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ABSTRACT

R1-style reinforcement learning (RL) for stimulating stepwise reasoning signifi-
cantly boosts Video-MLLMs’ performance on complex tasks, yet drastically im-
pairs response efficiency for simple ones. To further incentivize the auto-thinking
capability, existing methods typically incorporate reasoning mode selection into
RL reward designs to implicitly regulate thinking preferences across different
tasks. However, these methods demand strict tuning of sensitive hyperparame-
ters and careful data management, frequently leading to single-mode dominance
when processing video data. To achieve stable and controllable auto-thinking evo-
cation in video reasoning, we design a multi-stage granular RL paradigm. Specif-
ically, the responding process under auto-thinking can be decomposed into two
subtasks: 1) Determining the reasoning mode, and 2) Generating correct answers.
Due to the self-regressive property of LLMs, the initial token governs the overall
response mode, while subsequent tokens critically influence answer correctness.
From this insight, we respectively improve the model’s ability on the above two
subtasks by conducting decoupled RL training on tokens at different positions
with two RL phases, Meta-Cognition Training and Cognition-Aware Refinement.
In Meta-Cognition Training, we construct a reasoning strategy dataset to explic-
itly incentivize suitable starting tokens on different questions, which stably pre-
vents single-mode collapse and achieves controllable thinking preferences. For
Cognition Aware Refinement, the learning is fully conditioned on reasoning or
non-reasoning modes, specifically improving answer accuracy under both modes.
Through multi-stage granular RL training, we significantly enhance the reasoning
accuracy while steadily endowing the model with auto-thinking ability. Extensive
experiments across multiple video reasoning and perception benchmarks demon-
strate that our approach achieves distinct thinking rates while significantly reduc-
ing responding overhead, ultimately improving overall performance and establish-
ing new state-of-the-art results with superior performance-efficiency trade-offs.

1 INTRODUCTION

Inspired by the success of DeepSeek-R1 Guo et al. (2025), reinforcement learning (RL) algorithms
have enabled multi-modal large language models (MLLMs) to acquire stepwise reasoning capabil-
ities. Specifically, the reasoning process encapsulated within the <think> </think> blocks
significantly improves the responding accuracy for complex problems. However, in practical appli-
cation scenarios, multi-modal tasks (particularly video understanding) often involve a large num-
ber of simple perception problems that do not require reasoning (e.g., “What is happening in the
video?”). This leads to a significant “over-reasoning” phenomenon, making it difficult for reasoning
models to achieve a proper balance between performance and efficiency in real-world applications.
To alleviate the aforementioned issue, research interest has been widely drawn to endowing models
with auto-thinking capabilities that enable adaptive selection of appropriate response modes (rea-
soning or non-reasoning) based on different problems.

Existing explorations on auto-thinking have achieved certain effects but all come with their own lim-
itations. Specifically, some LLM-based methods Zhang et al. (2025); Fang et al. (2025) incorporate
the mode-selection into the overall objective of reinforcement learning (RL) via complex reward
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Figure 1: By functionally decoupling tokens at distinct positions, we decompose the model’s auto-
thinking process into two independent subtasks. We leverage two separate datasets and objectives
to optimize the model’s performance on these two subtasks through distinct training phases, re-
spectively. After our multi-stage granular reinforcement learning, the model displays drastically
divergent thinking rates across different datasets with superior accuracy, demonstrating that our
framework stably elicits the model’s automatic reasoning capabilities.

designs. However, these methods are confined to the text modality, and they strongly demand sensi-
tive reward value tuning and fine-grained training data control. When trained on multi-modal data,
they exhibit high instability and are extremely prone to driving the model into mode collapse. For
MLLM tasks, R-4B Jiang et al. (2025) adopts “Bi-mode RL” to avoid the mode collapse issue, yet
it lacks supervision over problem-specific reasoning strategy preferences. Additionally, some other
approaches Zhan et al. (2025); Team et al. (2025b) introduce an extra analysis process to determine
the subsequent response mode. Although this design fosters effective auto-thinking capabilities, the
additional overhead required for the analyzing further hinders overall efficiency.

Driving from the above limitations, in this paper we present a novel multi-stage granular rein-
forcement learning method, which effectively realizes auto-thinking evocation in video reasoning,
while simultaneously achieving advantages that span training stability, preference controllability,
and computational efficiency.

First, we formalize the model behaviors under reasoning and non-reasoning modes in Figure 1.
Under the response formats that we defined, tokens at different positions exhibit distinct functional
roles. Specifically, the starting token has negligible impact on the accuracy of the final answer but
directly determines the model’s reasoning strategy, while the following tokens (e.g., in reasoning
mode) play a decisive role in ensuring the accuracy of the final answer. Thus, the model’s responding
process can be interpreted as outputting appropriate tokens at different positions to sequentially
accomplish two independent subtasks: 1) Generating suitable starting token based on the input
question; 2) Generating following tokens and the final answer, guided by the starting token.

