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ABSTRACT

In Earth sciences, unobserved factors often lead to spatially nonstationary distribu-
tions, causing relationships between features and targets to vary across locations.
Traditional tabular machine learning methods struggle to effectively model this
spatial heterogeneity. While approaches like Geographically Weighted Regres-
sion (GWR) capture local variations, they often miss global patterns, overfit local
noise, and lack the ability to model temporal changes in spatial heterogeneity. Our
research aims to model spatiotemporal heterogeneity. To achieve this, we propose
an end-to-end approach that fits the entire dataset to capture global patterns, while
designing the model as a conditional generative framework to learn sparse spa-
tial heterogeneity, mitigating overfitting through localized condition sharing. Our
method involves four key steps: constructing a spatiotemporal graph, encoding
tabular features, aggregating spatial heterogeneity node embeddings via graph
convolutions, and decoding with spatial condition vectors for location-specific
predictions. We validate our approach by predicting vegetation gross primary pro-
ductivity (GPP) using global climate and land cover data (2001–2020). Trained on
50M samples and tested on 2.8M, our model achieves an RMSE of 0.836, outper-
forming GWR (2.149), LightGBM (1.063) and TabNet (0.944). Visual analysis of
the learned node embeddings reveals clear spatial heterogeneity patterns and their
temporal dynamics.

1 INTRODUCTION

In Earth science, tabular machine learning is widely used to model environmental and geographical
relationships, such as predicting climate change impacts on vegetation (Lu et al., 2024) and under-
standing tropical cyclones’ effects on precipitation (Qin et al., 2024). Accurate modeling is crucial
for reliable environmental predictions.

However, most tabular machine learning methods assume unordered samples, raising questions
about their applicability to all Earth science problems. While a global mapping requires all influ-
encing factors to be known, many factors in Earth science, such as soil nutrients, microbial activity,
and biodiversity, are difficult to measure, leading to incomplete information. This introduces a sig-
nificant challenge: the spatial distribution of missing variables is often non-stationary, meaning that
the relationship between the remaining features and the target variable changes with spatial loca-
tion (Fotheringham et al., 2009). For example, the relationship between temperature and vegetation
carbon accumulation rates may vary across regions due to differences in species, soil quality, and
altitude. Current models capture common patterns but fail to address spatial heterogeneity, high-
lighting the need for better methods to model spatial variability.

One solution is to use local models like Geographically Weighted Regression (GWR) (Fotheringham
et al., 2009), which adjusts coefficients based on location to capture spatial variability. However,
GWR lacks temporal modeling, limiting its ability to capture the evolution of spatial heterogene-
ity. To address GWR’s temporal limitation, Geographically and Temporally Weighted Regression
(GTWR) (Fotheringham et al., 2015) was developed, using spatiotemporal metrics to model vari-
ability. However, GTWR struggles with nonlinearity, prompting the development of hybrid methods
like Geographically and Temporally Neural Network Weighted Regression (GTNNWR) (Wu et al.,
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2021), which uses a Spatiotemporal Proximity Neural Network (STPNN) to model nonlinear spa-
tiotemporal heterogeneity.

Despite these advancements, current methods still fit spatial weights locally, based on neighborhood
samples, leading to several challenges: 1) Learning objective: Local models may miss common
patterns across regions by focusing too much on local variability; 2) Model complexity: Fitting
spatial weights for each location can result in a highly dense parameter space, making the model
prone to overfitting local noise; 3) Computational efficiency: In Earth science, datasets are often
massive, and methods with computational complexity proportional to sample size may struggle with
large-scale data.

Our study aims to learn spatiotemporal heterogeneity, aligning with previous methods’ objectives.
To address the limitations of existing research, we draw inspiration from the success of end-to-end
learning in computer science, particularly the DETR model (Carion et al., 2020). We propose a
unified optimization process that leverages an end-to-end learning framework to capture the spa-
tiotemporal heterogeneity of variable relationships across the entire sample space. Additionally,
instead of using explicit geographically and temporally weighted models, we propose a conditional
generative model with local parameter sharing, reducing the risk of overfitting due to dense spa-
tiotemporal weights. Our approach aims to effectively model the dynamic and spatially varying
relationships between variables in Earth science data.

