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Abstract

While the novel class discovery has recently made great progress, existing methods typically
focus on improving algorithms on class-balanced benchmarks. However, in real-world recog-
nition tasks, the class distributions of their corresponding datasets are often imbalanced,
which leads to serious performance degeneration of those methods. In this paper, we con-
sider a more realistic setting for novel class discovery where the distributions of novel and
known classes are long-tailed. One main challenge of this new problem is to discover imbal-
anced novel classes with the help of long-tailed known classes. To tackle this problem, we
propose an adaptive self-labeling strategy based on an equiangular prototype representation
of classes. Our method infers high-quality pseudo-labels for the novel classes by solving a
relaxed optimal transport problem and effectively mitigates the class biases in learning the
known and novel classes. We perform extensive experiments on CIFAR100, ImageNet100,
Herbarium19 and large-scale iNaturalist18 datasets, and the results demonstrate the supe-
riority of our method. Our code is available at https://github.com/kleinzcy/NCDLR.

1 Introduction

Novel Class Discovery (NCD) has attracted increasing attention in recent years (Han et al., 2021; Fini et al.,
2021; Vaze et al., 2022), which aims to learn novel classes from unlabeled data with the help of known
classes. Despite the existing methods have achieved significant progress, they typically assume the class
distribution is balanced, focusing on improving performance on datasets with largely equal-sized classes.
This setting, however, is less practical for realistic recognition tasks, where the class distributions are often
long-tailed (Zhang et al., 2021b). To address this limitation, we advocate a more realistic NCD setting in this
work, in which both known and novel-class data are long-tailed. Such a NCD problem setting is important,
as it bridges the gap between the typical novel class discovery problem and the real-world applications,
and particularly challenging, as it is often difficult to learn long-tailed known classes, let alone discovering
imbalanced novel classes jointly.

Most existing NCD methods have difficulty in coping with the imbalanced class scenario due to their re-
strictive assumptions. In particular, the pairwise learning strategy (Han et al., 2021; Zhong et al., 2021b)
often learns a poor representation for the tail classes due to insufficient positive pairs from tail classes. The
more recent self-labeling methods (Asano et al., 2020; Fini et al., 2021) typically assume that the unknown
class sizes are evenly distributed, resulting in misclassifying the majority class samples into the minority
ones. An alternative strategy is to combine the typical novel class discovery method with the supervised
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long-tailed learning method (Zhang et al., 2021b; Menon et al., 2020; Kang et al., 2020; Zhang et al., 2021a).
They usually require estimating the novel-class distribution for post-processing and/or retraining the classi-
fier. However, as our preliminary study shows (c.f. Tab.2), such a two-stage method often leads to inferior
performance due to the noisy estimation of the distribution.

To address the aforementioned limitations, we propose a novel adaptive self-labeling learning framework to
tackle novel class discovery for long-tailed recognition. Our main idea is to generate high-quality pseudo-
labels for unseen classes, which enables us to alleviate biases in model learning under severe class imbalance.
To this end, we first develop a new formulation for pseudo-label generation process based on a relaxed optimal
transport problem, which assigns pseudo labels to the novel-class data in an adaptive manner and partially
reduces the class bias by implicitly rebalancing the classes. Moreover, leveraging our adaptive self-labeling
strategy, we extend the equiangular prototype-based classifier learning (Yang et al., 2022b) to the imbalanced
novel class clustering problem, which facilitates unbiased representation learning of known and novel classes
in a unified manner.

Specifically, we instantiate our framework with a deep neural network consisting of an encoder with unsu-
pervised pre-training and an equiangular prototype-based classifier head. Given a set of known-class and
novel-class input data, we first encode those input data into a unified embedding space and then introduce
two losses for known and novel classes, respectively. For the known classes, we minimize the distance be-
tween each data embedding and the equiangular prototype of its corresponding class, which help reduce the
supervision bias caused by the imbalanced labels. For the novel classes without labels, we develop a new
adaptive self-labeling loss, which formulates the class discovery as a relaxed Optimal Transport problem.
To perform network learning, we design an efficient bi-level optimization algorithm that jointly optimizes
the two losses of the known and novel classes. In particular, we introduce an efficient iterative learning pro-
cedure that alternates between generating soft pseudo-labels for the novel-class data and performing class
representation learning. In such a strategy, the learning bias of novel classes can be significantly reduced by
our equiangular prototype design and soft adaptive self-labeling mechanism. Lastly, we also propose a novel
strategy for estimating the number of novel classes under the imbalance scenario, which makes our method
applicable to real-world scenarios with unknown numbers of novel classes.

We conduct extensive experiments on two constructed long-tailed datasets, CIFAR100 and Imagenet100,
as well as two challenging natural long-tailed datasets, Herbarium19 and iNaturalist18. The results show
that our method achieves superior performance on the novel classes, especially on the natural datasets. In
summary, the main contribution of our work is four-folds:

• We present a more realistic novel class discovery setting, where the class distributions of known and
novel categories are long-tailed.

• We introduce a novel adaptive self-labeling learning framework that generates pseudo labels of novel
class in an adaptive manner and extends the equiangular prototype-based classifier to address the
challenge in imbalanced novel-class clustering.

• We formulate imbalanced novel class discovery as a relaxed optimal transport problem and develop
a bi-level optimization strategy for efficient class learning.

• Extensive experiments on several benchmarks with different imbalance settings show that our method
achieves the state-of-the-art performance on the imbalanced novel class discovery.

2 Related Work

2.1 Novel Class Discovery

Novel Class Discovery (NCD) aims to automatically learn novel classes in the open-world setting with the
knowledge of known classes. A typical assumption of NCD is that certain relation (e.g., semantic) exists
between novel and known classes so that the knowledge from known classes enables better learning of novel
ones. The deep learning-based NCD problem was introduced in (Han et al., 2019), and the subsequent works
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can be grouped into two main categories based on their learning objective for discovering novel classes. One
category of methods (Han et al., 2021; Zhong et al., 2021a;b; Hsu et al., 2018a;b) assume neighboring data
samples in representation space belong to the same semantic category with high probability. Based on this
assumption, they learn a representation by minimizing the distances between adjacent data and maximizing
non-adjacent ones, which is then used to group unlabeled data into novel classes. The other category of
methods (Fini et al., 2021; Yang et al., 2022a; Gu et al., 2023) adopt a self-labeling strategy in novel class
learning. Under an equal-size assumption on novel classes, they utilize an optimal transport-based self-
labeling (Asano et al., 2020) strategy to assign cluster labels to novel-class samples, and then self-train their
networks with the generated pseudo labels.

Despite the promising progress achieved by those methods, they typically adopt an assumption that the
novel classes are largely uniformly distributed. This is rather restrictive for real-world recognition tasks
as the class distributions are often long-tailed in realistic scenarios. However, both categories of methods
have difficulty in adapting to the setting with imbalanced classes. In particular, for the first category of
methods, the representation of tail classes could be poor due to insufficient samples in learning. For the
self-labeling-based methods, the head classes are often misclassified as the tail classes under the restrictive
uniform distribution constraint. In addition, both types of methods tend to produce a biased classifier
head induced by the long-tailed distribution setting. While recent work (Weng et al., 2021) proposes an
unsupervised discovery strategy for long-tailed visual recognition, they mainly focus on the task of instance
segmentation. By contrast, we systematically consider the problem of imbalanced novel class discovery in this
work. Moreover, we propose an adaptive self-labeling learning framework based on the equiangular prototype
representation and a novel optimal transport formulation, which enables us to mitigate the long-tail bias
during class discovery in a principled manner.

2.2 Supervised Long-tailed Learning

There has been a large body of literature on supervised long-tailed learning (Zhang et al., 2021b), which
aims to learn from labelled data with a long-tailed class distribution. To perform well on both head and
tail classes, existing methods typically design a variety of strategies that improve the learning for the tail
classes. One stream of strategies is to resample the imbalanced classes (Han et al., 2005) or to re-weight loss
functions (Cao et al., 2019), followed by learning input representation and classifier head simultaneously.
Along this line, Logit-Adjustment (LA) (Menon et al., 2020) is a simple and effective method that has been
widely used, which mitigates the classifier bias by adjusting the logit based on class frequency during or
after the learning. The other stream decouples the learning of input representation and classifier head (Kang
et al., 2020; Zhang et al., 2021a). In particular, classifier retraining (cRT) (Kang et al., 2020) first learns a
representation by instance-balanced resampling and then only retrains the classifier head with re-balancing
techniques. Recently, inspired by the neural collapse (Papyan et al., 2020) phenomenon, Yang et al. (2022b)
propose to initialize the classifier head as the vertices of a simplex equiangular tight frame (ETF), and fix
its parameter during the learning, which helps to mitigate the classifier bias towards majority classes.

