
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

AdaSVD: ADAPTIVE SINGULAR VALUE DECOMPOSI-
TION FOR LARGE LANGUAGE MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Large language models (LLMs) have achieved remarkable success in natural lan-
guage processing (NLP) tasks, yet their substantial memory requirements present
significant challenges for deployment on resource-constrained devices. Singular
Value Decomposition (SVD) has emerged as a promising compression technique
for LLMs, offering considerable reductions in memory overhead. However, exist-
ing SVD-based methods often struggle to effectively mitigate the errors introduced
by SVD truncation, leading to a noticeable performance gap when compared to
the original models. Furthermore, applying a uniform compression ratio across all
transformer layers fails to account for the varying importance of different layers.
To address these challenges, we propose AdaSVD, an adaptive SVD-based LLM
compression approach. Specifically, AdaSVD introduces adaComp, which adap-
tively compensates for SVD truncation errors by alternately updating the singular
matrices U and V⊤. Additionally, AdaSVD introduces adaCR, which adaptively
assigns layer-specific compression ratios based on the relative importance of each
layer. Extensive experiments across multiple LLM/VLM families demonstrate
that AdaSVD consistently outperforms state-of-the-art (SOTA) SVD-based methods,
achieving superior performance with significantly reduced memory requirements.
We will release all the code and models of AdaSVD.

1 INTRODUCTION

40 45 50 55 60 65 70 75 80

Compression Ratio (%)
10

1

10
2

Pe
rp

le
xi

ty
 in

 lo
g 1

0
 S

ca
le

SVD
FWSVD
ASVD
SVDLLM
AdaSVD (ours)

10
4

10
5 Llama2-7B

Figure 1: Comparison between vanilla SVD,
FWSVD (Hsu et al., 2022a), ASVD (Yuan et al.,
2024), SVD-LLM (Wang et al., 2025), and our
AdaSVD on WikiText2.

Recently, large language models (LLMs)
based on the Transformer architec-
ture (Vaswani, 2017) have shown remarkable
potential across a wide range of natural
language processing (NLP) tasks. However,
their success is largely driven by their massive
scale, with models such as the LLaMA
family (Touvron et al., 2023a) and the Open
Pre-trained Transformer (OPT) series (Zhang
et al., 2022) containing up to 70B and 66B
parameters, respectively. The substantial
memory requirements of these models present
significant challenges for deploying them on
mobile devices. Consequently, the widespread
adoption of LLMs remains limited by their
immense resource demands (Wan et al., 2023;
Wang et al., 2024; Zhou et al., 2024).

Recent research on large language model (LLM) compression has explored various techniques,
including weight quantization (Lin et al., 2024; Frantar et al., 2023), network pruning (Sun et al.,
2024; Frantar & Alistarh, 2023), low-rank factorization (Wang et al., 2025; Zhang et al., 2024;
Yuan et al., 2024), and knowledge distillation (Zhong et al., 2024; Gu et al., 2024). Among these
methods, low-rank factorization using Singular Value Decomposition (SVD) (Hsu et al., 2022a; Yuan
et al., 2024; Wang et al., 2025) stands out as a powerful approach for reducing both model size and
computational cost. SVD achieves this by decomposing large weight matrices into smaller, low-rank
components while preserving model performance. Since LLMs are often memory-bound during

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

(a) Singular Value

Decomposition

& Truncation
(d) Alternating Update

SVD Trunc. update update ···

···

Loss Function
2

SVD || () ||k k F

 = −

Update Rules

() ()k A A A

 + += = 

(())()k k

  +=

Calibration Data



()k

 0
()k

 0
()k

 1 ()k

 2
()k

 2
()k

 
()k

 

 iterationsTruncation Results

(b) Stack-of-Batch Strategy

rand ()Shuffle=
_

rand

1

1
[] [(1) _ +i]

_

mini bsz

i

k k mini bsz
mini bsz =

 = − 

(c) Adaptive Compression Ratio

Mean Normalization
() () / mean(())n =

AdaComp Ratio () similarity(,)=

() () ()nmrr trr mrr= +  −

params of # params of
()

params of

k k
i

i

 +
=

Δ𝐸 = 0.590𝑚𝑎𝑥 − 0.344𝑚𝑖𝑛

= 0.246
Δ𝐸 = 0.276𝑚𝑎𝑥 − 0.114𝑚𝑖𝑛

= 0.162

Δ𝐸 = 0.521𝑚𝑎𝑥 − 0.137𝑚𝑖𝑛

= 0.384
Δ𝐸 = 0.550𝑚𝑎𝑥 − 0.196𝑚𝑖𝑛

= 0.354C
o

m
p

re
s
s
io

n
 R

a
ti

o

Layerwise Importance

Layer Index

N
o

rm
a
li

z
e
d

 (
R

e
la

ti
v
e
)

Im
p

o
rt

a
n

c
e

Avg. Importance

()k

 1

Figure 2: Overview of the proposed AdaSVD method: (a) SVD decomposition and truncation for
linear layer weights; (b) Stack-of-batch strategy for efficient use of calibration data under limited
GPU memory; (c) Adaptive compression ratio assignment (adaCR) based on layer-wise importance;
(d) Adaptive compensation (adaComp) through alternating updates of U and V⊤.

inference (Dao et al., 2022; Dao, 2024), SVD compression can effectively accelerate model inference
by reducing the memory requirements, even when applied solely to the weights. This approach
does not require specialized hardware or custom operators, unlike weight quantization, making SVD
more versatile across different platforms. Additionally, SVD is orthogonal to other compression
techniques (Wang et al., 2025), allowing it to be combined with methods like weight quantization or
network pruning for even greater efficiency.

Recent advancements in SVD-based LLM compression, including FWSVD (Hsu et al., 2022a),
ASVD (Yuan et al., 2024), and SVD-LLM (Wang et al., 2025), have significantly improved the
low-rank factorization approach, enhancing the overall effectiveness of SVD compression. For
example, FWSVD introduces Fisher information to prioritize the importance of parameters, while
ASVD accounts for the impact of activation distribution on compression error. SVD-LLM establishes
a relationship between singular values and compression loss through the data whitening techniques.
While these methods have led to notable improvements in SVD compression, they still face challenges
when applied at high compression ratios.

