Resolving Top-of-Hierarchy Locations First Improves Toponym
Disambiguation

Anonymous ACL submission

Abstract

Geocoding is the task of converting location
mentions in text into structured geospatial
data. We propose a new two-stage approach to
geocoding that first resolves countries, states,
and counties, and then uses these as document-
level context to disambiguate the remaining lo-
cation mentions. We apply this approach to two
state-of-the-art geocoding models, CamCoder
and SSPART. Our proposed two-stage approach
to toponym resolution applied to SSPART
yields state-of-the-art performance on multiple
datasets. Our analysis shows that SSPART’s
direct incorporation of geographic database en-
tries is key to its success over CamCoder in
leveraging document context. Code and models
are available at https://<anonymized>.

1 Introduction

Geocoding, also called toponym resolution or to-
ponym disambiguation, is the task of linking place
names in text (known as foponyms) to geospatial
databases. It is a fundamental building block for
natural language processing applications such as
geographical document classification and retrieval
(Bhargava et al., 2017), historical event analysis
(Tateosian et al., 2017), tracking the evolution
and emergence of infectious diseases (Hay et al.,
2013), and disaster response mechanisms (Ashk-
torab et al., 2014; de Bruijn et al., 2018).

The goal of geocoding is, given a textual mention
of a location, to choose the corresponding geospa-
tial coordinates, geospatial polygon, or entry in a
geospatial database. There are two kinds of chal-
lenges in geocoding: first, different geographical
locations can be referred to by the same place name
(e.g., Edmonton in Alberta, Canada vs. Edmonton
in Queensland, Australia); second, different place
names can refer to the same geographical location
(e.g., Tibet and Xizang are two names for the same
place in China).

Most existing geocoding systems utilize a vari-
ety of hand-engineered heuristics including lexi-
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LGL CamCoder 0.943 0.898 0.529 0.477
SSPART 0.968 0.806 0.829 0.745
GWN CamCoder 1.000 0.565 0.156 0.302
SSPART 1.000 0.765 0.778 0.752
TR-News CamCoder 1.000 1.000 0.000 0.837
SSPART 1.000 1.000 0.000 0.830

Table 1: Precision of two state-of-the-art geocoding
systems on three geocoding development sets.

cal features (e.g., mention name, candidate entry
name, and context window) and geographical fea-
tures (e.g., population or type of place) (Speriosu
and Baldridge, 2013; Zhang and Gelernter, 2014;
DeLozier et al., 2015; Kamalloo and Rafiei, 2018;
Wang et al., 2019). Recent deep learning based
geocoding systems have yielded large improve-
ments since neural networks can better extract con-
textual information with less feature engineering
(Gritta et al., 2018; Cardoso et al., 2019; Kulkarni
et al., 2020). However, deep learning systems have
rarely used the spatial minimality feature common
to prior work, which takes advantage of the fact
that different toponyms in a document tend refer to
spatially near locations. Incorporating this feature
can be complex, since until toponym resolution
is complete, we do not know the database entries
for the locations and therefore do not know their
coordinates to measure spatial distances.

We propose a solution to this problem that takes
advantage of the fact that current geocoding sys-
tems have good precision on locations at the top
of the geographic hierarchy: countries, states, and
counties (see Table 1). We therefore propose a new
two-step architecture, shown in Figure 1, where
these top-of-hierarchy locations are resolved first
and then used as context when resolving the remain-
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Figure 1: The architecture of our two-stage approach to toponym resolution.

ing location names. Our work makes the following
contributions:

e Our proposed architecture for geocoding
achieves new state-of-the-art performance on
multiple datasets.

* Our approach is the first neural architecture
to incorporate document-level context for
geocoding.

* We apply our approach to two different state-
of-the-art geocoders and our analysis shows
that SSPART’s direct incorporation of geo-
graphic database entries is key to success.

2 Related Work

Our work focuses on mention-level geocoding in
which the objective is to match phrases within a
text to their corresponding locations. We do not
address the separate named entity recognition task
of geotagging, which typically precedes mention-
level geocoding.