Through the above decomposition of the responding process and functional decoupling of tokens,
we derive two independent optimization objectives. Building on this, we split the conventional re-
inforcement learning (RL) process into two sequential stages: Cognition Aware Refinement and
Meta-Cognition Training. Two distinct sets of training data and optimization objectives are em-
ployed to train tokens at different positions, thereby enhancing the model’s accuracy in the two
aforementioned subtasks respectively.

For Cognition-Aware Refinement, we utilize vanilla GRPO algorithm Guo et al. (2025) to sepa-
rately refine the model’s responding accuracy under reasoning and non-reasoning modes, where the
training is fully conditioned on specific reasoning strategies. To achieve this, we embed the trig-
gering initial token into the prompt sequence to force the model to consistently generate subsequent
outputs in specific modes for any input question. Among the GRPO training stage, a critical distinc-
tion remains in that the starting token of the response is excluded from gradient computation. This
design ensures that the Cognition-Aware Refinement promotes the mode-specific capacity without
disrupting the model’s inherit automatic thinking strategies.

For Meta-Cognition Training, we explicitly define reasoning preferences for different questions and
manually construct training data to supervise the model in generating appropriate query-specific
starting tokens. During this stage, the gradients are focused on the starting tokens. Concurrently, we
introduce an auxiliary objective to ensure the model successfully transitions into the reasoning/non-
reasoning mode based on different starting tokens while adhering to the overall format constraints.
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After this stage, the model’s selection of reasoning strategy shifts from stochastic to query-aware,
exhibiting notably different Chain-of-Thought (CoT) activation rates across diverse datasets.

Compared to existing approaches, our proposed multi-stage granular RL framework eventually leads
the model to higher efficiency and performance. In the crucial challenge of auto-thinking evocation,
our method exhibits several distinct advantages: First, the model’s autonomous reasoning preference
for specific question types is controllable. By explicitly constructing strategy training data, we can
directionally adjust the reasoning behavior based on task requirements. Second, the Meta-Cognition
Training process is highly stable. The ratio of supervision signals for reasoning and non-reasoning
modes can be manually tuned, which greatly mitigates the risk of the model converging to a single
fixed reasoning pattern (a common limitation in prior unified RL frameworks). Third, the method
is computationally efficient. It achieves high-performance autonomous reasoning without requiring
additional auxiliary analysis processes, significantly reducing the overall response overhead. Fur-
thermore, the response modes are configurable. By embedding different starting tokens into the
prompt, we can manually switch the model’s response mode among three options: auto, reasoning,
and non-reasoning. Notably, the functional decoupling of response tokens with distinct optimization
objectives represents a highly insightful design. This paradigm of shifting from single-objective to
multi-objective optimization in training substantially enhances the controllability of model behavior
during post-RL fine-tuning. It effectively achieves auto-thinking evocation and can also transfer to
other complex tasks (e.g., multi-step visual reasoning Su et al. (2025); Zheng et al. (2025)).

We evaluated our method on multiple video understanding/reasoning datasets. The experimental
results demonstrate that our approach endows the model with robust autonomous reasoning capa-
bilities, showing significant distinct thinking rates across different benchmarks, which drastically
reduces the overall token overhead while further improves performance, achieving a more favorable
performance-efficiency trade-off compared to other methods.

2 RELATED WORKS

(Multimodal) Large Language Model Reasoning. The advent of OpenAI’s O1 model Jaech
et al. (2024) has ignited a surge of research endeavors within the community, with a particular
emphasis on augmenting the complex reasoning capabilities of large language models (LLMs) Wei
et al. (2022); Yuan et al.; Zhang et al. (2023). Early methodologies predominantly employed dense
supervision over the reasoning process Gao et al. (2024); Li & Li (2024), aiming to directly enhance
the reasoning prowess of these models. Differently, the remarkable success of DeepSeek-R1 Guo
et al. (2025) has paradigmatically demonstrated the efficacy of rule-based reinforcement learning
(RL) in bolstering reasoning capability of LLMs, where models autonomously refine their Chain-
of-Thought (CoT) processes in the absence of explicit supervision, and manifest potent reasoning
behaviors during the RL training phase. This novel paradigm has inspired a wave of subsequent
research Zhang et al.; Luo et al. (2025); Liu et al. (2025); Hu et al. (2025a); Team et al. (2025a),
with numerous studies Zhou et al. (2025); Yang et al. (2025c); Meng et al. (2025); Huang et al.
(2025); Feng et al. (2025) successfully replicated the success of DeepSeek-R1 on Multimodal Large
Language Models(MLLMs). While existing methods have effectively endowed MLLMs with robust
reasoning capabilities, a critical limitation persists in real-world application that a large proportion of
inputs are simple questions that do not require reasoning. Against this backdrop, how to effectively
achieve efficient reasoning and attain a more desirable performance-efficiency trade-off has attracted
widespread research interest.