To bridge the performance gap between compressed and original models at both low and high
compression ratios, we revisit SOTA solutions for LLM compression using SVD decomposition. Our
analysis highlights two key observations: First, low-rank weight compensation after truncating the
smallest singular vectors has been largely overlooked or insufficiently explored in prior methods.
When truncating parts of the matrices U and V⊤, the remaining components should be adjusted
accordingly to minimize the SVD compression error. Second, previous methods typically apply a
uniform compression ratio across all the transformer layers, not taking into account their relative
importance. Thus, an importance-aware approach is needed to assign appropriate compression ratios.

To tackle the challenges outlined above, we propose AdaSVD, an adaptive SVD-based LLM compres-
sion method. First, AdaSVD proposes adaComp, an adaptive compensation technique designed to
adjust the weights of U and V⊤ after SVD truncation. By alternately updating the matrices U and V⊤,
adaComp effectively reduces compression errors in a stable and efficient manner. To optimize the
use of calibration data with limited GPU memory, we also introduce a stack-of-batch technique when
applying adaComp. Second, AdaSVD proposes adaCR, a method that assigns adaptive compression
ratios to different layers based on their importance. With fixed target compression ratio, this strategy
significantly improves performance compared to using a uniform compression ratio across all layers.

Our key contributions are summarized as follows:

• We propose adaComp, a novel adaptive compensation method for SVD truncation. By
alternately updating U and V⊤ and employing the stack-of-batch technique, we effectively
and stably minimize compression error.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Algorithm 1 Pseudocode of AdaSVD

1: Inputs: LLMM, Calib Data C, Bucket Size M , Target Retention Ratio trr, Min Retention
Ratio mrr, Update Iteration k

2: Outputs: Updated ModelM′ by AdaSVD
3: procedure AdaSVD(M, C, trr,mrr, k)
4: X ← GET CALIB(C) ▷ Randomly collect samples as calibration data
5: X ′[1],X ′[2], ...,X ′[M]← SOB(X ,M) ▷ Shuffle samples and utilize SOB strategy
6: SetS ← WHITENING(M,X ′), SetSVD ← ∅, SetW ←M
7: SetCR ← LAYER CR(M,X ′, trr,mrr) ▷ Measure layerwise importance
8: for layer i in language modelM do
9: Wi ← SetW(i), Si ← SetS(Wi) ▷ Extract the whitening matrix of current weightWi

10: Ui,Σi,Vi ← SVD(WiSi) ▷ Apply Singular Value Decomposition
11: Σ′ ← TRUNC(Σi), (U ′

i ,V ′
i)← TRUNC UV(U ,V,Σ′) ▷ Truncate with adaptive ratio

12: SetSVD ← (U ′
i ,V ′

i) ∪ SetSVD
13: end for
14: M′ ← ADA UPDATE(M,X ′, SETSVD, k) ▷ Alternate update U ′

i ,V ′
i for k iterations

15: returnM′

16: end procedure

• We propose adaCR, an adaptive compression ratio method that assigns layer-specific
compression ratios according to their relative importance in LLMs. This importance-aware
approach outperforms the previously used uniform compression ratio method.

• Extensive experiments on LLMs/VLMs demonstrate that our method, AdaSVD, significantly
outperforms the previous SVD-based LLM compression method, SVD-LLM, effectively
narrowing the performance gap between compressed and original models.

2 RELATED WORKS

2.1 LLM COMPRESSION TECHNIQUES

Recent advancements in model compression techniques have significantly enhanced the efficiency of
deploying LLMs while maintaining their performance. Widely explored approaches include weight
quantization (Frantar et al., 2023; Lin et al., 2024), network pruning (Frantar & Alistarh, 2023; Ma
et al., 2023; Yang et al., 2024; Gromov et al., 2025; Ashkboos et al., 2024), and hybrid methods (Dong
et al., 2025). In unstructured pruning, SparseGPT (Frantar & Alistarh, 2023) prunes weights based
on their importance, as determined by the Hessian matrix. However, it faces challenges in achieving
optimal speedup, particularly due to hardware compatibility issues. Structured pruning methods, in
contrast, are more hardware-friendly. LLM-Pruner (Ma et al., 2023) selectively removes non-critical
coupled structures using gradient information. LaCo (Yang et al., 2024) introduces a layer-wise
pruning strategy, where subsequent layers collapse into preceding ones. Gromov et al. (2025) explores
the effectiveness of basic layer-pruning techniques combined with parameter-efficient fine-tuning
(PEFT). Additionally, SliceGPT (Ashkboos et al., 2024) has pioneered post-training sparsification,
emphasizing the importance of layer removal order for optimal performance. Quantization techniques
offer another significant avenue for compression. GPTQ (Frantar et al., 2023) applies layer-wise
quantization and reduces quantization errors through second-order error compensation. AWQ (Lin
et al., 2024) introduces activation-aware weight quantization, employing a scale transformation
between weights and activations. Moreover, BiLLM (Huang et al., 2024) and ARB-LLM (Li et al.,
2025) achieve further compression to 1-bit while maintaining remarkable performance. However,
many of these compression techniques face challenges related to hardware compatibility, often
requiring custom CUDA kernels (Dong et al., 2025) to enable real-time inference speedup.

2.2 SVD-BASED LLM COMPRESSION

Singular Value Decomposition (SVD) is a widely used technique for reducing matrix size by approx-
imating a matrix with two smaller, low-rank matrices (Golub et al., 1987). Although SVD-based
methods have demonstrated potential in compressing LLMs, their full capabilities remain under-
explored. Standard SVD typically focuses on compressing the original weight matrix without
considering the significance of individual parameters, which can lead to considerable compression

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

errors. To address this, Hsu et al. (2022b) introduced FWSVD, which incorporates Fisher information
to weight the importance of parameters. However, this method requires complex gradient calculations,
making it resource-intensive. Another limitation of standard SVD is the impact of activation distribu-
tion on compression errors. To mitigate this, Yuan et al. (2024) proposed ASVD, which scales the
weight matrix with a diagonal matrix that accounts for the influence of input channels on the weights.
Subsequently, Wang et al. (2025) introduced SVD-LLM, which establishes a connection between
singular values and compression loss. This work demonstrates that truncating the smallest singular
values after data whitening effectively minimizes compression loss. Despite these advancements,
existing methods still exhibit significant accuracy loss at higher compression ratios and lack a com-
prehensive approach for compensating compressed weights after SVD truncation. Furthermore, most
methods apply a uniform compression ratio across all transformer layers, overlooking the varying
importance of them. AdaSVD seeks to address these limitations by an adaptive compensation method
(adaComp) and an importance-aware adaptive compression ratio method (adaCR), respectively.

