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Abstract
Cloud-based LLM assistants pass every prompt
through cloud servers in plaintext leaving per-
sonal information open to inspection by cloud
providers and any malicious actors with access to
their servers. Current privacy techniques either
degrade quality or are several orders of magni-
tude slower. In contrast, Trusted Execution Envi-
ronments (TEEs) offer a practical path forward,
taking a hardware-based approach. We explore
recent TEE-based virtual machines with confiden-
tial NVIDIA H100 and AMD SEV-SNP CPUs.
Naive Pytorch use inside this TEE incurs a 1.87×
slowdown due to CPU-GPU encryptions. More-
over, there is a lack of open-source communica-
tion protocols between a local client and such a
remote TEE. In response, we propose TEECHAT,
a research prototype that (1) binds a local client
to a remote TEE hosting an LLM, via attesta-
tion and key exchange, (2) secures communica-
tion with full end-to-end encryption, and (3) min-
imizes overhead with targeted kernel and I/O op-
timizations. For models over 30B parameters,
TEECHAT adds just 1% latency—showing that
LLM inference inside TEEs is already practical1.

1. Introduction
Large Language Models (LLMs) now serve hundreds of
millions of requests each day, many containing medical,
legal, or proprietary information (Singh, 2025; Mireshghal-
lah et al., 2024). Today, these prompts and responses are
usually processed in plaintext on cloud machines outside
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the user’s control, exposing them to cloud providers, infras-
tructure operators and potential adversaries with access to
the machine.

Existing defences fall at two extremes. One is removal of
personally identifiable information (PII) before transmission
to the remote LLM server. This approach enables standard
LLM computation, however, it may leave residues and often
degrades quality (Siyan et al., 2024). The second is Fully
Homomorphic Encryption (FHE), which computes directly
on encrypted data, yet its 100×–10,000× slowdown re-
mains impractical for real-time chat (Gilad-Bachrach et al.,
2016; Riazi et al., 2019; Lloret-Talavera et al., 2021).

Trusted Execution Environments (TEEs) provide a mid-
dle ground. TEEs create hardware-isolated regions (“en-
claves”) where data and code are hidden from the host sys-
tem. NVIDIA’s H100 “Hopper” GPU is the first to extend
this model to the entire accelerator – covering both mem-
ory and compute – forming a so-called confidential GPU
(CGPU). The CGPU is nested within a CPU-based TEE,
which decrypts the sensitive text, runs the LLM server that
launches GPU kernels, and encrypts all CPU–GPU commu-
nication, adding a second layer of protection. Contemporary
confidential VMs are capable of serving LLMs with tens
of billions of parameters while preserving standard TEE
guarantees (see Section 2.3).

We ask: to what extent can TEEs enable accurate, end-to-
end encrypted communication between a local client and an
LLM in a cloud-hosted CGPU, without incurring prohibitive
latency?

Our first attempt to connect a local client to a CGPU-hosted
LLM, revealed two core challenges:

• Without model-specific kernel optimization, con-
fidential VMs are slower than standard VMs. A
confidential machine with nested CPU-GPU enclaves
is 1.87× slower than a standard VM with GPU when
running PyTorch code (Paszke et al., 2019; Wolf et al.,
2020). The extra CPU-GPU encryptions start to take a
toll on performance when launching multiple kernels
(up to 67% slower) or performing frequent CPU-GPU
I/O (up to 1,200% slower).
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• Local–cloud gap. Existing TEEs secure only the re-
mote LLM side, leaving the communication with the
local client unprotected. Currently, no open-source
solution secures the entire client-to-cloud interaction.

Motivated by these limitations, we propose TEECHAT, a
prototype for a secure communication protocol between a
local client and an LLM running in cloud confidential VM.
TEECHAT further extends the core guarantees of TEEs to
the local-cloud setup while adding negligible overhead.

We benchmark the overall performance of TEECHAT, find-
ing that after minimizing kernel launches and I/O (using
standard, optimized LLM inference packages), the protocol
latency is dominated by LLM inference latency; encryption
and authentication add just 2ms. We find that for models
larger than 30B parameters with batch sizes under 32, the
overhead in latency and throughput is under 1% compared
to a standard chat.

To summarize, this work makes the following contributions:

• We study the performance of LLMs inside confidential
GPU-powered VMs, identifying CPU-GPU communi-
cations as the major bottleneck.

• We propose an end-to-end prototype for key-exchange,
remote attestation, and encrypted streaming with mini-
mal latency cost and no quality degradation.

This study is a proof-of-concept, not a secure system for
deployment, seeking to understand the security-performance
tradeoffs in emerging confidential VMs.

