
Linear-Time Graph Neural Networks for Scalable
Recommendations

Anonymous Author(s)

ABSTRACT
In the era of information explosion, recommender systems are

vital tools for delivering personalized recommendations for users

by forecasting their future behaviors based on historical user-

item interactions. To model these interaction behaviours, Graph

Neural Networks (GNNs) have remarkably boosted the predic-

tion performance of recommender systems due to their strong

expressive power of capturing high-order information in user-

item interactions through multi-layer embedding propagations.

Nonetheless, classic Matrix Factorization (MF) and Deep Neural

Network (DNN) approaches still dominate real-world applications

for large-scale recommendations due to their scalability advantages.

Despite the existence of acceleration solutions, it remains an

open question that whether GNN-based recommender systems

can scale as efficiently as classic MF and DNN methods. In this

paper, we propose a Linear-Time GNN (LTGNN) to scale up GNN-

based recommender systems to achieve comparable scalability as

the classic and efficient Matrix Factorization approaches while

maintaining the powerful expressiveness for superior prediction

accuracy. Extensive experiments and ablation studies are presented

to validate and understand the effectiveness and scalability of the

proposed algorithm.

CCS CONCEPTS
• Information systems→ Collaborative filtering.

KEYWORDS
Collaborative Filtering, Recommendation, Graph Neural Networks,

Scalability

1 INTRODUCTION
In an era of information explosion, recommender systems are

playing an increasingly critical role in enriching users’ experiences

with various online applications, due to their remarkable abilities in

providing personalized item recommendations. The main objective

of recommender systems is to predict a list of candidate items

that are likely to be clicked or purchased by capturing users’

potential interests from their historical behaviors [24]. One of the

most prevailing techniques in modern recommender systems is

collaborative filtering (CF), which leverages the patterns across

similar users and items to predict the users’ preferences.

As one of the most representative CF methods, matrix factor-

ization (MF) techniques are introduced to represent users and

items in a low-dimensional embedding space by encoding the user-

item interactions matrix. After the emergence of MF models, a

remarkable stream of literature has made great efforts to improve

the expressive capability of user and item representations. As

discussed in many previous studies [24, 48, 49], we can divide

these attempts into two branches based on their modeling ability

of user-item interaction graphs. First, most early approaches in

collaborative filtering focus on the first-order connectivity of users

and items, such as item similarity models [25, 32, 35] and deep

neural networks (DNNs) [26, 53]. Second, due to the intrinsic

limitation of modeling high-order connectivity in early CF models,

recent years have witnessed a rising interest in graph neural

networks (GNNs) in recommendations. To be specific, GNN-

based CF models encode both local and long-range collaborative
signals into learning user and item representations by iteratively

aggregating embeddings along local neighborhood structures in the

interaction graph [14, 24, 48], showing their superior performance

in modeling complex user-item interaction graphs.

Despite the promising potential of GNNs in modeling high-

order information in interaction graphs, GNN-based CF models

have not been widely employed in industrial-level applications

majorly due to their scalability limitations [23, 56]. In fact, classic

first-order models like MF and DNNs are still playing major roles

in real-world applications due to their computational advantages,

especially in large-scale industrial recommender systems [9, 12, 42].

In particular, the computation complexity for training these first-

order models such as MF and DNNs is linear to the number of

user-item interactions in the interaction matrix [27], while the

computation complexity of training GNN-based CF models is

exponential to the number of propagation layers or quadratic to the
number of edges (as will be discussed in Section 2.3).

In web-scale recommender systems, the problem size can easily

reach a billion scale towards the numbers of nodes and edges in

the interaction graphs [30, 31, 45]. Consequently, it is essential

that scalable algorithms should have nearly linear or sub-linear

complexity with respect to the problem size. Otherwise, they

are infeasible in practice due to the unaffordable computational

cost [44]. While numerous efforts have continued to accelerate

the training of GNN-based recommender systems, including two

main strategies focusing on neighbor sampling [17, 38, 56] and

design simplification [6, 24, 50], none of them can achieve the

linear complexity for GNN-based solutions, leading to inferior

efficiency in comparison with conventional CF methods such as MF

and DNNs. There is still an open question in academia and industry:

Whether GNN-based recommendation models can scale linearly as
the classic MF and DNN methods, while exhibiting stronger modeling
expressiveness and prediction performance.

In this paper, our primary objective revolves around 1) pre-
serving the strong expressive capabilities inherent in GNNs while
simultaneously 2) achieving a linear computation complexity that

is comparable to traditional CF models like MF. However, it is

highly non-trivial to pursue such a scalable GNN design, since the

expressive power of high-order collaborative signals lies behind the

number of recursive aggregations (i.e., GNN layers). Moreover, the

embedding aggregation over a large number of neighbors is highly

costly. To achieve a non-trivial linear computation complexity

comparable to classic MF and DNN methods, we propose a novel

implicit graph modeling for recommendations with the single-
layer propagation model design and an efficient variance-reduced
neighbor sampling algorithm. Our contributions can be summarized

as follows:

• We provide a critical complexity analysis and comparison of

existing collaboration filtering approaches, and we reveal their

performance and efficiency bottlenecks.

• We propose a novel GNN-based model for large-scale collab-

orative filtering in recommendations, namely LTGNN (Linear

Time Graph Neural Networks), which only incorporates one
propagation layer while preserving the capability of capturing

long-range collaborative signals.

• To handle large-scale user-item interaction graphs, we design

an efficient and improved variance-reduced neighbor sampling
strategy for LTGNN to significantly reduce the neighbor size

in embedding aggregations. The error caused by neighbor

sampling is efficiently tackled by our improved variance

reduction technique.

• We conduct extensive comparison experiments and ablation

studies on three real-world recommendation datasets, including

a large-scale dataset with millions of users and items. The

experiment results demonstrate our proposed LTGNN signifi-

cantly reduces the training time of GNN-based recommendation

models while preserving the capacity to uphold recommenda-

tion performance on par with previous GNN models. We also

perform detailed time complexity analyses and ablation studies

to show our superior efficiency.

2 PRELIMINARIES
This section presents the notations used in this paper and briefly

introduces some preliminaries about the embedding propagation in

GNN-based collaborative filtering algorithms and the computation

complexities of popular collaborative filtering models.

2.1 Notations and Definitions
In personalized recommendations, the historical user-item interac-

tions can be naturally represented as a bipartite graph G = (V, E),
where the node set V includes 𝑛 user nodes {𝑣1, · · · , 𝑣𝑛} and 𝑚

item nodes {𝑣𝑛+1, · · · , 𝑣𝑛+𝑚}, and the edge set E = {𝑒1, · · · , 𝑒 | E | }
consists of undirected edges between user nodes and item nodes.

