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Abstract

Reinforcement learning (RL) has substantially ad-
vanced the reasoning capabilities of large lan-
guage models (LLMs), yet how to explicitly
guide training toward exploration or exploita-
tion remains underexplored. In this work, we
start from the assumption that response confi-
dence—the model’s likelihood assigned to correct
responses—is a meaningful objective for reason-
ing tasks. To better understand and control learn-
ing under this objective, we analyze token-level
dynamics in GRPO training and introduce Token
Hidden Reward (THR), a novel metric that quan-
tifies the contribution of individual tokens to re-
sponse confidence. Based on THR, we propose a
THR-guided reweighting strategy that modulates
the learning signal to explicitly favor either high-
confidence outputs (i.e., exploitation) or broader
output diversity (i.e., exploration). Empirically,
we find that increasing confidence mostly aligns
with improved greedy decoding performance (ex-
ploitation), while encouraging lower-confidence
increasing consistently boosts Pass@K perfor-
mance (exploration).

1. Introduction
The integration of reinforcement learning (RL) has signif-
icantly advanced the reasoning capabilities of large lan-
guage models (LLMs) (Guo et al., 2025; Jaech et al., 2024;
Team et al., 2023). Group Relative Policy Optimization
(GRPO) (Shao et al., 2024) has emerged as a widely adopted
and empirically successful method for training LLMs on
complex reasoning tasks. Models like DeepSeek-R1 (Guo
et al., 2025), DeepSeek-Math (Shao et al., 2024), Med-
R1 (Lai et al., 2025), and Search-R1 (Jin et al., 2025) have
leveraged GRPO to achieve state-of-the-art performance
across diverse domains.

1Anonymous Institution, Anonymous City, Anonymous Region,
Anonymous Country. Correspondence to: Anonymous Author
<anon.email@domain.com>.
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Figure 1. Tokens with positive THR tend to increase the confidence
of a correct response, thus encouraging exploitation, while tokens
with negative THR will reduce the confidence, thus allowing fur-
ther exploration. By adjusting the weights on the tokens, we can
control the exploitation-exploration tradeoff of LLM training.

Despite these successes, a central and persistent chal-
lenge in RL-driven LLM training is managing the inherent
exploration-exploitation trade-off (Tang et al., 2024; Harris
& Slivkins, 2025). Exploration—sampling uncertain actions
to acquire novel information—is crucial for tasks demand-
ing creativity (Lu et al., 2024) and enabling generalization
to unseen test cases via scaling algorithms (Snell et al.,
2024). Conversely, exploitation prioritizes optimal decision-
making based on current knowledge, a preference in appli-
cations requiring high-confidence, low-variance responses,
such as medical diagnosis (Wu et al., 2025). However, ef-
fectively shifting the training objective between exploration
and exploitation remains an underexplored challenge.

While (Chow et al., 2024) explore the exploration-
exploitation trade-off through a best-of-n training objective,
their method depends on an external verifier to select the
best candidate among n generations. More recently, (Deng
et al., 2025) analyzed the learning dynamics of GRPO, high-
lighting how training impacts the confidence of correct re-
sponses. By downweighting penalties on tokens that reduce
this confidence, their method improved performance under
greedy decoding and better exploited model capabilities.
However, their focus was primarily on negative gradients of
GRPO and it’s impact on exploitation, leaving other aspects
underexplored.
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Motivated by (Deng et al., 2025), we examine the intrin-
sic contribution of each token to the confidence of cor-
rect responses and explore its connection to the explo-
ration–exploitation trade-off. We introduce Token Hidden
Reward (THR), a metric that quantifies how individual to-
kens influence the likelihood of correct responses within the
GRPO framework. By analyzing the magnitude of THR,
we find that a small subset of tokens carries disproportion-
ately high absolute THR values, while most have negligible
impact. By studying the sign of THR, we propose a token
reweighting strategy that adjusts learning signals based on
THR. This allows the model to either reinforce observed
correct responses’ confidence or maintain probability mass
for alternative responses (Ren & Sutherland, 2025), showing
a correlation with the trade-off between exploitation and ex-
ploration. Specifically, amplifying tokens with positive THR
can sometimes enhance exploitation by improving greedy
decoding accuracy, whereas emphasizing tokens with neg-
ative THR encourages exploration and improves pass@K
performance. Our main contributions are threefold:

• We introduce Token Hidden Reward (THR) and con-
duct a thorough analysis, uncovering that a small sub-
set of tokens disproportionately influences training and
that the sign of THR correlates with the exploration-
exploitation trade-off.

• We propose a THR-guided reweighting strategy that
effectively directs the fine-tuning process, enabling
targeted emphasis on either exploitation or exploration.

• Empirical evaluations on math benchmarks confirm
that THR-guided reweighting effectively guides the
fine-tuning process, resulting in the successful realiza-
tion of desired performance improvements.

2. Related Work
Reinforcement Learning for LLM Reasoning. Recent
works have explored the use of model-generated solutions
as a form of bootstrapping to strengthen the reasoning capa-
bilities of large language models (LLMs)(Jaech et al., 2024;
Guo et al., 2025; Team et al., 2025). These methods typically
generate candidate solutions using a pre-trained model, then
filter them based on intermediate correctness signals(Setlur
et al., 2024) or final answer correctness (Guo et al., 2025;
Team et al., 2025), producing high-quality data to train a
new model. Building on the success of reinforcement learn-
ing from human feedback (RLHF) (Ouyang et al., 2022),
follow-up works such as GRPO (Shao et al., 2024; Guo
et al., 2025) use online training to further enhance reason-
ing. Moreover, reinforcement learning directly incorporates
the model’s incorrect outputs into training, which has been
found to further boost reasoning performance (Seed et al.,

2025). Despite these advances, the role of model-generated
outputs during training remains underexplored.

Optimizing for inference time objectives. Recent fine-
tuning methods have been developed to align with various
test-time objectives. For instance, some approaches treat
inference-time computation as an optional post-hoc design
choice (Snell et al., 2024), while others, such as (Huang
et al., 2025), aim to improve best-of-n performance during
training. However, the latter relies on an external verifier
to select the best output among n candidates, making the
implementation hard. Meanwhile, (Deng et al., 2025) fo-
cus on improving the model’s most confident predictions
by reducing penalties on tokens that contribute positively
to correct responses, thereby enhancing greedy decoding
performance. Nonetheless, their approach does not address
scenarios where exploration (Dou et al., 2025) capabilities
are crucial.

3. Preliminary
3.1. Notations

We use W , wz , and hz to denote the token unembedding
matrix, unembedding of a token z ∈ V , and hidden em-
bedding of z ∈ V∗, respectively. We let zk be the k-th
token in z and z<k be the first k − 1 tokens in z. For a
question x, the old policy πθold generates a group of G posi-
tive/negative samples resulting in (x, {y+

i }N+ , {y−
j }N−),

where N+ +N− = G. Lastly, we denote by ez ∈ R|V| the
standard basis vector corresponding to z ∈ V .

3.2. GRPO

GRPO loss, introduced in DeepSeek-Math (Guo et al.,
2025) and DeepSeek-R1 (Shao et al., 2024), enhances fine-
tuning by refining how reward and loss are calculated. Con-
cretely, unlike traditional Proximal Policy Optimization
(PPO) (Schulman et al., 2017), GRPO eliminates the need
for value function estimation, employing group-relative re-
wards for a more nuanced optimization process.