3 METHOD

Overview. As illustrated in Figure 2, AdaSVD integrates adaptive compensation for SVD truncation
(adaComp) with an adaptive importance-aware compression ratio method (adaCR). In Section 3.1,
we first describe how adaComp compensates for SVD truncation. Then, in Section 3.2, we detail how
adaCR determines the compression ratio based on layer importance. The pseudocode of AdaSVD is
shown in Algorithm 1, and pseudocodes of adaComp and adaCR are provided in supplementary file.

3.1 ADAPTIVE COMPENSATION FOR SVD TRUNCATION

up
da

te
 e

rro
r

up
da

te
 e

rro
r

up
da

te
 e

rro
r

up
da

te
 e

rro
r

update step update step

update step update step

(a) Naive Update v.s. Moore-Penrose Pseudoinverse Update

(b) Naive Calibration v.s. Stack-of-batch Calibration

NU
MPPU

NU
MPPU

NC
SobC

NC
SobC

Fr
eq

ue
nc

y

Value

 (c) Before v.s. After Adaptive Compensation

�������� = 0.9504

Value

�������� = 0.9980

15 iterations alternate update

��
����
�������

��
����
�������

Figure 3: Adaptive compensation for SVD truncation
(adaComp). (a) Comparison between naive (NU)
and Moore-Penrose pseudoinverse update (MPPU).
(b) Comparison between naive (NC) and stack-of-
batch calibration strategy (SobC). (c) Distribution
comparison before and after applying adaComp.

SVD compression first applies SVD decom-
position for matrixW , and then truncates the
smallest singular values:

W = UΣV⊤ ≈ UkΣkV⊤
k = Ŵ, (1)

where Σk indicates the retaining top-k largest
singular values, Uk and V⊤

k represent the cor-
responding retaining singular vectors. More-
over, the diagonal matrix Σk can be further
absorbed into Uk and V⊤

k by

Uσ
k = UkΣ

1
2

k , V
σ
k = VkΣ

1
2

k , (2)

Ŵ = UkΣkV⊤
k = Uσ

k (Vσ
k)

⊤. (3)
The truncation of the smallest singular values
minimizes the compression error with respect
to W , ensuring that ||Uσ

k (Vσ
k)

⊤ − W||2F is
minimized, which we refer to as the vanilla
SVD method. However, this approach does
not fully account for the practical effects of
X . To address this limitation, we introduce a
more application-relevant metric for the SVD
compression error, defined as follows:

LSVD = ||ŴX −WX||2F
= ||Uσ

k (Vσ
k)

⊤X −WX||2F . (4)
Previous works (Hsu et al., 2022b; Yuan et al.,
2024; Wang et al., 2025) have made significant
efforts to minimize LSVD. However, some of
them involve complex and time-consuming
preprocessing steps. Furthermore, they still face substantial challenges in effectively mitigating large
errors that arise under high compression ratios, particularly when truncating 60% or more parameters.

To compensate for the error attributed to SVD truncation, we need to optimize the following objective:
Uσ
k ,Vσ

k
⊤ = arg min

Uσ
k ,Vσ

k
⊤
∥Uσ

k Vσ
k
⊤X −WX∥2F . (5)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

max/min=8.25

Layer Index

N
o

rm
a

liz
e

d
 (

R
e

la
ti
v
e

)
Im

p
o
rt

a
n
c
e

Vicuna-7B

Avg. Importance

𝜂 =
max Imp.

min Imp.
=
3.293

0.399
= 8.255 max/min=386.34

Layer Index

OPT-6.7B

Avg. Importance

𝜂 =
max Imp.

min Imp.
=
16.754

0.043
= 386.345

max/min=275.39

Layer Index

OPT-2.7B

Avg. Importance

𝜂 =
max Imp.

min Imp.
=
18.072

0.066
= 275.394max/min=112.20

Layer Index

OPT-1.3B

Avg. Importance

𝜂 =
max Imp.

min Imp.
=
13.412

0.120
= 112.199

max/min=15.83

Layer Index

Llama-13B

Avg. Importance

𝜂 =
max Imp.

min Imp.
=
4.089

0.258
= 15.828max/min=14.41

Layer Index

N
o

rm
a

liz
e

d
 (

R
e

la
ti
v
e

)
Im

p
o
rt

a
n
c
e Llama-7B

Avg. Importance

𝜂 =
max Imp.

min Imp.
=
4.406

0.306
= 14.414 max/min=8.91

Layer Index

Llama3-8B

Avg. Importance

𝜂 =
max Imp.

min Imp.
=
2.840

0.319
= 8.906max/min=9.49

Layer Index

Llama2-7B

Avg. Importance

𝜂 =
max Imp.

min Imp.
=
3.320

0.350
= 9.495

Figure 4: Layer-wise relative importance of different LLMs. The importance across different layers
varies significantly, and the first layer always weight most importance. More layer-wise importance
visualization can be found in the supplementary file.

A straightforward approach is to compute the partial derivatives of the SVD compression objective
with respect to Uσ

k and Vσ
k
⊤, resulting in the following expressions (additional details can be found

in the supplementary file):
∂LSVD

∂Uσ
k

= 0 =⇒ Uσ
k =WXX⊤Vσ

k ((Vσ
k)

⊤XX⊤Vσ
k)

−1, (6)

∂LSVD

∂Vσ
k
⊤ = 0 =⇒ Vσ

k
⊤ = ((Uσ

k)
⊤Uσ

k)
−1(Uσ

k)
⊤W. (7)

However, this method involves computing the matrix inverse, which can lead to unstable updates and
significant compression errors, as shown in Figure 3 (a). To mitigate the issue of numerical instability,
we propose a two-fold strategy to enhance the update quality of Uσ

k and Vσ
k
⊤.

