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Abstract
Geocoding is the task of converting location001
mentions in text into structured geospatial002
data. We propose a new two-stage approach to003
geocoding that first resolves countries, states,004
and counties, and then uses these as document-005
level context to disambiguate the remaining lo-006
cation mentions. We apply this approach to two007
state-of-the-art geocoding models, CamCoder008
and SSPART. Our proposed two-stage approach009
to toponym resolution applied to SSPART010
yields state-of-the-art performance on multiple011
datasets. Our analysis shows that SSPART’s012
direct incorporation of geographic database en-013
tries is key to its success over CamCoder in014
leveraging document context. Code and models015
are available at https://<anonymized>.016

1 Introduction017

Geocoding, also called toponym resolution or to-018

ponym disambiguation, is the task of linking place019

names in text (known as toponyms) to geospatial020

databases. It is a fundamental building block for021

natural language processing applications such as022

geographical document classification and retrieval023

(Bhargava et al., 2017), historical event analysis024

(Tateosian et al., 2017), tracking the evolution025

and emergence of infectious diseases (Hay et al.,026

2013), and disaster response mechanisms (Ashk-027

torab et al., 2014; de Bruijn et al., 2018).028

The goal of geocoding is, given a textual mention029

of a location, to choose the corresponding geospa-030

tial coordinates, geospatial polygon, or entry in a031

geospatial database. There are two kinds of chal-032

lenges in geocoding: first, different geographical033

locations can be referred to by the same place name034

(e.g., Edmonton in Alberta, Canada vs. Edmonton035

in Queensland, Australia); second, different place036

names can refer to the same geographical location037

(e.g., Tibet and Xizang are two names for the same038

place in China).039

Most existing geocoding systems utilize a vari-040

ety of hand-engineered heuristics including lexi-041
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LGL CamCoder 0.943 0.898 0.529 0.477
SSPART 0.968 0.806 0.829 0.745

GWN CamCoder 1.000 0.565 0.156 0.302
SSPART 1.000 0.765 0.778 0.752

TR-News CamCoder 1.000 1.000 0.000 0.837
SSPART 1.000 1.000 0.000 0.830

Table 1: Precision of two state-of-the-art geocoding
systems on three geocoding development sets.

cal features (e.g., mention name, candidate entry 042

name, and context window) and geographical fea- 043

tures (e.g., population or type of place) (Speriosu 044

and Baldridge, 2013; Zhang and Gelernter, 2014; 045

DeLozier et al., 2015; Kamalloo and Rafiei, 2018; 046

Wang et al., 2019). Recent deep learning based 047

geocoding systems have yielded large improve- 048

ments since neural networks can better extract con- 049

textual information with less feature engineering 050

(Gritta et al., 2018; Cardoso et al., 2019; Kulkarni 051

et al., 2020). However, deep learning systems have 052

rarely used the spatial minimality feature common 053

to prior work, which takes advantage of the fact 054

that different toponyms in a document tend refer to 055

spatially near locations. Incorporating this feature 056

can be complex, since until toponym resolution 057

is complete, we do not know the database entries 058

for the locations and therefore do not know their 059

coordinates to measure spatial distances. 060

We propose a solution to this problem that takes 061

advantage of the fact that current geocoding sys- 062

tems have good precision on locations at the top 063

of the geographic hierarchy: countries, states, and 064

counties (see Table 1). We therefore propose a new 065

two-step architecture, shown in Figure 1, where 066

these top-of-hierarchy locations are resolved first 067

and then used as context when resolving the remain- 068
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Figure 1: The architecture of our two-stage approach to toponym resolution.