It is clear that the number of undirected edges |E | equals to the

number of observed user-item interactions |R+ | in the training

data (i.e., |E | = |R+ |). The graph structure of G can be denoted as

the adjacency matrix 𝑨 ∈ R(𝑛+𝑚)×(𝑛+𝑚)
, and its diagonal degree

matrix are denoted as𝑫 . The normalized adjacencymatrix with self-

loops is defined as �̃� = (𝑫 + 𝑰)−
1

2 (𝑨+ 𝑰) (𝑫 + 𝑰)−
1

2 . We useN(𝑣) to
denote the set of neighboring nodes of a node 𝑣 , including 𝑣 itself. In

addition, the trainable embeddings of user and item nodes in graph

G are denoted as 𝑬 = [𝒆1, . . . , 𝒆𝑛, 𝒆𝑛+1, . . . , 𝒆𝑛+𝑚]𝑇 ∈ R(𝑛+𝑚)×𝑑
,

where its first 𝑛 rows are 𝑑-dimensional user embeddings and its

𝑛 + 1 to 𝑛 +𝑚 rows are 𝑑-dimensional item embeddings.

In the training process of GNN-based collaborative filtering

models, we use (𝑬𝑘
𝑙
)𝑩 or (𝒆𝑘

𝑙
)𝑣 to denote an embedding matrix or a

single embedding vector, where 𝑘 is the index of training iterations

and 𝑙 is the index of propagation layers. The subscript (·)𝑩 or (·)𝑣
denotes the embedding for a batch of nodes 𝑩 or a single node 𝑣 .

2.2 Mini-batch Training
To provide effective item recommendations from user-item interac-

tions, a typical training objective is the pairwise loss function. We

take the most widely adopted BPR [41] loss as an example:

L𝐵𝑃𝑅 =
∑︁

(𝑢,𝑖, 𝑗) ∈O
− ln𝜎 (𝑦𝑢,𝑖 − 𝑦𝑢,𝑗), (1)

where O = {(𝑢, 𝑖, 𝑗) | (𝑢, 𝑖) ∈ R+, (𝑢, 𝑗) ∈ R−} denotes the pairwise
training data. R+

and R−
denotes observed and unobserved

user-item interactions. In practice, the training objective O is

hardly evaluated in a full-batch setting due to the large number

of user-item interations [24, 48]. Therefore, mini-batch training

is a common choice that splits the original objective O into

multiple components 𝛀 = {O(𝑢1,𝑖1) ,O(𝑢2,𝑖2) , · · · ,O(𝑢 |R+ |,𝑖 |R+ |) },
where O(𝑢𝑟 ,𝑖𝑟) = {(𝑢𝑟 , 𝑖𝑟 , 𝑗) | (𝑢𝑟 , 𝑗) ∈ R−} contains all the

training data including positive and negative samples for a specific

interaction (𝑢𝑟 , 𝑖𝑟). In each training iteration, we first sample 𝐵

interactions from R+
, which is denoted as

ˆR+
, satisfying | ˆR+ | = 𝐵.

Afterward, we create the training data for
ˆR+

by merging the

corresponding components in 𝛀, which can be denoted as
ˆO(ˆR+) =⋃

(𝑢,𝑖) ∈ ˆR+ O(𝑢,𝑖) . Thus, the mini-batch training objective can be

formalized as follows:

ˆL𝐵𝑃𝑅 (ˆR+) =
∑︁

(𝑢,𝑖, 𝑗) ∈ ˆO(ˆR+)

− ln𝜎 (𝑦𝑢,𝑖 − 𝑦𝑢,𝑗) . (2)

In each training epoch, we iterate over all user-item interactions in

R+
, so themini-batch training objective

ˆL𝐵𝑃𝑅 needs to be evaluated

for |R+ |/𝐵 times (i.e., |E |/𝐵 times).

2.3 GNNs and MF for Recommendations
In this subsection, we will briefly introduce MF and two representa-

tive GNN-based recommendation models including LightGCN [24]

and PinSAGE [56], and discuss their computation complexity.

LightGCN. Inspired by the graph convolution operator in GCN [34]

and SGC [50], LightGCN [24] iteratively propagates the user

embedding (𝒆𝑙)𝑢 and item embedding (𝒆𝑙)𝑖 as follows:

(𝒆𝑙+1)𝑢 =
1√︁

|N (𝑢) |

∑︁
𝑖∈N(𝑢)

1√︁
|N (𝑖) |

(𝒆𝑙)𝑖 , (3)

(𝒆𝑙+1)𝑖 =
1√︁

|N (𝑖) |

∑︁
𝑖∈N(𝑖)

1√︁
|N (𝑢) |

(𝒆𝑙)𝑢 . (4)

The embedding propagation of LightGCN can be re-written in

matrix form as follows:

𝑬𝑙+1 = �̃�𝑬𝑙 , ∀𝑙 = 0, . . . , 𝐿 − 1 (5)

𝒀 =
1

𝐿 + 1

𝐿∑︁
𝑙=0

𝑬𝑙 , (6)

where 𝐿 denotes the number of GNN layers, and 𝒀 denotes

the model output of LightGCN with layer-wise combination. As

LightGCN computes full embedding propagation in Eq. (5) for 𝐿

times to capture 𝐿-hop neighborhood information, the computation

complexity of LightGCN in one training iteration is O(𝐿 |E |𝑑) with
the support of sparse matrix multiplications. Thus, the computation

complexity for one training epoch is O(1
𝐵
𝐿 |E |2𝑑).

2

PinSAGE. The embedding propagation in LightGCN aggregates all

the neighbors for a user or an item, which is less compatible with

Web-scale item-to-item recommender systems. Another important

embedding propagation rule in GNN-based recommendation is

proposed in PinSAGE:

(𝒏𝑙+1)𝑢 = Aggregate({ReLU(𝑸 · (𝒆𝑙)𝑣 + 𝒒) | 𝑣 ∈ ˆN(𝑢)}), (7)

(𝒆𝑙+1)𝑢 = Normalize(𝑾 · Concat[(𝒆𝑙)𝑢 ; (𝒏𝑙+1)𝑢] +𝒘), (8)

where 𝑸, 𝒒,𝑾 ,𝒘 are trainable parameters, and
ˆN(𝑢) denotes the

randomly sampled neighbors for node 𝑢. If PinSAGE constantly

samples 𝐷 random neighbors for each node at each layer, and

the sampled 𝐵 edges have 𝑛𝐵 target nodes without repetition, the

computation complexity in each training iteration is O(𝑛𝐵𝐷𝐿𝑑2) as
discussed in previous studies [52]. Thus, the time complexity in the

entire training epoch is O(1
𝐵
𝑛𝐵 |E |𝐷𝐿𝑑2) = O(|E|𝐷𝐿𝑑2). Moreover,

the neighbor sampling in PinSAGE incurs large approximation

error that impacts the prediction performance.

