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ABSTRACT

In resource-constrained environments, such as mobile devices, lightweight and effi-
cient architectures are crucial for the deployment of single image super-resolution
(SISR) deep models. Due to the advantage of achieving a good trade-off between
model capacity and efficiency, 3 × 3 convolutions are widely utilized in current
convolutional neural networks (CNN). Compared to the normal 3 × 3 convolu-
tion, 1× 1 convolution involves less computation burden but lacks the ability to
represent and aggregate spatial information. Accordingly, a common sense in the
literature is that 1 × 1 solely cannot constitute a powerful SR network. In this
paper, we revisit 1× 1 in the lightweight scenario and demonstrate that the fully
1× 1 convolutional network with strong learning ability can be achieved for SISR,
thanks to the manual spatial-shift operation. We investigate the feature aggregation
scheme in normal 3× 3 convolution and analogously extend the 1× 1 convolution
with a parameter-free spatial-shift operation, simplified as the shift-conv layer. In
the proposed SISR method, we propose the Shift-Conv-based Network (SCNet)
by replacing all normal 3× 3 convolutions with shift-conv layers. Extensive ex-
periments demonstrate that SCNets with all 1× 1 convolutions obtain even better
results than SR models with normal 3× 3 convolutions that have a larger model
size.

1 INTRODUCTION

Single image super-resolution (SISR) aims at reconstructing a high-resolution (HR) image from
its corresponding degraded low-resolution (LR) input. It has witnessed substantial advancements
and gained more of the spotlight in research communities with the rapid development of deep
learning. The pioneering work SRCNN (Dong et al., 2016a) proposes to learn the mapping from LR
inputs to HR targets directly by a convolutional neural network (CNN) and outperforms traditional
approaches. Subsequently, many CNN-based work explore more effective architectures (Ledig et al.,
2017; Lim et al., 2017; Zhang et al., 2018b; Haris et al., 2018). Besides CNN-based architectures,
transformer-based backbone (Liang et al., 2021) has been proposed and achieved SOTA performance.

However, the models mentioned above improve the SISR performance with very deep or complicated
network architectures, leading to a heavy burden on parameter amounts and computational cost. As a
result, the required substantial resources make them hard to be deployed in the resource-constrained
environment, such as mobile or edge devices. Correspondingly, efficient and lightweight SR models
are highly demanded. Many work have been proposed to reduce the amounts of parameters or
floating-point operations (FLOPs) to achieve lightweight neural networks for SISR (Dong et al.,
2016b; Ahn et al., 2018; Hui et al., 2019; Li et al., 2020; Wang et al., 2021; Zhang et al., 2021; Gao
et al., 2022; Sun et al., 2022).

Due to the advantage in the trade-off between model capacity and computational cost, 3× 3 convolu-
tion has become the most widely used operation in CNN-based models. A larger kernel can promote
advancing performance but at the price that the parameter amount and computational cost increase
rapidly (Liu et al., 2022; Ding et al., 2022). On the other hand, a smaller kernel with the size of
1× 1 can reduce the amount of parameters but impairs the learning ability of SR network due to the
lose in local feature aggregation (with neighborhood pixels). Naturally, a question comes to mind:
can we achieve the best of both worlds to build a lightweight yet effective SR model with fully 1× 1
convolutions?
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(a) Feature aggregation scheme in normal 3×3 convolution (b) Feature aggregation scheme in Shift-Conv layer

Figure 1: Illustration of the feature aggregation in the normal 3× 3 convolution and Shift-Conv layer.

To answer the question, let’s dig into the feature aggregation scheme in normal 3× 3 convolution.
As illustrated in Figure 1(a), the normal 3 × 3 convolution can be separated into nine solid 1 × 1
convolutions to obtain nine projected feature maps. Then the projected features are shifted in different
directions and added as the final feature. If we directly replace 3 × 3 convolution with 1 × 1
convolution, the number of parameters is reduced significantly, but the absence of a local feature
aggregation impairs the model. Here, we extend 1× 1 convolution with local feature aggregation by
the spatial-shift operation against the channel dimension, as shown in Figure 1(b). It is worth noting
that the spatial-shift operation is non-parametric, thus no extra FLOPs are evolved. We separate
the input feature map into different groups along the channel dimension, and then the spatial-shift
operation is employed in different directions among groups. In this way, each pixel in the shifted
feature map is assembled around features along the channel dimension, which bridges the gap to the
3× 3 convolution. The 1× 1 convolution extended with local feature aggregation by the spatial-shift
operation is noted as the Shift-Conv layer here (simplified as SC layer), which reduces the number of
parameters significantly compared to the normal 3× 3 convolution.