ing location names. Our work makes the following069

contributions:070

• Our proposed architecture for geocoding071

achieves new state-of-the-art performance on072

multiple datasets.073

• Our approach is the first neural architecture074

to incorporate document-level context for075

geocoding.076

• We apply our approach to two different state-077

of-the-art geocoders and our analysis shows078

that SSPART’s direct incorporation of geo-079

graphic database entries is key to success.080

2 Related Work081

Our work focuses on mention-level geocoding in082

which the objective is to match phrases within a083

text to their corresponding locations. We do not084

address the separate named entity recognition task085

of geotagging, which typically precedes mention-086

level geocoding.087

Many systems for geocoding used hand-crafted088

rules and heuristics to predict geospatial labels for089

place names. Examples include the Edinburgh090

geoparser (Grover et al., 2010), Tobin et al. (2010),091

Lieberman et al. (2010), Lieberman and Samet092

(2011), CLAVIN (Berico Technologies, 2012),093

GeoTxt (Karimzadeh et al., 2013), and Laparra094

and Bethard (2020). The most common features095

and heuristics were based on string matching, pop-096

ulation count, and type of place (city, country, etc.).097

As more shared tasks and annotated datasets098

were proposed, geocoding systems began to take099

the heuristics of rule-based systems and use them as100

features in supervised machine learning models, in-101

cluding logistic regression (WISTR, Speriosu and102

Baldridge, 2013), support vector machines (Mar-103

tins et al., 2010; Zhang and Gelernter, 2014), ran- 104

dom forests (MG, Freire et al., 2011; Lieberman 105

and Samet, 2012), stacked LightGBMs (DM_NLP, 106

Wang et al., 2019) and other statistical learning 107

methods (Topocluster, DeLozier et al., 2015; CBH, 108

SHS, Kamalloo and Rafiei, 2018). 109

Recently, deep learning methods have been intro- 110

duced for toponym resolution (CamCoder, Gritta 111

et al., 2018; Cardoso et al., 2019; MLG, Kulkarni 112

et al., 2020). Each system has a unique neural archi- 113

tecture for combining inputs to make predictions 114

based on convolutional neural networks (CNNs: 115

CamCoder, Gritta et al., 2018; MLG, Kulkarni 116

et al., 2020), recurrent neural networks (RNNs: 117

Cardoso et al., 2019), vector-space models (Ar- 118

danuy et al., 2020), or pre-trained transformers 119

(Anonymous, 2022). 120

Our proposed approach allows these deep learn- 121

ing systems to take advantage of document-level 122

features, while respecting their limits on input size 123

(e.g., 512 word-pieces). 124

3 Proposed Methods 125

We define the task of toponym resolution as fol- 126

lows. We are given an ontology or knowledge 127

base with a set of entries E = {e1, e2, ..., e|E|}. 128

Each input is a text made up of sentences T = 129

{t1, t2, . . . , t|T |} and a list of location mentions 130

M = {m1,m2, ...,m|M |} in the text. The goal is 131

to find a mapping function f(mi, E) → ej that 132

maps each location mention in the text to its corre- 133

sponding entry in the ontology. 134

We propose to model f(mi, E) with Algo- 135

rithm 1. Lines 1-9 are the context-free stage, where 136

an existing geocoding system is first applied to all 137

location mentions. If the feature type of a predicted 138

entry, type(e), is an administrative district 1-3 139
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Algorithm 1: Two-stage toponym resolu-
tion using document-level context.

Input: location mentions, M
GeoNames ontology, E
geocoding system, f(m, c,E)→ e

m is a location mention
c is a context string
e ∈ E is the predicted entry

Output: mapping of mentions to entries, R̂
1 R̂← {}
2 C ← ∅
3 for m ∈M do
4 e← f(m,"", E)
5 if TYPE(e) ∈ {adm1,adm2,adm3} then
6 R̂[m]← e
7 C ← C ∪ {CODE(e)}
8 end
9 end

10 for m ∈M do
11 if m ̸∈ R̂ then
12 R̂[m]← f(m,"|".join(C), E)
13 end
14 end
15 return R̂