Matrix Factorization (MF). Matrix factorization and its neural

variant NCF [26] are simple but strong baselines for recommen-

dations at scale. Given learnable user embedding 𝒑𝑢 and item

embedding 𝒒𝑖 , MFmodels their interaction directly by inner product

as 𝑦𝑢,𝑖 = 𝒑𝑇𝑢 𝒒𝑖 , while NCF models the interaction by deep neural

networks as follows:

𝒆𝐿 =𝑾𝐿 (· · ·𝜙 (𝑾2𝜙 (𝑾1

[
𝒑𝑢
𝒒𝑖

]
+ 𝒃1) + 𝒃2) · · ·) + 𝒃𝐿, (9)

𝑦𝑢,𝑖 = 𝜎 (𝒉𝑇 𝒆𝑙), (10)

where𝑾𝑙 , 𝒃𝑙 and 𝒉𝑙 are trainable parameters, and 𝜙 is a non-linear

activation function. In each training iteration, the computation

complexity for MF and NCF is O(𝐵𝑑) and O(𝐵𝐿𝑑2), which stands

for the complexity of dot products andMLPs, respectively. Thus, the

time complexity in each training epoch for MF and NCF is O(|E|𝑑)
and O(|E|𝐿𝑑2).
Inefficiency of GNNs. In comparison with conventional MF

models, GNNs’ inefficiency lies behind their non-linear complexity

with respect to the number of edges |E | or layers 𝐿. For exam-

ple, the time complexity for LightGCN is O(1
𝐵
𝐿 |E |2𝑑), which

grows quadratically with |E |, and PinSAGE has a complexity of

O(|E|𝐷𝐿𝑑2), which grows exponentially with 𝐿. In this paper,

we pursue a linear-time design for GNNs, which means the time

complexity of our proposed model is expected to be O(𝐶 |E |𝑑),
where 𝐶 is a small constant (e.g., 𝐶 = 𝐿𝑑 for NCF).

3 THE PROPOSED METHOD
In web-scale recommender systems, the problem size can easily

reach a billion scale towards the numbers of nodes and edges in

the interaction graphs [30, 31, 45]. Therefore, it is essential that

scalable recommender systems should have nearly linear or sub-

linear complexity with respect to the problem size. Otherwise, they

are infeasible in practice due to the unaffordable computational

cost [44]. The scalability issue of GNN-based recommendation

models inspires us to pursue a more efficient algorithm design

with linear computation complexities. However, it is highly non-

trivial to significantly reduce the computation complexity while

preserving the long-range modeling ability of GNNs. First, it is

widely acknowledged that GNNs’ capability of capturing long-

range dependencies lies behind stacking embedding propagation

layers, but the iterative propagation process makes achieving

linear time complexity challenging. Second, many GNN-based

recommendation models face high computational costs, and some

exhibit quadratic dependency on the number of edges, as discussed

in Section 2.3. In light of these challenges, neighbor sampling

becomes an indispensable technique in order to achieve linear

complexity. However, it’s important to be aware that sampling

will naturally introduce approximation errors which can impact

performance. Many existing variance reduction techniques, such as

[5, 8], tend to lower variance but often at the expense of increased

computational costs, which may not be practical in real-world

recommendation.

In Section 3.1, we tackle the challenge of balancing strong

expressive power with the need for multiple aggregation layers

in recommendation systems. To address this, we propose the

use of implicit graph modeling to capture high-order user-item

interactions efficiently. Our approach leverages historical compu-

tations, requiring just a single propagation layer to achieve this

goal. In Section 3.2, we introduce a efficient approach for variance-

reduced neighbor sampling, characterized by linear complexity.

This approach offers a substantial reduction in computational

overhead compared to existing methods while still achieving

effective variance reduction.

3.1 Implicit Modeling for Recommendations
Personalized PageRank [36] is a classic approach for the measure-

ment of the proximity between nodes in a graph. It is adopted by

a popular GNN model, PPNP (Personalized Propagation of Neural

Predictions) [20], to propagate node embeddings according to the

personalized PageRank matrix:

E𝑘𝑃𝑃𝑁𝑃 = 𝛼

(
I − (1 − 𝛼)Ã

)−1
E𝑘𝑖𝑛, (11)

where 𝛼 is the teleport factor and E𝑘
𝑖𝑛

is the input node embedding.

Due to the infeasible cost of matrix inversion, APPNP approximates

this by 𝐿 propagation layers:

E𝑘
0
= E𝑘𝑖𝑛 (12)

E𝑘
𝑙+1 = (1 − 𝛼)ÃE𝑘

𝑙
+ 𝛼E𝑘𝑖𝑛, ∀𝑙 = 0, . . . , 𝐿 − 1 (13)

such that it can capture the 𝐿-hop high-order information in the

graph without suffering from over-smoothing due to the teleport

term𝛼E𝑘
𝑖𝑛
. LightGCN exhibits a close relationwith APPNP although

the embedding from different propagation layers is averaged with

a different weight (see the analysis in Section 3.2 in [24]). However,

like most GNNs, both APPNP and LightGCN suffer from scalability

issues due to the multi-layer recursive feature aggregations, which

greatly limit their applications in large-scale recommendations.

Motivated by the implicit modeling in Neural ODE [7], Deep

Equilibrium Model [1], Implicit Deep Learning [11], and Implicit

GNNs [21, 37, 54], we propose an implicit modeling for graph-based

recommendations:

E𝑘𝑖𝑛 =
1

𝛼

(
I − (1 − 𝛼)Ã

)
E𝑘𝑜𝑢𝑡 , (14)

3

Figure 1: An illustration of our model architecture. The forward process of our model aims to solve the PPNP fixed-point
equation, which expresses an equilibrium state of the embedding propagations, and can be used to capture long-range relations
between any pair of nodes regardless of their distance. The backward process computes the implicit gradients w.r.t the PPNP
fixed-point and updates the input embeddings. With appropriate initialization, both forward and backward can be computed
with only one propagation step.

where the relation between output embedding E𝑘𝑜𝑢𝑡 and input

embedding E𝑘
𝑖𝑛

is implicitly defined by this fix-point equation. In

other words, there is no explicit formula for the output embedding

E𝑘𝑜𝑢𝑡 . This implicit modeling provides flexibility for the fix-point

solver since the training and inference of implicit deep learning

models are agnostic to the computation trajectory. In other words,

we can use any root-find solver to construct the propagation layers

without worrying about the compatibility with back-propagation.