Many systems for geocoding used hand-crafted
rules and heuristics to predict geospatial labels for
place names. Examples include the Edinburgh
geoparser (Grover et al., 2010), Tobin et al. (2010),
Lieberman et al. (2010), Lieberman and Samet
(2011), CLAVIN (Berico Technologies, 2012),
GeoTxt (Karimzadeh et al., 2013), and Laparra
and Bethard (2020). The most common features
and heuristics were based on string matching, pop-
ulation count, and type of place (city, country, etc.).

As more shared tasks and annotated datasets
were proposed, geocoding systems began to take
the heuristics of rule-based systems and use them as
features in supervised machine learning models, in-
cluding logistic regression (WISTR, Speriosu and
Baldridge, 2013), support vector machines (Mar-

tins et al., 2010; Zhang and Gelernter, 2014), ran-
dom forests (MG, Freire et al., 2011; Lieberman
and Samet, 2012), stacked LightGBMs (DM_NLP,
Wang et al., 2019) and other statistical learning
methods (Topocluster, DeLozier et al., 2015; CBH,
SHS, Kamalloo and Rafiei, 2018).

Recently, deep learning methods have been intro-
duced for toponym resolution (CamCoder, Gritta
et al., 2018; Cardoso et al., 2019; MLG, Kulkarni
etal., 2020). Each system has a unique neural archi-
tecture for combining inputs to make predictions
based on convolutional neural networks (CNNs:
CamCoder, Gritta et al., 2018; MLG, Kulkarni
et al., 2020), recurrent neural networks (RNNs:
Cardoso et al., 2019), vector-space models (Ar-
danuy et al., 2020), or pre-trained transformers
(Anonymous, 2022).

Our proposed approach allows these deep learn-
ing systems to take advantage of document-level
features, while respecting their limits on input size
(e.g., 512 word-pieces).

3 Proposed Methods

We define the task of toponym resolution as fol-
lows. We are given an ontology or knowledge
base with a set of entries E' = {e1,e,...,€|g)}.
Each input is a text made up of sentences 7' =
{t1,t2,...,tj7} and a list of location mentions
M = {mi,ma,...,mp} in the text. The goal is
to find a mapping function f(m;, E) — e; that
maps each location mention in the text to its corre-
sponding entry in the ontology.

We propose to model f(m;, ) with Algo-
rithm 1. Lines 1-9 are the context-free stage, where
an existing geocoding system is first applied to all
location mentions. If the feature type of a predicted
entry, type(e), is an administrative district 1-3



Algorithm 1: Two-stage toponym resolu-
tion using document-level context.

Input: location mentions, M
GeoNames ontology, I/
geocoding system, f(m,c, E) — e
m is a location mention
c is a context string
e € E is the predicted entry
Output: mapping of mentions to entries, R
1 R+ {}
2 C+ 0
3 form € M do
4 e+ f(m,"", E)
5 if TYPE(e) € {adm1, adm2, adm3} then
6 Rim] « e
7 C <+ C'U{CcoDE(e)}
8
9

end

end

10 for m € M do

1 ifm ¢ R then

12 | R[m] + f(m,"".50in(C), E)
13 end

14 end

15 return R

(i.e., the top of the geographic hierarchy: coun-
tries, states, or counties), then the prediction is
accepted. Such predictions are also converted to
their administrative codes (e.g., United States —
US) and added to the context. Lines 10-14 are the
second stage, where the geocoding system is ap-
plied to all remaining location mentions but this
time incorporating the collected context.

4 Experiments

4.1 Datasets

We use the same three toponym resolution datasets
and training/dev/testing splitting method as in pre-
vious work. Below we briefly describe each dataset
and refer readers to their paper for details.

Local Global Lexicon (LGL; Lieberman et al.,
2010) was constructed from 588 news articles from
local and small U.S. news sources.

GeoWebNews (GWN; Gritta et al., 2019) was
constructed from 200 articles from 200 globally
distributed news sites.