Efficient Reasoning. Early attempts at efficient reasoning primarily focused on prompt-based rea-
soning mode selection Yang et al. (2025a); Kang et al. (2025); Aytes et al. (2025); Xu et al. (2025)
or adding length penalty to constrain the CoT sequence length Arora & Zanette (2025); Aggarwal &
Welleck (2025); Shen et al. (2025); Xiao et al. (2025). To further improve response efficiency, many
studies Fang et al. (2025); Jiang et al. (2025); Wang et al. (2025); Zhang et al. (2025); Lou et al.
(2025) have attempted to leverage reinforcement learning to endow reasoning models with auto-
thinking capabilities that can adaptively adjust reasoning strategies based on input questions. The
core of these RL-based approaches lies in designing reward schemes that are influenced by reason-
ing strategies, aiming to implicitly guide the model to learn appropriate response modes according
to answer accuracy. However, such methods often require a sensitive ratio of easy/hard training
data and complex reward engineering. When transferred to other models or tasks, they are highly
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Figure 2: The workflow of multi-stage granular RL to achieve auto-thinking evocation in video
reasoning. The SFT stage incorporates thinking-dropout to initially endow the model with both rea-
soning and non-reasoning abilities. After that, the Cognition-Aware Refinement separately enhance
the response accuracy under both modes by GRPO conditioned on specific starting token. The final
Meta-Cognition Training stage directly incentivizes the model to produce suitable staring tokens
according to the input query, while keeping the subsequent tokens adhere the specific formats.

prone to collapse to fixed reasoning patterns. Some other approaches Zhan et al. (2025); Team et al.
(2025b) introduce an additional complexity analysis stage to determine the optimal reasoning strat-
egy. While these methods achieve robust adaptive capabilities, they further increase token overhead,
ultimately failing to meet the goal of improving efficiency. In contrast to existing works, we propose
a multi-stage, multi-objective RL scheme by decoupling the functional roles of tokens and decom-
posing the response generation process. This design enables effective auto-thinking evocation while
simultaneously achieving the advantages of stability, controllability, and efficiency, addressing the
key limitations of prior approaches.

3 METHOD

In this section, we elaborate on the detailed workflow of our multi-stage granular reinforcement
training. As shown in Figure 2, the entire training process consists of three stages, each with a ded-
icated objective to optimize the model’s responding behavior: 1) SFT with think dropout: to enable
the model to initially learn the outputing format under different reasoning strategies without explicit
mode labeling. 2) Cognition-Aware Refinement: separately enhancing the model’s responding ac-
curacy under specific modes. 3) Meta-Cognition Training: The final stage that endows the model
with the ability to adaptively select reasoning strategies based on input questions.

3.1 SUPERVISED FINE-TUNING WITH THINKING DROPOUT

First we formalize the model behaviors under reasoning and non-reasoning modes. Aligning with
the convention framework in R1 Guo et al. (2025), the reasoning mode mandates the model to per-
form stepwise deliberation before answer generation, with its format standardized as<think>the
specific thinking process</think><answer>the result</answer>. In
non-reasoning mode, we constrain the model to produce empty thinking block and directly generate
the answer, like <think>\n</think><answer>the result</answer>. To initially
equip the model with these two distinct response modes, we conduct thinking dropout Wang et al.
(2025) during the SFT phase before RL training. Concretely, we randomly replace the annotated
thinking process in the SFT dataset with ‘\n’ at a fixed probability (0.5), forcing the model to learn
both strategies without explicit mode labeling. After the SFT stage, the model exhibits stochastic
output behavior, naturally generating either reasoning or non-reasoning responses.

3.2 COGNITION-AWARE REFINEMENT

In the Cognition-Aware Refinement, we adopt the GRPO (Generalized Relative Policy Optimiza-
tion) algorithm Guo et al. (2025) to separately enhance two key capabilities of the model: 1) the
reasoning capability under the reasoning mode, and 2) the ability to directly generate correct an-
swers under the non-reasoning mode. To enable the configuration of model’s specific respond-
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ing strategy, we ensure that all Chain-of-Thought (CoT) annotations in the SFT dataset start with
the trigger phrase “Let me think” during data preparation. After the SFT stage, we can manu-
ally control the reasoning strategy for any input question by embedding one of two distinct start-
ing tokens into the prompt: either <think>Let me think (to enforce reasoning mode) or
<think>\n</think> (to enforce non-reasoning mode).

We utilize the Video-Reasoning RL dataset constructed in Video-R1 Feng et al. (2025) for
Cognition-Aware Refinement. Notably, to accelerate training efficiency, we perform prior data filter-
ing: we use the post-SFT model to randomly generate 8 responses for each data sample to exclude
the overly simple or difficult questions (identified via extremely high or low average rewards), and
we finally select 8K multiple-choice questions covering diverse task types as the core training data.
To further enhance the model’s spatial understanding capability, which is lacking in the Video-R1
dataset, we additionally collect 1K supplementary questions from ScanNet Dai et al. (2017). Ulti-
mately, we construct a dataset XCT = {xi}9Ki=0 specifically for Cognition-Aware Refinement.