For a query-answer pair (x,a), the policy πθ samples G
responses {yi}Gi=1. Each yi consists of a sequence of |yi|
tokens, and we denote yi,<k the subsequence of the first
k − 1 tokens. Let ri denote the reward for response yi. The
advantage of the i-th response is computed by normalizing
the group-level rewards {ri}Gi=1 and is the same for each
token k = 1, . . . , |yi|. Concretely, Âi,k := ri−µ

σ , with µ =

Ê[{ri}Gi=1] and σ =

√
V̂ar[{ri}Gi=1] being the empirical

average and standard deviation of the rewards. The GRPO
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objective JGRPO(θ) is then defined as:

E
(x,a)∼D

{yi}G
i=1∼πθold (·|x)

[ 1∑G
i=1 |yi|

G∑
i=1

|yi|∑
k=1

min
(
γi,k(θ)Âi,k,

Âi,k · clip (γi,k(θ), 1− ε, 1 + ε)
)]

(1)

where ε is a clipping hyperparameter, clip(·) is the clipping
operation, and γi,k(θ) =

πθ(yi,k|x,yi,<k)
πθold (yi,k|x,yi,<k)

is the likelihood
ratio between the current policy πθ and the old policy πθold .

3.3. Likelihood Change of Correct Response in GRPO

A recent study (Deng et al., 2025) analyzed the learning
dynamics of GRPO and examined how the likelihood of
a correct response y+

i evolves during training, leading to
the formulation of the following theorem which is proved
leveraging a model of unconstrained features (Yang et al.,
2017):
Theorem 3.1. For any question x, at any time t ≥ 0 of
training, and any correct response y+

i , i ∈ [N+] , in addi-
tion to the dependence on token unembeddings, the likeli-
hood change d

dt lnπθ(t)(y
+
i |x) exhibits increased laziness

(that is, has smaller magnitude) as the following quantity
increases:

p−
|y+

i |∑
k=1

N−∑
j=1

|y−
j |∑

k′=1

α−
k,k′ · ⟨hx,y+

i,<k
,hx,y−

j,<k′
⟩︸ ︷︷ ︸

Negative Token Hidden Reward

−

p+
|y+

i |∑
k=1

N+∑
i′=1

|y+

i′ |∑
k′′=1

α+
k,k′′ · ⟨hx,y+

i,<k
,hx,y+

i′,<k′′︸ ︷︷ ︸
Positive Token Hidden Reward

⟩. (2)

where

α+
k,k′′(t) =〈
ey+

i,k
− πθ(t)(· | x,y+

i,<k), ey+

i′,k′′
− πθ(t)(· | x,y+

i′,<k′′)
〉
,

α−
k,k′(t) =〈
ey+

i,k
− πθ(t)(· | x,y+

i,<k), ey−
j,k′

− πθ(t)(· | x,y−
j,<k′)

〉
.

which quantify the similarity of token-level prediction error
across responses.

This theorem offers a theoretical framework for understand-
ing how tokens in reinforcement learning (GRPO in this
case) generated responses affect the likelihood of a correct
response.

4. Token Hidden Reward
In this paper, we adopt the setting of (Deng et al., 2025)
to analyze the dynamics of the log-likelihood of a correct

Figure 2. Density of THR scores for Qwen2.5-Math-1.5B. For
both correct responses (a) and incorrect responses (b), we observe
that only a small subset of tokens exhibits significantly high THR
values. Notably, both types of responses contain tokens with both
positive and negative THR scores.

response, d
dt lnπθ(t)(y

+
i | x) , reflecting the objective of RL

training to increase the probability of producing accurate
outputs. Building on Theorem 3.1 from their work, we
introduce the concept of token hidden reward (THR) to
more precisely capture the impact of individual tokens on
this likelihood.
Definition 4.1. Given a question x and a correct response
y+
i , for any token yk′ in another response y, the THR quan-

tifies that token’s contribution to the change in the likelihood
of the correct response d

dt lnπθ(t)(y
+
i | x). Formally, the

hidden reward for the k′-th token is defined as:

THR(y+
i ,y, k

′) =

|y+
i |∑

k=1

αk,k′ · ⟨hx,y+
i,<k

,hx,y<k′ ⟩, if r(y) = 1,

− αk,k′ · ⟨hx,y+
i,<k

,hx,y<k′ ⟩, otherwise.
(3)

In view of Theorem 3.1, a larger THR corresponds to a
greater increase in likelihood. The negative sign for incor-
rect responses (r(y) = 0) reflects the fact that reinforcement
learning penalizes those responses. In the GRPO setting, we
extend the definition of token hidden reward to this group
context as follows:
Corollary 4.2. Given a question x and the set of correct
responses {y+

i }N+ , for any token yk′ in a response yj

(where yj ∈ {y+
i }N+ ∪{y−

j }N− ), the token hidden reward
is defined as its contribution to the change in the likelihood
of the group of correct responses

∑N+

i=1
1

|y+
i |

d
dt lnπθ(t)(y

+
i |

x). Formally, the k′-th token’s contribution to the change of
likelihood of the group of correct responses is:

THR(yj , k
′) =

N+∑
i=1

1

|y+
i |

THR(y+
i ,yj , k

′).

In Corollary 4.2, the sign of THR(yj , k
′) indicates whether

the token positively or negatively contribute to the likeli-
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hood of the correct response. Specifically, as highlighted
in red shading in Figure 1, increasing the influence (e.g.,
by reweighting the token’s advantage w · Âk′ , w > 1) of
tokens with positive THR reduces the value of the quantity
in Equation (2), thereby boosting the likelihood of correct
responses and leading to better exploitation. Conversely,
as shown in blue shading in Figure 1, increasing the influ-
ence of tokens with negative THR increases the value of the
quantity in Equation (2), reducing the likelihood of correct
responses and encouraging exploration. Thus, the mag-
nitude of THR(yk′) reflects the strength of each token’s
influence on the likelihood.

5. THR Analysis
In this section, we analyze the Token Hidden Reward (THR).
We present the density of token THR scores in Figure 2.

Dominant Tokens. In both correct and incorrect responses,
the majority of tokens have THR scores clustered around
zero. However, a small subset of tokens exhibit significantly
larger THR values, indicating that these tokens dominate
the training dynamics.

Sign of THR. As shown in Figure 2, both correct responses
(a) and incorrect responses (b) contain tokens with both
positive and negative THR scores, indicating that tokens in
either type of response can either increase or decrease the
confidence in the correct response.

5.1. Impact of Dominant Tokens.

In this section, we study the impact of dominant tokens.
First we define the dominant tokens as tokens with THR
score higher than a threshold THR > τ . We detail the
selection of τ in Section 6.1.

Dominant Token Training We first only use these influen-
cial tokens by setting other tokens’ advantage to zero.

E
(x,a)∼D

{yi}G
i=1∼πθold (·|x)

[ 1∑G
i=1 |yi|

G∑
i=1

|yi|∑
k=1

1[|THRi,k| > τ ]·

min
(
γi,k(θ)Âi,k, Âi,k · clip (γi,k(θ), 1− ε, 1 + ε)

)]
(4)

we report the results of training with Equation (4) in Table 1,
where THR indicate only train with the influencial tokens,
where the performance is similar to that of GRPO which
training with all tokens and achieve the same performance
on average, indicating these influential tokens dominate the
RL training.

Relationship with Entropy. Since a confident (low-
entropy) token will have a small eyk′ − π(·|x,y<k′), thus
the resulting α in Definition 4.1 tends to be close to zero,
leading to a low THR. We analyze the overlap between to-

Figure 3. Overlap between high THR and high entropy tokens.
For each sample, we quantify the overlap between tokens with
high THR and high entropy, and plot the resulting density. The
distribution shows a pronounced peak near 90%, highlighting a
strong token-level association between these two metrics.

kens with high THR scores and those with high entropy.
Specifically, for each sample, we select the same number
of high-entropy tokens as high-THR tokens, compute their
overlap rate, and plot the kernel density estimate (Chen,
2017) of the resulting overlap scores in Figure 3. The re-
sults show a consistently high overlap ratio—often around
90%—indicating a strong correlation between THR and
entropy. This finding is consistent with the observation by
(Wang et al., 2025), who demonstrated that training on only
the top 20% of high-entropy tokens was sufficient to achieve
strong performance.