TR-News (Kamalloo and Rafiei, 2018) was con-
structed from 118 articles from various global and
local news sources.

4.2 Geospatial Database

Following previous work, we use GeoNames as our
database. GeoNames is a crowdsourced database

of geospatial locations. GeoNames contains almost
7 million entries and each entry contains a variety
of geographical information such as coordinates
(latitude and longitude), alternative names, feature
type (country, city, river, mountain, etc.), popu-
lation, elevation, and positions within a political
geographic hierarchy. Three entry examples for
Alberta, Edmonton and Canada from GeoNames
are shown in fig. 1.

4.3 Evaluation Metrics

To evaluate the toponym resolution systems com-
prehensively, we adopt both database entry level
metrics (more strict) and coordinate level metrics
(less strict):

Accuracy measures the fraction of location men-
tions predicted with the correct database entry ID.

Accuracy@161km measures the fraction of pre-
dicted coordinates that were less than 161 km away
from the gold coordinates.

Mean error distance calculates the mean over
all distances between each predicted and gold coor-
dinates.

Area Under the Curve (AUC) calculates the
area under the curve of the distribution of geocod-
ing error distances.

4.4 Systems

We compare several geocoding systems:

Edinburgh is a rule-based system proposed by
Grover et al. (2010). It was the state-of-the-art on
LGL and several other datasets before CamCoder.
The Edinburgh parser utilizes heuristics to take
advantage of contextual information (containment,
proximity, locality, clustering) and geographical
features (population count, type of place) to score,
rank, and choose a candidate.

CamCoder is a deep learning model proposed
by Gritta et al. (2018) which utilizes a convolu-
tional neural network to capture features from a
context window and the target mention, and builds
a geographical map vector that encodes a popula-
tion distribution over the location mentions in the
target mention’s context. CamCoder divides the
earth’s surface into a grid and predicts one surface
tile based on the text features and map vector. (See
Appendix A.3 for implementation details.)

To apply our proposed two-stage resolution al-
gorithm to CamCoder, we run SSPART (below)
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Edinburgh 611 632 119 290 .738 773 146 203 .750 .756 149 218
CamCoder Vv 580 .651 82 288 572 .665 155 290 .660 .778 89 .196
CamCoder Vv 562 .638 83 .297 553 .644 183 307 .656 .774 88 .198
SSPART v 759 783 67 .166 782 .832 60 .131 777 .798 92  .166
SSPART v v 807 .824 46 .135 .828 .862 55 114 918 .933 34 .057
SSPART v 723 756 79 193 795 834 56 .130 .848 .858 66 .114
SSPART 760 785 59 167 788 .834 61 .131 .798 .816 89 154

Table 2: Performance on the test sets. Higher is better for Accuracy and Accuracy @ 161km. Lower is better for
Mean Error and AUC. Edinburgh made no predictions for 28, 49, and 106 toponyms in LGL, GeoWebNews, and
TR-News, respectively. Since it is impossible to calculate distance-based metrics without coordinates, we skip those
toponyms, and as a result overestimate the distance-based metrics for Edinburgh.

without textual context as the first stage. (We use
SSPART instead of CamCoder since SSPART is
more accurate; see table 1.) For the second stage,
we collect any predicted countries, states or coun-
ties, and both concatenate them to the mention
name (where CamCoder inserts textual context)
and include them when building the Map Vector.

SSPART s the current state-of-the-art (Anony-
mous, 2022), and uses a candidate generator based
on Lucene search and population sorting to gener-
ate candidates and feed them to a transformer-based
reranker. Unlike CamCoder, SSPART predicts
database entries, not map tiles, so its transformer-
based reranker can both capture information from
the target mention and context window and also
directly access features from the geographical
database like population and type of place.

To apply our proposed two-stage resolution algo-
rithm to SSPART, we run SSPART without textual
context as the first stage. For the second stage, as
shown as Figure 1, we collect any predicted coun-
try, state, or county codes, and concatenate them to
the mention name (where SSPART inserts textual
context). We also concatenate each candidate entry
with its known country, state, and county codes.