Specifically, to pave theway to linear-time computation, we propose

to solve this fix-point equation by a single forward propagation

layer:

E𝑘𝑜𝑢𝑡 = (1 − 𝛼)ÃE𝑘−1𝑜𝑢𝑡 + 𝛼E𝑘𝑖𝑛 (15)

where E𝑘−1𝑜𝑢𝑡 is the output embedding from iteration 𝑘 − 1 and

serves as a better initialization for the fix-point solver. This single-

layer design significantly reduces the computation cost of multi-

layer propagation but still captures multi-hop neighbor information

through information accumulation.

The backward propagation of implicit deep learning models is

independent of the forward computation [1, 11, 21, 54]. Given the

gradient from the output embedding layer
𝜕L

𝜕E𝑘𝑜𝑢𝑡
, the gradient of

E𝑘
𝑖𝑛

can be computed based on the fix-point equation in Eq. (14):

𝜕L
𝜕E𝑖𝑛

= 𝛼
𝜕L

𝜕E𝑜𝑢𝑡

(
I − (1 − 𝛼)Ã

)−1
. (16)

Due to the prohibitively high dimensionality of the adjacency

matrix, computing its inverse is infeasible. Therefore, we propose to

approximate this gradient by a single backward propagation layer:

𝜕L
𝜕E𝑘

𝑖𝑛

= (1 − 𝛼)Ã 𝜕L
𝜕E𝑘−1

𝑖𝑛

+ 𝛼
𝜕L

𝜕E𝑘𝑜𝑢𝑡
(17)

where
𝜕L

𝜕E𝑘−1
𝑖𝑛

is the gradient of input embedding from iteration 𝑘 −1

and serves as a better initialization. In summary, the forward and

backward computation of our single-layer GNN are formulated as:

Forward: E𝑘𝑜𝑢𝑡 = (1 − 𝛼)ÃE𝑘−1𝑜𝑢𝑡 + 𝛼E𝑘𝑖𝑛 (18)

Backward:
𝜕L
𝜕E𝑘

𝑖𝑛

= (1 − 𝛼)Ã 𝜕L
𝜕E𝑘−1

𝑖𝑛

+ 𝛼
𝜕L

𝜕E𝑘𝑜𝑢𝑡
(19)

where E𝑜𝑢𝑡 and 𝜕L
𝜕E𝑖𝑛 are two auxiliary variables to be maintained

in the memory.

3.2 Efficient Variance-Reduced Neighbor
Sampling

The implicit modeling and single-layer design introduced in

Section 3.1 significantly reduce the computation complexity (per

training epoch) of LightGCN from O(𝐿 | E |2𝑑
𝐵

) to O(| E |2𝑑
𝐵

). How-
ever, it does not reach the linear complexity as Matrix Factoriza-

tion methods due to the quadratic dependency on the number

of edges |E |. This quadratic dependency is caused by the full

neighbor aggregation. Therefore, the key solution to tackle this

quadratic dependency is neighbor sampling as initially proposed in

GraphSAGE [23] and PinSAGE [56]. Practically, neighbor sampling

is urgently needed for real-world large-scale recommendation

systems where the degree distribution of user and item nodes often

follows a power-law distribution [16, 55]. This implies that trending

items and active users could have thousands of interaction records,

which incurs significant computation costs for their embedding

loading and aggregation.

Unfortunately, neighbor samplingwill cause large approximation

errors and suffer from performance degradation as demonstrated

in large-scale OGB benchmarks [10]. Exemplified by VR-GCN [5]

and MVS-GNN [8], variance-reduction (VR) techniques have been

introduced to reduce the approximation error in graph convolutions.

However, we will reveal that these methods still require the full

embedding aggregation of historical embedding, which maintains

the undesirable quadratic dependency on |E |. To this end, we will

propose an efficient variance-reduced neighbor sampling approach

to achieve linear complexity.

Classic Variance-reduced Neighbor Aggregation. Recent re-
search has investigated variance reduction on GNNs, such as VR-

GCN and MVS-GNN [5, 8]:

(𝑬𝑘𝑜𝑢𝑡)𝑉𝑅 = ˆ𝑨[(𝑬𝑘𝑖𝑛) − (𝑬𝑘𝑖𝑛)] + ˜𝑨(𝑬𝑘𝑖𝑛) (20)

where
ˆ𝑨 is an unbiased estimator of

˜𝑨, ˆ𝑨𝑢,𝑣 =
|N (𝑢) |

𝐷
˜𝑨𝑢,𝑣 if

node 𝑣 is sampled as a neighbor of node 𝑢, otherwise ˆ𝑨𝑢,𝑣 = 0.

𝑬
𝑘
𝑖𝑛 is the historical embeddings for approximating 𝑬𝑘

𝑖𝑛
. However,

4

Figure 2: The Process of Efficient Variance-Reduced Neighbor Sampling in LTGNN.

such approaches need to perform full neighbor aggregations on

the historical embedding by computing
˜𝑨(𝑬𝑘𝑖𝑛). Importantly, this

computation has to be performed in each mini-batch iteration,

leading to the quadratic computation complexity O(| E |2𝑑
𝐵

) for

the whole training epoch. Therefore, they seriously sacrifice

the computational efficiency of neighbor sampling in large-scale

recommender systems.

Efficient Variance-reduced Neighbor Sampling. To further

reduce the quadratic computation complexity, we propose to

compute the historical embedding aggregation periodically instead

of computing them in every training iteration. Specifically, we

allocate two memory variables 𝑴𝑖𝑛 and 𝑴𝑎𝑔 to store the historical

input embedding and fully aggregated embedding, where 𝑴𝑎𝑔 =

˜𝑨𝑴𝑖𝑛 . The input memory variable 𝑴𝑖𝑛 is updated periodically at

the end of each training epoch, and the aggregated embedding𝑴𝑎𝑔

are updated based on the renewed inputs. We name it as Efficient

Variance Reduction (EVR), which can be formulated as:

(�̂�𝑘)𝐸𝑉𝑅 = ˆ𝑨[(𝑬𝑘−1𝑜𝑢𝑡) −𝑴𝑖𝑛] +𝑴𝑎𝑔 (21)

(�̂�𝑘𝑜𝑢𝑡)𝐸𝑉𝑅 = (1 − 𝛼) (�̂�𝑘)𝐸𝑉𝑅 + 𝛼 (𝑬𝑘𝑖𝑛) . (22)

The whole process of our algorithm is shown in Figure 2.