In light of the above findings, in this paper, we propose a lightweight yet effective SR model with
extremely few parameters stacked by SC layers, which utilizes fully 1× 1 convolutional layers. It is
worth noting that the hyper-parameters of stride and direction in the SC layer correspond to the kernel
in normal 3× 3 convolution, i.e., when we take stride as 2 in around eight directions, the shift-conv is
analogous to the normal 3× 3 convolution. It is worth noting that we can take different spatial priors
in local pixel selection. We can select different locations by setting hyper-parameters of the stride
and direction in spatial-shift operation. Therefore, the SC layer can reduce parameters and extend the
receptive fields in normal 3× 3 convolution. Following the widely used residual connection block
(Lim et al., 2017), we propose a shift-conv residual block, simplified as the SC-ResBlock, to replace
all 3× 3 convolutions with 1× 1 convolutions. Furthermore, a lightweight shift-conv-based network
is proposed, which is stacked by several SC-ResBlocks, named SCNet. In addition, we extend our
SCNet with larger hidden dimensions and deeper layers to obtain a similar number of parameters as
the existing SR models, and the three SCNet with different model sizes are introduced with different
suffixes: tiny (T), base (B), and large (L), respectively. The performance of our SCNets on Manga109
testset (×4) compared to other models of different sizes is shown in Figure 2. It can be observed that
our proposed SCNet obtains a better trade-off between accuracy and the amount of parameters.

The main contributions of our work are highlighted as follows:

• This paper sheds new light on the designing of lightweight architecture for SISR, and
proposes a novel Shift-Conv Network (SCNet) with fully 1× 1 convolutional layers, which
produces an extremely small amount of parameters.

• We investigate the feature aggregation in normal 3 × 3 convolution and extend 1 × 1
convolution with local feature aggregation by a manual spatial-shift operation against the
channel dimension. To demonstrate the effectiveness of our SCNet, we modify the basic
residual blocks by replacing normal 3 × 3 convolutional layers with our SC layers. The
three SCNets are introduced with different model capacities.

• Extensive experimental results are offered to verify the superiority of the proposed SCNet,
and detailed ablation studies are evolved to help understand the impact of various components
and the scalability of our SCNet.

2



Under review as a conference paper at ICLR 2023

2 RELATED WORK

Figure 2: PSNR vs. Parameters. Compar-
isons with most recent efficient SISR models on
Manga109 (×4) test dataset.

Recently, deep learning methods have achieved
dramatic improvements in SISR tasks (Jing
& Tian, 2021; Anwar et al., 2020; Li et al.,
2021). Especially for CNN-based models, var-
ious well-designed CNN architectures explore
to further improve the SISR performance (Kim
et al., 2016b; Tai et al., 2017a; Lim et al., 2017).
Besides, attention mechanism like the channel
attention has been introduced to SISR task as
well (Zhang et al., 2018a; Dai et al., 2019; Niu
et al., 2020). Most recently, vision transformers
have attracted great attention (Dosovitskiy et al.,
2021; Liu et al., 2021) and many work have
been proposed to explore transformer-based ar-
chitectures that achieve new SOTA performance
(Chen et al., 2021; Liang et al., 2021).

In contrast to achieving advancing performance
with a rapidly increased number of parameters and computational cost, many lightweight SISR
models have been explored by reducing parameters, especially for resource-limited devices (Ahn
et al., 2018; Hui et al., 2019; Li et al., 2020; Wang et al., 2021; Zhang et al., 2021; Gao et al., 2022).
They commonly leverage the normal 3× 3 convolutions and try to develop well-designed blocks to
promote the performance.

In the last year, several work investigated some modern CNN-based architectures (Liu et al., 2022;
Ding et al., 2022). Liu et al. explored a modern CNN-based architecture and introduced larger kernels
that utilize 9× 9 kernel size. Ding et al. further brought the kernel size up to 31. Larger kernels bring
larger receptive fields that significantly improve the capabilities of CNN-based networks compared to
normal 3× 3 convolution. It is foreseen that large kernel convolution will also improve the low-level
tasks because receptive fields play a key role as well.

However, as those mentioned above, lightweight and efficient architectures are crucial to the real-
world application of single image super-resolution (SISR) models, especially for edge devices. In
contrast to exploring the larger kernel or deeper models, we pay more attention to the basic 1 × 1
convolution which introduces the fewest parameters.

3 METHODS

3.1 ARCHITECTURAL DESIGN

As shown in Figure 3, numerous basic SR-ResBlocks stack the main backbone of our SCNet followed
by up-scaling layers to reconstruct high-resolution (HR) results.

Given the LR image ILR ∈ RC×H×W where H , W , and C are image height, width, and channel
number, respectively. Firstly, a normal 1× 1 convolution is utilized as our shallow feature extractor
to map image space to a latent space. The shallow extractor is noted as Nhead and latent feature is
fhead = Nhead(I

LR) ∈ RClatent×H×W where Clatent is the channel dimension of the latent space.