First, the optimization objective for Uσ
k is reformulated as a Least Squares Estimation (LSE) problem,

where Vσ
k
⊤X is treated as the input andWX as the output:

Uσ
k = argmin

Uσ
k

∥A(Uσ
k)

⊤ − B∥2F , (8)

where A = X⊤Vσ
k and B = (WX)⊤. Since A is typically not a square matrix and may not be full

rank, we first apply SVD to A to enhance numerical stability:
A = UAΣAV⊤

A , (9)
and then obtain the solution for Uσ

k by using the Moore-Penrose pseudoinverse (Penrose, 1955) of A:
Uσ
k = (A+B)⊤ = (VAΣ+

AU
⊤
AB)⊤, (10)

where Σ+
A denotes the Moore-Penrose pseudoinverse of ΣA:

ΣA = diag(σ1, σ2, . . . , σn), (11)

Σ+
A = diag

(
σ−1
1 1σ1 ̸=0, σ

−1
2 1σ2 ̸=0, . . . , σ

−1
n 1σn ̸=0

)
. (12)

Similarly, we update Vσ
k
⊤ by the Moore-Penrose pseudoinverse of Uσ

k to handle numerical instability:

Vσ
k
⊤ = argmin

Vσ
k

⊤
∥Uσ

k Vσ
k
⊤X −WX∥2F =

(
(Uσ

k)
+
)⊤
W. (13)

As shown in Figure 3 (a), by reformulating the optimization objective as an LSE problem and solving
for U and V⊤ using the Moore-Penrose pseudoinverse, we achieve a smooth curve that consistently
reduces compression error stably.

Second, since the update rule incorporates the calibration data X , ideally, a large volume of X would
yield better results. However, during our experiments, we found that extending X to just 32 samples
on an 80GB GPU is challenging. To address this, we propose a stack-of-batch strategy that enables
the utilization of more calibration data without increasing memory overhead. Specifically, given N
calibration samples and a bucket size M (the maximum number of samples that can fit within the

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Table 1: Zero-shot performance comparison of LLaMA2-7B between AdaSVD and previous SVD
compressed methods under 40% to 60% compression ratios. Evaluation on three language modeling
datasets (measured by perplexity (↓)) and five common sense reasoning datasets (measured by both
individual and average accuracy (↑)) demonstrate the effectiveness of AdaSVD.

RATIO METHOD WikiText-2↓ PTB↓ C4↓ Mmlu ARC e WinoG. HellaS. PIQA Average↑
0% Original 5.68 8.35 7.34 45.30 74.62 69.22 76.00 79.11 68.85

40%

SVD 39,661.03 69,493.00 56,954.00 26.51 26.39 48.62 25.64 52.99 36.03
FWSVD 8,060.35 9,684.10 7,955.21 25.74 26.05 50.20 25.70 52.39 36.01
ASVD 1,609.32 7,319.49 1,271.85 24.35 26.81 49.49 25.83 53.81 36.06

SVD-LLM 16.11 719.44 61.95 22.97 36.99 56.04 30.49 56.96 40.69

AdaSVD 14.76 (↓8%) 304.62 (↓58%) 56.98 (↓8%) 23.63 41.12 58.17 31.75 58.49 42.63

50%

SVD 53,999.48 39,207.00 58,558.00 25.43 25.80 47.36 25.55 52.67 35.36
FWSVD 8,173.21 8,615.71 8,024.67 24.83 25.84 48.70 25.64 52.83 35.57
ASVD 6,977.57 15,539.44 4,785.15 24.52 25.13 49.17 25.48 52.94 35.45

SVD-LLM 27.19 1,772.91 129.66 23.44 31.65 51.14 28.38 54.57 37.83

AdaSVD 25.58 (↓6%) 593.14 (↓67%) 113.84 (↓12%) 23.24 34.18 54.06 28.88 55.50 39.17

60%

SVD 65,186.67 79,164.00 70,381.00 22.94 24.49 51.85 25.40 53.16 35.57
FWSVD 27,213.30 24,962.80 47,284.87 26.91 25.38 48.46 25.61 51.96 35.66
ASVD 10,003.57 15,530.19 9,983.83 26.89 26.68 48.86 25.76 51.80 36.00

SVD-LLM 89.90 2,052.89 561.00 22.88 26.73 47.43 26.89 53.48 35.48

AdaSVD 50.33 (↓44%) 1,216.95 (↓41%) 239.18 (↓57%) 24.69 28.20 51.22 27.36 52.83 36.87

fixed GPU memory), we randomly sample mini bsz = ⌈NM ⌉ samples into one bucket by taking their
mean value as follows:

Xrand = Shuffle(X), (14)

X ′[k] =
1

mini bsz

mini bsz∑
i=1

Xrand[(k − 1) ·mini bsz + i], (15)

where k = 1, 2, . . . ,M , and cardinality |X ′| = M . As shown in Figure 3 (b), integrating the
stack-of-batch strategy further reduces the compression error.

As shown in Figure 2, to compensate for the error attributed to SVD truncation, we propose an
adaptive method to subsequently update Uσ

k and Vσ
k with the above update rules. Moreover, the

adaptation of Uσ
k and Vσ

k can be alternatively applied until convergence, where the update sequence
over τ iterations can be expressed as

(Uσ
k)

1 → (Vσ
k
⊤)1 → (Uσ

k)
2 → (Vσ

k
⊤)2 → · · · → (Uσ

k)
τ → (Vσ

k
⊤)τ , (16)

where (Uσ
k)

τ and (Vσ
k
⊤)τ denote the updated singular matrices after τ -th iteration, respectively,

while the region bounded by corresponding to one iteration of alternative update. As shown
in Figure 3 (c), the gap between the outputs of the compressed and original models narrows after
alternative updates. The overlapping area rapidly increases after just a few iterations. More visual
comparisons are shown in the supplementary file.

Notably, our adaptive compensation can be integrated with data whitening proposed by Wang et al.
(2025) and Liu et al. (2024), further reducing the SVD truncation error.

3.2 ADAPTIVE SVD COMPRESSION RATIO

Previous studies on SVD compression typically apply a uniform compression ratio across all trans-
former layers of LLMs, overlooking the varying importance of different layers. Inspired by Men
et al. (2024) and Dumitru et al. (2024), we propose adaCR, which adaptively determines the SVD
compression ratio for each transformer layer, considering each layer’s distinct impact on activations.