5.2. Impact of THR Signs on Exploration and
Exploitation

In this section, we analyze the sign of THR and its impact
on exploration and exploitation. We begin by informally
defining exploration and exploitation in our context.

Exploration. A lower increase in the likelihood of correct re-
sponses preserves some probability mass for other responses,
thus promoting exploration.

Exploitation. A higher increase in the likelihood of gen-
erating correct responses strengthens confidence in those
observed correct answers, thereby reinforcing exploitation.

To control the exploration and exploitation, we propose a to-
ken reweighting strategy to switch between exploration and
exploitation during training. As illustrated in Figure 1, to
promote exploitation, we increase the weight of tokens with
positive THR and decrease the weight of tokens with nega-
tive THR. In contrast, by reversing the reweighting scheme,
we can encourage exploration in RL training. For influential
tokens, we introduce a reweighting score highlighted in red:

1[|THRi,k| > τ ] · (1 + sign(THRi,k) · p) (5)

min
(
γi,k(θ)Âi,k, Âi,k · clip (γi,k(θ), 1− ε, 1 + ε)

)
As illustrated in Figure 1, setting p > 0 amplifies the im-

4
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Base Model + Configuration AIME24 AMC23 MATH500 Minerva Olympiad Avg.

Qwen2.5-0.5B-Ins
Base 0.0 2.5 33.4 4.4 7.0 9.5
GRPO 0.0 7.5 33.8 8.8 9.9 12.0
THR 0.0 15.0 34.6 8.1 7.6 13.1
THR (p = −0.2) 0.0 20.0 34.0 9.9 8.9 14.6
THR (p = 0.2) 0.0 17.5 35.6 11.0 6.5 14.1

Qwen2.5-Math-1.5B
Base 3.3 20.0 39.6 7.7 24.9 19.1
GRPO 13.3 57.5 71.8 29.0 34.1 41.1
Pos Only 10.0 57.5 70.6 30.1 31.0 39.8
THR 13.3 55.0 70.8 32.4 34.1 41.1
THR (p = −0.1) 13.3 60.0 70.6 32.0 32.7 41.7
THR (p = 0.1) 13.3 62.5 71.4 33.1 34.5 43.0

Table 1. Exploitation Results. Pass@1 accuracy (%) using greedy decoding across different methods and datasets. Bold indicates the best
performance, while underline marks the second-best.

pact of tokens in Phase I and Phase II while diminishing
the influence of Phase III and Phase IV, thereby promot-
ing exploitation. In contrast, choosing p < 0 reverses this
effect, shifting the emphasis toward exploration. We de-
tail the results of training with this reweighting scheme in
Section 6.2.

6. Experiments
6.1. Implementation Details

Models. We select models ranging from 0.5B to 1.5B pa-
rameters (Yang et al., 2024a). For the 0.5B model, we use
Qwen-0.5B-Ins, as prior work (Zeng et al., 2025) suggests
that small base models may struggle to follow formatted
prompts. For the 1.5B model, we adopt Qwen2.5-Math-
1.5B (Yang et al., 2024b). All models are fine-tuned using
GRPO and THR with identical reinforcement learning hy-
perparameters.