Our main backbone Nmain is stacked by numerous basic SC-ResBlocks that are implemented by
the shift-conv and 1× 1 convolutional layers replacing the 3× 3 convolutional layers in the normal
residual block (Lim et al., 2017). Here main backbone Nmain takes shallow features fhead as input
and extracts deep features fmain = Nmain(fhead).

Then given the extracted deep feature fmain, the up-scaling module is utilized to reconstruct HR
results. Here we take the SC layer, ReLU, 1×1 convolution, and the pixelshuffle operation to build
our basic up-scaling module Nrec, and a normal 1× 1 convolution is utilized to map the up-scaledd
feature into the output with 3 channels. In addition, we add the up-scaledd LR images by bilinear
interpolation and the super-resolved output is ISR = Nrec(fmain) + Bilinear(ILR). Finally, the SR
network is trained by minimizing L1 loss.
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Figure 3: The architecture of our SCNet which is simply stacked by numerous basic residual blocks.

Algorithm 1 PyTorch-style pseudocode for spatial-shift operation.

# F: torch.nn.functional
def spatial_shift(f, steps, pad):

"""
f [torch.Tensor]: input feature in (B, C, H, W)
steps [Tuple(Tuple(int, int))]: parameters of the spatial-shift steps
pad [int]: padding size
"""
shift_groups = len(steps)
B, C, H, W = f.shape
group_dim = C//shift_groups
f_pad = F.pad(f, pad)
output = torch.zeros_like(f)

for idx, step in enumerate(steps):
s_h, s_w = step[0], step[1]
output[:, idx*group_dim: (idx+1)*group_dim, :, :] = \

f_pad[:, idx*group_dim:(idx+1)*group_dim, pad+s_h:pad+s_h+H, pad+s_w:pad+s_w+W]
return output

3.2 SHIFT-CONV RESIDUAL BLOCK

Spatial-Shift Operation. Let us note the shift direction as d ∈ {1, 0,−1}, and take dh and dw
for each side, respectively. Correspondingly, the strides are noted as sh and sw. Then we can
obtain the spatial-shift steps by combining direction and stride as step = (dh ∗ sh, dw ∗ sw), and
the set of spatial-shift steps is S = {stepi, i = 1, . . . , n} where n is the number of assembled
features and stepi presents the step for the ith local pixel-wise feature. If we want to take 8 local
pixels around like the normal 3× 3 convolution, the set of our spatial-shift steps can be defined as
{(0, 1), (0,−1), (1, 0), (1, 1), (1,−1), (−1, 0), (−1, 1), (−1,−1)}. We utilize the stepi to
locate the target pixel feature and we can leverage pixels anywhere even with a long distance (just
assign a large stride value). In addition, we can take different local aggregation schemes by setting
different spatial-shift steps. For fair comparison and evaluating the effectiveness of our fully 1× 1
convolutional SCNet, we take the local 8 pixels around like the normal 3× 3 convolutional layer as
the default.

Given the input feature f , we uniformly split it into n groups along the channel dimension where
n = |S|, and n thinner tensors f i ∈ R

Clatent
n ×H×W , i = 1, . . . , Clatent

n are obtained. Then each
separated feature group is shifted by the given step parameters and the shifted feature fshift is
obtained. Each pixel feature in fshift contains local features around it along the channel dimension.
The pseudocode of our spatial-shift operation is shown in Algorithm 1.

Shift-Conv Layer. Since 1× 1 convolutional operation works on the single pixel feature which
impairs the modeling, here we explore the local feature aggregation explicitly by a simple spatial-shift
operation that involves no parameters and FLOPs. The Shift-Conv layer (simplified as the SC layer)
is stacked by a 1× 1 convolutional layer and the spatial-shift operation, thus the SC layer extends the
normal 1× 1 convolution with local feature aggregation as well as the fewer parameters.

Shift-Conv Residual Block. As illustrated in Figure 4(a), the residual block proposed in (Lim
et al., 2017) is widely used in SR networks. For a fair comparison, We modify and introduce our
SC-ResBlock based on this basic residual connection. As illustrated in Figure 4(b), the SC-ResBlock
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contains a SC layer, ReLU, and a 1× 1 convolution. Compared with the 3× 3 convolution-based
residual block, our SC-ResBlock significantly reduces the number of parameters and computational
cost by adopting only 1× 1 convolution.

4 EXPERIMENTS

4.1 EXPERIMENT SETUP

Figure 4: Comparison between basic Res-
Block our Shift-Conv-based ResBlock.