We conduct two independent GRPO training process to separately improve the model’s answer
accuracy under different modes, where different starting tokens are embedded in the prompt for
each run. In Cognition-Aware Refinement, let {oi}Gi=1 denote a mini-batch of rollouts sampled from
the current policy πθold , the overall objective is defined as:

JGRPO(θ) = Ex,oi [
1

G

G∑
i=1

(
1

|oi| − l

|oi|∑
t=l

Li,t(θ)− βDKL[πθ(·|x)||πref (·|x)])] (1)

where Li,t(θ) denotes the token-level surrogate loss formally given by:

Li,t(θ) = min(
πθ(oi,t|x, oi,<t)

πθold(oi,t|x, oi,<t)
Âi,t, clip(

πθ(oi,t|x, oi,<t)

πθold(oi,t|x, oi,<t)
, 1− ϵ, 1 + ϵ)Âi,t) (2)

Âi,t =
r−mean(r)

std(r) represents the group relative advantage for each token, where the reward r is the
sum of format reward and accuracy reward. And l is the length of specific starting tokens.

The core distinction between Cognition-Aware Refinement and vanilla GRPO lies in a critical mod-
ification: we disable gradient computation for the first l starting tokens in the response sequence.
This deliberate design enables the training process to effectively improve the model’s mode-specific
response accuracy while minimizing unintended perturbations to the model’s intrinsic reasoning
mode preferences that were initially established during the preceding SFT stage with think dropout.
This preservation of intrinsic mode preferences is pivotal for maintaining the stability of subsequent
Meta-Cognition Training, where the model will further learn to adaptively select modes based on
input questions.

3.3 META-COGNITION TRAINING

Existing methods Zhang et al. (2025); Fang et al. (2025) treat the entire response as a monolithic
sequence and design answer accuracy-oriented rewards to implicitly learn proper response modes.
When reproducing these methods on video-reasoning tasks, we observe two key limitations: (1)
such supervision is extremely sensitive to the difficulty ratio of training data, causing the model to
easily converge to a fixed reasoning pattern; (2) even if bi-mode responses are achieved via elab-
orate data difficulty tuning, the model exhibits a uniform thinking activation rate across different
test datasets, indicating probabilistic mode selection rather than adaptive choice based on question
characteristics. To enable controllable and stable auto-thinking evocation, we explicitly define a rea-
soning preference criterion and construct a strategy training dataset to directly incentivize the model
to generate appropriate starting tokens for specific types of questions.

A question is labeled as thinking “required” or “no-required” based on the probability that the model
generates the correct answer with no thinking. Specifically, we force non-reasoning mode on post-
SFT Model πref to generate responses for Video-R1 RL data Feng et al. (2025), then compute
the probability of generating ground-truth answer tokens upon the model’s output logits as P gt =

1
|ogt|

∑
t∈idx(gt) πref (ot|x, o<t). Questions with P gt < 0.5 are labeled as “thinking required” and

P gt > 0.9 are labeled as “thinking no required”. We finally construct a dataset for Meta-Cognition
Training XDT = {xi}4Ki=1 in a 1:1 ratio.
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In the Meta-Cognition Training stage, we randomly generate {oi}Gi=1 outputs for each question.
Unlike existing methods Jiang et al. (2025); Zhang et al. (2025), we impose no constraints on the
sampling process. Based on the model’s intrinsic probability distribution, the G samples may either
all belong to one same response mode or include both. Using the Meta-Cognition Training data, we
directly assign advantages to the starting tokens in responses following the rules below:

Ai =


+1 · γ, starting token match mode annotation
−1 · γ, starting token doesn’t match mode annotation
−2 · γ, starting token with format error

(3)

Notably, the above advantages are directly assigned without group normalization, which avoids the
advantage vanish issue in vanilla GRPO that arises when group achieves same rewards. Upon the
sampeing results, the meta-cognition objective is defined as:

Jdecision(θ) = Ex,oi [
1

G

G∑
i=1

(
1

l

l∑
t=1

Li,t(θ)− βDKL[πθ(oi,<l|x)||πref (oi,<l|x)])] (4)

The meta-cognition objective is focused on l starting tokens, while advantage is in Eq. 3 and the
token-level loss Li,t(θ) is formatted in Eq. 2.

The meta-cognition objective Jdecision(θ) incentivize the policy model to generate suitable starting
tokens according to the mode annotation data, thereby achieves auto-thinking activation. However,
our experiments show that computing only decision loss on XDT leads to gradual chaos in the
model’s subsequent outputs. To address this issue, we introduce an auxiliary objective target in the
Meta-Cognition Training stage to ensure the model generates correct, format-compliant subsequent
outputs based on specific starting token. Specifically, we calculate format reward and accuracy re-
ward for subsequent tokens, and compute group average advantage to supervise their generation.
Unlike Eq. 1, to further balance the gradient weights of tokens in long thinking responses and ex-
tremely short non-thinking responses, we refer to DAPO Yu et al. (2025) and compute token-level
averages instead of sequence-level. The detailed calculation is shown in Eq. 5.