Complexity analysis. If we denote the number of sampled

neighbors for each node as 𝐷 and assume the sampled 𝐵 edges

have 𝑛𝐵 target nodes without repetition, then the complexity of

our methods is O(| E |𝑛𝐵𝐷𝑑
𝐵

) = O(|E|𝐷𝑑) since 𝑛𝐵 and 𝐵 are of

the same order. Given that 𝐷 is a constant, the complexity no

longer depends on the number of edges in a quadratic manner,

and instead, it becomes linear. As a result, it significantly reduces

the computational cost associated with our methods. With our

variance-reduced neighbor sampling techniques, we can avoid

the costly full aggregation computation at each training iteration

by a periodic update with linear computational complexity. This

reduction in complexity is highly significant, as shown in the

complexity comparison in Table 1.

Table 1: Complexity Comparisons.

Models Computation Complexity
LightGCN O(1

𝐵
𝐿 |E |2𝑑)

PinSAGE O(|E|𝐷𝐿𝑑2)
MF O(|E|𝑑)
NCF O(𝐿 |E |𝑑2)

LTGNN O(|E|𝐷𝑑)

Remark 1. Prior works on variance reduction [3, 5, 37] mainly
concentrate on reducing the variance of the forward process. In

contrast, our variance reduction method not only significantly reduces
the computation cost but also is symmetrically applied to both
forward and backward processes in embedding sampling and gradient
sampling similar to Eq. (21) and Eq. (22). This achieves variance
reduction in both forward and backward propagations.

4 EXPERIMENTS
In this section, we will verify the effectiveness and efficiency of

the proposed LTGNN framework with comprehensive experiments.

Specifically, we aim to answer the following research questions:

• RQ1: Can LTGNN achieve promising prediction performance

on large-scale recommendation datasets? (Section 4.2)

• RQ2: Can LGTNN handle large user-item interaction graphs

more efficiently than existing GNN approaches? (Section 4.3)

• RQ3: How does the effectiveness of the proposed LTGNN vary

when we ablate different parts of the design? (Section 4.4)

4.1 Experimental Settings
We first introduce the datasets, baselines, evaluation metrics, and

hyperparameter settings as follows.

Datasets. We evaluate the proposed LTGNN and baselines on two

medium-scale datasets including Yelp2018 andAlibaba-iFashion, and
one large-scale dataset Amazon-Large. Yelp2018 dataset is released
by the baselines NGCF [48] and LightGCN [24], and the Alibaba-

iFashion dataset can be found in the GitHub repository
1
. For the

large-scale setting, we construct the large-scale dataset, Amazon-

Large, based on the rating files from the Amazon Review Data

website
2
. Specifically, we select the three largest subsets (i.e., Books,

Clothing Shoes and Jewelry, Home and Kitchen) from the entire

Amazon dataset, and then keep the interactions from users who

are shared by all the three subsets (7.9% of all the users). The rating

scale is from 1 to 5, and we transform the explicit ratings into

implicit interactions by only keeping the interactions with ratings

bigger than 4. To ensure the quality of our Amazon-Large dataset,

we follow a widely used 10-core setting [27, 46, 48] and remove

the users and items with interactions less than 10 by following the

data preparation settings [26, 27, 47]. The statistical summary of

the datasets can be found in Table 2.

Table 2: Dataset statistics.

Dataset # Users # Items # Interactions
Yelp2018 31, 668 38, 048 1, 561, 406

Alibaba-iFashion 300, 000 81, 614 1, 607, 813

Amazon-Large 872, 557 453, 553 15, 236, 325

1
https://github.com/wenyuer/POG

2
https://cseweb.ucsd.edu/~jmcauley/datasets/amazon_v2/

5

https://github.com/wenyuer/POG
https://cseweb.ucsd.edu/~jmcauley/datasets/amazon_v2/

Baselines. Themain focus of this paper is to enhance the scalability

of GNN-based collaborative filtering methods. Therefore, we

compare our method with the most widely used GNN backbone in

recommendations, LightGCN [24] and its scalable variants that em-

ploy typical GNN scalability techniques, including GraphSAGE [23],

VR-GCN [5] andGAS [18]. The corresponding variants of LightGCN

are denoted as LightGCN-NS (for Neighbor Sampling), LightGCN-
VR, and LightGCN-GAS.

To demonstrate the effectiveness of our method, we also compare

it with a range of representative recommendation models, including

MF [35], NCF [26], GC-MC [2], PinSAGE [56], NGCF [48], and

DGCF [24]. In this paper, we adopt two widely used evaluation

metrics in recommendations: Recall@K andNormalized Discounted

Cumulative Gain (NDCG@K) [24, 48]. We set the K=20 by default,

and we report the average result for all test users. Moreover, since

we are designing an efficient GNN-based collaborative filtering

backbone that is independent of the loss function, our method is

orthogonal to SSL-basedmethods [39, 51, 57] and negative sampling

algorithms [29, 40]. We will explore the combination of our method

and these orthogonal designs in future work.

Parameter Settings.We implement the proposed LTGNN using

PyTorch and PyG libraries. We strictly follow the settings of

NGCF [48] and LightGCN [24] to implement our method and

the scalable LightGCN variants for a fair comparison. All the

methods use an embedding size of 64, a BPR batch size of 2048,

and a negative sample size of 1. For the proposed LTGNN, we

tune the learning rate from {5e-4, 1e-3, 1.5e-3, 2e-3} and the weight
decay from {1e-4, 2e-4, 3e-4}. We employ an Adam [33] optimizer

to minimize the objective function. For the coefficient 𝛼 in PPNP, we

perform a grid search over the hyperparameter in the range of [0.3,

0.7] with a step size of 0.05. To ensure the scalability of our model,

the number of propagation layers 𝐿 is fixed to 1 by default, and the

number of sampled neighbors 𝑑 is searched in {5, 10, 15, 20}. For
the GNN-based baselines, we follow their official implementations

and suggested settings in their papers. For the LightGCN variants

with scalability techniques, the number of layers 𝐿 is set based on

the best choice of LightGCN, and we search other hyperparameters

in the same range as LTGNN and report the best results.

4.2 Recommendation Performance
In this section, we mainly examine the recommendation per-

formance of our proposed LTGNN, with a particular focus on

comparing LTGNN with the most widely adopted GNN backbone

LightGCN. We use out-of-memory (OOM) to indicate the methods

that cannot run on the dataset due to memory limitations. The

recommendation performance summarized in Table 3 provides the

following observations:

• Our proposed LTGNN achieves comparable or better results

on all three datasets compared to the strongest baselines.

In particular, LTGNN outperforms all the baselines on

Yelp and Alibaba-iFashion. The only exception is that the

Recall@20 of LightGCN (L=3) outperforms LTGNN (L=1)

on the Amazon-Large dataset. However, our NDCG@20

outperforms LightGCN (L=3), and LTGNN (L=1) is much

more efficient compared with LightGCN (L=3), as LTGNN

only uses one embedding propagation layer and very few

randomly sampled neighbors.