Training Settings. We crop the image patches with
the fixed size of 64× 64 for training, and the counter-
part LR patches are downsampled by Bicubic inter-
polation. All the training patches are augmented by
randomly horizontally flipping and rotation. We set
the batch size to 32 and train our model using ADAM
(Kingma & Ba, 2015) optimizer with the settings of
β1 = 0.9, β2 = 0.999. The initial learning rate is set
as 2× 10−4.
Datasets and Metrics. We take 800 images from
DIV2K (Timofte et al., 2017) and 2650 images from
Flickr2K for training. Datasets for testing include Set5 (Bevilacqua et al., 2012), Set14 (Zeyde et al.,
2010), B100 (Martin et al., 2001), Urban100 (Huang et al., 2015), and Manga109 (Matsui et al.,
2017) with the up-scaling factor of 2,3, and 4. For comparison, we measure PSNR and SSIM (Wang
et al., 2004) on the Y channel of transformed YCbCr space.
Comparison methods. We compare the proposed SCNet with representative efficient SR models,
including SRCNN (Dong et al., 2016a), VDSR (Kim et al., 2016b), LapSRN (Lai et al., 2017), DRRN
(Tai et al., 2017a), MemNet (Tai et al., 2017b), CARN (Ahn et al., 2018), IMDN (Hui et al., 2019),
LAPAR (Li et al., 2020), SMSR (Wang et al., 2021), ECBSR (Zhang et al., 2021), FDIWN (Gao
et al., 2022), and ShuffleMixer (Sun et al., 2022) on ×2, ×3, and ×4 up-scaling tasks.

4.2 MAIN RESULTS

Quantitative Evaluation. The performance comparison of different SR models on five test datasets
with scales 2, 3, and 4 are reported in Table 1. In addition to PSNR/SSIM, we also report the number
of parameters. When the number of parameters is less than 400k, our SCNet-T outperforms all the
tiny models except LAPAR-B (Li et al., 2020), which contains much more parameters. Our SCNet-T
adopts the plain residual architectures and demonstrates that the fully 1× 1 convolutional network is
effective for SISR. When the number of parameters is between 500k and 900k, one can find that our
SCNet-B outperforms some larger models such as IMDN (Hui et al., 2019), and LAPAR-A (Li et al.,
2020) on all scales. More specially, the proposed SCNet-B achieves SOTA performance for scale
4 on all test datasets. In addition, when it comes to DRCN (Kim et al., 2016a), CARN (Ahn et al.,
2018), SRResNet (Ledig et al., 2017), SMSR (Wang et al., 2021) and SCNet-L that contain more
parameters, it can be found that our SCNet-L achieves SOAT performance in all cases. Benefiting
from the extremely few parameters in 1× 1 convolution, we can explore larger latent dimensions
and deeper neural networks simply stacked by basic SC-Resblocks. The proposed SCNet-L obtains
remarkable gains 0.26/0.0047 and 0.28/0.0062 in the term of PSNR/SSIM compared to IMDN and
SRResNet, respectively. In general, SCNets with all 1×1 convolutions obtain even better results than
SR models with normal 3× 3 convolutions with a larger model size, demonstrating the effectiveness
of the proposed SCNets. In this regard, there are more opportunities to exploit efficient architectures
of the lightweight SR network because of the few parameters in the 1× 1 convolution.

Qualitative Evaluation. We compare the visual quality of SR results by our SCNet-L and five
representative models, including LapSRN (Lai et al., 2017), VDSR (Kim et al., 2016b), DRCN (Kim
et al., 2016a), CARN (Ahn et al., 2018) and IMDN (Hui et al., 2019) on ×2, ×3, and ×4 up-scaling
task. The ×4 SR results are shown in Figure 5, and we can limpidly see that the results of CARN and
IMDN are blurry and contain more artifacts, while our SCNet-L can recover the main structures with
clear and sharp textures. Besides, more visual comparison results can be found in Appendix A.2.
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Figure 5: Visual comparisons on images with fine details on Urban100 test dataset (Zoom in for
more details).

4.3 ANALYSIS AND DISCUSSION

The core contribution in this paper is to propose a fully 1× 1 convolutional network for SISR. To
better understand the impact of different components of our SCNet, comprehensive ablation studies
are presented in this section.

The Impact of Steps in SC Layer. Compared to the normal 3× 3 convolution, there is an absence
of spatial feature aggregation in 1× 1 convolution. To aggregation the local features, the spatial-shift
operation is exploited. The hyper-parameter shift step, which determines the aggregated local pixels,
plays a key role in the spatial-shift operation. To better understand the impact of the shift step,
the SCNet with 16 SC-ResBlocks and 128 channel dimensions is our basic model, and we re-train
it with five different shift step settings, as shown in Figure 6. The first and the second patterns
contain four local positions from the horizontal and vertical directions (noted as Shift4-Cross) and
the diagonal directions (Shift4-Diag). The rest are dense 8 pixels around (Shift8), dilated 8 pixels
(Shift8-Dilated), and 16 pixels that combine the Shift8 and Shift8-Dilated (Shift16), respectively.
Results are summarized in Table 2. Furthermore, we utilize LAM (Gu & Dong, 2021) to visualize the
reception fields of different spatial steps, as shown in Figure 7. By combining Table 2 and Figure 7,
we observe that the local feature aggregation is of great significance in the following three aspects.