While those methods have achieved certain success in supervised long-tailed recognition, it is rather difficult
to adopt them in novel class discovery as the class distribution of novel classes is unknown. Moreover,
the problem of classifier bias becomes even more severe in discovering imbalanced novel data, where both
the representation and classifier head are learned without ground-truth label information. To address this
problem, we develop a novel representation learning strategy, which generalizes the ETF design and equal-
sized optimal transport formulation, for modeling both long-tailed known and novel classes in a unified
self-labeling framework.

3 Problem Setup and Method Overview

We consider the problem of Novel Class Discovery (NCD) for real-world visual recognition tasks, where the
distributions of known and novel classes are typically long-tailed. In particular, we aim to learn a set of
known classes Ys from an annotated dataset Ds = {(xs

i , ys
i )}N

i=1, and to discover a set of novel classes Yu

from an unlabeled dataset Du = {xu
i }M

i=1. Here xs
i , xu

i ∈ X are the input images and ys
i are the known class

labels in Ds. For the NCD task, those two class sets have no overlap, i.e., Ys
⋂

Yu = ∅, and we denote

3



Published in Transactions on Machine Learning Research (08/2023)

在此处键入公式。

𝐘𝑠

𝒟𝑢

𝒟𝑠

Adaptive Self-labeling

𝐘0
𝑢

fr
e
q
u
e
n
c
y

class

fr
e
q
u
e
n
c
y

class

{(𝑥𝑖
𝑠, 𝑦𝑖

𝑠)𝑖=1
𝐵 }

(𝑥𝑖
𝑢)𝑖=1

𝐵

𝐘𝑢

𝑜

ℒ𝑠

ℒ𝑢Sample

𝐘1
𝑢

𝒘0 𝒘1

…
−𝐏𝑢

⊤
𝐙

𝐘T
𝑢

Sample of novel classes Sample of known classes

Optimize ℒ𝑢 𝑤. 𝑟. 𝑡 𝐘
𝑢 Optimize ℒ𝑢 𝑤. 𝑟. 𝑡 𝒘

Head class Medium class Tail class

−𝐏𝑢
⊤
𝐙

②① ①① ②

𝑓𝜃

Figure 1: The overview of our framework. Our method first samples a data batch including known and novel classes
from the long-tailed dataset and then encodes them into an embedding space. We adopt the equiangular prototypes
for representing known and novel classes, and propose an adaptive self-labeling strategy to generate pseudo-labels for
the novel classes. Our learning procedure alternates between pseudo-label generation, where we optimize Lu w.r.t Yu,
and minimizing an MSE loss, where we optimize Lu + Ls w.r.t w. This process is repeated until convergence (See
Sec.4.3 for details).

their sizes as Ks and Ku respectively. For long-tailed recognition, the numbers of training examples in
different classes are severely imbalanced. For simplicity of notation, we assume that the known and novel
classes are sorted by the cardinality of their training set in a descending order. Specifically, we denote the
number of training data for the known class i and the novel class j as Ni and Mj , accordingly, and we have
N1 > N2 · · · > NKs , M1 > M2 · · · > MKu . To measure the class imbalance, we define an imbalance ratio for
the known and novel classes, denoted as Rs = N1

NKs
and Ru = M1

MKu
, respectively, and Rs, Ru ≫ 1.

To tackle the NCD task for long-tailed recognition, we propose a novel adaptive self-labeling framework
capable of better learning both known and novel visual classes under severe class imbalance. Our framework
consists of three key ingredients that help alleviate the imbalance learning of known and novel classes: 1)
We introduce a classifier design based on equiangular prototypes for both known and novel classes, which
mitigates class bias due to its fixed parametrization; 2) For the novel classes, we develop a new adaptive
self-labeling loss, which formulates the class discovery as a relaxed Optimal Transport problem and can be
jointly optimized with the supervised loss of the known classes; 3) We design an efficient iterative learning
algorithm that alternates between generating soft pseudo-labels for the novel-class data and performing
representation learning. An overview of our framework is illustrated in Fig.1. In addition, we propose a
simple method to estimate the number of novel class in the imbalance scenario. The details of our method
will be introduced in Sec. 4.

4 Our Method

In this section, we first introduce our model architecture and class representations in Sec. 4.1, followed by
the design of learning losses in Sec. 4.2 and Sec. 4.3 for the known and novel classes, respectively. Then
we present our iterative self-labeling learning algorithm in Sec. 4.4. Finally, we provide the details of our
strategy for estimating the number of novel classes under class imbalance scenario in Sec. 4.5.

4.1 Model Architecture and Class Representation

We tackle the long-tailed NCD problem by learning a deep network classifier for both known and novel
classes. To this end, we adopt a generic design for the image classifier, consisting of an image encoder and
a classification head for known and novel classes. Given an input x, our encoder network, denoted as fθ,
computes a feature embedding z = fθ(x) ∈ RD×1, which is then fed into the classification head for class
prediction. Here we normalize the feature embedding such that ∥z∥2 = 1. While any image encoder can
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be potentially used in our framework, we adopt an unsupervised pre-trained ViT model (Dosovitskiy et al.,
2021) as our initial encoder in this work, which can extract a discriminative representation robust to the
imbalanced learning (Liu et al., 2022). We also share the encoder of known and novel classes to encourage
knowledge transfer between two class sets during model learning.

For the classification head, we consider a prototype-based class representation where each class i is repre-
sented by a unit vector pi ∈ RD×1. More specifically, we denote the class prototypes of the known classes
as Ps = [ps

1, · · · , ps
Ks ] and those of the novel classes as Pu = [pu

1 , · · · , pu
Ku ]. The entire class space is then

represented as P = [Ps, Pu] ∈ RD×(Ks+Ku). To perform classification, given a feature embedding z, we take
the class of its nearest neighbor in the class prototypes P as follows,

c∗ = arg min
i

∥z − Pi∥2, (1)

where Pi is the i-th column of P, and c∗ is the predicted class of the input x.

In the imbalanced class scenario, it is challenging to learn the prototypes from the data as they tend to
bias toward the majority classes, especially for the novel classes, where the classifier and representation are
learned without label information. While many calibration strategies have been developed for the long-tailed
problems in supervised learning (c.f. Sec. 2), they are not applicable to the imbalanced novel class discovery
task as the label distribution of novel classes is unknown.

To cope with imbalanced data in our NCD problem, our first design is to adopt a fixed parametrization for
the class prototypes. Specifically, we generalize the strategy proposed by Yang et al. (2022b) for imbalanced
supervised learning, and utilize the vertices of a simplex equiangular tight frame (ETF) as the prototype of
both known and novel classes. By combining this prototypical representation with our adaptive self-labeling
framework (Sec.4.3), our method is able to reduce the bias in learning for all the classes in a unified manner.
More concretely, we generate the prototype set P as follows:

P =
√

K

K − 1M(IK − 1
K

1K×K), (2)

where M is an arbitrary orthonormal matrix, IK is a K × K identity matrix, 1 denotes the all ones matrix
and K = Ks + Ku is the total number of class prototypes. The generated prototypes have unit l2 norm and
same pair-wise angle, which treats all the classes equally and help debias the classifier learning.

4.2 Loss for Known Classes

For the known classes, we simply use the Mean Square Error (MSE) loss, which minimizes the l2 distance
between the feature embedding of an input xs

i and the class prototype of its groundtruth label ys
i . Specifically,

we adopt the average MSE loss on the subset of known classes Ds as follows,

Ls(θ) = 1
N

N∑
i=1

∥zs
i − ps

ys
i
∥2 = − 1

N

N∑
i=1

2zs⊤
i ps

ys
i

+ C, (3)

where zs
i , ps

ys
i

is the feature embeddings and class prototypes, respectively, ys
i is the ground-truth label of

input xs
i , and C is a constant. It is worth noting that our design copes with the class imbalance in the

known classes by adopting the equiangular prototype and initializing the encoder based on an unsupervised
pre-trained network. This strategy is simple and effective (as shown in our experimental study)1, and can
be easily extended to discovering novel classes.