Jvanilla(θ) = Ex,oi [
1∑G

i=1 |oi| − l

G∑
i=1

|oi|∑
t=l

Li,t(θ)− βDKL[πθ(·|x)||πref (·|x)]] (5)

While Jvanilla(θ) prevents the model’s outputs from collapsing into chaos, numerical discrepancies
between the multiple objectives destabilize their joint optimization, manifested as hyperparameter
sensitivity, where varying γ in Eq. 3 lead to significantly different training results. We attribute
this issue to inherent gradient conflicts caused by simultaneous multi-objective optimization. To
enhance the stability of Meta-Cognition Training, we design a gated update scheme. Specifically,
we decouple the optimization of Jdecision(θ) and Jvanilla(θ): although both losses are computed
in each iteration, only one objective undergoes gradient update. We introduce a hyperparameter p
to adjust the overall supervision strength for the two objectives in Meta-Cognition Training. Dur-
ing each parameter update, gradients are computed based on Jdecision(θ) with probability p, and
Jvanilla(θ) with probability 1− p.

By granular calculation of distinct optimization objectives for tokens at different positions and gated
multi-objective optimization, Meta-Cognition Training achieves controllable preference and stable
training for auto-thinking activation, enabling the model to reach a more favorable performance-
efficiency trade-off.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUPS

MLLM and Datasets. We adopt Qwen2.5-VL-7B Bai et al. (2025) as the base model for multi-
stage granular reinforcement learning training. The training data is primarily derived from Video-
R1 Feng et al. (2025). Specifically, we randomly dropout 50% of the CoT annotations in Video-
R1-COT-165k for Supervised Fine-Tuning. The Cognition-Aware Refinement dataset comprises 9K
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Table 1: Performance of our method on multiple video benchmarks. Vanilla R1 indicates the con-
ventional R1-style GRPO training with our data. CAR and MCT represents Cognition-Aware Re-
finement and Meta-Cognition Training respectively. For think mode, {N-T, T, A-T} means {Non-
Thinking, Thinking, Auto-Thinking}.

Models (7B) think
mode

Video Perception Benchmarks Video Reasoning Benchmarks
MVBench TempCompass VideoMME VSI-Bench VideoMMMU MMVU

GPT-4o N-T - - 71.9 34.0 61.2 75.4

VideoLLaMA2 N-T 54.6 - 47.9 - - 44.8
LongVA-7B N-T - 56.9 52.6 29.2 23.9 -
LLaVA-OneVision N-T 56.7 - 58.2 32.4 33.8 49.2
Video-R1 T 63.9 73.2 59.3 35.8 52.3 63.8

Qwen2.5-VL-CoT T 59.8 72.8 57.0 32.7 50.0 59.5

⊢ +vanilla R1 T 64.0 73.0 60.0 38.1 52.1 65.9

⊢ +SFT N-T 65.2 73.7 60.9 33.1 49.1 65.2
⊢ ++CAR N-T 65.7 74.1 59.9 37.9 50.1 65.4
⊢ +++MCT
Thinking Rate A-T 67.2

(76.1%)
74.4

(56.2%)
59.7

(41.5%)
38.6

(100%)
52.3

(76.1%)
67.3

(19.7%)

0.531

0.507

0.523

VideoMMMU

0.386

0.375

0.386

VSI-Bench

0.667

0.663

0.673

MMVU

0.67

0.675

0.672

MVBench

0.743

0.744 0.744

TempCompass

0.595

0.597 0.597

VideoMME

Perception BenchmarksReasoning Benchmarks

Figure 3: Performance of our final model under different reasoning strategies.

QA pairs, where 8K are selected from Video-R1-260K and 1K are sourced from ScanNet Dai et al.
(2017). The Meta-Cognition Training dataset contains 4K samples (also filtered from Video-R1-
260K) with a 1:1 ratio of thinking to non-thinking instances. We conduct evaluations across 6 video
understanding/reasoning datasets, including VSI-Bench Yang et al. (2025b), VideoMMMU Hu et al.
(2025b), VideoMME Fu et al. (2025), MMVU Zhao et al. (2025), TempCompass Liu et al. (2024)
and MVBench Li et al. (2024b). Among them, VideoMME, MVBench and TempCompass are
more focused on perception, while VSI-Bench, VideoMMMU, and MMVU are knowledge-intensive
reasoning benchmarks.

Training Details. We train the model in 1 epoch for SFT and Cognition-Aware Refinement and 2
epochs for Meta-Cognition Training. The batchsize per GPU is 1, with G = 8 responses are sampled
for each query. We utilize 16 H20 GPUs for RL training. For GRPO, we set ϵ = 0.2 and β = 0.04.
The decision advantage for starting tokens is γ = 0.05, and we set the decision loss probability
p = 0.5 for Meta-Cognition Training phase. The whole project is built on VeRL framework Sheng
et al. (2024) and we will open-source our codes for better reproducibility.

4.2 MAIN RESULT

The impact of our multi-stage granular RL scheme on model performance is detailed in Table 1.
Overall, based on Qwen2.5VL-7B Bai et al. (2025), we further advance the model’s video reasoning
capability and for the first time implement a video reasoning model that supports automatic reason-
ing. Compared with other open-source video-MLLMs Cheng et al. (2024); Zhang et al. (2024); Li
et al. (2024a); Feng et al. (2025), our method achieves state-of-the-art (SOTA) results across multi-
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Table 2: Performance under different hyperparameter settings, where γ scales the meta-cognition
advantage and p controls the supervision strength of Eq. 4 and Eq. 5 in Meta-Cognition Training
phase.

