalent to full-rank and merged LoRA inference
for a single adapter or task. All three approaches require only a single matrix multiplication per
layer. For scalable multi-adapter deployment, we estimate cost and throughput improvements using
S-LoRA-like dynamic routing [Sheng et al., 2024], which achieves up to 4 x higher throughput and
cost efficiency than naive dynamic LoRA serving (e.g., PEFT or vLLM) in multi-tenant settings, as
shown in Table 3 and Figure 4 of S-LoRA. These reference results provide a strong indication that
PHLoORA, when paired with S-LoRA-like serving, is highly cost-effective for scalable, multi-user
inference scenarios.’

Table 4: Ablation study for Nova Micro (text-only). We show one or two evaluation metrics, with the
best score for each metric shown in bold and F,. (preserved energy, %) for PHLoORA in parentheses.

Dataset (Metric) Full-Rank PHLoRA (r32) PHLoRA (r64) PHLoRA (r512)
TAT-QA (Accuracy / EM) 84.96 / 51.68 83.54/48.14 (44) 84.07/49.03 (52) 84.96/51.15 (77)
MKEFE (Key Overlap / Value Overlap) 100.0 / 28.0 99.0/27.75 (38) 99.0/28.0 (45) 100.0 / 28.75 (71)
MedMCQA (Accuracy / F1) 60.49 / 60.52 60.79 / 60.85 (37) 60.60 / 60.63 (46) 60.93 / 60.94 (78)

Table 5: Ablation study for Nova Lite (text, image, video). We show one or two evaluation metrics,
with the best score for each metric shown in bold and E, (preserved energy, %) for PHLoRA in
parentheses.

Dataset (Metric) Full-Rank PHLoORA (r32) PHLoORA (r64) PHLoRA (r512)
TAT-QA (Accuracy / EM) 83.89/48.45 85.84/52.39 (42) 86.02/53.45 (49) 86.90 / 55.58 (74)
MKEFE (Key Overlap / Value Overlap) 99.50/22.75 99.50 / 26.50 (36) 99.50 / 26.00 (42) 99.0/24.75 (68)
MedMCQA (Accuracy / F1) 63.40/63.33 64.11/64.07 (35) 64.30 / 64.25 (44) 63.83/63.77 (76)
VQA-RAD (Similarity) 54.87 58.57 (37) 57.56 (45) 55.01 (71)

CaptionGen (ROUGE_L / CIDEr) 49.40/1.43 49.19/1.51 (36) 49.43/1.50 (43) 49.84/1.50 (71)

3We use “S-LoRA-like” to refer to any scalable, dynamic multi-adapter LoRA serving implementation;
S-LoRA [Sheng et al., 2024] is used as a reference.



Table 6: Ablation study for Nova Pro (text, image, video). We show one or two evaluation metrics,
with the best score for each metric shown in bold and E, (preserved energy, %) for PHLoRA in
parentheses.

Dataset (Metric) Full-Rank PHLoRA (r32) PHLoORA (r64) PHLoRA (r512)
TAT-QA (Accuracy / EM) 89.38/62.48 87.96/55.22 (42) 89.0/58.0 (50) 89.0/61.0 (75)
MKEFE (Key Overlap / Value Overlap) 99.50/24.75 100.0 / 24.00 (36) 100.0 /25.0 (43) 50.0/23.0 (68)
MedMCQA (Accuracy / F1) 69.4/69.42 70.0 /70.0 (35) 70.0 /70.0 (41) 70.0 / 69.70 (73)
VQA-RAD (Similarity) 56.20 57.58 (41) 56.92 (50) 57.07 (77)
CaptionGen (ROUGE_L / CIDEr) 48.94/1.37 48.55/1.45(35) 48.85/1.48 (42) 48.87/1.39 (70)

4.3 Ablation: Rank and Energy Preservation

We vary the PHLoRA rank (from 32 to 512) and report preserved energy ). (as defined in Equation5).
The results across all three Nova model sizes (Micro, Lite, Pro) are presented in Tables 4, 5, and 6,
where each table reports test-set scores alongside preserved energy ()., %) for different PHLoRA
ranks and the full-rank reference.