4.3 Adaptive Self-Labeling Loss for Novel Classes

We now present the loss function for discovering the novel classes in Du. Given an input xu
i , we introduce a

pseudo-label variable yu
i to indicate its (unknown) membership to the Ku classes and define a clustering loss

1While it is possible to integrate additional label balancing techniques, it is beyond the scope of this work.
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based on the Euclidean distance between its feature embedding zu
i and the class prototypes Pu as follows,

Lu(θ) = 1
M

M∑
i=1

∥zu
i − pu

yu
i
∥2 = − 1

M

M∑
i=1

2zu⊤
i pu

yu
i

+ C, (4)

where C is a constant as the feature and prototype vectors are normalized. Our goal is to jointly infer an
optimal membership assignment and learn a discriminative representation that better discovers novel classes.

Regularized Optimal Transport Formulation: Directly optimizing Lu is difficult, and a naive alter-
nating optimization strategy often suffers from poor local minima (Caron et al., 2018), especially under the
scenario of long-tailed class distribution. To tackle this, we reformulate the loss in Eq. 4 into a regularized
Optimal Transport (OT) problem, which enables us to design an adaptive self-labeling learning strategy that
iteratively generates high-quality pseudo-labels (or class memberships) and optimizes the feature represen-
tation jointly with the known classes. To this end, we introduce two relaxation techniques to convert the
Eq. 4 to an OT problem as detailed below.

First, we consider a soft label yu
i ∈ R1×Ku

+ to encode the class membership of the datum xu
i , where yu

i 1Ku =
1. Ignoring the constants in Lu, we can re-write the loss function in a vector form as follows,

min
Yu

Lu(Yu; θ) = min
Yu

− 1
M

M∑
i=1

⟨yu
i , zu⊤

i Pu⟩, s.t. yu
i 1Ku = 1 (5)

= min
Yu

⟨Yu, −Z⊤Pu⟩F , s.t. Yu1Ku = µ (6)

where ⟨, ⟩F represents the Frobenius product, Yu = 1
M [yu

1 , · · · , yu
M ] ∈ RM×Ku

+ is the pseudo-label matrix,
Z = [zu

1 , · · · , zu
M ] ∈ RD×M is the feature embedding matrix and µ = 1

M 1M . This soft label formulation is
more robust to the noisy learning (Lukasik et al., 2020) and hence will facilitate the model learning with
inferred pseudo-labels.

Second, inspired by (Asano et al., 2020), we introduce a constraint on the sizes of clusters to prevent
degenerate solutions. Formally, we denote the cluster size distribution as a probability vector ν ∈ RKu

+
and define the pseudo-label matrix constraint as Yu⊤1M = ν. Previous methods typically take an equal-
size assumption (Asano et al., 2020; Fini et al., 2021), where ν is a uniform distribution. While such an
assumption can partially alleviate the class bias by implicitly rebalancing the classes, it is often too restrictive
for an unknown long-tailed class distribution. In particular, our preliminary empirical results show that
it often forces the majority classes to be mis-clustered into minority classes, leading to noisy pseudo-label
estimation. To remedy this, we propose a second relaxation mechanism on the above constraint. Specifically,
we introduce an auxiliary variable w ∈ RKu

+ , which is dynamically inferred during learning and encodes a
proper constraint on the cluster-size distribution. More specifically, we formulate the loss into a regularized
OT problem as follows:

min
Yu,w

Lu(Yu, w; θ) = min
Yu,w

⟨Yu, −Z⊤Pu⟩F + γKL(w, ν), (7)

s.t. Yu ∈ {Yu ∈ RM×Ku

+ |Yu1Ku = µ, Yu⊤1M = w}, (8)

where γ is the balance factor to adjust the strength of KL constraint. When γ = inf, the KL constraint falls
back to equality constraints. Intuitively, our relaxed optimal transport formulation allows us to generate
better pseudo labels adaptively, which alleviates the learning bias of head classes by proper label smoothing.

Pseudo Label Generation: Based on the regularized OT formulation of the clustering loss Lu, we now
present the pseudo label generation process when the encoder network fθ is given. The generated pseudo
labels will be used as the supervision for the novel classes, which is combined with the loss of known classes
for updating the encoder network. We will defer the overall training strategy to Sec. 4.4 and first describe
the pseudo label generation algorithm below.

Eq. (7) and (8) minimize Lu w.r.t (Yu, w) with a fixed cost matrix −Z⊤Pu (as θ is given), which can
be solved by convex optimization techniques (Dvurechensky et al., 2018; Luo et al., 2023). However, they
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Algorithm 1: Sinkhorn-Knopp Based Pseudo Labeling Algorithm
Input: Matrix Y, marginal distribution µ, ν, hyper-parameters T, λ
Output: Y
Function Pseudo-Labeling(Y, µ, w):

Y← exp(Y/λ)
Y← Y/

∑
Y

α, β ← 1, 1
for t ∈ 1, 2, .., T do

α← µ./(Yβ), β ← w./(Y⊤α)
end
Y← diag(α)Ydiag(β)
return Y;

End Function

are typically computationally expensive in our scenario. Instead, we leverage the efficient Sinkhorn-Knopp
algorithm (Cuturi, 2013) and propose a bi-level optimization algorithm to solve the problem approximately.
Our approximate strategy consists of three main components as detailed below.

A. Alternating Optimization with Gradient Truncation: We adopt an alternating optimization strategy
with truncated back-propagation (Shaban et al., 2019) to minimize the loss Lu(Yu, w)2. Specifically, we
start from a fixed w (initialized by ν) and first minimize Lu(Yu, w) w.r.t Yu. As the KL constraint term
remains constant, the task turns into a standard optimal transport problem, which can be efficiently solved
by the Sinkhorn-Knopp Algorithm (Cuturi, 2013) as shown in Alg. 1. We truncate the iteration with a fixed
T , which allows us to express the generated Yu as a differentiable function of w, denoted as Yu(w). We
then optimize Lu(Yu(w), w) w.r.t w with simple gradient descent. The alternating optimization of Yu and
w takes several iterations to produce high-quality pseudo labels for the novel classes.

B. Parametric Cluster Size Constraint: Instead of representing the cluster size constraint w as a real-valued
vector, we adopt a parametric function form in this work, which significantly reduces the search space of the
optimization and typically leads to more stable optimization with better empirical results. Specifically, we
parametrize w as a function of parameter τ in the follow form:

wi = τ
−i

Ku−1 , i = 0, 1, ..., Ku − 1, (9)

where τ can be viewed as the imbalance factor. As our class sizes decrease in our setting, we replace τ with
a function form of 1+exp(τ) in practice, which is always larger than 1. Then we normalize wi by

∑Ku−1
i=0 wi

to make it a proper probability vector.

C. Mini-Batch Buffer: We typically generate pseudo labels in a mini-batch mode (c.f. Sec. 4.4), which
however results in unstable optimization of the OT problem. This is mainly caused by poor estimation of
the cost matrix due to insufficient data, especially in the long-tailed setting. To address this, we build a
mini-batch buffer to store J = 2048 history predictions (i.e., Z⊤Pu) and replay the buffer to augment the
batch-wise optimal transport computation. Empirically, we found that this mini-batch buffer significantly
improves the performance of the novel classes.

4.4 Joint Model Learning

Given the loss functions Ls and Lu, we now develop an iterative learning procedure for the entire model. As
our classifier prototypes are fixed, our joint model learning focuses on the representation learning, param-
eterized by the encoder network fθ. Specifically, given the datasets of known and novel classes, (Ds, Du),
we sample a mini-batch of known and novel classes data at each iteration, and perform the following two
steps: 1) For novel-class data, we generate their pseudo labels by optimizing the regularized OT-based loss,
as shown in Sec. 4.3; 2) Given the inferred pseudo labels for the novel-class data and the ground-truth labels
for the known classes, we perform gradient descent on a combined loss function as follows,

L(θ) = Ls(θ) + αLu(θ), (10)
2Note that we simplify Lu(Yu, w; θ) to Lu(Yu, w) as we do not optimize θ in pseudo label generation process.
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Algorithm 2: Adaptive Self-labeling Algorithm
Input: Ds,Du, encoder fθ, equiangular prototype P ∈ RD×(Ks+Ku),

initial mini-batch Buffer, w, µ = 1J×1, hyper-parameters B, L
for e ∈ 1, 2, .., Epoch do

for s ∈ 1, 2, ..., Step do
{(xs

i , ys
i )}B

i=1 ← Sample(Ds), {xu
i }

B
i=1 ← Sample(Du)

zs = fθ(xs), zu = fθ(xu)
//MSE loss for labeled data

Ls = 1
B

∑B

i=1 ||z
s
i −Pys

i
||2

yu = zu⊤Pu ∈ R1×Ku

Yu = Buffer([yu
1 ; yu

2 ..; yu
M ]) ∈ RJ×Ku

for l ∈ 1, 2, ..., L do
Yu = Pseudo-Labeling(Yu, µ, w)
w ≈ arg minw Lu(Yu(w), w)

end
//MSE loss for unlabeled data
Lu = ⟨Yu,−Z⊤Pu⟩F
minimize Ls + αLu w.r.t θ

end
end

where Ls and Lu are the losses for the known and novel classes respectively, and α is the weight to balance
the learning of known and novel classes. The above learning process minimizes the overall loss function over
the encoder parameters and pseudo labels in an alternative manner until converge. An overview of our entire
learning algorithm is illustrated in Alg.2.