The importance ofW can be measured by its impact on the input, which is quantified as the similarity
between the input X and the output Y after passing throughW .

Y =WX , I(W) = similarity(X ,Y), (17)
where I(W) denotes the layer-wise importance ofW . The similarity metric used can vary, and for
simplicity, we adopt cosine similarity in our method.

Then, we normalize I(W) through mean centering to obtain the relative importance ofW:
In(W) = I(W)/mean(I(W)). (18)

After mean normalization, the average importance is 1. A value of In(W) greater than 1 indicates
greater importance, while a value lower than 1 indicates lesser importance. The compression ratio of

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

SVD: a man standing on one side of the road and
another man sitting on the other side. In this book,
it'ans was written by an author who wrote ...

SVD-LLM: Assistants - Asassistant - assasat - as -
sasasm - saasam \u2013 Sasmas \u2013 Saas...

AdaSVD: The vehicle is a motorcycle, which is an
automobile that is used for transportation. ...

SVD: it's a man ... and he has been injured by
an injury that he was not able to play at 20 ...
SVD-LLM: a man who was seen to be an outsider,
and he was not able to play at all, but he played
with his right hand, which was broken, ...
AdaSVD: It's a person playing tennis on court,
and he is wearing white shorts. ... playing his
tennis with a tennis racket, ...

SVD: In this book, it's written by ... John an author
of his own books and he is known for his writing ...

SVD-LLM: What'stans was an old name, used by
a group of people who were on their way to city...

AdaSVD: It's a photo of children standing
together, wearing uniforms... They are sitting on
their kneels, it is an old photograph that ...

SVD: ... The mountains are covered with snow, ...
difficult for them to climb ... not able to walk
through the snow ... trapped in snow holes

SVD-LLM: ... walking on snowy mountains, snow
 falls down from top of the mountain to bottom ...
AdaSVD: The mountain is covered by snow, ... a
group of people skiing and walking on slopes.

Figure 5: We perform image captioning by applying SVD, SVD-LLM (Wang et al., 2025), and
AdaSVD to LLaVA-7B on COCO dataset, highlighting correct and wrong captions in different colors.

each layer will be adaptively adjusted based on the relative importance:
CR(W) = mrr + In(W) · (trr −mrr), (19)

where mrr and trr are the minimum and target retention ratios, respectively. Notably, CR(W) =
mrr when In(W) = 0, and CR(W) = trr when In(W) = 1.

Given the compression ratio for the i-th layer by adaCR, we truncate the vectors of least singular
values from both Uσ

k and Vσ
k
⊤ so that

CR(Wi) =
#params of Uσ

k +#params of Vσ
k
⊤

#params ofWi
. (20)

As shown in Figure 4, the importance of different layers varies. It can be observed that the first layer
always weighs the most importance, suggesting that we should retain more weight on it. For the
Llama family, the relative importance curve approximates a bowl shape, highlighting the significance
of both the initial and final layers.

4 EXPERIMENTS

4.1 SETUP

We compare AdaSVD with vanilla SVD and SOTA SVD-based LLM compression methods
FWSVD (Hsu et al., 2022b), ASVD (Yuan et al., 2024), and SVD-LLM (Wang et al., 2025).

Table 2: Perplexity (↓) of four different LLMs – OPT-6.7B,
LLaMA 2-7B, Mistral-7B, and Vicuna-7B – under 60% com-
pression ratio on WikiText-2, where AdaSVD shows consis-
tent improvements.

METHOD OPT-6.7B LLaMA2-7B Mistral-7B Vicuna-7B

SVD 18,607.24 65,186.67 30,378.35 78,704.50
FWSVD 8,569.56 27,213.30 5,481.24 8,185.66
ASVD 10,326.48 10,003.57 22,705.51 20,241.17

SVD-LLM 92.10 89.90 72.17 64.06

AdaSVD 86.64 (↓6%) 50.33 (↓44%) 67.22 (↓7%) 56.97 (↓11%)

Models and Datasets. To demon-
strate the generalizability of our
method, we evaluate the performance
of AdaSVD and the baselines on four
models from three different LLM fam-
ilies, including LLaMA2-7B (Tou-
vron et al., 2023b), OPT-6.7B (Zhang
et al., 2022), Mistral-7B (Jiang et al.,
2023), and Vicuna-7B (Chiang et al.,
2023). We benchmark on eight
datasets, including three language
modeling datasets (WikiText-2 (Merity et al., 2017), PTB (Marcus et al., 1993), and C4 (Raffel
et al., 2020)) and five common-sense reasoning datasets (WinoGrande (Sakaguchi et al., 2019),
HellaSwag (Zellers et al., 2019), PIQA (Bisk et al., 2020), ARC-e (Clark et al., 2018), and
Mmlu (Hendrycks et al., 2021)). We use the LM-Evaluation-Harness framework (Gao et al., 2023) to
evaluate the model performance on these zero-shot Question-Answering (QA) datasets.

Implementation Details. To ensure a fair comparison, we followed ASVD (Yuan et al., 2024)
and SVD-LLM (Wang et al., 2025) to randomly select 256 samples from WikiText-2 as the cali-
bration data and conduct data whitening before SVD truncation. All experiments are conducted by
PyTorch (Paszke et al., 2019) on a single NVIDIA A100-80GB GPU.