(γ, p) Avg T
Rate

Video Perception Benchmarks Video Reasoning Benchmarks
MVBench TempCompass VideoMME VSI-Bench VideoMMMU MMVU

(0.05, 0.5) 61.6% 67.2 74.4 59.7 38.6 52.3 67.3
(0.1, 0.5) 77.2% 66.5 74.2 60.2 38.1 52.3 67.1
(0.2, 0.5) 81.9% 67.0 74.6 59.6 38.4 52.8 65.6
(0.3, 0.5) 100% 67.2 74.0 59.6 38.5 53.2 66.8

(0.1, 0) 0% 65.1 74.9 61.2 37.9 49.0 62.2
(0.1, 0.3) 90.9% 65.9 74.1 59.2 39.2 50.5 65.9
(0.1, 0.7) 83.4% 66.9 73.2 59.7 40.0 51.4 65.1
(0.1, 1) - Training Collapse Training Collapse

ple datasets. Specifically, after the SFT phase with random-CoT-Dropout, the model initially learns
two response strategies but adopts the non-thinking mode across all datasets under the rollout=1
test setting. Following the Cognition-Aware Refinement, the model’s reasoning and direct response
capabilities are both enhanced. However, since no supervision is applied to starting token genera-
tion, the model still retains the all-non-thinking strategy. After the completion of Meta-Cognition
Training, the model exhibits pronounced automatic reasoning capabilities, displaying drastically di-
vergent thinking rates across different datasets, with a substantially higher thinking rate observed on
reasoning benchmarks. Compared to the previous phase, the model after Meta-Cognition Training
achieves a substantial performance improvement on all benchmarks. Furthermore, it outperforms
the pure thinking model trained via vanilla GRPO Guo et al. (2025) in both response efficiency and
answer accuracy. These results fully demonstrate the effectiveness of our method in auto-thinking
evocation for video reasoning models.

To further observe the rationality of the model’s automatic reasoning decisions, we embedded dif-
ferent starting tokens into prompts to evaluate the auto-thinking model under Force Reasoning and
Force Non-Reasoning modes, as shown in Figure 3. On reasoning benchmarks, the accuracy of
Non-Reasoning is significantly lower than that of Reasoning mode. Notably, the overall accuracy
under automatic reasoning mode shows minimal degradation, with even further performance gains
on MMVU. This indicates the model can well distinguish simple questions solvable without reason-
ing, thus reasonably triggering Non-Reasoning mode while maintaining nearly unchanged overall
performance, which accelerates response efficiency. On perception datasets, Non-Reasoning mode
outperforms Reasoning mode significantly. This suggests that overthinking for perception-related
questions may occasionally lead to errors. Under automatic mode, our model exhibits a notably
higher Non-Reasoning trigger rate on perception datasets than on Reasoning datasets. Meanwhile,
it achieves better performance than Reasoning mode on perception datasets. These results validate
that the model can effectively identify questions that should not reasoning, thereby avoiding the
wrong answers caused by overthinking.

5 ABLATION STUDIES

In this section, we analyze the impact of hyperparameters on the training process, focusing on the
magnitude of Decision advantage γ in Eq. 3, the probability parameter p in the gating mechanism
of Meta-Cognition Training, and the training order of different stages. Additionally, we present
experimental explorations of traditional reward-based approaches for eliciting automatic reasoning,
along with the effects of various multi-objective optimization schemes in Meta-Cognition Training.
Please refer to supplementary material for more details.

5.1 EFFECT OF DIFFERENT γ AND p.

γ controls the magnitude of advantage corresponding to starting tokens. As observed in Table 2,
varying γ exert minimal impact on response accuracy but exhibit a clear linear relationship with
thinking rate: larger value yields higher thinking rates. This is because that the model predom-
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Table 3: Performance of our multi-stage granular reinforcement learning under different training
orders. MCT indicate Meta-Cognition Training, and {CAR-T, CAR-NT} means GRPO training
conditioned on Thinking mode and Non-Thinking mode.

Train Phase Avg T
Rate

Video Perception Benchmarks Video Reasoning Benchmarks
MVBench TempCompass VideoMME VSI-Bench VideoMMMU MMVU

⊢ +SFT 0% 65.2 73.7 60.9 33.1 49.1 65.2
⊢ ++MCT 67.1% 64.7 74.4 58.6 31.8 51.2 64.8
⊢ +++CAR-T 56.3% 67.0 74.6 60.1 39.1 51.7 66.3
⊢ ++++CAR-NT 48.6% 67.6 74.5 60.2 38.1 52.7 66.1

inantly generate responses in non-thinking mode in early training, and larger γ imposes greater
penalties on non-thinking behavior during initial training phases, ultimately elevating the final think-
ing rate. Based on Table 2 results, γ = 0.05 achieves better performance. p denotes the probability
of selecting the meta-cognition objective during gradient backpropagation. When p = 0, Meta-
Cognition Training resembles Cognition-Aware Refinement and fails to elicit automatic reasoning.
When p = 1, Meta-Cognition Training propagates gradients solely for starting tokens, causing the
model to gradually forget subsequent token formatting and eventually cause training collapse. Stable
automatic reasoning capabilities emerge for p=0.3, 0.5, and 0.7, with p = 0.5 achieving the optimal
overall performance.