2. Preliminaries
We describe the local-cloud chat setup (see §2.1), the threat
model (see §2.2) and secure hardware details (see §2.3).

2.1. Setup: Local–Cloud Chat

We model a single interactive session between a user U and
a large language model (LLM) M hosted in the cloud by
provider P . We detail the system components as follows:

1. User device D. A trusted local endpoint (e.g., laptop
or phone) controlled by U. It sends prompts, receives
answers, and stores all sensitive information decrypted.

2. Cloud system S = ⟨R, G, M⟩. Hosted by the
provider P , and serving an LLM M.

(a) CPU. R. Runs the LLM-server process, hold-
ing the model code. The CPU handles request
scheduling, tokenization, and launches GPU ker-
nels.

(b) GPU Accelerator G. Executes all inference ker-
nels, and holds M’s parameters and intermediate
activations.

3. Communication channel C. A bidirectional network
link between D and M.

2.2. Threat Model

In line with prior literature on enclave security (Costan &
Devadas, 2016; Lee et al., 2020; Volos et al., 2018), we
assume an adversary either with access to the VM or to the
communication channel with it.

Adversary Model. We do not trust the cloud provider and
any actors running processes on the system. Moreover, we
do not trust the datacenter operators, who may be third-party
vendors with physical access to the hardware. Our goal is to
keep the LLM’s inputs, intermediate activations, and outputs
confidential from these parties.

Trusted Components. First, we assume the user device
is secure throughout. Second, we trust the silicon manufac-
turers and their firmware, i.e., NVIDIA’s H100 confidential-
mode stack, and AMD SEV-SNP, as we need hardware-
guarantees to perform TEE attestation, following previous
work (Costan & Devadas, 2016; Lee et al., 2020).

2.3. Trusted Execution Environments & Confidential
GPUs

Trusted Execution Environment (TEE) A TEE is a
hardware-enforced enclave that keeps its code and data
private and tamper-free even if the host OS or hypervisor
is compromised. TEEs offer three guarantees: confiden-
tiality—code and data inside the enclave are invisible to
any external process, including privileged software (Costan
et al., 2016); integrity—no unauthorized entity can alter the
enclave’s computation or memory state (Sabt et al., 2015);
and authenticity—via remote attestation, the enclave can
prove to a verifier that approved code is running on genuine
hardware (McKeen et al., 2013). Together, these guarantees
establish a trusted boundary that holds even in hostile cloud
environments (Costan et al., 2016).

Confidential GPUs The NVIDIA Hopper–generation
H100 is the first commercially available GPU with native
confidential-computing support, effectively turning the ac-
celerator into a GPU-scale TEE (NVIDIA, 2023). A dedi-
cated on-die security processor establishes a hardware root
of trust, verifies the GPU firmware and loaded kernels (se-
cure boot), and transparently encrypts every transaction
between the streaming multiprocessors (SMs), on-package
caches, and high-bandwidth memory (HBM) (memory en-
cryption). Once the remote-attestation handshake completes,
the security processor derives keys that only the session
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owner can access; even a privileged cloud operator snooping
PCIe links or probing HBM sees only ciphertext (NVIDIA,
2023; 2024). Hopper’s Secure Execution Environment
(SEE) mirrors the classic TEE guarantees (NVIDIA, 2022).

Confidential virtual machines CGPUs are often hosted
inside confidential virtual machines, such as Azure ND
H100 v5, creating two concentric TEEs. The process code
is run via a CPU-based enclave (SEV-SNP) that encrypts all
guest-CPU code and DRAM against the host OS. The CPU
code may launch kernels on the CGPU, and any information
transferred between them CPU and GPU is encrypted.

3. Related Works
A growing line of work executes Transformers on fully ho-
momorphically encrypted (FHE) inputs, e.g. THOR (Moon
et al., 2024) and NEXUS (Zhang et al., 2024), achieving
strong cryptographic privacy but at the cost of minute–scale
latencies (10–600× slower than plaintext). In contrast to this
line of research, our work attempts to secure LLM inference
by leveraging hardware-based security features. Addition-
ally, there exists work that studies the efficacy of running
transformer based architectures inside secure CPU enclaves.
These works study transformers inside secure enclaves and
partitioning layers to balance speed and security (Chang &
Chen, 2025; Lee et al., 2025) for both inference and train-
ing. In our work, we solely focus on REMOTE CPU-GPU
enclaves and are concerned with facilitating confidential-
ity across local to cloud chat environments. Another line
of work handles the privacy challenge by removing sensi-
tive tokens before passing to an insecure cloud LLM (Zeng
et al., 2024). In contrast, this work keeps the entire prompt
encrypted, and utilizes hardware security to ensure that
no plaintext ever leaves the secure enclave. Finally, there
exists a line of work around industrial secure cloud deploy-
ments (Inc., 2024) that utilizes custom hardware to ensure
cloud privacy (Inc., 2024). However, this work is not open
and it is thus unclear how compatible it is with NVIDIA
H100 CGPUs.