Neighborhood Feature Aggregation. The model adopting Shift4 with different steps is inferior
compared to that with the default Shift8, demonstrating that the feature aggregation patterns in
Shift4-Cross and Shift4-Diag are complementary, and the aggregation of neighborhood pixels around,
like the normal 3 × 3 convolution, is essential to SR network. Furthermore, we can find that the
Shift4-Diag can make the SR network learn successfully, but the worst performance is obtained here.
We think it is due to the loss of information in spatial-shift operation. Since we take the constant
value 0 for padding, the shift in diagonal directions removes the double number of pixels along two
sides than Shift4-Cross.
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Table 1: Quantitative comparison with some representation SR approaches on five widely used
benchmark datasets. Comparison methods are grouped according to the number of parameters and
the best and our results are highlighted in underline and bold correspondingly.

Scale Method Params Set5 Set14 B100 Urban100 Manga109
PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM

×2

SRCNN 57K 36.66/0.9542 32.45/0.9067 31.36/0.8879 29.50/0.8946 35.60/0.9663
LapSRN 251K 37.52/0.9591 32.99/0.9124 31.80/0.8952 30.41/0.9103 37.27/0.9740
DRRN 298K 37.74/0.9591 33.23/0.9136 32.05/0.8973 31.23/0.9188 37.88/0.9749
ECBSR-M10C32 95K 37.76/0.9609 33.26/0.9146 32.04/0.8986 31.25/0.9190 35.68/0.9421
LAPAR-C 87K 37.65/0.9593 33.20/0.9141 31.95/0.8969 31.10/0.9178 37.75/0.9752
LAPAR-B 250K 37.87/0.9600 33.39/0.9162 32.10/0.8987 31.62/0.9235 38.27/0.9764
SCNet-T 159K 37.85/0.9600 33.39/0.9161 32.06/0.8981 31.50/0.9187 38.29/0.9764
VDSR 666K 37.53/0.9587 33.03/0.9124 31.90/0.8960 30.76/0.9140 37.22/0.9750
MemNet 678K 37.78/0.9597 33.28/0.9142 32.08/0.8978 31.31/0.9195 37.72/0.9740
CARN-M 412K 37.53/0.9583 33.26/0.9141 31.92/0.8960 31.23/0.9193 35.62/0.9420
IMDN 694K 38.00/0.9605 33.63/0.9177 32.19/0.8996 32.17/0.9283 38.88/0.9774
LAPAR-A 548K 38.01/0.9605 33.62/0.9183 32.19/0.8999 32.10/0.9283 38.67/0.9772
FDIWN 629K 38.07/0.9608 33.75/0.9201 32.23/0.9003 32.40/0.9305 38.85/0.9774
ShuffleMixer 394K 38.01/0.9606 33.63/0.9180 32.17/0.8995 31.89/0.9257 38.83/0.9774
SCNet-B 557K 38.07/0.9607 33.72/0.9188 32.23/0.9003 32.24/0.9296 38.95/0.9777
DRCN 1,774K 37.63/0.9588 33.04/0.9118 31.85/0.8942 30.75/0.9133 37.55/0.9732
CARN 1,592K 37.76/0.9590 33.52/0.9166 32.09/0.8978 31.92/0.9256 38.36/0.9765
SRResNet 1,370K 38.05/0.9607 33.64/0.9178 32.22/0.9002 32.23/0.9295 38.05/0.9607
SCNet-L 1,157K 38.12/0.9609 33.90/0.9206 32.28/0.9009 32.46/0.9315 39.14/0.9781