Building on this idea, we have developed method, which employs graph neural networks (GNNs)
(Wu et al., 2020) to implicitly learn mappings with spatiotemporal heterogeneity from Earth science
data. Our method consists of four key components: First, in the preprocessing stage, we cluster the
global land grid and map the cluster centers to spherical coordinates, using the K-nearest neighbors
algorithm to construct a spatial adjacency graph. Each cluster category shares a spatial condition
vector during decoding. In the representation learning and prediction stages, we employ a tabular
feature encoding module and a spatial heterogeneity encoding module to encode the tabular data
features and spatial heterogeneity conditions, respectively. The decoding module uses this encoded
information to predict the target variables. The tabular feature encoding module uses linear self-
attention over two dimensions to simultaneously capture the attribute features of the tabular data
and their temporal dynamics. The spatial heterogeneity module aggregates node embeddings using
a spatiotemporal GCN (Graph Convolutional Network (Kipf & Welling, 2016)), producing spatial
condition vectors that describe the spatial heterogeneity at each location. Finally, the decoding
module uses the spatial condition vectors as target vectors and the tabular feature encodings as
memory vectors, applying a transformer decoder to generate predictions.

To validate our approach, we created the Climate2GPP dataset, using the ERA5 climate dataset
(Muñoz-Sabater et al., 2021), the MCD12C1.061 MODIS Land Cover dataset (Friedl & Sulla-
Menashe, 2022), and the PML V2 0.1.7 GPP dataset (Zhang et al., 2019). Spanning from 2001
to 2020 with an 8-day temporal resolution, this dataset includes approximately 50 million samples
for training and 2.8 million samples for testing. Our method achieved an RMSE of 0.836 on the test
set, significantly outperforming GWR (RMSE 1.937), classical tabular machine learning methods
like LightGBM Large (RMSE 1.063) and deep learning methods like TabNet (RMSE 0.944).

We also analyzed the GNN’s node embeddings visually, observing spatial distribution patterns that
help us understand the spatial heterogeneity of variable relationships and their temporal evolution.

2 RELATED WORKS

Tabular Machine Learning and Geographically Weighted Models: Tabular machine learn-
ing methods have been widely applied in Earth science for tasks such as predicting environmental
changes and understanding geographical phenomena. These methods, including popular algorithms
like LightGBM (Ke et al., 2017) and XGBoost (Chen & Guestrin, 2016), are designed under the as-
sumption that samples are independent and identically distributed, which limits their applicability in
scenarios with spatial dependencies. While geographically weighted models, such as GWR (Fother-
ingham et al., 2009) and GTWR (Fotheringham et al., 2015), have been introduced to address spatial
heterogeneity by adjusting coefficients locally, they face significant limitations. GWR models fail
to capture temporal evolution, and while GTWR extends this capability, both models struggle with
nonlinearity and exhibit high computational complexity when applied to large datasets. GWR-RF
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(Wang et al., 2024) combines GWR with Random Forest for nonlinearity but still suffers from lo-
cal overfitting and dense weight matrices. GNNWR (Du et al., 2020) balances global patterns and
spatial variability through neural network-corrected coefficients but retains the complexity of dense
spatial weights. GTNNWR (Wu et al., 2021) further incorporates spatiotemporal heterogeneity but
remains limited by the need to fit local variables and dense spatiotemporal weights, making these
models prone to overfitting and computationally inefficient in large-scale applications.

3 METHOD
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Figure 1: Overall workflow.

We address the problem of learning under spatiotemporal heterogeneity by framing it as a con-
ditional generation task, where predictions are made based on data attributes conditioned on spa-
tiotemporal contexts. Our approach focuses on four key issues: representing spatiotemporal con-
ditions, encoding tabular attributes, generating predictions under these conditions, and ensuring
end-to-end optimization. To represent the spatiotemporal conditions, we construct a graph where
node embeddings are learned by aggregating local spatiotemporal information using graph convolu-
tions. For encoding tabular attributes, we design a dual-attention transformer encoder that captures
both temporal and feature-level dependencies. The prediction process utilizes a transformer decoder,
where spatiotemporal conditions are treated as the target sequence and tabular data as the memory
sequence. The entire framework, including learnable node embeddings, feature aggregation, and
prediction modules, is optimized end-to-end through gradient descent.