4. TEECHAT: An End-to-end Encrypted Chat
Protocol

Our goal is to satisfy the three guarantees of TEEs across a
communication between a user device D and a cloud system
S, which is a confidential virtual machine serving an LLM
M. TEECHAT has four main steps as seen in Figure 1:

1. Ephemeral Key Exchange. The client device (D)
generates a fresh key pair for each chat session and
runs a Diffie–Hellman key exchange with the CPU
enclave, deriving a session-unique shared secret over
an HTTPS channel (Step 1 in Fig. 1).

2. Remote Attestation. Before user data is released, D
requests a hardware-signed quote that covers both the
AMD SEV-SNP CPU enclave and the NVIDIA H100
CGPU enclave. The quote proves that (i) the devices
are genuine, (ii) they run in confidential-computing
mode, and (iii) the VM launch measurement matches
a reference hash we publish (Step 2).

3. Encrypted & Authenticated Transport. All subse-
quent traffic on the channel C is end-to-end encrypted
and signed under the session key. We use monotoni-
cally increasing nonces for replay protection; the cur-
rent prototype re-uses the HTTPS framing for conve-
nience (Step 3).

4. Nested-TEE Inference. Ciphertexts are decrypted
only inside the CPU enclave, which then launches ker-
nels on the confidential H100 GPU. Plaintext prompts,
activations, and responses never leave this nested TEE;
outputs are immediately re-encrypted and signed be-
fore exiting the enclave (Step 4).

In ??, we provide further details on the protocol and how it
provides the TEE guarantees.

5. TEECHAT Protocol Performance
We begin by measuring the performance overheads of GPU
serving within a TEE (see Section 5.1). We then evaluate the
performance of the end-to-end protocol, specifically mea-
suring (1) where the performance bottlenecks exist and (2)
what overhead is introduced by running in a confidential vs.
standard GPU-powered virtual machine (see Section 5.2).

Experimental Set-up: We perform all our analysis using an
Azure ND H100 v5 confidential VM as the cloud system (S),
containing an NVIDIA-H100 Confidential GPU (CGPU) as
our accelerater (G) and AMD SEV-SNP CPU. We use Apple
M1-Max laptop as the user device (D). Because Azure’s
virtualization stack is closed-source, our measurements in-
herit trust in Azure’s launch stack and operating system.
In principle, if users can inspect the virtualization stack
and operating system, they do not have to trust a cloud
provider. For our benchmarking we use the LLAMA3.2-
3B-INSTRUCT (Grattafiori et al., 2024), QWEN3-8B (Yang
et al., 2025) and QWEN3-32B (Yang et al., 2025). We
summarize the takeaways of our analysis as follows:

• Dominant cost. End-to-end overhead is dominated by
remote model inference; message-layer encryption and
authentication add only ≈10 ms.

• Overhead vs. model size. Remote-side overhead is
˜17% for ≤3B models, ˜8% for 3–10B, and 1–2% for
>10B.
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Figure 1. TEECHAT protocol: a secure end-to-end encrypted chat with 4 key steps—(1) ephemeral key exchange generates a unique
session secret, (2) remote attestation verifies hardware authenticity, (3) encrypted message passing ensures confidentiality and authenticity,
and (4) enclave-bound inference securely processes and re-encrypts messages.

• Batching. The remote LM is optimally utilized at a
batch size of < 16 (see §5.1).

• TEE bottlenecks. Kernel launches and CPU – GPU
transfers are the primary bottlenecks (see §5.1); fused
kernels and reduced round-trips yield optimal speed.

5.1. CGPU Benchmarking

Benchmark Standard (ms) CGPU (ms) Overhead

GEMM 4096×4096 FP16 0.06 0.10 +67%
Host↔GPU 512 MB 1.85 24.58 +1,230%

Table 1. Operation overhead analysis: Latency overhead in a
confidential vs. standard virtual machine for two operations: ma-
trix multiplies and CPU-GPU data transfers.

Figure 2. Effects of kernel optimization. Overhead falls by ∼
5.6× when three optimizations are enabled: (i) FlashAttention-2
which keeps Q,K, V in SRAM; (ii) CUDA-Graph replay captures
the first decode step and re-uses it every token; (iii) On-GPU fused
sampling executes softmax → top-p/k entirely on device.