4.2 MAIN RESULTS

We evaluate the overall performance of AdaSVD from three aspects: (1) performance under different
compression ratios (40%, 50%, 60%, 70%, and 80%), (2) performance on different LLMs. (3) per-

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 3: Perplexity of SVD-compressed LLaMA2-7B, with best results highlighted in .
(a) Effectiveness of Adaptive Compensation

Method Tgt. CR adaComp WikiText2 ↓ C4 ↓
SVD-LLM 40% ✗ 16.11 61.95
AdaSVD 40% ✗ 15.47 66.29
AdaSVD 40% ✓ 14.76 56.98

SVD-LLM 50% ✗ 27.19 129.66
AdaSVD 50% ✗ 30.00 166.02
AdaSVD 50% ✓ 25.58 113.84

SVD-LLM 60% ✗ 89.90 561.00
AdaSVD 60% ✗ 78.82 339.31
AdaSVD 60% ✓ 50.33 239.18

(b) Effectiveness of Adaptive Compression Ratio

Method Tgt. CR CR WikiText2 ↓ C4 ↓
SVD-LLM 40% Const 16.11 61.95
AdaSVD 40% Const 15.38 60.43
AdaSVD 40% Adapt 14.76 56.98

SVD-LLM 50% Const 27.19 129.66
AdaSVD 50% Const 27.33 126.85
AdaSVD 50% Adapt 25.58 113.84

SVD-LLM 60% Const 89.90 561.00
AdaSVD 60% Const 69.46 336.90
AdaSVD 60% Adapt 50.33 239.18

(c) Iteration Number for Adaptive Compression

Method Tgt. CR #Iter WikiText2 ↓ C4 ↓
SVD-LLM 40% - 16.11 61.95
AdaSVD 40% 1 14.76 56.98
AdaSVD 40% 3 15.47 57.28
AdaSVD 40% 15 15.84 57.39

SVD-LLM 50% - 27.19 129.66
AdaSVD 50% 1 25.58 113.84
AdaSVD 50% 3 27.11 115.51
AdaSVD 50% 15 27.45 110.35

SVD-LLM 60% - 89.90 561.00
AdaSVD 60% 1 50.33 239.18
AdaSVD 60% 3 64.12 301.19
AdaSVD 60% 15 62.34 267.29

(d) Minimum Retention Ratio for Adaptive CR

Method Tgt. CR MRR WikiText2 ↓ C4 ↓
SVD-LLM 40% - 16.11 61.95
AdaSVD 40% 0.40 15.01 57.17
AdaSVD 40% 0.45 14.85 57.08
AdaSVD 40% 0.50 14.76 56.98

SVD-LLM 50% - 27.19 129.66
AdaSVD 50% 0.40 25.58 113.84
AdaSVD 50% 0.45 26.01 117.58
AdaSVD 50% 0.50 27.33 126.85

SVD-LLM 60% - 89.90 561.00
AdaSVD 60% 0.30 50.33 239.18
AdaSVD 60% 0.35 53.17 256.66
AdaSVD 60% 0.40 60.08 294.26

formance on VLMs. Some performance evaluation results and generated contents by the compressed
LLMs are included in the supplementary file to provide a more straightforward comparison.

Performance under Different Compression Ratios. First, we evaluate the performance of
LLaMA2-7B compressed by vanilla SVD, SVD-LLM (Wang et al., 2025), and AdaSVD under com-
pression ratios ranging from 40% to 80% on all 8 datasets in Table 1. On the three language modeling
datasets, AdaSVD consistently outperforms SVD and SVD-LLM in all compression ratios. More
importantly, AdaSVD exhibits significant advantages over the baselines under higher compression
ratios. These results indicate that AdaSVD is more effective in compressing LLMs for more resource-
constrained devices such as smartphones and IoT devices. On the five common sense reasoning
datasets, AdaSVD also maintains its edge and performs better than the best-performing baseline on
most of the datasets and consistently achieves higher average accuracy across all compression ratios.
The results of 70% and 80% compression ratios are provided in supplementary file.

Performance on Different LLMs. To demonstrate the generability of AdaSVD across different
LLMs, we compare AdaSVD and the baselines on four different models OPT-6.7B, LLaMA2-7B,
Vicuna-7B, and Mistral-7B – under 60% compression ratio on WikiText-2. As shown in Table 2,
AdaSVD consistently outperforms vanilla SVD, FWSVD, ASVD and SVD-LLM on all LLMs, and
exhibits more stable performance across different LLMs, especially compared to vanilla SVD and
FWSVD. We reproduce FWSVD, ASVD, and SVD-LLM using their official GitHub repositories.
FWSVD and ASVD fail on these LLMs with compression ratios under 60%, whereas SVD-LLM and
AdaSVD maintain reasonable perplexity in such cases.

Performance on Visual Language Models. Note that our AdaSVD can also be applied to visual
language models (VLMs) like LLaVA (Liu et al., 2023). Following Lin et al. (2024), we apply
SVD compression to the language part of the VLMs since it dominates the model size. As shown
in Figure 5, AdaSVD shows better image captioning results than vanilla SVD and SVD-LLM on
COCO dataset (Chen et al., 2015) under 40% compression ratio. More image captioning comparisons
with various compression ratios can be found in supplementary file.

4.3 ABLATION STUDY

We conduct extensive ablation studies in Table 3 to show the effect of key components in our work.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Effectiveness of Adaptive Compensation. To validate the effectiveness of the proposed ada-
Comp, we compare the PPL results of Llama2-7B with and without adaComp on Wikitest-2 and C4
datasets in Table 3a. Results of 70% and 80% compression ratios can be found in the supplementary
file. It can be observed that AdaSVD consistently outperforms SVD-LLM after applying adaComp,
and the performance gap is more significant under high compression ratios.

Iteration Number. To investigate the impact of the number of adaComp iterations under different
compression ratios, we perform an ablation study with 1, 3, and 15 iterations in Table 3c. The results
of 70% and 80% compression ratios are provided in supplementary file. Under lower compression
ratios, it is observed that just 1 iteration of adaComp already outperforms SVD-LLM. However,
increasing the number of iterations may lead to overfitting due to the limited calibration data, resulting
in a performance drop. In contrast, under higher compression ratios, additional iterations lead to
performance improvements, indicating that AdaSVD is more effective in high compression ratio
scenarios where previous methods still struggle. This highlights the importance of balancing the
number of iterations with available data to avoid overfitting, especially in low compression scales.

Table 4: AdaSVD with weight quantization method GPTQ.