3.1 SPATIOTEMPORAL CONDITIONAL GRAPH CONSTRUCTION

To capture the spatiotemporal heterogeneity, we propose a Spatiotemporal Conditional Graph
(STCG). The STCG is defined as G = (V,E), where V is the set of nodes and E is the set of
edges. Each node vi,t ∈ V represents a spatiotemporal point (λi, ϕi, t), where λi and ϕi are the
longitude and latitude of node i, and t is the time. Each node has an embedding vi,t that captures the
spatiotemporal condition at that point. The prediction for a spatiotemporal location is influenced by
the embedding vi,t of the corresponding node in the STCG. The construction of the STCG involves
the following steps.

Graph Node Generation: To determine the geographical coordinates (λi, ϕi) of each node vi,t ∈
V , we apply K-means clustering to the global land grid. This step reduces computational complex-
ity by grouping spatial regions into clusters, where each cluster shares a common spatiotemporal
condition. Specifically, the cluster centers C = {c1, c2, . . . , ck} are determined by minimizing the
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sum of squared distances between all spatial points and their nearest cluster centers:

C = argmin
C

n∑
p=1

min
j

∥(λp, ϕp)− cj∥2

Here, (λp, ϕp) represents any spatial point p in the global grid, and n is the total number of such
points. Each node vi,t ∈ V is then assigned the spatial coordinates of the corresponding cluster
center: (λi, ϕi) = ci.

Cyclic Graph Construction: To ensure connectivity between the eastern and western hemispheres,
we map the geographical coordinates of the cluster centers to spherical coordinates and construct the
adjacency matrix A using the K-nearest neighbors (KNN) method on the sphere. Specifically, for
each cluster center vi,t, we first project its geographical coordinates (λi, ϕi) (longitude and latitude)
onto a 3D unit sphere using the following transformation:

xi = cos(ϕi) cos(λi), yi = cos(ϕi) sin(λi), zi = sin(ϕi)

where (xi, yi, zi) represents the 3D spherical coordinates of node vi,t. Using the spherical coordi-
nates pi = (xi, yi, zi), we compute the adjacency matrix A of the graph by defining the k-nearest
neighbors for each node vi,t. The adjacency matrix A is constructed as follows:

Ai,j =

{
1, j ∈ arg top-k ∥pi − pj∥
0, otherwise

Here, pi and pj are the 3D spherical coordinates of nodes vi,t and vj,t, respectively. This approach
ensures that the graph is cyclic, connecting locations on opposite sides of the globe, which is partic-
ularly important for capturing the circular nature of the Earth.

Node Embedding Calculation: We use Node2vec (Grover & Leskovec, 2016) to compute the
initial embeddings for the nodes. For each time dimension t, we add a time embedding using the
Rotational Position Embedding (RoPE) (Su et al., 2024) method: vi,t = Node2vec(i) + RoPE(t)
where vi,t is the embedding of node vi,t at time t.

Edge Weight Calculation: The weight of each edge wi,j in the graph is computed using a log-
Gaussian kernel, which incorporates two sequential normalization steps to effectively capture the
similarity between cluster centers in a 3D space. The weight of each edge wi,j can be calculated by:

wi,j =

exp

(
−

(
1−exp

(
−

∥pi−pj∥
µ

))2

2σ2

)
, if j ∈ arg top-k ∥pi − pj∥

0, otherwise

3.2 SPATIOTEMPORAL CONDITIONAL ENCODING

Building upon the Spatiotemporal Conditional Graph (STCG) construction, we propose a Spatiotem-
poral Conditional Encoding method to aggregate temporal and spatial information within the graph,
effectively modeling the spatiotemporal interactions across different locations. This process aims
to derive heterogeneous descriptive vectors for each spatiotemporal point, capturing the complex
interdependencies in the data.

The Spatiotemporal Conditional Encoding can be decomposed into two main steps: temporal ag-
gregation and spatial aggregation. For each node vi,t in the STCG, we update its embedding vi,t

through these aggregation processes.

Temporal Aggregation: We first apply a 1D convolution operation along the time dimension to
capture temporal dependencies. This can be formulated as:

V temp = V ∗W time

where V is the matrix of node embeddings vi,t, W time is the learnable temporal convolution kernel,
and ∗ denotes the convolution operation.