Across all three Nova model scales (Micro, Lite, Pro), PHLoRA rank shows a clear correlation
between preserved energy () and downstream task performance. Higher ranks consistently recover
full-rank accuracy, while lower ranks maintain strong results with considerable efficiency gains. For
Nova Micro (text-only), performance is stable across ranks, with r512 closely matching or slightly
exceeding full-rank metrics on MedMCQA. In Nova Lite (multimodal), intermediate ranks such
as 164 achieve performance comparable to or better than full-rank on tasks like VQA-RAD and
CaptionGen. Similarly, in Nova Pro, r32 and r64 occasionally surpass full-rank scores, particularly
in multimodal settings, though MKFE value overlap metrics appear more sensitive to rank and do
not always improve with higher E,.. Overall, higher PHLoRA ranks reliably recover accuracy, while
intermediate ranks can offer a strong balance between efficiency and performance across different
model sizes and tasks.

5 Conclusion

We presented PHLoRA, a practical post-hoc method for deriving LoRA-compatible adapters directly
from fully fine-tuned models, without requiring access to training data or gradients. Our experiments
focused on three modalities—text, image, and video—using three Amazon Nova [AGI, 2024] models
and five moderate-sized benchmarks, all in the supervised fine-tuning (SFT) setting. PHLoRA
maintains competitive task accuracy while reducing inference GPU-hour costs by up to 4-fold
compared to merged adapter inference, and by a similar or greater margin compared to full-rank
model inference, in dynamic multi-adapter routing scenarios such as S-LoRA. This cost reduction
reflects improvements in inference throughput, i.e., the number of tokens or requests processed per
unit time, as demonstrated in S-LoRA [Sheng et al., 2024].

PHLOoRA provides a practical path for making all existing full-rank checkpoints adapter-ready,
democratizing scalable inference for legacy models.

6 Future Work

Several avenues remain for future research:

* Scaling to Larger and More Diverse Tasks: Our current experiments are limited to
moderate-sized SFT datasets. Future work should evaluate PHLoRA on larger-scale, more
challenging benchmarks and additional modalities.

* Advanced Tuning Strategies: Extending PHLoRA to support advanced fine-tuning tech-
niques such as DPO, PPO, or reward-based learning.

* Extending Beyond Linear Layers: While LoRA has been generalized to convolu-
tions [Zhong et al., 2024], post-hoc SVD-based extraction for higher-order tensors requires
further research, potentially leveraging advanced tensor decompositions [Kolda and Bader,
2009] or alternative adapter parametrizations [Chen et al., 2023].



* Rank Selection and Usability: Further developing practical methods for adaptive, data-free,
or black-box rank selection, and enabling adapter extraction even when the base model is
unavailable.

» Empirical data displaying inference efficiency improvements: Out current experiments
are limited to generation of LoRA adapters. Future work should evaluate the empirical data
displaying infernece efficiency improvement with the gnerated adapters.

Limitations

While PHLoRA offers a simple and effective post-hoc mechanism for adapter extraction, it comes
with several important limitations.

PHLORA is currently designed for standard linear (matrix-shaped) layers, as it relies on singular value
decomposition (SVD) to extract low-rank adapters from weight differences. While LoRA and similar
adapters have been extended to convolutional layers — either via kernel reshaping or structured
convolutional approximations (e.g., [Zhong et al., 2024]), post-hoc SVD extraction for convolutions
or other higher-order tensors is non-trivial and depends on the decomposition or flattening strategy,
which may lose spatial structure or interpretability. More generally, advanced tensor decompositions
[Kolda and Bader, 2009] or alternative adapter parametrizations [Chen et al., 2023] would be required
for such modules, which we leave to future work. Note also that attention “caches” refer to runtime
data, not persistent parameters, and so are out of scope for PHLoRA.

In this work, we fix the adapter rank r globally for all layers. Although we provide code to analyze
energy-based rank selection, adaptive or per-layer rank scheduling—which could further improve
the efficiency/accuracy tradeoff—remains for future work. Furthermore, while the preserved energy
metric (E,.) is a useful indicator of information retention at a given rank, model quality on the target
task does not always correlate perfectly with energy preservation. Thus, optimal adapter rank cannot
be reliably selected solely from energy curves; empirical evaluation remains necessary.

PHLORA assumes access to both base and fully fine-tuned weights. In settings where only the
fine-tuned model is available (e.g., closed-source vendors), post-hoc adapter extraction is not directly
possible.

The principal benefits of PHLoRA are realized in dynamic inference scenarios (e.g., S-LoRA or
multi-adapter routing), where multiple adapters are loaded or swapped at runtime. In conventional
merged-inference pipelines—where a single adapter is fused into the model for all requests—the
practical advantage of post-hoc extraction is diminished, as cost and latency resemble standard LoRA
or full-rank fine-tuning.