RATIO METHOD GPTQ-INT4 WikiText-2↓ PTB↓ C4↓
0% Original ✗ 5.68 8.35 7.34

40%

SVD-LLM ✗ 16.11 719.44 61.95
SVD-LLM ✓ 33.56 1,887.50 184.61

AdaSVD ✗ 14.76 304.62 56.98
AdaSVD ✓ 22.55 844.21 106.41

50%

SVD-LLM ✗ 27.19 1,772.91 129.66
SVD-LLM ✓ 41.70 2,335.65 291.62

AdaSVD ✗ 25.58 593.14 113.84
AdaSVD ✓ 37.34 1,326.55 203.11

60%

SVD-LLM ✗ 89.90 2,052.89 561.00
SVD-LLM ✓ 119.46 3,136.60 723.80

AdaSVD ✗ 60.08 2,137.28 294.26
AdaSVD ✓ 82.08 1,705.19 379.96

70%

SVD-LLM ✗ 125.16 6,139.78 677.38
SVD-LLM ✓ 159.53 2,115.44 848.24

AdaSVD ✗ 107.90 5,027.62 441.33
AdaSVD ✓ 118.75 1,606.94 466.64

80%

SVD-LLM ✗ 372.48 6,268.53 1,688.78
SVD-LLM ✓ 420.25 3,716.08 1,996.42

AdaSVD ✗ 206.51 6,613.44 679.66
AdaSVD ✓ 214.51 2,728.78 654.79

Effectiveness of Adaptive Compres-
sion Ratio. To validate the effec-
tiveness of our adaCR, we compared
the results after removing adaCR
(i.e., using constant compression ra-
tios for all layers) from AdaSVD. As
shown in Table 3b, AdaSVD already
outperforms SVD-LLM without us-
ing adaCR, while integrating adaCR
can further enhance the performance
across all compression ratios.

Minimum Retention Ratio. The
minimum retention ratio (mrr) in
adaCR is also crucial, and we inves-
tigate the impact of different mrr val-
ues in Table 3d for 40%, 50%, and
60% compression ratios (70% and
80% in supplementary file). It can
be observed that mrr remains rela-
tively robust at lower compression ra-
tios (40% and 50%), while contributing more at higher compression ratios (60%).

4.4 INTEGRATE WITH WEIGHT QUANTIZATION

Similar to previous SVD-based compression methods (Hsu et al., 2022a; Yuan et al., 2024; Wang
et al., 2025), our AdaSVD is orthogonal to other types of compression techniques. Following Wang
et al. (2025), we integrate AdaSVD with the widely used weight quantization method GPTQ (Frantar
et al., 2023). As shown in Table 4, we compare AdaSVD with SVD-LLM (Wang et al., 2025) on the
LLaMA2-7B model across the WikiText-2, PTB, and C4 datasets. The results demonstrate that, when
combined with the 4-bit weight quantization method GPTQ, AdaSVD also consistently outperforms
SVD-LLM across all compression ratios. Under high compression ratios (i.e., 60%, 70%, and 80%),
AdaSVD + GPTQ-INT4 even surpasses SVD-LLM.

5 CONCLUSION

In this work, we propose AdaSVD, an adaptive SVD-based compression method for LLMs. AdaSVD
first proposes adaComp, which adaptively compensates for the error caused by the truncation
of singular matrices, efficiently reducing compression error without requiring additional training.
Furthermore, AdaSVD proposes adaCR, which adaptively assigns compression ratios based on
the importance of each layer, further enhancing performance while maintaining the same target
compression rate. Both strategies effectively minimize SVD compression errors, particularly at high
compression ratios. Our experiments on multiple open-source LLM and VLM families demonstrate
that AdaSVD pushes the performance boundary beyond the current state-of-the-art SVD-based LLM
compression methods.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

The research conducted in the paper conforms, in every respect, with the ICLR Code of Ethics.

REPRODUCIBILITY STATEMENT

We have provided implementation details in Sec. 4. We will also release all the code and models.

LLM USAGE STATEMENT

Large Language Models (LLMs) were used solely for polishing writing. They did not contribute to
the research content or scientific findings of this work.

REFERENCES

Saleh Ashkboos, Maximilian L. Croci, Marcelo Gennari do Nascimento, Torsten Hoefler, and James
Hensman. Slicegpt: Compress large language models by deleting rows and columns. In ICLR,
2024.

Yonatan Bisk, Rowan Zellers, Ronan Le Bras, Jianfeng Gao, and Yejin Choi. Piqa: Reasoning about
physical commonsense in natural language. In AAAI, 2020.

Xinlei Chen, Hao Fang, Tsung-Yi Lin, Ramakrishna Vedantam, Saurabh Gupta, Piotr Dollár, and
C Lawrence Zitnick. Microsoft coco captions: Data collection and evaluation server. arXiv preprint
arXiv:1504.00325, 2015.

Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng, Zhanghao Wu, Hao Zhang, Lianmin Zheng,
Siyuan Zhuang, Yonghao Zhuang, Joseph E Gonzalez, et al. Vicuna: An open-source chatbot
impressing gpt-4 with 90%* chatgpt quality. In LMSYS, 2023.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
arXiv preprint arXiv:1803.05457, 2018.

Tri Dao. Flashattention-2: Faster attention with better parallelism and work partitioning. In ICLR,
2024.

Tri Dao, Dan Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. Flashattention: Fast and memory-
efficient exact attention with io-awareness. In NeurlPS, 2022.

Peijie Dong, Lujun Li, Yuedong Zhong, Dayou Du, Ruibo Fan, Yuhan Chen, Zhenheng Tang, Qiang
Wang, Wei Xue, Yike Guo, et al. Stbllm: Breaking the 1-bit barrier with structured binary llms. In
ICLR, 2025.

Razvan-Gabriel Dumitru, Paul-Ioan Clotan, Vikas Yadav, Darius Peteleaza, and Mihai Surdeanu.
Change is the only constant: Dynamic llm slicing based on layer redundancy. In EMNLP, 2024.

Elias Frantar and Dan Alistarh. Sparsegpt: Massive language models can be accurately pruned in
one-shot. In ICML, 2023.

Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and Dan Alistarh. Gptq: Accurate post-training
quantization for generative pre-trained transformers. In ICLR, 2023.

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman, Sid Black, Anthony DiPofi, Charles Foster,
Laurence Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li, Kyle McDonell, Niklas Muennighoff,
Chris Ociepa, Jason Phang, Laria Reynolds, Hailey Schoelkopf, Aviya Skowron, Lintang Sutawika,
Eric Tang, Anish Thite, Ben Wang, Kevin Wang, and Andy Zou. A framework for few-shot
language model evaluation. Zenodo, 2023.