4.5 Estimating the Number of Novel Classes

In the scenarios with unknown number of novel classes, we introduce a simple and effective strategy for
estimating the cardinality of the imbalanced novel class set, Ku. To achieve this, our method utilizes the
data clustering of the known classes to score and select the optimal Ku (Vaze et al., 2022). Specifically,
given a candidate Ku, we first perform a hierarchical clustering algorithm to cluster both known and novel
classes (Ds, Du) into Ku clusters. Next, we employ the Hungarian algorithm to find the optimal mapping
between the set of cluster indices and known class labels of data, and evaluate the clustering accuracy of the
known classes. To determine the best value for Ku, we repeat this process for a set of candidate sizes and
choose the setting with the highest accuracy of the known classes.

However, in imbalanced datasets, the average performance of known classes tends to be biased towards larger
classes, which results in underestimation of the number of unknown classes. To address this, we consider
the average accuracy over classes, which is less influenced by class imbalance, and design a mixed metric for
selecting the optimal value of Ku. Concretely, the mixed metric is defined as a weighted sum of the overall
accuracy of the known classes, denoted by Accs, and the average class accuracy of known classes, denoted
by Accc, as follows:

Acc = βAccs + (1 − β)Accc, (11)

where β is a weighting parameter and is set as 0.5 empirically. We employ the mixed metric to perform a
binary search for the optimal value of Ku. The detail algorithm is shown in Appendix A.

5 Experiments

5.1 Experimental Setup

Datasets We evaluate the performance of our method on four datasets, including long-tailed variants of
two image classification datasets, CIFAR100 (Krizhevsky et al., 2009) and ImageNet100 (Deng et al., 2009),
and two real-world medium/large-scale long-tailed image classification datasets, Herbarium19 (Tan et al.,
2019) and iNaturalist18 (Van Horn et al., 2018). For the iNaturalist18 dataset, we subsample 1000 and
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Table 1: The details of all the datasets for evaluation. The imbalance ratio of the known classes Rs is 50 for
CIFAR100-50-50 and ImageNet100-50-50, and Ru denotes the imbalance ratio of the novel classes.

Datasets CIFAR100-50-50 ImageNet100-50-50 Herbarium19 iNaturalist18-1K iNaturalist18-2K
Ru 50 100 50 100 UnKnown UnKnown UnKnown

Known Classes 50 50 50 50 342 500 1000
Known Data 6.4k 6.4k 16.5k 16.5k 17.8k 26.3k 52.7k
Novel Classes 50 50 50 50 342 500 1000
Novel Data 6.4k 5.5k 16.2k 14.0k 16.5k 26.4k 49.9k
Test set 10k 10k 5.0k 5.0k 2.8k 3.0k 6.0k

2000 classes from iNaturalist18 to create iNaturalist18-1K and iNaturalist18-2K, respectively, which allows
us to test our algorithm on a relatively large-scale benchmark with a practical computation budget. For
each dataset, we randomly divide all classes into 50% known classes and 50% novel classes. For CIFAR100
and ImageNet100, we create “long-tailed" variants of the known and novel classes by downsampling data
examples per class following the exponential profile in (Cui et al., 2019) with imbalance ratio R = N1

NK
. In

order to explore the performance of novel class discovery under different settings, we set the imbalance ratio
of known classes Rs as 50 and that of novel classes Ru as 50 and 100, which aim to mimic typical settings in
long-tailed image recognition tasks. For testing, we report the NCD performance on the official validation
sets of each dataset, except for CIFAR100, where we use its official test set. We note that those test sets
have uniform class distributions, with the exception of the Herbarium19 dataset, and encompass both known
and novel classes. The details of our datasets are shown in Tab. 1.

Metric To evaluate the performance of our model on each dataset, we calculate the average accuracy
over classes on the corresponding test set. We measure the clustering accuracy by comparing the hidden
ground-truth labels yi with the model predictions ŷi using the following strategy:

ClusterAcc = max
perm∈P

1
N

N∑
i=1

1(yi = perm(ŷi)), (12)

where P represents the set of all possible permutations of test data. To compute this metric, we use the
Hungarian algorithm (Kuhn, 1955) to find the optimal matching between the ground-truth and prediction.
We note that we perform the Hungarian matching for the data from all categories, and then measure the
classification accuracy on both the known and novel subsets. We also sort the categories according to their
sizes in a descending order and partition them into ‘Head’, ‘Medium’, ‘Tail’ subgroups with a ratio of 3: 4:
3 (in number of classes) for all datasets.

Implementation Details For a fair comparison, all the methods in evaluation use a ViT-B-16 backbone
network as the image encoder, which is pre-trained with DINO (Caron et al., 2021) in an unsupervised
manner. For our method, we train 50 epochs on CIFAR100 and ImageNet100, 70 epochs on Herbarium and
iNaturalist18. We use AdamW with momentum as the optimizer with linear warm-up and cosine annealing
(lrbase = 1e-3, lrmin = 1e-4, and weight decay 5e-4). We set α = 1, and select γ = 500 by validation. In
addition, we analyze the sensitivity of γ in Appendix C. For all the experiments, we set the batch size to
128 and the iteration step L to 10. For the Sinkhorn-Knopp algorithm, we adopt all the hyperparameters
from (Caron et al., 2020), e.g. niter = 3 and ϵ = 0.05. Implementation details of other methods can be
found in Appendix B.

5.2 Comparison with NCD Baselines

We first report a comparison of our method with two major NCD baselines (Autonovel and UNO) and
their variants on the benchmarks, CIFAR100 and ImageNet100 in Tab.2. In addition to the original NCD
algorithms, we also apply two long-tailed learning techniques to the baselines, which include logits adjustment
(LA), which adjusts the logits according to the estimated class distribution in the inference, and class
reweighting (cRT), which retrains the classifier with a class-balanced dataset. For CIFAR100, when Rs =

9
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Table 2: Long-tailed novel class discovery performance on CIFAR-100, ImageNet100. We report average class accuracy
on test datasets. Rs, Ru are the imbalance factors of known and novel classes respectively. “+LA" means post-
processing with logits-adjustment (Menon et al., 2020), “+cRT" means classifier retraining (Kang et al., 2020).

CIFAR100-50-50 ImageNet100-50-50
Rs = 50, Ru = 50 Rs = 50, Ru = 100 Rs = 50, Ru = 50 Rs = 50, Ru = 100

Method All Novel Known All Novel Known All Novel Known All Novel Known
Autonovel 44.42 22.28 66.56 44.04 22.12 65.96 67.50 47.96 87.04 63.86 40.88 86.84
Autonovel + LA 45.32 20.76 69.88 42.20 18.00 66.40 67.74 46.72 88.76 64.08 39.32 88.84
AutoNovel + cRT 47.20 26.48 67.92 41.94 22.62 61.26 67.76 49.88 85.64 63.90 42.40 85.40
UNO 50.82 34.10 67.54 49.50 31.24 67.76 65.30 43.08 87.52 62.52 37.84 87.20
UNO + LA 52.36 33.82 70.90 51.62 31.04 72.20 65.92 43.12 88.72 63.28 37.72 88.84
UNO + cRT 54.26 40.42 68.10 47.62 31.02 64.22 68.38 50.80 85.96 63.10 39.96 86.24
Ours 53.75 40.60 66.90 51.90 36.80 67.00 73.94 61.48 86.40 69.38 51.96 86.80

Table 3: Long-tailed novel class discovery performance on medium/large-scale Herbarium19 and iNaturalist18. Other
details are the same as Tab. 2.