(i.e., the top of the geographic hierarchy: coun-140

tries, states, or counties), then the prediction is141

accepted. Such predictions are also converted to142

their administrative codes (e.g., United States →143

US) and added to the context. Lines 10-14 are the144

second stage, where the geocoding system is ap-145

plied to all remaining location mentions but this146

time incorporating the collected context.147

4 Experiments148

4.1 Datasets149

We use the same three toponym resolution datasets150

and training/dev/testing splitting method as in pre-151

vious work. Below we briefly describe each dataset152

and refer readers to their paper for details.153

Local Global Lexicon (LGL; Lieberman et al.,154

2010) was constructed from 588 news articles from155

local and small U.S. news sources.156

GeoWebNews (GWN; Gritta et al., 2019) was157

constructed from 200 articles from 200 globally158

distributed news sites.159

TR-News (Kamalloo and Rafiei, 2018) was con-160

structed from 118 articles from various global and161

local news sources.162

4.2 Geospatial Database163

Following previous work, we use GeoNames as our164

database. GeoNames is a crowdsourced database165

of geospatial locations. GeoNames contains almost 166

7 million entries and each entry contains a variety 167

of geographical information such as coordinates 168

(latitude and longitude), alternative names, feature 169

type (country, city, river, mountain, etc.), popu- 170

lation, elevation, and positions within a political 171

geographic hierarchy. Three entry examples for 172

Alberta, Edmonton and Canada from GeoNames 173

are shown in fig. 1. 174

4.3 Evaluation Metrics 175

To evaluate the toponym resolution systems com- 176

prehensively, we adopt both database entry level 177

metrics (more strict) and coordinate level metrics 178

(less strict): 179

Accuracy measures the fraction of location men- 180

tions predicted with the correct database entry ID. 181

Accuracy@161km measures the fraction of pre- 182

dicted coordinates that were less than 161 km away 183

from the gold coordinates. 184

Mean error distance calculates the mean over 185

all distances between each predicted and gold coor- 186

dinates. 187

Area Under the Curve (AUC) calculates the 188

area under the curve of the distribution of geocod- 189

ing error distances. 190

4.4 Systems 191

We compare several geocoding systems: 192

Edinburgh is a rule-based system proposed by 193

Grover et al. (2010). It was the state-of-the-art on 194

LGL and several other datasets before CamCoder. 195

The Edinburgh parser utilizes heuristics to take 196

advantage of contextual information (containment, 197

proximity, locality, clustering) and geographical 198

features (population count, type of place) to score, 199

rank, and choose a candidate. 200

CamCoder is a deep learning model proposed 201

by Gritta et al. (2018) which utilizes a convolu- 202

tional neural network to capture features from a 203

context window and the target mention, and builds 204

a geographical map vector that encodes a popula- 205

tion distribution over the location mentions in the 206

target mention’s context. CamCoder divides the 207

earth’s surface into a grid and predicts one surface 208

tile based on the text features and map vector. (See 209

Appendix A.3 for implementation details.) 210

To apply our proposed two-stage resolution al- 211

gorithm to CamCoder, we run SSPART (below) 212
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Edinburgh .611 .632 119 .290 .738 .773 146 .203 .750 .756 149 .218
CamCoder ✓ .580 .651 82 .288 .572 .665 155 .290 .660 .778 89 .196
CamCoder ✓ ✓ .562 .638 83 .297 .553 .644 183 .307 .656 .774 88 .198
SSPART ✓ .759 .783 67 .166 .782 .832 60 .131 .777 .798 92 .166
SSPART ✓ ✓ .807 .824 46 .135 .828 .862 55 .114 .918 .933 34 .057
SSPART ✓ .723 .756 79 .193 .795 .834 56 .130 .848 .858 66 .114
SSPART .760 .785 59 .167 .788 .834 61 .131 .798 .816 89 .154

Table 2: Performance on the test sets. Higher is better for Accuracy and Accuracy@161km. Lower is better for
Mean Error and AUC. Edinburgh made no predictions for 28, 49, and 106 toponyms in LGL, GeoWebNews, and
TR-News, respectively. Since it is impossible to calculate distance-based metrics without coordinates, we skip those
toponyms, and as a result overestimate the distance-based metrics for Edinburgh.