×3

SRCNN 57K 32.75/0.9090 29.30/0.8215 28.41/0.7863 26.24/0.7989 30.48/0.9117
DRRN 298K 34.03/0.9244 29.96/0.8349 28.95/0.8004 27.53/0.8378 32.71/0.9379
LAPAR-C 99K 33.91/0.9235 30.02/0.8358 28.90/0.7998 27.42/0.8355 32.54/0.9373
LAPAR-B 276K 34.20/0.9256 30.17/0.8387 29.03/0.8032 27.85/0.8459 33.15/0.9417
SCNet-T 147K 34.03/0.9244 29.99/0.8381 28.93/0.8017 27.65/0.8413 32.84/0.9403
VDSR 666K 33.66/0.9213 29.77/0.8314 28.82/0.7976 27.14/0.8279 32.01/0.9340
LapSRN 502K 33.81/0.9220 29.79/0.8325 28.82/0.7980 27.07/0.8275 32.21/0.9350
MemNet 678K 34.09/0.9248 30.00/0.8350 28.96/0.8001 27.56/0.8376 32.51/0.9369
IMDN 703K 34.36/0.9270 30.32/0.8417 29.09/0.8046 28.17/0.8519 33.61/0.9445
LAPAR-A 594K 34.36/0.9267 30.34/0.8421 29.11/0.8054 28.15/0.8523 33.51/0.9441
FDIWN 645K 34.52/0.9281 30.42/0.8438 29.14/0.8065 28.36/0.8567 33.77/0.9456
ShuffleMixer 415K 34.40/0.9272 30.37/0.8423 29.12/0.8051 28.08/0.8498 33.69/0.9448
SCNet-B 589K 34.44/0.9276 30.43/0.8437 29.15/0.8063 28.31/0.8556 33.86/0.9462
DRCN 1,774K 33.82/0.9226 29.76/0.8311 28.80/0.7963 27.15/0.8276 32.24/0.9343
CARN 1,592K 34.29/0.9255 30.29/0.8407 29.06/0.8034 28.06/0.8493 33.50/0.9440
SRResNet 1,554K 34.41/0.9274 30.36/0.8427 29.11/0.8055 28.20/0.8535 33.54/0.9448
SMSR 993K 34.40/0.9270 30.33/0.8412 29.10/0.8050 28.25/0.8536 33.68/0.9445
SCNet-L 1,107K 34.53/0.9284 30.49/0.8452 29.20/0.8076 28.47/0.8588 34.08/0.9475

×4

SRCNN 57K 30.48/0.8628 27.49/0.7503 26.90/0.7101 24.52/0.7221 27.66/0.8505
DRRN 297K 31.68/0.8888 28.21/0.7720 27.38/0.7284 25.44/0.7638 29.46/0.8960
ECBSR-M10C32 98K 31.66/0.8911 28.15/0.7776 27.34/0.7363 25.41/0.7653 29.98/0.8281
LAPAR-C 115K 31.72/0.8884 28.31/0.7740 27.40/0.7292 25.49/0.7651 29.50/0.8951
LAPAR-B 313K 31.94/0.8917 28.46/0.7784 27.52/0.7335 25.85/0.7772 30.03/0.9025
SCNet-T 149K 31.82/0.8904 28.36/0.7764 27.39/0.7309 25.59/0.7696 29.72/0.9000
VDSR 665K 31.35/0.8838 28.01/0.7674 27.29/0.7251 25.18/0.7524 28.83/0.8809
LapSRN 813K 31.54/0.8850 29.19/0.7720 27.32/0.7280 25.21/0.7560 29.09/0.8845
MemNet 677K 31.74/0.8893 28.26/0.7723 27.40/0.7281 25.50/0.7630 29.42/0.8942
CARN-M 412K 31.92/0.8903 28.42/0.7762 27.44/0.7304 25.62/0.7694 25.62/0.7694
SRFBN-S 483K 31.98/0.8923 28.45/0.7779 27.44/0.7313 25.71/0.7719 29.91/0.9008
IMDN 715K 32.21/0.8948 28.58/0.7811 27.56/0.7353 26.04/0.7838 30.45/0.9075
LAPAR-A 659K 32.15/0.8944 28.61/0.7818 27.61/0.7366 26.14/0.7871 30.42/0.9074
ECBSR-M16C64 603K 31.92/0.8946 28.34/0.7817 27.48/0.7393 25.81/0.7773 30.15/0.8315
FDIWN 664K 32.23/0.8955 28.66/0.7829 27.62/0.7380 26.28/0.7919 30.63/0.9098
ShuffleMixer 411K 32.21/0.8953 28.66/0.7827 27.61/0.7366 26.08/0.7835 30.65/0.9093
SCNet-B 578K 32.26/0.8959 28.70/0.7844 27.64/0.7382 26.28/0.7917 30.76/0.9119
DRCN 1,774K 31.53/0.8854 28.02/0.7670 27.23/0.7233 25.14/0.7510 28.98/0.8816
CARN 1,592K 32.13/0.8937 28.60/0.7806 27.58/0.7349 26.07/0.7837 30.47/0.9084
SRResNet 1,518K 32.17/0.8951 28.61/0.7823 27.59/0.7365 26.12/0.7871 30.48/0.9087
SMSR 1,006K 32.12/0.8932 28.55/0.7808 27.55/0.7351 26.11/0.7868 30.54/0.9085
SCNet-L 1,140K 32.37/0.8973 28.79/0.7861 27.70/0.7400 26.44/0.7962 30.95/0.9137
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Figure 6: Illustration of different spatial-shift steps.

Figure 7: LAM (Gu & Dong, 2021) comparisons between different shift step settings.