Training Setup. We use the MATH dataset (levels
3–5) (Hendrycks et al., 2021) to train the model. To ac-
celerate training, we use dynamic sampling (Yu et al., 2025),
which discards samples with zero advantage and continues
sampling new questions until a full batch is constructed.
For the 0.5B model, training is conducted on two A6000
GPUs with a batch size of 32, a maximum rollout length
of 2500 tokens, a learning rate of 5e−7, and a mini-batch
size of 16—resulting in two iteration updates per training
step. Given the increased sample efficiency introduced by
dynamic sampling (looping 2–3× more questions per batch),
we train for 60 steps. For the 1.5B model, we utilize four
A100 GPUs with a batch size of 256, learning rate 1e−6

and a mini-batch size of 64, leading to four iteration up-
dates per step and we train for 40 steps, which corresponds
to approximately two effective epochs when considering
the increased question throughput from dynamic sampling.

Across all models, we generate 8 rollouts per prompt. We
use a default sampling temperature of 1.0, a clipping ratio
of 0.2, and set the KL loss coefficient to 1 × 10−4. The
Qwen-Math model (Yang et al., 2024b) uses its full context
length of 3072 tokens for rollouts.

Selection of τ . For Qwen-Math-1.5B, we follow (Deng
et al., 2025)’s Eq. (8), setting τ to the average impact of the
i′-th correct response’s tokens on the likelihoods of other
correct responses. For Qwen-0.5B-Ins, τ is determined by
selecting the top 20% of tokens based on absolute impact
values, and additionally including the top 20% of tokens
with the highest entropy.

Evaluation setup. Since exploitation focuses on making
the best decisions based on existing knowledge (Harris &
Slivkins, 2025), we assess the exploitation ability of fine-
tuned models by measuring their greedy decoding accuracy
on five widely used math benchmarks: AIME 2024 (Veer-
aboina, 2023), AMC, MATH500 (Hendrycks et al., 2021),
and Minerva Math (Lewkowycz et al., 2022). To eval-
uate exploration, we report the unbiased Pass@K accu-
racy (Chen et al., 2021) using temperature 1.0 and top-p 1.0
on the more challenging AIME and AMC datasets, which
require diverse solution attempts. Pass@K is defined as

Pass@K = Ex∼D

[
1− (M−C

K )
(MK)

]
, where M ≥ K is the

number of model responses per question, and C denotes the
number of correct responses among them. For the greedy
decoding performance of Qwen2.5-0.5B-Ins, we report the
best accuracy across multiple checkpoints due to significant
fluctuations during training. For all other settings, we report
the performance at the final checkpoint.
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Method Qwen2.5-0.5B-Instruct Pass@K Qwen2.5-Math-1.5B Pass@K

1 2 4 8 16 32 64 128 256 1 2 4 8 16 32 64 128 256

AIME 2024
Base 0.1 0.2 0.4 0.8 1.6 3.1 5.6 9.8 16.7 3.3 6.3 11.3 18.5 27.4 36.4 44.3 49.6 53.3
GRPO 0.4 0.8 1.5 2.9 5.4 10.0 17.2 27.3 36.7 11.4 17.7 24.3 30.5 36.7 43.4 50.0 56.0 63.3
Neg Only 0.2 0.5 0.9 1.8 3.3 5.9 9.7 14.9 23.3 9.9 16.0 23.1 30.2 36.7 42.8 48.1 52.9 56.7
THR 0.4 0.7 1.5 2.9 5.4 9.7 15.7 22.0 26.7 10.6 16.7 23.4 30.2 37.2 44.8 51.9 58.5 63.3
THR (p < 0) 0.4 0.8 1.5 2.9 5.4 9.4 14.9 21.5 30.0 11.9 18.2 24.9 31.2 37.9 45.3 52.9 61.2 70.0
THR (p > 0) 0.4 0.7 1.4 2.6 4.7 8.1 12.9 19.9 30.0 8.4 13.6 20.0 27.0 34.7 43.1 50.8 57.6 63.3