Herbarium iNaturalist18-1K iNaturalist18-2K
Method All Novel Known All Novel Known All Novel Known

Autonovel 34.58 9.96 59.30 42.33 11.67 73.00 39.08 8.57 69.60
Autonovel + LA 32.54 8.60 56.56 42.40 11.27 73.53 44.67 14.33 75.00
AutoNovel + cRT 45.05 24.46 64.49 44.20 16.13 72.27 37.95 9.27 66.63
UNO 47.47 34.50 60.58 52.93 31.60 74.27 45.60 19.97 71.23
UNO + LA 46.76 27.96 65.69 46.63 24.33 74.60 46.63 20.33 72.93
UNO + cRT 46.47 33.13 59.95 51.73 32.60 70.87 46.47 24.90 68.03
Ours 49.21 36.93 61.63 58.87 45.47 72.27 49.57 34.13 65.00

Ru = 50, our method achieves competitive results compared to the two-stage training methods. As the
data become more imbalanced, i.e. Ru = 100, our method achieves 5.78% improvement on the novel class
accuracy. Here we note that our method does not exhibit a significant advantage due to the limited quality
of the representation computed from the low-resolution images. For ImageNet100, our method achieves
significant improvements in two different Ru settings, surpassing the previous SOTA method by 10.68%
and 9.56% respectively.

Furthermore, in Tab. 3, we show the results on two medium/large scale datasets. Specifically, on the
challenging fine-grained imbalanced Herbarium19 dataset, which contains 341 known classes, our method
achieves 2.43% improvement on the novel class accuracy compared to UNO. We also report the per-sample
average class accuracy in Appendix E, on which we achieve ∼ 10% improvement. On the more challenging
iNaturalist18 datasets, we observe a significant improvement (>10%) in the performance of novel classes
compared to the Herbarium19 dataset. In summary, our notable performance gains in multiple experimental
settings demonstrate that our method is effective for the challenging long-tailed NCD task.

5.3 NCD with Unknown Number of Novel Categories

To evaluate the effectiveness of our estimation method, we establish a baseline that uses the average accuracy
as the indicator to search for the optimal Ku value by hierarchical clustering. The details of the baseline
algorithm are shown in Appendix A. As shown in Tab.4, our proposed method significantly outperforms the
baseline on three datasets and various scenarios, indicating the superiority of our proposed mixed metric for
estimating the number of novel classes in imbalanced scenarios.

Furthermore, we conduct experiments on three datasets with estimated Ku. As Tab.5 shown, our method
achieves sizeable improvements on the novel and overall class accuracy, except in the case of CIFAR when
Ru = 50, which we achieve comparable results. On the CIFAR dataset, the existing methods outperform
our method on the known classes, especially when the LA or cRT techniques are integrated. As a result,
our method demonstrates only slight improvements or comparable results w.r.t the existing methods on the
overall accuracy. However, it is worth noting that when our method is combined with the LA technique, we
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Table 4: Estimation the number of novel categories. Rs is 50 for CIFAR100 and ImageNet100 datasets.

Method CIFAR100-50-50 ImageNet100-50-50 Herbarium
Ru = 50 Ru = 100 Ru = 50 Ru = 100 Unknown

GT 50 50 50 50 341
Baseline 0 10 7 14 2

Ours 20 29 59 59 153

Table 5: Experiments on three datasets when Ku is unknown.

CIFAR100-50-50 ImageNet100-50-50 Herbarium
Rs = 50, Ru = 50 Rs = 50, Ru = 100 Rs = 50, Ru = 50 Rs = 50, Ru = 100 Unknown

Method All Novel Known All Novel Known All Novel Known All Novel Known All Novel Known
AutoNovel 41.25 16.08 66.42 43.74 17.64 69.84 63.92 37.80 90.04 66.68 44.96 88.40 37.84 15.64 60.16
AutoNovel+LA 41.82 16.18 67.46 43.82 18.08 69.56 61.74 32.68 90.80 62.26 35.52 89.00 42.15 19.06 65.37
AutoNovel+cRT 45.81 19.50 72.12 43.44 18.18 68.70 62.83 37.96 87.68 52.44 16.68 88.20 40.95 18.86 63.16
UNO 47.67 28.92 66.42 46.56 25.92 67.20 67.96 48.48 87.44 64.16 41.24 87.08 40.83 23.55 58.24
UNO+LA 49.51 28.18 70.84 48.02 25.70 70.34 67.94 47.44 88.44 65.02 41.48 88.56 42.83 23.02 62.56
UNO+cRT 49.35 30.82 67.88 45.49 26.68 64.30 70.94 55.32 86.56 62.76 38.72 86.80 40.67 22.84 58.63
Ours 49.03 32.66 65.40 48.89 33.06 64.72 74.06 61.04 87.08 68.94 50.84 87.04 44.20 29.01 59.34
Ours+LA 49.64 32.46 66.82 49.87 33.12 66.62 74.38 61.48 87.28 71.08 54.92 87.24 45.74 29.55 61.90

achieve more favorable outcomes. On the ImageNet100 and Herbarium19 datasets, our method surpasses the
existing methods by a large margin. For example, on ImageNet100 dataset when Ru = 100, ours outperforms
the best baseline (AutoNovel) by 3.92% in overall accuracy and 5.88% in novel-class accuracy. Moreover,
when our method is equipped with LA, the performance is further improved, with an increase of 4.4% in
overall accuracy and 9.96% in novel-class accuracy.

It is important to note that the effect of estimated Ku differs based on its relationship with the ground truth
value. When the estimated Ku is lower than the ground truth value, such as CIFAR100 and Herbarium19,
the performance deteriorates compared to using the true Ku. This occurs because the estimated lower Ku

leads to the mixing of some classes, especially medium and tail classes, resulting in degraded performance.
When the estimated Ku is higher than the ground truth value, such as ImageNet100, using the estimated
Ku leads to better results for UNO and comparable results for Ours. For UNO which assume equally sized
distribution, larger Ku tend to assign the head classes to additional empty classes, reducing the noise caused
by the mixing of head classes with medium and tail classes, and thereby improving the accuracy of medium
and tail classes. By contrast, our method dynamically adjusts the allocation ratio for novel classes, effectively
suppressing the assignment of head classes to empty classes, which allows us to achieve comparable results.
A more detailed analysis of this phenomenon can be found in Appendix F.

5.4 Ablation Study

Component Analysis: Table 6 presents ablation results of our method’s components on ImageNet100.
The impact of each core component is analyzed individually, including equiangular prototype representation,
adaptive self-labeling, and the mini-batch buffer. As shown in the first and second rows of the Tab.6, the
addition of mini-batch buffer results in a 2% improvement compared to the baseline on novel class accuracy.
By comparing the second and third rows, notable improvements emerge in subgroup class accuracy, especially
for head classes. For instance, with Ru = 100, our method achieves 16.67% improvement on the head,
7.8% improvement on medium, 7.33% improvement on tail classes. This demonstrates that the equiangular
prototype representation helps alleviate the imbalance learning of novel classes. Comparing the third and
last row, we show that adopting adaptive self-labeling greatly improves the tail and head class accuracy.
For example, our method achieves 11.47% improvement on head, and 7.34% improvement on tail classes for
Ru = 50. Such results indicate that the uniform constraint on the distribution of clusters is not suitable for
imbalance clustering, as it tends to misclassify head classes samples as tail classes. And the reason for the
slightly worse performance for medium classes is that the uniform distribution constraint better approximates
the true medium class distribution. However, this constraint harms the performance of the head and tail,
resulting in a nearly 4% decrease in the novel class accuracy. In conclusion, the overall results validate the
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Table 6: Ablation on ImageNet100. “EP” and “ASL” stands for equiangular prototype and adaptive self-labeling.

Rs = 50, Ru = 50 Rs = 50, Ru = 100
Method Novel Head Medium Tail Novel Head Medium Tail

Baseline 43.08 44.93 49.20 33.07 37.84 49.73 43.10 18.93
+ Buffer 46.36 46.93 51.90 38.40 39.88 52.00 46.00 19.60
+ Buffer + EP 57.40 66.00 59.70 45.73 47.24 68.67 49.20 23.20
+ Buffer + EP + ASL 61.48 77.47 55.80 53.07 51.96 77.47 54.20 23.47

Table 7: The effects of different combinations of loss function and classifier. Results on ImageNet100, for Rs =
50, Ru = 50. cls is an abbreviation for classifier.