Spatial Aggregation: Following the temporal aggregation, we employ a graph convolution opera-
tion to aggregate spatial information:

V final = σ(D− 1
2AWD− 1

2V tempH)
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where A is the adjacency matrix, W is the edge weight matrix wi,j , D is the degree matrix di, H is
the learnable weight matrix, and σ is a non-linear activation function. The final embedding for each
node vi,t, incorporating both temporal and spatial information, can be expressed as:

vfinal
i,t = σ

 ∑
j∈N (i)

1√
didj

wi,jH

(
k∑

τ=−k

wtime
τ · vj,t+τ

)
where N (i) is the set of neighboring nodes of node vi,t, di and dj are the degrees of nodes i and j,
wi,j is the edge weight between nodes vi,t and vj,t, and wtime

τ are the elements of the temporal con-
volution kernel W time. By applying these operations sequentially, we obtain a rich representation
vfinal
i,t for each spatiotemporal point vi,t, which encapsulates both local and global spatiotemporal

dependencies.

3.3 TABULAR REPRESENTATION ENCODING

Our primary goal is to develop an efficient module that extracts both temporal representations (cap-
turing seasonal variation patterns) and feature representations from Earth science tabular data. This
process begins with a feature mixing step, where the input feature space is projected to N features.
Following this, rotational position encoding (RoPE) (Su et al., 2024) is applied to the temporal
dimension to incorporate positional information. Finally, we utilize stacked Dual Attention (DA)
modules to extract both temporal and feature-based dependencies.

Dual Attention Mechanism: Given an input tensor X ∈ RL×D, where L represents the sequence
length (time dimension) and D is the feature dimension, the DA module sequentially computes
self-attention (Katharopoulos et al., 2020) across the temporal and feature dimensions.

First, temporal self-attention is applied across the time steps for each feature. Queries, keys, and
values are computed as:

Qtemp = XW temp
Q , K temp = XW temp

K , V temp = XW temp
V

The temporal attention output is then computed by applying the activation function ϕ(x) =
ELU(x) + 1 directly within the attention formula:

Attntemp =
ϕ(Qtemp)

(
ϕ(K temp)⊤V temp

)
ϕ(Qtemp) (ϕ(K temp)⊤1L) + ϵ

Feature self-attention is then computed along the feature dimension using the same process. Resid-
ual connections are employed at each step to ensure gradient flow and model stability:

X feat = X temp + Attnfeat

Feedforward Network: Finally, a position-wise feedforward network is applied to each element:

Y = X feat + FFN(X feat)

By employing both temporal and feature self-attention, followed by a feedforward network, this
model captures rich representations from tabular Earth science data.

3.4 SPATIOTEMPORAL CONDITIONED OUTCOME PREDICTION

After encoding the tabular features and spatiotemporal heterogeneity conditions, we employ a trans-
former layer to decode the outcomes. Specifically, in the decoding stage, the spatio-temporal con-
ditions are used as the target sequence, while the encoded tabular features serve as the memory se-
quence. Let X ∈ RT×d represent the encoded tabular features with T timesteps and d-dimensional
feature embeddings, and C ∈ RS×d represent the spatiotemporal conditions with S spatio-temporal
steps. The transformer decoder computes an output Z as follows:

Z = Decoder(C,X)

Finally, a linear layer is then applied to the decoder output to generate the final predictions ŷ ∈ RT

for each timestep in the sequence:
ŷ = Linear(Z)

5
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4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Dataset: To validate our approach, we created the Climate2GPP dataset. We used data from Google
Earth Engine spanning January 1, 2001, to December 17, 2020. The data sources include:

• ERA5-Land Daily Aggregated (ECMWF): Global historical meteorological data aggre-
gated every 8 days (Muñoz-Sabater et al., 2021).

• MCD12C1.061 MODIS Land Cover Type (NASA): Yearly global land cover changes at
0.05 degree resolution (Friedl & Sulla-Menashe, 2022).

• PML V2 0.1.7: Global gross primary productivity (GPP) data aggregated every 8 days
(Zhang et al., 2019).