Our evaluation is limited to a set of public text, image, and video benchmarks. Results may differ
for larger, more diverse real-world applications. While PHLoRA enables substantial inference cost
reductions with dynamic adapter routing, there remains a modest runtime latency penalty versus full-
rank merging; practical savings will depend on system-level batch sizes and workload characteristics.

We encourage future work to address these limitations by extending PHLoRA to non-linear modules,
developing robust energy-aware or data-free rank selection strategies, enabling black-box or partial-
weight extraction, and improving dynamic adapter composition schemes.
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A Dataset Descriptions

We provide summary statistics and descriptions for each benchmark used in this study. Scripts to
reproduce the down-sampled and converted datasets will also be made available.

* TAT-QA [Zhu et al., 2021]: A table-augmented question answering dataset in the financial
domain, requiring models to reason over both natural language and tabular data. Train:
2,830; Test: 565. License: MIT. Evaluated using Accuracy and Exact Match.

* MKFE [Owkin, 2024]: Medical Knowledge from Extracts. Evaluates the ability to extract
structured key-value medical facts from unstructured text. Key Overlap measures the
proportion of gold-standard keys correctly predicted; Value Overlap measures the fraction
of correct values among matched keys. Train: 1,000; Test: 200. License: Apache 2.0.

* MedMCQA [Pal et al., 2022]: A large-scale medical multiple-choice question answering
dataset. Train: 20,000; Test: 3,683. License: MIT. Evaluated using Accuracy and F1.

* VQA-RAD [Lau et al., 2018]: Visual question answering over radiology images, requiring
both visual and textual understanding. Train: 1,793; Test: 451. License: CCO 1.0 Universal.
Evaluated by average normalized similarity.
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* CaptionGen: A video captioning benchmark with 2,000 training and 500 test examples.
Videos are sourced from MSVD [Chen and Dolan, 2011]; captions are from the Multi-Source
Video Captioning dataset [DAMO-NLP-SG]. License: MIT. Evaluated using ROUGE_L
and CIDEr.

B Implementation Details

Hardware. All experiments were performed on AWS P5.48xlarge instances, each equipped with
8xNVIDIA A100 80GB GPUs. Posthoc LoRA adapter extraction and energy analysis steps were
also executed on the same hardware.

Fine-tuning Hyperparameters. We used the AdamW optimizer (31=0.9, 82=0.999), a learning
rate of 1 x 10~°, batch size 32, and trained for 2 epochs.

LoRA+ Training Hyperparameters.

* Nova Micro: Learning rate 1 X 107°, loraplus_lr_ratio 16.0, rank r = 32, o =
128, lora_dropout 0.01, target_modules = [attention_gkv, attention_dense,
mlp_fc1, mlp_fc2].

* Nova Lite/Pro: Learning rate 1 X 10~°, loraplus_lr_ratio 8.0, rank r = 32,
a = 32, lora_dropout 0.01, target_modules = [attention_gkv, attention_dense,
mlp_fc1, mlp_fc2].

PHLoRA Extraction. SVD was performed per linear layer using PyTorch’s torch.linalg.svd.
The default low-rank approximation used rank r» = 32, with ablations at ranks r = 64 and r» = 512.

Energy Plots. Energy preserved at rank r, E,., was calculated as in Equation. 5. Plotting scripts are
available at scripts/plot_energy.py.

C Reproducibility Checklist

* Hyper-parameters: Full grids in configs/.
* Random seeds: Fixed to 42.

D Optimality of SVD for Low-Rank Adapter Extraction

Given any real matrix AW € R"*" the Eckart—Young—Mirsky theorem [Eckart and Young, 1936]
states that the rank-r matrix W, = UTETVTT (where U,., 2., V,. are the top r components from the
SVD of AW) uniquely minimizes the Frobenius norm ||[ATW — W, || r over all matrices of rank at
most r.

To see this, let AW = UZV'T be the full SVD, with singular values 01 > g9 > -+ > T min(m,n)-
The truncated approximation is

r
i T
W, = E oMU,
i=1

and satisfies

min(m,n)
AW = W,lH = > of.

1=r+1

Therefore, by setting A = U, diag(v/%,) and B = diag(v/%,)V,', as in PHLoRA, AB = W, is
the best rank-r LoRA update (minimizing Frobenius error).

For more details, see [Eckart and Young, 1936, Golub and Loan, 2013].
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