5.2 PERFORMANCE UNDER DIFFERENT TRAINING ORDERS.

In our main experiments, the training sequence follows SFT → Cognition-Aware Refinement →
Meta-Cognition Training. Under this order, the model first acquires preliminary bi-mode response
capabilities, then enhances response accuracy for each specific mode, and finally learns to auto-
matically select appropriate reasoning strategies based on the input question. To further investigate
how training stage order affects performance, we swap Cognition-Aware Refinement and Meta-
Cognition Training, to let the model first learn automatic reasoning before improving mode-specific
capabilities. Detailed results are presented in Table 3. Two key observations emerge: first, the
model achieves comparable overall performance across different training orders. Second, if auto-
matic reasoning is learned first, subsequent Cognition-Aware Refinement (even without gradient
computation for starting tokens) still alters the model’s response preference and reduces the overall
thinking rate. We attribute this phenomenon to the construction rule of our Meta-Cognition Train-
ing data: a question is labeled as “non-thinking-required” if the model generates correct answers in
non-thinking mode with high confidence. This enables the model to determine suitable reasoning
strategies based on confidence levels. Cognition-Aware Refinement boosts the model’s confidence
in correct answers, thereby lowering the overall thinking rates.

6 CONCLUSION

This paper addresses the critical challenge of evoking automatic reasoning in video reasoning for
MLLMs. Specifically, we decouple different functional response tokens and decompose the auto-
thinking process into two functionally distinct subtasks: 1) determining the reasoning mode via
starting tokens, and 2) generating accurate answers via subsequent tokens. We design a multi-stage
granular RL paradigm to respectively enhance the model’s capabilities in these two subtasks, which
enables stable, controllable, and efficient auto-thinking evocation. In detail, our approach unfolds
in three sequential stages: 1) SFT with thinking dropout, which equips the model with bi-mode
response capabilities; 2) Cognition-Aware Refinement, which improves mode-specific answer accu-
racy; 3) Meta-Cognition Training, which explicitly supervises starting token generation using a man-
ually constructed strategy dataset, complemented by a gated multi-objective optimization scheme to
mitigate gradient conflicts and prevent output incoherence. Through this fine-grained optimization
design, we for the first time achieves controllable and stable auto-thinking activation in video reason-
ing, which largely avoiding overthinking without compromising accuracy. Extensive experiments
across 6 video perception/reasoning benchmarks validate the effectiveness of our method, which
achieves new state-of-the-art performance while drastically reducing response overhead.
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A APPENDIX

A.1 LARGE MODEL USAGE STATEMENT

We only used the large language model to polish our writing, using it after we finished our first
draft to refine our expression and make it more coherent. From the discovery of the motivation, the
formulation of the idea, the specific code implementation, and the experimental process, we did not
use any large language model. Our article does not contain any hidden LLM prompts.

Table 4: GRPO training results (accuracy/thinking rate) on datasets with different hard/easy ratio.

Hard-Easy Video Perception Benchmarks Video Reasoning Benchmarks
MVBench TempCompass VideoMME VSI-Bench VideoMMMU MMVU

5-5 65.4/0% 74.4/0% 59.7/0% 36.4/0% 4.7/0% 61.9/0%
3-2 65.0/0% 72.5/0% 59.6/0% 34.4/0% 50.1/0% 63.3/0%
3-1 64.7/10.9% 68.8/2.3% 57.2/19.8% 34.8/2.5% 46.7/0.5% 60.9/1.4%
7-1 66.8/9.8% 74.3/0% 60.9/5.0% 34.4/0% 49.0/0% 64.6/0%

10-0 62.8/99.7% 71.5/100% 58.4/100% 33.2/100% 50.1/97.8% 63.2/100%

A.2 EXPLORATION ON CONVENTIONAL REWARD-BASED AUTO-THINK EVOCATION

Initially in the project, we referenced existing methods Fang et al. (2025); Zhang et al. (2025) and
attempted to realize auto-thinking evocation using accuracy-based reward GRPO. Specifically, a
reward of 1.1 was assigned for correct answers in non-thinking mode, while a reward of 1.0 was
given for correct answers in thinking mode. We conducted experiments using the same SFT model
as in the main paper. For training data, questions with pass8 < 0.3 were defined as hard, and those
with pass8 > 0.7 as easy. We manually set different hard-easy ratios and selected 8K samples from
Video-R1-260K Feng et al. (2025) for training. The model’s performance across different training
datasets is presented in Table 4. Notably, depending on dataset difficulty, the model either converged
to almost all non-thinking or almost all full thinking. It was challenging to achieve reasonable auto-
thinking behavior by adjusting the dataset. Furthermore, since the algorithm employed GRPO for
training, excessively hard or easy data failed to generate supervision signals. This not only prevented
auto-thinking realization but also often led to poor overall performance. These results indicate that
existing auto-thinking training schemes based on accuracy rewards cannot be effectively migrated to
video reasoning tasks. We also attempted an experimental scheme based on global penalty Lou et al.
(2025), which similarly easily fell into fixed response modes and failed to achieve reasonable auto-
thinking capabilities. Compared with existing methods, the multi-stage granular RL framework we
designed in the main paper outperforms them significantly in terms of performance, stability, and
auto-thinking effectiveness.