We benchmark a single NVIDIA H100 within and with-
out a TEE (within a TEE, it uses AMD SEV-SNP). To
pinpoint latency sources we run two micro-benchmarks
that stress complementary subsystems: (i) compute-bound
GEMM (4096×4096, FP16) and (ii) I/O-bound 512 MB
host↔GPU round-trip copy. Each benchmark runs 100 it-
erations; we report median latency. Table 1 summarizes
the latency overhead for compute and I/O-bound workloads.
We observe that kernel operations incur a launch penalty
and data transfer across CPU incurs heavy slow-downs. In
Figure 2 we benchmark three kernel-level optimizations for
LLAMA-3.2-3B while generating 128 tokens for various
pre-fill lengths. Replacing the standard SDPA kernel with
FlashAttention-2 reduces memory usage from quadratic to
linear in sequence length (Dao et al., 2023). Wrapping
the first decode call in a CUDA Graph lets the remaining
127 steps run as graph replays, eliminating all CPU launch
overhead. Finally, executing softmax and top-k sampling en-
tirely on-device with FlashInfer removes host-device trans-
fers and further trims latency (Wu et al., 2024).

Optimal Batch Sizes We observe that batch sizes < 16
are optimal (see Figure 3); beyond this point, CGPU
kernel-launch overhead and memory-bandwidth contention
outweigh batching benefits. Slowdown decreases with larger
models: 28.5% for 3B parameters versus 4.6% for 8B pa-
rameters.

5.2. End-to-End Protocol Performance

Next, we measure the end-to-end protocol performance,
focusing on each of the 4 steps of TEECHAT (see Figure 1).
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Figure 3. Overhead as a function of batch size. Batching leads to
overheads in CGPUs. Overheads are less for larger models. Batch
size of 16 is optimal.

t

Figure 4. Message encryption overheads. Micro-benchmark of
encryption/decryption and verification overhead on the local host
(M1–Max) and remote CGPU node. (Left) decryption speeds
and (Right) encryption speeds across local and remote hardware.
Latency is negligible even for very long contexts (< 215 tokens)

5.2.1. KEY EXCHANGE AND REMOTE ATTESTATION

We measure the total time taken for key exchange and re-
mote attestation. We find that a full key exchange plus GPU
attestation runs once per session and adds only <0.2 ms of
latency (note that in this analysis we did not time the CPU
attestation).

5.2.2. ENCRYPTED MESSAGE PASSING

We find that encrypted communication adds negligible la-
tency.

We measure the time (ms) required for encryption and sign-
ing (“encrypt”) and for decryption and verification (“de-
crypt”). For a 65.5k-token payload, local encryption con-
sumes 0.55± 0.04 ms and decryption 0.36± 0.07 ms. On
the remote host, encryption requires 2.28 ± 0.12 ms and
decryption 1.65± 0.05 ms (See Figure 4 for costs incurred
at different prefill lengths). We find that encryption involves
a 2.2X overhead and decryption 1.6X overhead, when aver-
aging across inputs of length 512 to 8192 tokens.

Figure 5. Inference overhead as a function of prefill length.
Overhead is negligible for large models > 30B and decreases
as prefill length increases (as time spent on LLM inference grows
faster than the fixed security costs).

5.2.3. ENCLAVE-BOUND INFERENCE

We find that TEE-based inference overheads become negli-
gible for models larger than 30B parameters.

We measure both the latency and queries per second (QPS)
of various workloads. We additionally benchmark efficiency
against a standard GPU. We measure latency (prefill sweep,
128-token generation) and QPS (batch sweep, fixed prefill
1024, 48-token generation) (see Figure 5). Averaged across
the prefill sweep, TEE adds 77.24 ms (3B) and 31.32 ms
(32B) latency—13.9% and 0.94% overhead—respectively.
This suggests that overhead reduces as model size increases
as compute becomes the predominant cost factor. Similarly,
throughput overhead declines from 22% (3B), to 0.03%
(32B) relative to a standard inference (see Figure 6).

Figure 6. Query Per Second (QPS) overhead. Across all model
sizes, overhead is lowest for batch size = 16. Overhead is negligible
for models > 30B parameters.
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6. Conclusion
We present TEECHAT, a research prototype which securely
connects local clients to remote TEE-based virtual machines,
providing cryptographic guarantees and negligible latency
overhead (< 1% for models >30B parameters). As mod-
els and workloads evolve, future research must continue
expanding these security methods to distributed, heteroge-
neous environments.
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