From ERA5, we selected 26 climate parameters, with solar radiation, evaporation, and precipitation
summed over 8-day periods, while the rest were averaged. GPP was similarly summed over 8-day
intervals. Data from 2001 to 2019 was used for training (52M samples), and data from 2020 served
as the test set (2.8M samples).

Training Setting: Our method is implemented in PyTorch 2.1.2 with CUDA 11.8. All features,
except GPP, are normalized. The AdamW optimizer is used with a batch size of 256, an initial
learning rate of 0.001, decayed to 0.0001 after 10 epochs, for a total of 20 epochs.

Comparison machine learning method are (KNN, Random Forest, XGBoost, LightGBM, CatBoost)
using AutoGluon 1.1.1 (Erickson et al., 2020) with default hyperparameters. These models, along
with deep learning comparisons (TabNet, ResNet, ExcelFormer, FFTransformer implemented in
PyTorchFrame 0.2.3 (Hu et al., 2024)), are trained on RTX 4090 GPU, 64-core Intel Xeon Platinum
8352V and 120GB of RAM. All deep learning models use the same optimizer settings as our method.

4.2 RESULT COMPARISON

Figure 2: Comparison of Different Methods

Method RMSE R2

Tabular Machine Learning
LightGBM Large 1.063 0.886
KNeighborsDist 1.093 0.879
KNeighborsUnif 1.096 0.879
LightGBM 1.108 0.876
XGBoost 1.124 0.872
LightGBMXT 1.126 0.872
NeuralNetFastAI 1.142 0.868
CatBoost 1.152 0.866
RandomForestMSE 1.182 0.859

Tabular Deep Learning
TabNet 0.944 0.901
ExcelFormer 1.001 0.878
ResNet 1.014 0.878
FTTransformer 1.158 0.850

Our Method
Ours 0.836 0.932

To validate the suitability of our proposed
method for machine learning tasks in the Earth
sciences, we conducted a comparative evalua-
tion against a range of widely adopted machine
learning baselines, including Random Forest
(Breiman, 2001), XGBoost (Chen & Guestrin,
2016), CatBoost (Prokhorenkova et al., 2018),
the LightGBM family (Ke et al., 2017), and
KNN. Additionally, we compared our method
with state-of-the-art tabular deep learning ap-
proaches, including TabNet (Arik & Pfister,
2019), ExcelFormer (Chen et al., 2024), ResNet
(Gorishniy et al., 2021), and FTTransformer
(Gorishniy et al., 2021). All models were
trained using the complete dataset of 50 million
samples to assess their scalability and perfor-
mance on large-scale data. The prediction accu-
racy of each method was evaluated on the Cli-
mate2GPP test set for estimating the total gross
primary productivity (GPP) for the year 2020,
as detailed in the table (2).

As shown in Table 2, the best-performing machine learning and deep learning methods on this task
were LightGBM Large and TabNet, achieving RMSEs of 1.063 and 0.944, respectively. However,
our proposed method outperformed both, achieving a lower RMSE of 0.836 and an R2 of 0.932.
These results underscore the superior capability of our approach in handling large-scale Earth sci-
ence data. Moreover, they suggest that by accounting for the spatiotemporal heterogeneity in the
relationships between independent and dependent variables, significantly improved predictive per-
formance can be achieved for Earth science problems.

6
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4.3 COMPARISON OF SPATIAL AND SPATIOTEMPORAL HETEROGENEITY METHODS

Furthermore, we aim to compare our method with other approaches that are capable of modeling
spatial or spatiotemporal heterogeneity. Notably, the computational complexity of the GWR series
methods is proportional to the number of spatial locations in the dataset. Moreover, GWR series
methods require exactly one sample point per spatial location. Given these limitations, all exper-
iments in this section were conducted on a smaller dataset. This setup ensures a fair comparison
between our method and GWR, while also evaluating our method’s fitting performance on a smaller
dataset. Specifically, we uniformly sampled 6,000 grids from the land grid as training data, with
each grid containing data from all available time points. Since GWR series methods require a one-
to-one correspondence between samples and locations, we used the average data from every 8 days
over 19 years as the training samples. For GWR (Fotheringham et al., 2009) and GNNWR (Du et al.,
2020), which cannot model spatiotemporal heterogeneity, we fit separate weekly temporal models.
For all models, we selected results from Weeks 1, 10, 20, 30, and 40, which are representative of
different seasons, for comparison. The results are shown in Table 1.