AMC23
Base 4.1 7.8 14.0 23.4 36.1 50.6 64.4 75.4 82.5 15.3 26.7 42.1 58.6 72.3 81.9 88.8 94.3 97.5
GRPO 11.4 18.7 28.3 39.7 52.3 64.5 74.9 81.8 85.0 46.6 59.1 70.0 78.9 85.5 90.2 93.7 96.0 97.5
Neg Only 7.7 13.7 22.6 34.4 48.4 63.2 76.6 87.5 95.0 44.0 56.9 68.0 76.5 83.0 88.5 92.3 94.3 95.0
THR 12.0 20.2 30.8 43.0 56.1 68.6 79.5 88.0 92.5 44.8 57.8 69.1 78.2 85.1 90.1 93.6 95.9 97.5
THR (p < 0) 12.0 20.1 30.6 42.7 56.5 70.8 82.7 89.6 92.5 47.9 61.0 72.2 81.1 87.3 91.6 95.1 98.0 100.0
THR (p > 0) 11.1 18.8 29.2 41.9 56.0 69.3 80.1 87.5 92.5 41.4 54.8 66.8 76.6 84.2 89.5 93.2 95.8 97.5

Average
Base 2.1 4.0 7.2 12.1 18.9 26.9 35.0 42.6 49.6 9.3 16.5 26.7 38.6 49.9 59.2 66.6 71.9 75.4
GRPO 5.9 9.8 14.9 21.3 28.9 37.2 46.1 54.6 60.9 29.0 38.4 47.2 54.7 61.1 66.8 71.9 76.0 80.4
Neg Only 4.0 7.1 11.8 18.1 25.9 34.6 43.2 51.2 59.2 27.0 36.5 45.6 53.4 59.9 65.6 70.2 73.6 75.9
THR 6.2 10.5 16.2 23.0 30.8 39.2 47.6 55.0 59.6 27.7 37.3 46.3 54.2 61.2 67.5 72.8 77.2 80.4
THR (p < 0) 6.2 10.4 16.1 22.8 30.9 40.1 48.8 55.6 61.3 29.9 39.6 48.6 56.2 62.6 68.5 74.0 79.6 85.0
THR (p > 0) 5.8 9.8 15.3 22.2 30.4 38.7 46.5 53.7 61.3 24.9 34.2 43.4 51.8 59.5 66.3 72.0 76.7 80.4

Table 2. Exploration Results. Pass@K results for Qwen2.5-0.5B-Instruct and Qwen2.5-Math-1.5B are reported on the AIME 2024 and
AMC23 datasets, along with their average. Bold indicates the best performance. Specifically, p < 0 corresponds to p = −0.2 for the
0.5B model and p = −0.1 for the 1.5B model, while p > 0 corresponds to p = 0.2 and p = 0.1 respectively. Utilizing p < 0 leads to
consistently higher Pass@K scores, indicating improved exploration capabilities.

6.2. Results

Impact of Dominant Tokens. Training exclusively with
dominant tokens—those associated with high absolute THR
scores—results in performance comparable to the original
GRPO. As shown in Table 1, vanilla THR matches GRPO
in accuracy on Qwen2.5-Math-1.5B and even surpasses it
on Qwen2.5-0.5B-Instruct. Similarly, the Pass@K results
in Table 2 show that vanilla THR performs on par with
GRPO and notably exceeds it at higher Pass@K (K ≥
16) on Qwen2.5-Math-1.5B. These findings indicate that
dominant tokens play a critical role in guiding the training
process.

p > 0 for Exploitation. To emphasize exploitation, we
set p > 0 to amplify the influence of tokens with positive
THR values while suppressing those with negative ones.
We evaluate model accuracy based on its most confident
response using greedy decoding. As shown in Table 1, on
Qwen2.5-Math-1.5B, THR (p = 0.1) achieves the best per-
formance across all datasets, improving the average score
by 1.9 % compared to the vanilla THR. This highlights the
effectiveness of enhancing exploitation by reinforcing the
impact of Phases I & II. Similarly, on Qwen2.5-0.5B-Ins,
THR (p = 0.2) boosts average performance by 1% over
vanilla THR. Although THR (p = 0.2) is outperformed by
THR (p = −0.2) overall, it yields better in-domain results
on the Math500 dataset, validating the correlation between

boosting correct response confidence and achieving exploita-
tion. Notably, while setting p > 0 prioritizes exploitation
over exploration, it maintains comparable accuracy at higher
K in Pass@K, with performance close to both vanilla THR
and GRPO, as shown in Table 2.