Table 5: Performance of different implementation for multi-objective optimization in Meta-
Cognition Training.

Method
γ = 0.1

Avg T
Rate

Video Perception Benchmarks Video Reasoning Benchmarks
MVBench TempCompass VideoMME VSI-Bench VideoMMMU MMVU

Gated 77.2% 66.5 74.2 60.2 38.1 52.3 67.1

Global Average 58.1% 65.3 73.1 59.4 38.6 50.7 65.4
Global Average

(γ = 0.2) 0% 65.4 73.9 59.7 37.5 49.6 65.4

Fusion Objective 100% 66.0 73.8 59.4 39.5 51.4 65.4
Bi-Mode Loss 83.2% 66.4 74.4 59.4 37.2 51.4 64.6
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A.3 EFFECTS OF DIFFERENT IMPLEMENTATION FOR MULTI-OBJECTIVE OPTIMIZATION IN
META-COGNITION TRAINING

For the multi-objective optimization problem in the Meta-Cognition Training stage, we explored
various implementation schemes as follows. 1) Global Average advantage: After computing respec-
tive advantages for starting tokens and following tokens, we treat them as a whole to calculate the
token-level mean average, following the function below.

JMeta−Cognition(θ) = Ex,oi [
1∑G

i=1 |oi|

G∑
i=1

|oi|∑
t=1

Li,t(θ)− βDKL[πθ(·|x)||πref (·|x)]] (6)

2) Fusion objective: Directly summing Eq. 4 and Eq. 5. 3) Bi-Mode Loss (from R-4B Jiang et al.
(2025)): Performing group normalization separately for thinking and non-thinking responses within
each group. Experimental results are summarized in Table 5. In summary, the global average
method also achieved effective auto-thinking capability but exhibited higher parameter sensitiv-
ity—converging to full non-reasoning when γ = 0.2. The fusion objective directly led to all-
thinking convergence. Additionally, replacing Eq. 5 in the gating mechanism with Bi-Mode Loss
resulted in degraded performance. Overall, the gating mechanism demonstrated the best robustness
and overall performance across all schemes.

A.4 CASE STUDY

Our trained auto-thinking model outperforms pure reasoning models across multiple datasets. We
present examples where the auto-thinking model avoids over-thinking, as shown in the following
figures.

"What activity does the video depict?",
"A. Not sure",
"B. Pushing something from behind of something",
"C. Pulling something from behind of something"

<think>Let me think about this for a moment. The video shows a hand interacting with an object, which appears 
to be a marker. The hand is positioned behind the marker, and it seems to be pushing the marker forward. Now, 
let's break it down:\n\n1. The hand is not pulling the marker; it's pushing it.\n2. The hand is positioned 
behind the marker, not in front of it.\n3. The action is clearly a pushing motion.\n\nHmm, this makes me think 
that the correct option should be related to pushing something from behind. Oh, I see, the correct option is 
B.\n\nLet's verify: B is \"Pushing something from behind of something,\" which matches the description of the 
hand pushing the marker from behind.</think>\n<answer>B</answer>

<think>\n</think>\n<answer>C</answer>

Figure 4: The video shows a hand pulling a pen out from behind a computer. The pure-reasoning
model incorrectly infers this process as a “pushing” action, leading to an incorrect answer. In con-
trast, the auto-thinking model directly generates output in non-reasoning mode and yields the correct
answer.
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"What activity does the video depict?",
"A. unpacking",
"B. packaging",
"C. opening",
"D. filling"

<think>Let me think about this for a moment. The video shows a person interacting with a box. They are placing items into the box, 
which suggests that they are putting something inside. Now, let's break it down:\n\nA. Unpacking - This would mean taking items 
out of a box, which doesn't seem to be the case here.\nB. Packaging - This involves preparing items for shipping or storage, 
which could be relevant if the items are being prepared for delivery.\nC. Opening - This would mean starting to open the box, 
which doesn't seem to be the case here.\nD. Filling - This involves putting items into a container, which seems to be what is 
happening in the video.\n\nHmm, the person is clearly putting items into the box. Oh, I see, this aligns with the concept of 
filling the box. Let's verify: the person is not taking items out, not opening the box, and not preparing it for shipping. 
Therefore, the most accurate description is that the person is filling the box.</think>\n<answer>D</answer>

<think>\n</think>\n<answer>A</answer>

Figure 5: The video shows a person taking items out of a box. The pure-reasoning model incor-
rectly classifies this process as “putting items into the box”, leading to an incorrect answer. By
recognizing the question as simple, the auto-thinking model directly generates the correct answer in
non-reasoning mode, avoiding mislead by reasoning processes.
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