5 Results

We use the original code from the various au-
thors and evaluate the Edinburgh, CamCoder and
SSPART models on three public toponym resolu-
tion datasets. We also apply our proposed two-
stage resolution algorithm to the two models that

allow context to be added to their input: CamCoder
and SSPART. Table 2 shows that SSPART with our
two-stage approach achieves new state-of-the-art
across all three datasets.

CamCoder, on the other hand, does not benefit
from our approach. We hypothesized that this was
because CamCoder predicts map tiles, not database
entries, and thus cannot directly compare the coun-
tries, states, and counties that have been added as
context to the countries, states, and counties in a
candidate database entry. To test this hypothesis,
we ablate from the SSPART model these portions
of the candidate database entry, i.e., we do not in-
clude the country, state, or county codes on the
candidate entry side (though we do still include the
ones from the document context on the mention
side). The row corresponding to this experiment
(SSPART Two-Stage with no Entry-Side-Codes)
performs similarly to the row without our algorithm
(SSPART without Two-Stage). This confirms our
hypothesis: predicting map tiles instead of database
entries makes it difficult for CamCoder to take ad-
vantage of our document-level context.

6 Conclusion

We propose a new two-stage toponym resolution
architecture that first resolves locations at the top of
the geographical hierarchy (countries, states, and
counties) and uses those as context when resolving
the other locations in the document. Our experi-
ments show that applying this algorithm to the cur-
rent best geocoder, SSPART, achieves new state-of-
the-art performance on all our geocoding datasets.
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A Appendix

A.1 Artifact intended use and coverage

The intended use of CamCoder and SSPART is
matching English place names in text to the Geo-
Names ontology. We have used them for that pur-
pose. The intended use of our two-step method is
also matching English place names in text to the
GeoNames ontology.

Though GeoNames covers millions of place
names, our evaluation corpora cover only English
news articles, and thus the performance we report
is only predictive of performance in that domain.

A.2 Limitations

Our experiments are limited by the availability of
models. Though we aimed to apply our two-stage
method to several geocoding models, most pub-
lished geocoding models have not released their
code. We have thus applied our two-stage method
to the two models that accept context as input and
where code was available, CamCoder and SSPART.

Our experiments are also limited by the avail-
ability of datasets. Though we have attempted
to collect a variety of geocoding datasets, some
datasets, such as the SemEval-2019 Task 12 data
(Weissenbacher et al., 2019), have not released test
sets, making comparison to prior work difficult. We
have thus applied our method to the three datasets
where we were able to obtain the complete data:
LGL, GeoWebNews, and TR-News.

Our two-step method has the same limitations
as CamCoder and SSPART: their training and eval-
uation data covers only thousands of English to-
ponyms from news articles, while there are many
millions of toponyms across the world. It is likely
that there are regional differences in our model’s
accuracy.

A.3 CamCoder details

The original CamCoder code, when querying Geo-
Names to construct its input population vector from
location mentions in the context, assumes it has
been given canonical names for those locations.
Since canonical names are not known before loca-
tions have been resolved to entries in the ontology,
we have CamCoder use mention strings instead of
canonical names for querying GeoNames.

We follow the hyperparameter settings in the
original paper when training CamCoder: Keras
2.2.0, Tensorflow 1.8, Python 2.7, RMSprop opti-
mizer, a learning rate of 1e-3, a batch size of 64, the
context length of 200 and a number of epochs of
250. The total number of parameters in CamCoder
is 178M and the training time is about 3 hours.

A.4 SSPART details

We follow the hyperparameter settings in the origi-
nal paper when training SSPART: Adam optimizer,
a learning rate of 1e-5, a maximum sequence length
of 128 tokens, and a number of epochs of 30. When
training without context, we use one Tesla V100
GPU with 32GB memory and a batch size of 8.
When training with context, we use four Tesla
V100 GPU with 32GB memory and a batch size of
32. The total number of parameters in SSPART is
168M and the training time is about 3 hours.
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