Table 1: Comparison of Spatial and Spatiotemporal Heterogeneity Methods (RMSE / R2)

Method Week-1 Week-10 Week-20 Week-30 Week-40 Overall
Modeling Spatial Heterogeneity

GWR 1.990/0.434 2.097/0.424 2.184/0.592 2.060/0.506 1.958/0.429 2.149/0.534
GNNWR 0.871/0.891 1.066/0.851 1.330/0.855 1.178/0.838 0.835/0.896 -

Modeling Spatiotemporal Heterogeneity
GTWR 1.761/0.557 1.859/0.547 2.475/0.476 2.070/0.501 1.689/0.575 -

Ours 0.779/0.913 0.813/0.914 1.073/0.905 0.931/0.887 0.700/0.922 0.836/0.932

In addition, we visualized the spatial heterogeneity weights for Week 40 (using PCA to reduce the
dimensionality of all variable weights to one dimension), as shown in Figure 3.

(a) GWR (b) GNNWR (c) GTWR (d) Our Method

Figure 3: Visualization of spatial heterogeneity weights in week-40
As shown in Table 1 and Figure 3, compared to GWR and GTWR (Fotheringham et al., 2015),
which can only fit linear relationships, methods that can model nonlinear relationships have a clear
advantage in terms of RMSE. Compared to GTWR, the sparsity-based learning of spatiotempo-
ral heterogeneity in our method significantly alleviates overfitting, and the learned spatiotemporal
heterogeneity weights exhibit a smooth spatial distribution.

Table 2: Comparison of Spatial and Spatiotemporal Heterogeneity Methods

Method Train RMSE Train R2 Test RMSE Test R2 Generalization Gap
GNNWR 0.478 0.931 0.835 0.896 0.357

Ours 0.627 0.942 0.700 0.922 0.073

Finally, in comparison to GNNWR (Du et al., 2020), which also models nonlinear relationships, our
method achieves better results because it can leverage the entire sample space (with different times
and locations) to learn the common patterns across all times and locations in an end-to-end manner.
Comparing the training and testing RMSEs (Table 2), GNNWR shows a training RMSE of 0.478 for
Week 40, while the testing RMSE is 0.835, resulting in a difference of around 0.35. In contrast, our
method yields a training RMSE of 0.627 and a testing RMSE of 0.700, with a difference of around
0.08. Additionally, compared to GNNWR, the spatiotemporal heterogeneity weights learned by our
method are smoother. These findings demonstrate that the improvements in our method effectively
mitigate local overfitting, a common issue when learning spatiotemporal heterogeneity.

7
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4.4 ABLATION EXPERIMENT

Figure 4: Ablation Study

Method RMSE
FFTransformer (En only) 1.158
En+De 1.071
En+De+GCN 0.893
En+De+GCN+EG 0.876
DaEn+De+GCN+EG 0.836

We conducted an ablation study to evaluate the
contribution of each module proposed in this
paper. The baseline model is the FFTrans-
former (Gorishniy et al., 2021), which includes
only an encoder (En) that processes feature
dimensions without incorporating temporal or
spatial information. As shown in Table 4, we
systematically examined the effects of adding
temporal decoding, spatiotemporal graph mod-
eling, and our proposed enhancements to graph
construction and feature extraction. The results,
presented in terms of RMSE, demonstrate the impact of each module.

In the first experiment, FFTransformer (En only) (Gorishniy et al., 2021) served as the baseline,
yielding an RMSE of 1.158. To extend the model to the temporal dimension, we added a transformer
decoder (De) and used a learnable tensor, matching the size of the node embeddings, as the decoding
target. This reduced the RMSE to 1.071, indicating that temporal modeling improves prediction
accuracy.

Next, we introduced a spatiotemporal GCN by constructing a K-nearest neighbor (KNN) graph
based on pixel coordinates, enabling spatial aggregation of node embeddings across both spatial and
temporal dimensions. This integration of spatiotemporal information further reduced the RMSE to
0.893, highlighting the importance of modeling spatial heterogeneity using graphs and GCNs.