• The scalable variants of LightGCN improve the scalability of

LightGCN by sacrificing its recommendation performance

in most cases. For instance, the results for LightGCN-VR,

LightGCN-NS, and LightGCN-GAS are much worse than

LightGCN with full embedding propagation on Amazon-

Large. In contrast, the proposed LTGNN has better effi-

ciency than these variants and preserves the recommenda-

tion performance.

• The performance of GNN-based methods like NGCF and

LightGCN consistently outperforms earlier methods like

MF. However, GNNs without scalability techniques can

hardly be run large-scale datasets. For instance, GC-MC,

NGCF, and DGCF significantly outperform MF, but they

are reported as OOM on the Amazon-Large dataset. This

suggests the necessity of pursuing scalable GNNs for

improving the recommendation performance in large-scale

industry scenarios.

4.3 Efficiency Analysis
To verify the scalability of LTGNN, we provide efficiency analysis in

comparison with MF, LightGCN, and scalable variants of LightGCN

with different layers on on two large-scale datasets: Alibaba-iFasion

and Amazon-Large. From the running time shown in Table 4, we

can make the following conclusions:

• Our proposed single-layer LTGNN has a comparable run-

ning time compared with one-layer LightGCN with sam-

pling, and it is faster than the original LightGCN. This

aligns with our complexity analysis presented in Section

3.2. Furthermore, LTGNN is faster than one-layer LightGCN

with variance reduction, thanks to our improved and

efficient variance reduction (EVR) techniques. Note that

the accuracy of one-layer LightGCN is much worse than

LTGNN as shown in Figure 3.

• LTGNN demonstrates significantly improved computa-

tional efficiency compared to baseline models with more

than one layer. When combined with the results from

Table 3, it becomes evident that LTGNN can maintain high

performance while achieving a substantial enhancement in

computational efficiency.

• While the running time of LTGNN is a few times longer

than that of Matrix Factorization (MF) due to their constant

difference in the complexity analysis, it’s important to note

that LTGNN already achieves a nice and similar scaling
behavior as MF without undesirable dependency on the

number of edges or layers. Therefore, it scales much better

than other GNN-based methods. Our observations are

consistent with the complexities in Table 3.

• An interesting observation is that on large-scale datasets,

full-graph LightGCN outperforms LightGCNwith neighbor

sampling on efficiency. This is mainly because of the high

CPU cost of random sampling, which restraints the usage

rate of GPUs.

6

Table 3: The comparison of overall prediction performance.

Dataset Yelp2018 Alibaba-iFashion Amazon-Large
Method Recall@20 NDCG@20 Recall@20 NDCG@20 Recall@20 NDCG@20
MF 0.0436 0.0353 0.05784 0.02676 0.02752 0.01534

NCF 0.045 0.03640 - - - -

GC-MC 0.0462 0.0379 0.07738 0.03395 OOM OOM

PinSAGE 0.0495 0.04049 - - - -

NGCF 0.0581 0.0475 0.07979 0.0357 OOM OOM

DGCF 0.064 0.0522 0.08445 0.03967 OOM OOM

LightGCN (L=3) 0.06347 0.05238 0.08793 0.04096 0.0331 0.02283

LightGCN-NS (L=3) 0.06256 0.0514 0.08804 0.04147 0.02835 0.02035

LightGCN-VR (L=3) 0.06245 0.05141 0.08814 0.04082 0.02903 0.02093

LightGCN-GAS (L=3) 0.06337 0.05207 0.08169 0.03869 0.02886 0.02085

LTGNN (L=1) 0.06393 0.05245 0.09335 0.04387 0.02942 0.02585

Table 4: The comparison of running time (s) on three datasets.

Dataset Alibaba-iFashion Amazon-Large
Method # Layer Runnning Time Running Time
LightGCN

𝐿 = 3

51.4s 2999.35s

LightGCN-NS 51.70s 4291.37s

LightGCN-VR 59.79s 4849.59s

LightGCN-GAS 26.576s 932.03s

LightGCN

𝐿 = 2

30.78s 2061.75s

LightGCN-NS 26.89s 1305.25s

LightGCN-VR 30.33s 1545.34s

LightGCN-GAS 25.04s 903.78s

LightGCN

𝐿 = 1

18.02s 1117.51s

LightGCN-NS 12.74s 684.84s

LightGCN-VR 13.92s 870.82s

LightGCN-GAS 13.35s 729.22s

MF - 4.60s 127.24s

LTGNN 𝐿 = 1 13.68s 705.91s

4.4 Ablation Study
In this section, we provide extensive ablation studies to evaluate

the effectiveness of different parts in our proposed framework.

Effectivenss of implicit graph modeling. We conduct an

ablation study to show the effect of embedding propagation layers

and long-range collaborative signals. Particularly, we use the same

setting for LightGCN and LTGNN and change the number of

propagation layers 𝐿. As illustrated in Figure 3, we have two key ob-

servations: 1) LTGNN can reach better performance in comparison

with LightGCN with only one or two propagation layers, which

demonstrates the strong long-range modeling capability of our

proposed model; 2) Adding more propagation layers into LTGNN

will not significantly improve its performance, which means 𝐿 = 1

is the best choice for LTGNN to balance its performance and

scalability.

Effectiveness of efficient variance reduction. In this study,

we aim to demonstrate the effectiveness of our proposed EVR

algorithm by showing the impact of the number of neighbors on

recommendation performance. As shown in Figure 4, LTGNN with

efficient variance reduction consistently outperforms its vanilla

neighbor sampling variant (i.e., LTGNN-NS) regardless of the

number of neighbors, illustrating its effect in reducing the large

approximation error caused by neighbor sampling. The recommen-

dation performance of LTGNN with efficient variance reduction is

remarkably stable, even under extreme conditions like sampling

only 2 neighbors for each target node. This indicates the great

potential of our proposed LTGNN in large-scale recommendations,

as a GNN with only one propagation layer and two random

neighbors will be ultra-efficient compared with previous designs

that incur a large number of layers and neighbors.

Numerical Analysis. In this experiment, we compute the PPNP

embedding propagation result 𝑬𝑘
𝑃𝑃𝑁𝑃

for the target nodes as an

indicator of long-range modeling ability as it serves as fixed-point,

and we compute the relative error between the model output

𝑬𝑘
𝐿
and the this PPNP computation result. We use 𝐿 = 1 for

LTGNN and its two variants - LTGNN-NS and LTGNN-Full, which

denotes LTGNN without efficient variance reduction and LTGNN

with exact full neighbor aggregation. From Figure 5, we have two

observations as follows: 1) On both datasets, the output of LTGNN

converges to PPNP after 4000 training iterations (i.e., less than

training 10 epochs), which means our proposed LTGNN can capture

the long-range dependencies in user-item graphs by using only

one propagation layer; 2) By comparing LTGNN with its variants,

it is obvious that neighbor sampling without variance reduction

seriously hurts the modeling ability of LTGNN, and our proposed

LTGNN has similar convergence curves in comparison to LTGNN

with full aggregation, showing the effectiveness of our proposed

efficient variance reduction method.