Method Novel Head Medium Tail
Learnable cls + CE loss 46.36 46.93 51.90 38.40
EP cls + CE loss 52.40 53.47 66.10 33.07
EP cls + MSE loss 57.40 66.00 59.70 45.73

Figure 2: t-SNE visualization of novel instances in ImageNet100 for features after the last transform block. The left
is the feature space using a learnable classifier, and the right is the feature space using equiangular prototype.

effectiveness of our proposed components, and especially the equiangular prototype and adaptive self-labeling
produce notable improvements.

Effect of Equiangular Prototype: In Sec.4, we utilize the MSE loss to minimize the distance between
sample and prototype. Here we delve into the impacts of various loss function and classifier combinations.
As Tab.7 shown, a learnable classifier with CE loss performs worse than EP cls + CE loss. This discrepancy
can be attributed to the tendency of the learned prototypes exhibiting bias towards head classes, ultimately
leading to less discriminative representations. What’s more, EP cls with MSE loss improve EP cls with CE
loss by a large margin, especially for head and tail classes. In the early learning stage, the representation is
relatively poor, and massive head class samples are allocated to tail classes because of uniform distribution
constraints. While the gradient of CE loss is larger than MSE loss, resulting in the EP + CE loss overfitting
to the noise pseudo-label quickly.

Moreover, to better understand the effect of the equiangular prototype for novel class clustering, we visualize
the feature space by t-SNE(Van der Maaten & Hinton, 2008) on the test set. As Fig.2 shown, the features
learned by the equiangular prototype are more tightly grouped with more evenly distributed interclass
distances. However, the learnable classifier setting results in several classes being entangled together.

Adaptive Self-labeling: In this part, we validate the effectiveness of our design on w. We set w as the
uniform and ground-truth distribution, and conduct corresponding experiments. Interestingly, as shown in
the first two rows of Tab.8, setting w as a uniform prior achieves better performance, especially on medium
and tail class. We speculate that the uniform constraint smooths the pseudo label of head class samples,
mitigating the bias learning of head classes, thus improving the results of medium and tail classes. In
addition, we also try two ways to learn w with a prior constraint of uniform distribution. One way is to
parameterize w as a real-valued vector, and the other is to use a parametric form as a function of τ . As
shown in the last two rows of Tab.8, we find that optimizing a k-dimensional w is unstable and prone to
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Table 8: The impact of different param-
eteric strategy of w. The first two rows
of w are fixed, and the last two rows rep-
resent the two parameterization ways of
w. Results on ImageNet100, for Rs =
50, Ru = 50.

Method Novel Head Medium Tail
w = Uniform 57.40 66.00 59.70 45.73
w = True Prior 42.40 64.53 46.90 14.27
w 55.64 69.73 59.80 31.87
w(τ) 61.48 77.47 55.80 53.07
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Figure 3: Analysis of w during training

assign overly large cluster sizes for some clusters. Therefore, optimizing w parametrized by a function of
parameter τ (As shown in Eq.9) seems to be more effective.

To provide more analysis on w, we visualize the learned imbalance factor and the head/medium/tail class
accuracy during the training process of the model. As Fig.3 shows, in the early stage, the head class accuracy
first increases quickly, indicating that the model bias to the head classes and their representations are better
learned. Correspondingly, the learned imbalance factor increases quickly, thus assigning more samples to
the head classes. Subsequently, the medium and tail class accuracy increase; meanwhile, the imbalance
factor decreases, resulting in the pseudo label process biasing to the medium and tail classes. Although the
imbalance factor changes only slightly during the learning, it improves novel class accuracy by a large margin
compared to the fixed uniform prior (the first row and last row in Tab.8).

6 Conclusion

In this paper, we present a real-world novel class discovery setting for visual recognition, where known and
novel classes have long-tailed distributions. To mitigate the impact of imbalance on learning all classes, we
have proposed a unified adaptive self-labeling framework, which introduces an equiangular prototype-based
class representation and an iterative pseudo-label generation strategy for visual class learning. In particular,
we formulate the pseudo-label generation step as a relaxed optimal transport problem and develop a bi-level
optimization algorithm to efficiently solve the problem. Moreover, we propose an effective method to estimate
the number of novel classes in the imbalanced scenario. Finally, we validate our method with extensive
experiments on two small-scale long-tailed datasets, CIFAR100 and ImageNet100, and two medium/large-
scale real-world datasets, Herbarium19 and iNaturalist18. Our framework achieves competitive or superior
performances, demonstrating its efficacy.

Acknowledgement

This work was supported by Shanghai Science and Technology Program 21010502700, Shanghai Frontiers Sci-
ence Center of Human-centered Artificial Intelligence and the MoE Key Laboratory of Intelligent Perception
and Human-Machine Collaboration (ShanghaiTech University).

References
Yuki M. Asano, Christian Rupprecht, and Andrea Vedaldi. Self-labelling via simultaneous clustering and

representation learning. In International Conference on Learning Representations (ICLR), 2020.

Kaidi Cao, Colin Wei, Adrien Gaidon, Nikos Arechiga, and Tengyu Ma. Learning imbalanced datasets with
label-distribution-aware margin loss. In Advances in Neural Information Processing Systems, 2019.

Mathilde Caron, Piotr Bojanowski, Armand Joulin, and Matthijs Douze. Deep clustering for unsupervised
learning of visual features. In Proceedings of the European conference on computer vision (ECCV), pp.
132–149, 2018.

13



Published in Transactions on Machine Learning Research (08/2023)

Mathilde Caron, Ishan Misra, Julien Mairal, Priya Goyal, Piotr Bojanowski, and Armand Joulin. Unsu-
pervised learning of visual features by contrasting cluster assignments. Advances in Neural Information
Processing Systems, 33:9912–9924, 2020.

Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien Mairal, Piotr Bojanowski, and Armand
Joulin. Emerging properties in self-supervised vision transformers. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pp. 9650–9660, 2021.

Yin Cui, Menglin Jia, Tsung-Yi Lin, Yang Song, and Serge Belongie. Class-balanced loss based on effec-
tive number of samples. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pp. 9268–9277, 2019.

Marco Cuturi. Sinkhorn distances: Lightspeed computation of optimal transport. Advances in neural
information processing systems, 26, 2013.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hierarchical
image database. In 2009 IEEE conference on computer vision and pattern recognition, pp. 248–255. Ieee,
2009.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Un-
terthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, and Neil
Houlsby. An image is worth 16x16 words: Transformers for image recognition at scale. ICLR, 2021.

Pavel Dvurechensky, Alexander Gasnikov, and Alexey Kroshnin. Computational optimal transport: Com-
plexity by accelerated gradient descent is better than by sinkhorn’s algorithm. In International conference
on machine learning, pp. 1367–1376. PMLR, 2018.

Enrico Fini, Enver Sangineto, Stéphane Lathuilière, Zhun Zhong, Moin Nabi, and Elisa Ricci. A unified
objective for novel class discovery. In Proceedings of the IEEE/CVF International Conference on Computer
Vision, pp. 9284–9292, 2021.

Peiyan Gu, Chuyu Zhang, Ruijie Xu, and Xuming He. Class-relation knowledge distillation for novel class
discovery. arXiv preprints, pp. arXiv–2307, 2023.

Hui Han, Wen-Yuan Wang, and Bing-Huan Mao. Borderline-smote: a new over-sampling method in im-
balanced data sets learning. In International conference on intelligent computing, pp. 878–887. Springer,
2005.

Kai Han, Andrea Vedaldi, and Andrew Zisserman. Learning to discover novel visual categories via deep
transfer clustering. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pp.
8401–8409, 2019.

Kai Han, Sylvestre-Alvise Rebuffi, Sebastien Ehrhardt, Andrea Vedaldi, and Andrew Zisserman. Autonovel:
Automatically discovering and learning novel visual categories. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 2021.

Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momentum contrast for unsupervised
visual representation learning. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pp. 9729–9738, 2020.

Yen-Chang Hsu, Zhaoyang Lv, and Zsolt Kira. Learning to cluster in order to transfer across domains and
tasks. In International Conference on Learning Representations, 2018a.

Yen-Chang Hsu, Zhaoyang Lv, Joel Schlosser, Phillip Odom, and Zsolt Kira. Multi-class classification
without multi-class labels. In International Conference on Learning Representations, 2018b.

Bingyi Kang, Saining Xie, Marcus Rohrbach, Zhicheng Yan, Albert Gordo, Jiashi Feng, and Yannis Kalan-
tidis. Decoupling representation and classifier for long-tailed recognition. In Eighth International Confer-
ence on Learning Representations (ICLR), 2020.