In the following step, we enhanced the graph by switching from a pixel-based coordinate system
to a spherical coordinate system and applying our Enhanced Graph (EG) method, which incorpo-
rates Gaussian similarity-based edge weighting. This improvement resulted in an RMSE of 0.876,
demonstrating the effectiveness of refining graph construction.

Finally, we introduced the Dual Attention Encoder (DaEn) to capture both temporal and feature
dependencies by applying dual self-attention mechanisms. This final addition led to the most signif-
icant improvement, reducing the RMSE to 0.836.

4.5 VISUALIZATION

In the final experiment, we visualize the graph node embeddings to investigate whether our end-to-
end learning method captures generalizable patterns from the data. We reduce the dimensionality of
the node embeddings at each time step using PCA and visualize them according to their spatial lo-
cations. The results reflect the similarity or divergence in the relationships between independent and
dependent variables across different locations (i.e., points closer together after PCA likely indicate
similar relationships between the variables). The results are presented in Figure 5.

Figure 5: Spatiotemporal heterogeneity weights and total primary productivity predictions for weeks
10, 20, 30, and 40

As shown in Figure 5, our model’s graph node embeddings reveal several intriguing spatial patterns.
For instance, in the Week 20 visualization, the Middle East, the Sahara Desert, and central Australia

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

exhibit similar embedding patterns, which is consistent with these regions all containing large desert
areas. Conversely, tropical areas like the Amazon rainforest, as well as subtropical regions such
as southern China, display similar patterns, likely due to shared influences on vegetation growth
in these climates. Although further exploration into the interpretation of graph node embeddings
is warranted, these preliminary results already demonstrate that our end-to-end method effectively
learns spatiotemporal heterogeneity patterns with a degree of interpretability.

5 CONCLUSION

In this paper, we addressed the problem of modeling spatiotemporal heterogeneity in Earth sci-
ence by designing an end-to-end learning approach that captures both global patterns and localized
variations. Our method was validated on large-scale climate and vegetation data, where it outper-
formed existing models. We draw the following conclusions: (1) the end-to-end design effectively
learns common global features and improves performance compared to traditional methods, (2)
ablation studies show that learning locally shared spatiotemporal heterogeneity conditions reduces
overfitting, and (3) graph node embedding analysis indicates our approach can capture continuous
spatiotemporal heterogeneity, providing a degree of interpretability.

Looking ahead, this work primarily demonstrates the feasibility of end-to-end fitting of mappings
with spatial heterogeneity, but several aspects remain to be explored. In future research, we aim to
investigate whether improving the graph construction can further optimize the modeling of spatial
differences and plan to explore deeper interpretability of graph node embeddings. Additionally,
while building large-scale Earth science benchmarks is resource-intensive, we will continue refining
these benchmarks to better evaluate the effectiveness of future methods.
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A APPENDIX

A.1 BACKGROUND

What is Gross Primary Productivity (GPP): Gross Primary Productivity (GPP) measures the
amount of Carbon Dioxide (CO2) that plants absorb from the atmosphere and convert into biomass
through photosynthesis. In simple terms, GPP represents how much energy plants capture from
sunlight to support growth. GPP is driven by several environmental and biological factors, each
of which plays a key role in plant growth: Solar radiation, Temperature, Water availability, Nutri-
ent availability, CO2 concentration and Vegetation type and biodiversity. These factors interact in
complex ways, and their influence on GPP can vary across different geographical regions.

Why is a Spatially-Aware Model Necessary for GPP Prediction: Although many factors influ-
encing GPP are measurable, we are not always able to fully observe all of them. This incomplete
measurement means that the unobserved variables often vary across space in non-stationary ways.
As a result, the relationship between the observed variables (e.g., temperature, radiation) and GPP
also changes with spatial location. Therefore, a spatially-aware model is essential to capture these
location-dependent relationships and make accurate predictions.

A.2 HYPERPARAMETER ABLATION EXPERIMENT

We performed an extensive hyperparameter ablation study to investigate the influence of three criti-
cal hyperparameters on our method’s performance: the number of spatial nodes in the Spatiotempo-
ral Conditional Graph (STCG), the number of neighbors each node considers when constructing
the graph, and the number of embedding channels for each node in the graph. The results, reported
in terms of RMSE, are presented in Tables 3, 4, and 5.