5 RELATEDWORK
In this section, we summarize the related works on graph-based

collaborative filtering and scalable GNNs.

5.1 Graph Collaborative Filtering Models for
Recommendations

In modern recommender systems, collaborative filtering (CF) is

one of the most represenative paradigm [4, 26] to understand

users preferences. The basic idea of CF is that users with similar

historical behaviors are more likely to share similar preferences

toward items [43]. Among various CF techniques, MF is proposed

7

Figure 3: Performance comparison between LTGNN and LightGCN using different layers on Yelp2018 and Alibaba-iFashion.

Figure 4: Performance of a 1-layer LTGNN w.r.t different
numbers of sampled neighbors on Yelp2018.

Figure 5: The relative error between the model output 𝑬𝑘
𝐿
and

the exact PPNP propagation result 𝑬𝑘∗ of the embeddings (i.e.,
| |𝑬𝑘

𝐿
− 𝑬𝑘∗ | |𝐹 /| |𝑬𝑘∗ | |𝐹).

to decompose the user-item interaction data into trainable em-

beddings for users and items, and then reconstruct the missing

interactions [15, 26, 35]. Early works in CF mainly model the user-

item interactions with scaled dot-product [4, 35], MLPs [13, 26],

and LSTMs [15, 22]. However, these models fail to model the high-

order collaborative signals between users and items, leading to

sub-optimal representations of users and items.

In recent years, a promising line of studies has incorporated

GNNs into CF-based recommender systems. The key advantage

of utilizing GNN-based recommendation models is that GNNs

can easily capture long-range dependencies via the informa-

tion propagation mechanism on the user-item graph. For exam-

ple, an early exploration, GC-MC, completes the missing user-

item interactions with graph convolutional autoencoders [2]. For

large-scale recommendation scenarios, PinSAGE [56] adapts the

key idea of GraphSAGE [23] to recommendations and achieves

promising results. Another significant milestone in GNN-based

recommendations is the NGCF [48], which explicitly formulates

the concept of collaborative signals and models them as high-

order connectivities by message-passing propagations. Afterward,

LightGCN [24] indicates the non-linear activation functions and

feature transformations in GNN-based recommender systems are

redundant, and proposes to simplify existing GNNs while achieving

promising performance. However, despite the success of previous

GNN-based models in capturing user preferences, existing works

fail to address the neighborhood explosion problem on large-scale

recommendation scenarios, which indicates that the scalability of

GNN-based recommender systems remains an open question.

5.2 Scalability of Graph Neural Networks
Recently, extensive literature has studied the efficiency and scala-

bility of GNNs on large-scale graphs. Various novel paradigms are

introduced to improve the scalability of GNNs, including sampling

methods, pre-computing methods, post-computing methods, and

memory-based methods. Sampling-based methods lower computa-

tion and memory requirements using mini-batch training strategies

on GNNs. The well-known neighborhood explosion problem can be

addressed by only keeping a limited number of neighbors [3, 5, 23]

or updating by feature memory[18, 54]. Pre-computing or post-

computing methods decompose the end-to-end training process

of GNNs into two stages: embedding propagation and prediction.

In particular, pre-computing methods pre-calculate the embedding

aggregation results before training the prediction model [19, 50, 58],

while post-computingmethods firstly train a feature transformation

model and leverage unsupervised feature propagation methods

for prediction [28, 59]. In retrospect, sampling methods and pre-

computing/post-computing methods may still encounter high

computational costs, introduce substantial approximation errors, or

sacrifice the advantage of end-to-end training. These limitations can

significantly constrain the potential of GNNs in handling billion-

scale of users and items on real-world recommender systems.

6 CONCLUSION
Scalability is a major challenge for GNN-based recommender sys-

tems, as they often require high computational resources to handle

large-scale recommendation scenarios. To address this challenge,

we propose a novel scalable GNNmodel for recommendation, which

leverages implicit graph modeling and variance-reduced neighbor

sampling to capture long-range collaborative signals. The proposed

LTGNN only needs one propagation layer and a fixed number of

one-hop neighbors, which reduces the computation complexity

to be linear to the number of edges, showing great potential in

industrial recommendation applications. Extensive experiments

on three real-world datasets are conducted to demonstrate the

effectiveness and efficiency of our proposed model. We believe it

will significantly broaden the impact of GNN-based methods for

real-world recommendation systems.

8

REFERENCES
[1] Shaojie Bai, J Zico Kolter, and Vladlen Koltun. 2019. Deep equilibrium models.

Advances in Neural Information Processing Systems 32 (2019).
[2] Rianne van den Berg, Thomas N Kipf, and Max Welling. 2017. Graph

convolutional matrix completion. arXiv preprint arXiv:1706.02263 (2017).
[3] Jie Chen, Tengfei Ma, and Cao Xiao. 2018. Fastgcn: fast learning with graph

convolutional networks via importance sampling. arXiv preprint arXiv:1801.10247
(2018).

[4] Jingyuan Chen, Hanwang Zhang, Xiangnan He, Liqiang Nie, Wei Liu, and Tat-

Seng Chua. 2017. Attentive collaborative filtering: Multimedia recommendation

with item-and component-level attention. In Proceedings of the 40th International
ACM SIGIR conference on Research and Development in Information Retrieval.
335–344.

[5] Jianfei Chen, Jun Zhu, and Le Song. 2018. Stochastic Training of Graph

Convolutional Networks with Variance Reduction. In International Conference
on Machine Learning. PMLR, 942–950.

[6] Lei Chen, Le Wu, Richang Hong, Kun Zhang, and Meng Wang. 2020. Revisiting

graph based collaborative filtering: A linear residual graph convolutional network

approach. In Proceedings of the AAAI conference on artificial intelligence, Vol. 34.
27–34.

[7] Ricky TQ Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. 2018.

Neural ordinary differential equations. Advances in neural information processing
systems 31 (2018).

[8] Weilin Cong, Rana Forsati, Mahmut Kandemir, and Mehrdad Mahdavi. 2020.

Minimal variance sampling with provable guarantees for fast training of graph

neural networks. In Proceedings of the 26th ACM SIGKDD International Conference
on Knowledge Discovery & Data Mining. 1393–1403.

[9] Paul Covington, Jay Adams, and Emre Sargin. 2016. Deep neural networks

for youtube recommendations. In Proceedings of the 10th ACM conference on
recommender systems. 191–198.