p < 0 for Exploration. To assess exploration, we ex-
amine Pass@K at higher values of K on the challenging
AIME and AMC benchmarks. A negative p increases the
weight of tokens with negative THR scores, leaving more
probability mass for exploration. As shown in Table 2, set-
ting p < 0 consistently improves average Pass@K perfor-
mance for both Qwen2.5-0.5B-Instruct and Qwen2.5-Math-
1.5B models. The gains are especially pronounced on the
larger Qwen2.5-Math-1.5B model at higher K values—for
instance, surpassing the best baseline by 2.4% at Pass@128
and 5% at Pass@256. In almost all settings, p < 0 out-
performs other configurations, with the sole exception of
GRPO on AIME 2024 for Qwen2.5-0.5B-Instruct. Never-
theless, it still surpasses the vanilla THR, further validating
its effectiveness in enhancing exploration. Notably, while
setting p < 0 encourages exploration, it still achieves com-
petitive greedy accuracy—outperforming both vanilla THR
and GRPO, and even surpassing p > 0 on Qwen2.5-0.5B-
Ins, as shown in Table 1. This suggests that allowing greater
exploration can be beneficial.
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Ablation Study on Positive and Negative-Only Train-
ing. We further investigate the impact of training with
only positive or negative tokens by modifying Âi,k. In the
“Pos Only” setting, we set all values where Âi,k < 0 to 0,
thereby increasing the confidence of correct responses only.
Conversely, in the “Neg Only” setting, we set all values
where Âi,k > 0 to 0, which reduces the confidence of incor-
rect responses without reinforcing correct ones. As shown
in Table 1, “Pos Only” results in a 1.3% drop in average
performance compared to GRPO, indicating that negative
gradients also contribute to boosting confidence in correct
responses.

As shown in Table 2, “Neg Only” underperforms in most
cases. For example, on AMC23 with Qwen2.5-Math-1.5B,
it achieves a Pass@256 of 56.7%, compared to 63.3% for
both GRPO and vanilla THR. While “Neg Only” yields
moderate improvements over the Base model on aver-
age—indicating that suppressing incorrect responses pro-
vides some exploratory value—positive tokens still play a
critical role in enhancing exploration. By selectively incor-
porating informative tokens, THR with p < 0 achieves sub-
stantially better exploration performance than “Neg Only”
alone.

7. Conclusion
In this work, we addressed the challenge of guiding GRPO
fine-tuning of LLMs toward either exploration or exploita-
tion by introducing THR, a metric that quantifies the impact
of individual tokens on the likelihood of correct responses.
Our analysis revealed that a small subset of tokens with high
THR magnitudes disproportionately influences training dy-
namics, while the sign of THR correlates with controlling
towards exploration (negative sign) or exploitation (positive
sign). By proposing a THR-guided reweighting strategy,
we empirically demonstrated the ability to steer training ex-
plicitly: amplifying positive THR tokens enhances exploita-
tion, improving greedy decoding accuracy, while emphasiz-
ing negative THR tokens promotes exploration, boosting
Pass@K performance. Our findings provide a principled
framework for controlling the exploration-exploitation bal-
ance in RL-driven LLM training, opening avenues for more
targeted fine-tuning strategies in reasoning-intensive appli-
cations. Future work could explore extending THR to other
RL algorithms and more systematic ways of tuning the pa-
rameter p perhaps adaptively per iteration.
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