G.H. Golub, Alan Hoffman, and G.W. Stewart. A generalization of the eckart-young-mirsky matrix
approximation theorem. Linear Algebra and its Applications, 1987.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Andrey Gromov, Kushal Tirumala, Hassan Shapourian, Paolo Glorioso, and Daniel A. Roberts. The
unreasonable ineffectiveness of the deeper layers. In ICLR, 2025.

Yuxian Gu, Li Dong, Furu Wei, and Minlie Huang. Knowledge distillation of large language models.
In ICLR, 2024.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob
Steinhardt. Measuring massive multitask language understanding. Proceedings of the International
Conference on Learning Representations (ICLR), 2021.

Yen-Chang Hsu, Ting Hua, Sungen Chang, Qian Lou, Yilin Shen, and Hongxia Jin. Language model
compression with weighted low-rank factorization. In ICLR, 2022a.

Yen-Chang Hsu, Ting Hua, Sungen Chang, Qian Lou, Yilin Shen, and Hongxia Jin. Language model
compression with weighted low-rank factorization. In ICLR, 2022b.

Wei Huang, Yangdong Liu, Haotong Qin, Ying Li, Shiming Zhang, Xianglong Liu, Michele Magno,
and Xiaojuan Qi. Billm: Pushing the limit of post-training quantization for llms. In ICML, 2024.

Albert Q Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot,
Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier, et al.
Mistral 7b. arXiv preprint arXiv:2310.06825, 2023.

Zhiteng Li, Xianglong Yan, Tianao Zhang, Haotong Qin, Dong Xie, Jiang Tian, Linghe Kong, Yulun
Zhang, Xiaokang Yang, et al. Arb-llm: Alternating refined binarizations for large language models.
In ICLR, 2025.

Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, Wei-Ming Chen, Wei-Chen Wang, Guangxuan
Xiao, Xingyu Dang, Chuang Gan, and Song Han. Awq: Activation-aware weight quantization for
on-device llm compression and acceleration. In MLSys, 2024.

Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. In NeurlPS,
2023.

Shih-Yang Liu, Huck Yang, Chein-Yi Wang, Nai Chit Fung, Hongxu Yin, Charbel Sakr, Saurav
Muralidharan, Kwang-Ting Cheng, Jan Kautz, Yu-Chiang Frank Wang, et al. Eora: Training-
free compensation for compressed llm with eigenspace low-rank approximation. arXiv preprint
arXiv:2410.21271, 2024.

Xinyin Ma, Gongfan Fang, and Xinchao Wang. Llm-pruner: On the structural pruning of large
language models. In NeurlPS, 2023.

Mitch Marcus, Beatrice Santorini, and Mary Ann Marcinkiewicz. Building a large annotated corpus
of english: The penn treebank. CL, 1993.

Xin Men, Mingyu Xu, Qingyu Zhang, Bingning Wang, Hongyu Lin, Yaojie Lu, Xianpei Han, and
Weipeng Chen. Shortgpt: Layers in large language models are more redundant than you expect.
arXiv preprint arXiv:2403.03853, 2024.

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
models. In ICLR, 2017.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style,
high-performance deep learning library. In NeurIPS, 2019.

R. Penrose. On the generalized inverse of matrices. Mathematika, 1955.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. JMLR, 2020.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An
adversarial winograd schema challenge at scale. arXiv preprint arXiv:1907.10641, 2019.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Mingjie Sun, Zhuang Liu, Anna Bair, and J Zico Kolter. A simple and effective pruning approach for
large language models. In ICLR, 2024.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023a.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher, Cris-
tian Canton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy Fu,
Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn,
Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa, Isabel
Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee,
Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushkar Mishra,
Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi,
Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing Ellen Tan, Binh
Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen
Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Rodriguez, Robert Stojnic,
Sergey Edunov, and Thomas Scialom. Llama 2: Open foundation and fine-tuned chat models.
arXiv preprint arXiv:2307.09288, 2023b.

A Vaswani. Attention is all you need. In NeurIPS, 2017.

Zhongwei Wan, Xin Wang, et al. Efficient large language models: A survey. In TMLR, 2023.

Xin Wang, Zhongwei Wan, Arvin Hekmati, Mingyu Zong, Samiul Alam, Mi Zhang, and Bhaskar
Krishnamachari. Iot in the era of generative ai: Vision and challenges. IEEE Internet Computing,
2024.

Xin Wang, Yu Zheng, Zhongwei Wan, and Mi Zhang. Svd-llm: Truncation-aware singular value
decomposition for large language model compression. In ICLR, 2025.

Yifei Yang, Zouying Cao, and Hai Zhao. Laco: Large language model pruning via layer collapse. In
EMNLP, 2024.

Zhihang Yuan, Yuzhang Shang, Yue Song, Qiang Wu, Yan Yan, and Guangyu Sun. Asvd: Activation-
aware singular value decomposition for compressing large language models. arXiv preprint
arXiv:2312.05821, 2024.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a machine
really finish your sentence? In ACL, 2019.

Mingyang Zhang, Hao Chen, Chunhua Shen, Zhen Yang, Linlin Ou, Xinyi Yu, and Bohan Zhuang.
Loraprune: Pruning meets low-rank parameter-efficient fine-tuning. In ACL, 2024.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen, Christopher
Dewan, Mona Diab, Xian Li, Xi Victoria Lin, et al. Opt: Open pre-trained transformer language
models. arXiv preprint arXiv:2205.01068, 2022.

Qihuang Zhong, Liang Ding, Li Shen, Juhua Liu, Bo Du, and Dacheng Tao. Revisiting knowledge
distillation for autoregressive language models. In ACL, 2024.

Zixuan Zhou, Xuefei Ning, Ke Hong, Tianyu Fu, Jiaming Xu, Shiyao Li, Yuming Lou, Lun-
ing Wang, Zhihang Yuan, Xiuhong Li, Shengen Yan, Guohao Dai, Xiao-Ping Zhang, Yuhan
Dong, and Yu Wang. A survey on efficient inference for large language models. arXiv preprint
arXiv:2404.14294, 2024.

12

	Introduction
	Related Works
	LLM Compression Techniques
	SVD-based LLM Compression

	Method
	Adaptive Compensation for SVD Truncation
	Adaptive SVD Compression Ratio

	Experiments
	Setup
	Main Results
	Ablation Study
	Integrate with Weight Quantization

	Conclusion