Table 2: Results of different selected positions. Based on SCNet-B for scale 4, we replace the default
dense Shift8 steps with different settings as shown in Figure 6

Scale Steps Params Set5 Set14 B100 Urban100 Manga109
PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM

×4

Shift4-Cross 612K 32.14/0.8946 28.61/0.7819 27.58/0.7360 26.05/0.7836 30.48/0.9086
Shift4-Diag 612K 31.83/0.8898 28.39/0.7769 27.44/0.7314 25.65/0.7705 29.90/0.9015
Shift8 612K 32.16/0.8949 28.65/0.7830 27.60/0.7368 26.16/0.7864 30.58/0.9100
Shift8-Dilated 612K 32.19/0.8953 28.67/0.7832 27.60/0.7369 26.14/0.7868 30.61/0.9102
Shift16 612K 32.10/0.8941 28.57/0.7812 27.55/0.7355 26.02/0.7833 30.34/0.9075

Receptive Field. Based on the default Shift8 step, we extend it into Shift8-Dilated, as shown in
Figure 6(d). The dilated SCNet obtains slightly better performance than the default besides the
Urban100. According to Figure 7, one can find that a larger receptive field can be obtained by the
Shift8-Dilated, which shows that different feature aggregation patterns can be obtained by spatial-shift
steps like the normal dilated convolution.

Group Dimension. Furthermore, we combine the default Shift8 with the Shift8-Dilated and obtain
the Shift16, shown in Figure 6(e). Compared to the Shift8 and Shift8-Dilated, SCNet with Shift16
obtains an even larger receptive field but has worse performance, as summarized in Figure 7 and
Table 2. We attribute this to the fewer feature dimensions of each shift group, which hampers the
feature extraction. Since the dimension of the latent feature is fixed, the number of the shift group
dimension in Shift16 is reduced to half of that in Shift8 and Shift8-Dilated. As illustrated in Figure 7,
we could observe that there are still large activating regions but smaller activating values.

The Impact of Model Capacity. Benefiting from the few parameters in the SC layer, there are
opportunities to explore more depths and widths of SCNet. Here we exploit our SCNets stacked with
different SC-ResBlocks to analyze the impact of the model capacity. As summarized in Table 3, we
build our SCNets by SC-ResBlocks with different blocks (simplified as B) and channel dimensions
(D). When comparing SCNets with the same channel dimensions, such as 64 channels, one can find
that better results are obtained with deeper architectures. As illustrated in Figure 8, deeper structure
brings larger receptive fields. When we take the B64D64 vs. B16D128, we can find that B64D64
obtains better performance with even fewer parameters. We think it is due to the field of local feature
aggregation that B64D64 brings larger receptive fields and much more feature aggregation, while
shallow architecture in B16D128 lacks. In addition, the largest SCNet with B32D128 obtains the best
performance. As shown in Figure 8, one can find that more activated pixels are obtained in B32D128
than that in B32D64, which shows that the group dimension is of great significance to the feature
aggregation as well. The trade-off between the depth and width (group dimension) can be further
explored in the future. Moreover, detailed ablations about the deeper architecture and larger channel
dimension are shown in Figure 9. One can find that our SCNet is scalable that better performance can
be obtained with larger model capacity.
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Table 3: Results of SCNets with different capacity. The number of the SC-Resblock and latent
dimension are simplified as the B and D.

Scale Model Size Params Set5 Set14 B100 Urban100 Manga109
PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM

×4

B16D64 149K 31.82/0.8904 28.36/0.7764 27.39/0.7309 25.59/0.7696 29.72/0.9000
B32D64 312K 32.08/0.8939 28.59/0.7816 27.57/0.7357 26.01/0.7829 30.42/0.9079
B64D64 579K 32.26/0.8959 28.70/0.7844 27.64/0.7382 26.28/0.7917 30.76/0.9119
B16D128 612K 32.19/0.8949 28.65/0.7830 27.60/0.7368 26.16/0.7864 30.58/0.9100
B32D128 1,140K 32.37/0.8973 28.79/0.7861 27.70/0.7400 26.44/0.7962 30.95/0.9137

Figure 8: LAM (Gu & Dong, 2021) comparisons between different architectures of SCNet.

(a) (b)

Figure 9: Results of SCNet on Set14 (×4) with different model capacities. (a) Increasing the number
of SC-ResBlock with a fixing channel dimension 64. (b) Increasing the number of channel dimension
with 64 SC-ResBlocks.

Discussion. In this section, we explore the impact of the spatial-shift steps and the model capacity.
As summarized above, local feature aggregation is essential to the SR network, and a larger range of
feature aggregations can achieve further improvement. Moreover, different model sizes are evaluated.
Since there are few parameters in the 1× 1 convolution, more architectures are able to be explored.
The deeper architecture and the larger group dimension are advantageous to the proposed SCNet. In
addition, more ablations about the up-scaling module and the scalability of our SCNet can be found
in Appendix A.1.