N Clusters 375 750 1500 3000 6000 12000
RMSE 0.886 0.876 0.886 0.895 0.889 0.947

Table 3: RMSE for different numbers of spatial nodes in STCG (N Clusters).

Table 3 shows the effect of varying the number of spatial nodes (N Clusters) in the Spatiotemporal
Conditional Graph (STCG). As observed, the model performs optimally when 750 nodes are used,
achieving the lowest RMSE of 0.876. Increasing or decreasing the number of spatial nodes beyond
this value leads to a slight degradation in performance. For instance, with 375 nodes, the RMSE
increases to 0.886, while using 12000 nodes yields the worst RMSE of 0.947. This suggests that an
optimal number of spatial nodes balances the model’s capacity to capture spatial variability while
preventing overfitting or underfitting the spatial structure of the data.

N Neighbor 10 20 30 50
RMSE 0.902 0.891 0.876 0.878

Table 4: RMSE for different numbers of neighboring nodes (N Neighbor) considered in graph con-
struction.

Table 4 summarizes the results of varying the number of neighboring nodes (N Neighbor) consid-
ered for each spatial node in the graph. As shown, the model achieves its best performance with 30
neighbors, reaching an RMSE of 0.876. When fewer neighbors are used (e.g., 10 neighbors), the
performance degrades slightly to an RMSE of 0.902, indicating that insufficient spatial information
is being aggregated. On the other hand, using more neighbors, such as 50, also increases the RMSE
to 0.878, potentially due to over-smoothing effects, where too much spatial information dilutes the
model’s ability to capture local spatial heterogeneity.

Channel of Node Embedding 32 64 96 128
RMSE 1.15 0.910 0.876 2.16

Table 5: RMSE for different numbers of embedding channels (Channel of Node Embedding).
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In Table 5, we investigate the effect of varying the number of embedding channels per node in
the graph. The optimal configuration is achieved when 96 embedding channels are used, yielding an
RMSE of 0.876. Notably, reducing the number of channels to 32 results in a significant performance
drop, with an RMSE of 1.15. Similarly, increasing the number of channels to 128 leads to an even
worse result, with an RMSE of 2.16. These findings suggest that 96 channels strike the right balance
between model expressiveness and overfitting, providing enough capacity to represent node features
without over-complicating the model’s representation.

In summary, the hyperparameter ablation study highlights that the best configuration for our method
is achieved with 750 spatial nodes (N Clusters), 30 neighbors per node (N Neighbor), and 96 embed-
ding channels per node. These settings provide the most accurate results, balancing model complex-
ity and the ability to capture spatiotemporal dependencies effectively. Over-adjusting any of these
hyperparameters either underutilizes or overwhelms the model’s capacity to represent the data.

A.3 VARIABLES USED IN THE MODEL

In our model, we utilize a diverse set of variables capturing key environmental and climate-related
factors. These variables are categorized into three main groups: temperature-related features, land
cover types, and other environmental features.

The temperature-related features include:

• temperature 2m: Temperature at 2 meters above ground level.
• temperature 2m max: Maximum temperature at 2 meters above ground.
• temperature 2m min: Minimum temperature at 2 meters above ground.
• dewpoint temperature 2m: Dew point temperature at 2 meters above ground.
• skin temperature: Temperature at the surface of the Earth.
• soil temperature level 1 to soil temperature level 4: Soil temperature

at four different depth levels.

Additionally, we include 17 land cover types:

• land cover type 0 to land cover type 16: These represent various land cover
categories, capturing different types of terrain and vegetation.

The model also incorporates other environmental variables, including:

• evaporation from bare soil sum: Total evaporation from bare soil.
• evaporation from open water surfaces excluding oceans sum: Total

evaporation from open water surfaces excluding oceans.
• evaporation from the top of canopy max, min, and sum: Maximum, mini-

mum, and total evaporation from the top of the canopy.
• evaporation from vegetation transpiration max, min, and sum: Maxi-

mum, minimum, and total transpiration from vegetation.
• total evaporation sum: Total overall evaporation.
• leaf area index high vegetation and low vegetation: Leaf area index for

high and low vegetation.
• surface net solar radiation sum: Total surface net solar radiation.
• volumetric soil water layer 1 to layer 4: Volumetric soil water content in

four soil layers.
• total precipitation sum: Total precipitation accumulated.
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