14



Published in Transactions on Machine Learning Research (08/2023)

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.

Harold W Kuhn. The hungarian method for the assignment problem. Naval research logistics quarterly, 2
(1-2):83–97, 1955.

Hong Liu, Jeff Z. HaoChen, Adrien Gaidon, and Tengyu Ma. Self-supervised learning is more ro-
bust to dataset imbalance. In International Conference on Learning Representations, 2022. URL
https://openreview.net/forum?id=4AZz9osqrar.

Michal Lukasik, Srinadh Bhojanapalli, Aditya Menon, and Sanjiv Kumar. Does label smoothing mitigate
label noise? In International Conference on Machine Learning, pp. 6448–6458. PMLR, 2020.

Yiling Luo, Yiling Xie, and Xiaoming Huo. Improved rate of first order algorithms for entropic optimal
transport. In International Conference on Artificial Intelligence and Statistics, pp. 2723–2750. PMLR,
2023.

Aditya Krishna Menon, Sadeep Jayasumana, Ankit Singh Rawat, Himanshu Jain, Andreas Veit, and Sanjiv
Kumar. Long-tail learning via logit adjustment. arXiv preprint arXiv:2007.07314, 2020.

Vardan Papyan, XY Han, and David L Donoho. Prevalence of neural collapse during the terminal phase of
deep learning training. Proceedings of the National Academy of Sciences, 117(40):24652–24663, 2020.

Amirreza Shaban, Ching-An Cheng, Nathan Hatch, and Byron Boots. Truncated back-propagation for
bilevel optimization. In The 22nd International Conference on Artificial Intelligence and Statistics, pp.
1723–1732. PMLR, 2019.

Kiat Chuan Tan, Yulong Liu, Barbara Ambrose, Melissa Tulig, and Serge Belongie. The herbarium challenge
2019 dataset. arXiv preprint arXiv:1906.05372, 2019.

Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of machine learning
research, 9(11), 2008.

Grant Van Horn, Oisin Mac Aodha, Yang Song, Yin Cui, Chen Sun, Alex Shepard, Hartwig Adam, Pietro
Perona, and Serge Belongie. The inaturalist species classification and detection dataset. In Proceedings of
the IEEE conference on computer vision and pattern recognition, pp. 8769–8778, 2018.

Sagar Vaze, Kai Han, Andrea Vedaldi, and Andrew Zisserman. Generalized category discovery. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7492–7501, 2022.

Zhenzhen Weng, Mehmet Giray Ogut, Shai Limonchik, and Serena Yeung. Unsupervised discovery of the
long-tail in instance segmentation using hierarchical self-supervision. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 2603–2612, 2021.

Muli Yang, Yuehua Zhu, Jiaping Yu, Aming Wu, and Cheng Deng. Divide and conquer: Compositional
experts for generalized novel class discovery. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 14268–14277, 2022a.

Yibo Yang, Liang Xie, Shixiang Chen, Xiangtai Li, Zhouchen Lin, and Dacheng Tao. Do we really need a
learnable classifier at the end of deep neural network? arXiv preprint arXiv:2203.09081, 2022b.

Songyang Zhang, Zeming Li, Shipeng Yan, Xuming He, and Jian Sun. Distribution alignment: A unified
framework for long-tail visual recognition. In Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition, pp. 2361–2370, 2021a.

Yifan Zhang, Bingyi Kang, Bryan Hooi, Shuicheng Yan, and Jiashi Feng. Deep long-tailed learning: A
survey. arXiv preprint arXiv:2110.04596, 2021b.

Zhun Zhong, Enrico Fini, Subhankar Roy, Zhiming Luo, Elisa Ricci, and Nicu Sebe. Neighborhood con-
trastive learning for novel class discovery. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 10867–10875, 2021a.

15

https://openreview.net/forum?id=4AZz9osqrar


Published in Transactions on Machine Learning Research (08/2023)

Zhun Zhong, Linchao Zhu, Zhiming Luo, Shaozi Li, Yi Yang, and Nicu Sebe. Openmix: Reviving known
knowledge for discovering novel visual categories in an open world. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 9462–9470, 2021b.

16



Published in Transactions on Machine Learning Research (08/2023)

A The algorithm of estimating the number of novel categories

We introduce a novel approach for estimating the number of unknown classes in imbalanced scenarios (Section
4.5). Our method leverages the clustering performance of the known classes dataset Ds as a means of
searching for the optimal value of Ku. The detailed algorithm for this estimation process is outlined in
Algorithm 3. In our method, we evaluate the performance using the mixed metric (Eqn. 11). In contrast,
the "Baseline" method utilizes the average accuracy of each sample as its evaluation metric, which tends to
bias to majority classes.

Algorithm 3: The algorithm of estimating the number of novel categories.
Input: Ds,Du, Ks, maximum Ku

max, evaluation metric eval, hierarchical clustering algorithm HC
Output: Ku

mid
Ku

high, Ku
med, Ku

low ← Ku
max, Ku

max//2, 0
Acchigh = eval(HC(Ds,Du, Ku

high + Ks),Ds)
Accmed = eval(HC(Ds,Du, Ku

med + Ks),Ds)
Acclow = eval(HC(Ds,Du, Ku

low + Ks),Ds)
while Ku

high > Ku
low do

if Acchigh > Acclow then
Ku

low ← Ku
med

Ku
med ← (Ku

high + Ku
low)//2

Acclow = Accmed

Accmed = eval(HC(Ds,Du, Ku
med + Ks),Ds)

end
else

Ku
high ← Ku

med

Ku
med ← (Ku

high + Ku
low)//2

Acchigh = Accmed

Accmed = eval(HC(Ds,Du, Ku
med + Ks),Ds)

end
end

B Implementation details

As there are currently no existing baselines for novel class discovery in an imbalanced setting, we have
implemented two typical NCD methods, AutoNovel (Han et al., 2021) and UNO (Fini et al., 2021). To
handle imbalanced learning, we have combined these NCD methods with two common approaches for long-
tailed problems: logit-adjustment (Menon et al., 2020) and decoupling the learning of representation and
classifier head (Kang et al., 2020).

We have used the same unsupervised pretrained model and only modified the training setup of AutoNovel
and UNO. Specifically, we trained AutoNovel for 200 epochs until convergence on all datasets, and the
training strategy for UNO is identical to ours, as described in the main paper.

For our implementation of logit-adjustment, we have set π = 1 following (Menon et al., 2020). If the
estimated number of pseudo-labels for a novel class is 0, we do not make any corrections to its logits. When
adding cRT (Kang et al., 2020), we first estimate the class distribution and use the same number of epochs
as in the first stage.

C Sensitive analysis of γ

The optimal value for the hyperparameter γ is selected by partitioning a subset of known classes as the
validation set. Additionally, to investigate the sensitivity of the hyperparameter gamma, we have presented
the change in novel class accuracy from gamma values of 100 to infinity in Figure 4. Our findings indicate
that when gamma is larger than 300, our adaptive self-labeling method outperforms the naive baseline.
However, the value selected using our validation set is not the optimal one.

17



Published in Transactions on Machine Learning Research (08/2023)

100 200 300 400 500 600 700 800 900 inf
γ

58

60

62

64

N
ov

el
A

cc
ur

ac
y

(%
)

Figure 4: The sensitive analysis of γ
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Figure 5: The confusion matrix of novel classes for typical NCD methods.

Table 9: The details analysis of typical NCD methods. Results on
ImageNet100, for Rs = 50, Ru = 50.

Method Novel Head Medium Tail
Autonovel 47.96 55.87 55.60 29.87
UNO 43.08 44.93 49.50 32.13
Ours 61.48 77.47 55.80 53.07

Table 10: The results of UNO on the balance
dataset.

Dataset All Novel Known
CIFAR100 74.55 65.40 83.70

ImageNet100 85.12 76.96 93.28

D Analysis of NCD method

aragraphNCD methods on Head/Medium/Tail classes: In Tab. 2 of the main manuscripts, we have presented
the results of NCD methods. To further analyze these methods, we have shown their performance on the
Head, Medium, and Tail classes in the novel class in Tab. 9. Our proposed method shows an improvement
of over 20% on both the Head and Tail classes, demonstrating its advantage.