without textual context as the first stage. (We use213

SSPART instead of CamCoder since SSPART is214

more accurate; see table 1.) For the second stage,215

we collect any predicted countries, states or coun-216

ties, and both concatenate them to the mention217

name (where CamCoder inserts textual context)218

and include them when building the MapVector.219

SSPART is the current state-of-the-art (Anony-220

mous, 2022), and uses a candidate generator based221

on Lucene search and population sorting to gener-222

ate candidates and feed them to a transformer-based223

reranker. Unlike CamCoder, SSPART predicts224

database entries, not map tiles, so its transformer-225

based reranker can both capture information from226

the target mention and context window and also227

directly access features from the geographical228

database like population and type of place.229

To apply our proposed two-stage resolution algo-230

rithm to SSPART, we run SSPART without textual231

context as the first stage. For the second stage, as232

shown as Figure 1, we collect any predicted coun-233

try, state, or county codes, and concatenate them to234

the mention name (where SSPART inserts textual235

context). We also concatenate each candidate entry236

with its known country, state, and county codes.237

5 Results238

We use the original code from the various au-239

thors and evaluate the Edinburgh, CamCoder and240

SSPART models on three public toponym resolu-241

tion datasets. We also apply our proposed two-242

stage resolution algorithm to the two models that243

allow context to be added to their input: CamCoder 244

and SSPART. Table 2 shows that SSPART with our 245

two-stage approach achieves new state-of-the-art 246

across all three datasets. 247

CamCoder, on the other hand, does not benefit 248

from our approach. We hypothesized that this was 249

because CamCoder predicts map tiles, not database 250

entries, and thus cannot directly compare the coun- 251

tries, states, and counties that have been added as 252

context to the countries, states, and counties in a 253

candidate database entry. To test this hypothesis, 254

we ablate from the SSPART model these portions 255

of the candidate database entry, i.e., we do not in- 256

clude the country, state, or county codes on the 257

candidate entry side (though we do still include the 258

ones from the document context on the mention 259

side). The row corresponding to this experiment 260

(SSPART Two-Stage with no Entry-Side-Codes) 261

performs similarly to the row without our algorithm 262

(SSPART without Two-Stage). This confirms our 263

hypothesis: predicting map tiles instead of database 264

entries makes it difficult for CamCoder to take ad- 265

vantage of our document-level context. 266

6 Conclusion 267

We propose a new two-stage toponym resolution 268

architecture that first resolves locations at the top of 269

the geographical hierarchy (countries, states, and 270

counties) and uses those as context when resolving 271

the other locations in the document. Our experi- 272

ments show that applying this algorithm to the cur- 273

rent best geocoder, SSPART, achieves new state-of- 274

the-art performance on all our geocoding datasets. 275
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A Appendix417

A.1 Artifact intended use and coverage418

The intended use of CamCoder and SSPART is419

matching English place names in text to the Geo-420

Names ontology. We have used them for that pur-421

pose. The intended use of our two-step method is422

also matching English place names in text to the423

GeoNames ontology.424

Though GeoNames covers millions of place425

names, our evaluation corpora cover only English426

news articles, and thus the performance we report427

is only predictive of performance in that domain.428

A.2 Limitations429

Our experiments are limited by the availability of430

models. Though we aimed to apply our two-stage431

method to several geocoding models, most pub-432

lished geocoding models have not released their433

code. We have thus applied our two-stage method434

to the two models that accept context as input and435

where code was available, CamCoder and SSPART.436

Our experiments are also limited by the avail- 437

ability of datasets. Though we have attempted 438

to collect a variety of geocoding datasets, some 439

datasets, such as the SemEval-2019 Task 12 data 440

(Weissenbacher et al., 2019), have not released test 441

sets, making comparison to prior work difficult. We 442

have thus applied our method to the three datasets 443

where we were able to obtain the complete data: 444

LGL, GeoWebNews, and TR-News. 445

Our two-step method has the same limitations 446

as CamCoder and SSPART: their training and eval- 447

uation data covers only thousands of English to- 448

ponyms from news articles, while there are many 449

millions of toponyms across the world. It is likely 450

that there are regional differences in our model’s 451

accuracy. 452

A.3 CamCoder details 453

The original CamCoder code, when querying Geo- 454

Names to construct its input population vector from 455

location mentions in the context, assumes it has 456

been given canonical names for those locations. 457

Since canonical names are not known before loca- 458

tions have been resolved to entries in the ontology, 459

we have CamCoder use mention strings instead of 460

canonical names for querying GeoNames. 461

We follow the hyperparameter settings in the 462

original paper when training CamCoder: Keras 463

2.2.0, Tensorflow 1.8, Python 2.7, RMSprop opti- 464

mizer, a learning rate of 1e-3, a batch size of 64, the 465

context length of 200 and a number of epochs of 466

250. The total number of parameters in CamCoder 467

is 178M and the training time is about 3 hours. 468

A.4 SSPART details 469

We follow the hyperparameter settings in the origi- 470

nal paper when training SSPART: Adam optimizer, 471

a learning rate of 1e-5, a maximum sequence length 472

of 128 tokens, and a number of epochs of 30. When 473

training without context, we use one Tesla V100 474

GPU with 32GB memory and a batch size of 8. 475

When training with context, we use four Tesla 476

V100 GPU with 32GB memory and a batch size of 477

32. The total number of parameters in SSPART is 478

168M and the training time is about 3 hours. 479
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