5 CONCLUSION

In this paper, we propose a lightweight SISR model with fully 1 × 1 convolutions, named SCNet.
Compared to the normal 3× 3 convolution, 1× 1 convolution contains fewer parameters and less
computational cost, but the local feature aggregation is missing, which is essential to CNN-based SR
networks. To bridge the gap, we investigate the feature aggregation in the normal 3× 3 convolution
and take one step further from the design convention, extending the 1 × 1 convolution into the
shift-conv with the spatial-shift operation. It has no extra computational cost and involves the local
feature aggregation along the channel dimension. Then the Shift-Conv-based Network (SCNet) is
proposed for SISR task. Extensive experiments demonstrate the effectiveness of our SCNet, which
obtains comparable and even outperforms the existing SR models. Furthermore, detailed ablation
studies are conducted to better understand the impact of different components. We expect that our
SCNet can further help the community explore the combination of the local feature aggregation with
the long-range or global information in the near future.
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A APPENDIX

This appendix contains additional details for the paper “1 × 1 Convolution is All You Need for
Lightweight Image Super-Resolution”, including additional ablation studies and more visual results.

A.1 ABLATIONS

Figure 10: Ablation studies about the reconstruction block with different up-scaling modules. (a)
Our default reconstruction block with pixelshuffle. (b) Our reconstruction block with three different
up-scaling modules.

Table 4: Results about the impact of up-scaling modules.

Scale Up-Scaling Params Set5 Set14 B100 Urban100 Manga109
PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM

×2

PixelShuffle 159K 37.85/0.9600 33.39/0.9161 32.06/0.8981 31.50/0.9187 38.29/0.9764
Nearest 146K 37.76/0.9597 33.37/0.9151 31.99/0.8974 31.30/0.9197 38.14/0.9760
Bilinear 146K 37.78/0.9597 33.31/0.9152 32.00/0.8974 31.24/0.9193 38.12/0.9759
TConv 151K 37.80/0.9598 33.40/0.9153 32.02/0.8977 31.40/0.9207 38.18/0.9761

The Impact of Up-Scaling Modules. In this section, we investigate the impact of different up-
scaling approaches in our SCNet. For fair comparison, we take the SCNet-T as the default model,
and modify the reconstruction module with different up-scaling strategies as illustrated in Figure 10.
Here we evaluate four widely utilized up-scaling strategies: transport convolution, convolution with
pixelshuffle, bilinear interpolation with convolution, and the nearest interpolation with convolution,
and they are shortly noted as TConv, PixelShuffle, Bilinear, and Nearest, respectively. Results about
the ×2 super-resolution are summarized in Table 4. As summarized in Table 4, one can find that the
pixelshuffle module with a bit more parameters achieves the best performance on all test datasets.
Specially, SCNet with pixelshuffle obtain 0.10 dB and 0.11 dB improvement on Urban100 and
Manga109 against the second.

Table 5: Results of SCNet-T with different attention modules.

Scale Attention Params Set5 Set14 B100 Urban100 Manga109
Module PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM

×4

-∗ 159K 31.82/0.8904 28.36/0.7764 27.39/0.7309 25.59/0.7696 29.72/0.9000
SA 188K 31.90/0.8912 28.40/0.7763 27.43/0.7308 25.67/0.7716 29.84/0.9004
SPA 179K 31.89/0.8913 28.45/0.7779 27.46/0.7318 25.71/0.7727 29.95/0.9020
PA 245K 31.94/0.8924 28.50/0.7791 27.49/0.7329 25.81/0.7757 30.10/0.9038

* - presents our default SCNet-T without attention module.

Extensive Attention Modules. As illustrated in Figure 11, we modify and extend our SC-ResBlock
with some widely utilized attention modules. They are channel attention, spatial attention, and pixel-
wise attention, and are shotly noted as CA, SPA, and PA, respectively. We add the extensive attention
module at the end of the SC-ResBlock before the residual connection. Results are summarized in
Table 5. From Table 5, one can find that our SCNet is scalable to attention modules as well. In
addition, pixel-wise attention obtains the best performance, while it contains the most number of
parameters. Both channel attention and spatial attention achieve further improvement. Specifically,
spatial attention is more efficient because it obtains better performance with less parameters.
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Figure 11: Ablation studies about the extensive attention modules. (a) The generally extended
SC-ResBlock. (b) SC-ResBlock with different attention modules.

A.2 QUALITATIVE RESULTS

More visual comparison on Urban100 are shown in Figure 12. In addition, results of our different
SCNets on Manga109 test datasets are shown in Figure 13.
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Figure 12: Visual comparisons on images with fine details on Urban100 test dataset. Results obtained
by our SCNet-L are in bold that contain clearer and more accurate reconstructed textures with less
artifacts (Zoom in for more details).
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Figure 13: Visual comparisons on Manga109 test dataset. Results obtained by our SCNets are in
bold (Zoom in for more details).
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