Additionally, Autonovel performs worse on the Tail class due to the limited number of positive pair samples
for tail classes. In contrast, UNO performs worse in the Head classes because the head classes are misclassified
into Tail classes. This argument is supported by the confusion matrix shown in Fig. 5. Specifically, in the
case of Autonovel, several tail classes are merged into a single class due to poor representation. There are
too many samples on the right side of the confusion matrix for UNO, which denotes that the head classes
are being misclassified into tail classes.
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Figure 6: The distribution of herbarium19 dataset

NCD methods with class re-balancing techniques: We conclude that novel class discovery (NCD) for
long-tailed data is challenging, and existing methods have not been able to solve this problem. As shown in
Tab. 2 of the main paper and Tab.10, the novel class accuracy decreased by almost 30% on both CIFAR100
and ImageNet100 datasets.

To improve the performance of NCD in long-tailed scenarios, we have combined NCD with long-tail methods
(+LA, +cRT). We observe that the accuracy of known and novel classes improves when the distribution
estimation of novel classes is more accurate. Specifically, in CIFAR100, when Ru = 50, AutoNovel performs
poorly in estimating the distribution of novel classes due to the use of pairwise loss, which assigns similar
features the same pseudo label, making it difficult to learn distinctive representations for tail classes in
an imbalanced setting. This results in tail classes being mixed with head classes. When AutoNovel is
combined with long-tail methods, the novel classes decrease while UNO improves. When Ru = 100, the
severe imbalance of novel classes makes learning novel classes more difficult, resulting in a worse estimated
distribution. As a result, combining UNO with long-tail methods no longer has any effect.

On ImageNet, the estimated distribution of novel classes is more accurate, and both AutoNovel and UNO
have improved the accuracy of novel class. However, UNO’s accuracy of known classes slightly decreased
because novel classes and known classes are often confused. For Herbarium19, the actual distribution is
difficult to predict, so the achievement of LA and cRT is limited.

In conclusion, due to the noisy estimated distribution, naively combining NCD and long-tail methods cannot
effectively solve the long-tailed novel class discovery problem.

E More results on Herbarium19 dataset

Fig.6 presents the distribution of the Herbarium19 dataset. The dataset is composed of 683 classes, out
of which 178 categories have less than 20 samples, which presents a significant challenge when attempting
to cluster novel classes. Tab.11 shows the average accuracy over both class and instance. Our proposed
method outperforms the typical NCD methods by a considerable margin in both metrics, demonstrating the
effectiveness of our approach.

F More explanation about estimation the number of novel categories

In order to better analyze the experiment of estimating the number of novel categories under a higher Ku, we
visualize the novel class confusion matrices of UNO and Ours for known and unknown Ku with Rs = Ru = 50
in ImageNet100. The y-axis is groud-truth, and the x-axis is prediction.
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Table 11: Long-tailed novel class discovery performance on Herbarium19. We report average class and samples
accuracy on test datasets. The top three lines is the accuracy average over classes. The bottom three lines is the
accuracy average over samples.

Herbarium
Method All Novel Known

Autonovel 34.58 9.96 59.30
UNO 47.47 34.50 60.58
Ours 49.21 36.93 61.63
Autonovel 40.83 14.15 65.98
UNO 50.20 31.40 67.51
Ours 55.66 41.15 69.33

Figure 7: The confusion matrix of UNO for known and unknown Ku

UNO utilizes the Sinkhorn algorithm to generate pseudo labels, which enforces an equal distribution for each
class. This will result in splitting a head class into multiple subcategories, which may be mixed up with
the medium and tail classes, as illustrated by the green-bordered boxes in the left side image in Figure 7.
Due to the misclassification of the head class, this will introduce noise that affects the quality of prediction
for the medium and tail classes, as indicated by the red-bordered boxes in the left side image in Figure 7.
When Ku is larger than the true Ku, this problem can be alleviated because the head class is more likely
to be assigned to categories that do not match the ground truth, as shown by the purple-bordered boxes in
the right diagram. In this case, the noise in the pseudo labels for the medium class and tail class will be
reduced, thus improving the accuracy of medium and tail classes, as shown in the the red-bordered boxes in
the right side image in Figure 7.

According to the result analysis, we find that our method’s novel classes accuracy will not be significantly
affected when Ku is greater than the true value. Our method learns a long-tailed distribution based on
the training set data, dynamically adjusting the allocation ratio for novel classes. Compared to UNO, our
method can increase the weight of the head class, which can suppress the decomposition of head classes into
multiple subcategories. As a result, only a small number of categories are allocated to categories that do not
match the ground truth, as shown the purple-bordered boxes in the right side image in Figure 8.

G Without strong model on CIFAR and ImageNet

We conduct experiment on CIFAR100 and ImageNet100 datasets using a non-strong model. We first perform
unsupervised pre-training of the model on a long-tailed dataset using MoCoHe et al. (2020) on known classes.
Next, we conduct supervised training on the known classes data. Finally, we discover the novel classes by
jointly training on the known and novel classes.

The results in Tab.12 demonstrate that our method outperforms existing methods on the novel classes in both
CIFAR100 and ImageNet100 datasets, especially in the more challenging setting where Ru = 100. However,
on the CIFAR dataset, when equipped with the LA or cRT technique, the baseline method surpasses our
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Figure 8: The confusion matrix of Ours for known and unknown Ku

Table 12: The performance on CIFAR-100, ImageNet100 without strong model.

CIFAR100-50-50 ImageNet100-50-50
Rs = 50, Ru = 50 Rs = 50, Ru = 100 Rs = 50, Ru = 50 Rs = 50, Ru = 100

Method All Novel Known All Novel Known All Novel Known All Novel Known
AutoNovel 29.72 16.90 42.54 30.39 16.82 43.96 45.52 25.24 65.80 42.88 19.56 66.20
AutoNovel+LA 30.74 18.60 42.88 30.54 17.04 44.04 45.90 25.28 66.52 43.04 19.88 66.20
AutoNovel+cRT 30.72 18.38 43.06 29.35 16.20 42.50 46.84 27.20 66.48 42.78 21.20 64.36
UNO 33.80 27.04 40.56 33.05 24.64 41.46 43.52 26.88 60.16 42.00 24.88 59.12
UNO+LA 34.78 27.50 42.06 34.66 24.04 45.28 45.78 29.08 62.48 44.80 26.80 62.80
UNO+cRT 36.98 29.44 44.52 33.27 25.50 41.04 43.72 27.36 60.08 43.16 25.92 60.40
Ours 36.42 30.22 42.62 35.08 27.36 42.80 47.66 29.48 65.84 47.08 27.96 66.20
Ours+LA 37.51 30.72 44.30 35.84 27.50 44.18 48.90 29.28 68.52 48.04 27.80 68.28

method on the known classes, resulting in our method being slightly better or worse than existing methods
in overall accuracy. While on ImageNet100 datasets, our method surpasses the existing method by a sizeable
margin. Furthermore, when applying the LA technique to our method, our results consistently outperform
the existing methods in terms of the "All" and "Novel" metrics.

H Known data are balanced

We conduct the experiment when known classes are balanced on CIFAR100 and ImageNet100. The results in
Tab.13 show we achieve consistent and significant improvement on novel classes. For CIFAR100, our method
achieves large improvements in different Ru settings, surpasses the previous SOTA method by 5.74% and
6.20% in novel accuracy. For ImageNet100, we achieve a significant improvement over the previous SOTA
method by 13.68% and 14.48% in novel accuracy.

Table 13: Experiments on balanced known classes

CIFAR100-50-50 ImageNet100-50-50
Rs = 1, Ru = 50 Rs = 1, Ru = 100 Rs = 1, Ru = 50 Rs = 1, Ru = 100

Method All Novel Known All Novel Known All Novel Known All Novel Known
Autonovel 55.66 24.24 87.08 54.60 22.24 86.96 69.20 45.28 93.12 66.60 39.60 93.60
Autonovel + LA 56.20 24.80 87.70 55.11 22.46 87.76 69.00 44.72 93.28 66.54 39.48 93.60
AutoNovel + cRT 57.11 27.78 86.44 56.01 25.88 86.41 69.71 45.74 93.68 67.35 41.23 93.48
UNO 59.84 32.88 86.80 57.19 27.16 87.22 68.68 44.04 93.32 67.84 41.60 94.08
UNO + LA 59.87 32.92 86.82 58.07 28.90 87.24 68.82 44.28 93.36 68.00 41.60 94.40
UNO + cRT 60.35 34.38 86.32 57.74 28.46 87.02 69.74 45.88 93.60 67.66 40.88 94.44
Ours 63.19 40.12 86.26 60.55 35.10 86.00 76.50 59.56 93.44 74.86 56.08 93.64
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