[10] Keyu Duan, Zirui Liu, Peihao Wang, Wenqing Zheng, Kaixiong Zhou, Tianlong

Chen, Xia Hu, and ZhangyangWang. 2022. A comprehensive study on large-scale

graph training: Benchmarking and rethinking. Advances in Neural Information
Processing Systems 35 (2022), 5376–5389.

[11] Laurent El Ghaoui, Fangda Gu, Bertrand Travacca, Armin Askari, and Alicia Tsai.

2021. Implicit deep learning. SIAM Journal on Mathematics of Data Science 3, 3
(2021), 930–958.

[12] Ali Mamdouh Elkahky, Yang Song, and Xiaodong He. 2015. A multi-view deep

learning approach for cross domain user modeling in recommendation systems.

In Proceedings of the 24th international conference on world wide web. 278–288.
[13] Wenqi Fan, Qing Li, and Min Cheng. 2018. Deep modeling of social relations for

recommendation. In Proceedings of the AAAI Conference on Artificial Intelligence,
Vol. 32.

[14] Wenqi Fan, Yao Ma, Qing Li, Yuan He, Eric Zhao, Jiliang Tang, and Dawei Yin.

2019. Graph neural networks for social recommendation. In The world wide web
conference. 417–426.

[15] Wenqi Fan, Yao Ma, Dawei Yin, Jianping Wang, Jiliang Tang, and Qing Li. 2019.

Deep social collaborative filtering. In Proceedings of the 13th ACM Conference on
Recommender Systems. 305–313.

[16] Shanshan Feng, Lucas Vinh Tran, Gao Cong, Lisi Chen, Jing Li, and Fan Li. 2020.

Hme: A hyperbolic metric embedding approach for next-poi recommendation.

In Proceedings of the 43rd International ACM SIGIR Conference on research and
development in information retrieval. 1429–1438.

[17] Yufei Feng, Binbin Hu, Fuyu Lv, Qingwen Liu, Zhiqiang Zhang, and Wenwu Ou.

2020. Atbrg: Adaptive target-behavior relational graph network for effective

recommendation. In Proceedings of the 43rd International ACM SIGIR Conference
on Research and Development in Information Retrieval. 2231–2240.

[18] Matthias Fey, Jan E Lenssen, Frank Weichert, and Jure Leskovec. 2021.

Gnnautoscale: Scalable and expressive graph neural networks via historical

embeddings. In International conference on machine learning. PMLR, 3294–3304.

[19] Fabrizio Frasca, Emanuele Rossi, Davide Eynard, Ben Chamberlain, Michael

Bronstein, and Federico Monti. 2020. Sign: Scalable inception graph neural

networks. arXiv preprint arXiv:2004.11198 (2020).
[20] Johannes Gasteiger, Aleksandar Bojchevski, and Stephan Günnemann. 2018.

Predict then propagate: Graph neural networks meet personalized pagerank.

arXiv preprint arXiv:1810.05997 (2018).

[21] Fangda Gu, Heng Chang, Wenwu Zhu, Somayeh Sojoudi, and Laurent El Ghaoui.

2020. Implicit graph neural networks. Advances in Neural Information Processing
Systems 33 (2020), 11984–11995.

[22] Qing Guo, Zhu Sun, Jie Zhang, and Yin-Leng Theng. 2020. An attentional

recurrent neural network for personalized next location recommendation. In

Proceedings of the AAAI Conference on artificial intelligence, Vol. 34. 83–90.
[23] Will Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive representation

learning on large graphs. Advances in neural information processing systems 30
(2017).

[24] Xiangnan He, Kuan Deng, Xiang Wang, Yan Li, Yongdong Zhang, and Meng

Wang. 2020. Lightgcn: Simplifying and powering graph convolution network for

recommendation. In Proceedings of the 43rd International ACM SIGIR conference

on research and development in Information Retrieval. 639–648.
[25] Xiangnan He, Zhankui He, Jingkuan Song, Zhenguang Liu, Yu-Gang Jiang,

and Tat-Seng Chua. 2018. NAIS: Neural attentive item similarity model for

recommendation. IEEE Transactions on Knowledge and Data Engineering 30, 12

(2018), 2354–2366.

[26] Xiangnan He, Lizi Liao, Hanwang Zhang, Liqiang Nie, Xia Hu, and Tat-Seng

Chua. 2017. Neural collaborative filtering. In Proceedings of the 26th international
conference on world wide web. 173–182.

[27] Xiangnan He, Hanwang Zhang, Min-Yen Kan, and Tat-Seng Chua. 2016. Fast

matrix factorization for online recommendation with implicit feedback. In

Proceedings of the 39th International ACM SIGIR conference on Research and
Development in Information Retrieval. 549–558.

[28] Qian Huang, Horace He, Abhay Singh, Ser-Nam Lim, and Austin Benson. 2020.

Combining Label Propagation and Simple Models out-performs Graph Neural

Networks. In International Conference on Learning Representations.
[29] Tinglin Huang, Yuxiao Dong, Ming Ding, Zhen Yang, Wenzheng Feng, Xinyu

Wang, and Jie Tang. 2021. Mixgcf: An improved training method for graph neural

network-based recommender systems. In Proceedings of the 27th ACM SIGKDD
Conference on Knowledge Discovery & Data Mining. 665–674.

[30] Yuezihan Jiang, Yu Cheng, Hanyu Zhao, Wentao Zhang, Xupeng Miao, Yu He,

Liang Wang, Zhi Yang, and Bin Cui. 2022. Zoomer: Boosting retrieval on web-

scale graphs by regions of interest. In 2022 IEEE 38th International Conference on
Data Engineering (ICDE). IEEE, 2224–2236.

[31] Wei Jin, Haitao Mao, Zheng Li, Haoming Jiang, Chen Luo, Hongzhi Wen, Haoyu

Han, Hanqing Lu, Zhengyang Wang, Ruirui Li, et al. 2023. Amazon-M2: A

Multilingual Multi-locale Shopping Session Dataset for Recommendation and

Text Generation. arXiv preprint arXiv:2307.09688 (2023).
[32] Santosh Kabbur, Xia Ning, and George Karypis. 2013. Fism: factored item

similarity models for top-n recommender systems. In Proceedings of the 19th
ACM SIGKDD international conference on Knowledge discovery and data mining.
659–667.

[33] Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic

optimization. arXiv preprint arXiv:1412.6980 (2014).
[34] Thomas N Kipf and Max Welling. 2016. Semi-supervised classification with

graph convolutional networks. arXiv preprint arXiv:1609.02907 (2016).

[35] Yehuda Koren. 2008. Factorization meets the neighborhood: a multifaceted

collaborative filteringmodel. In Proceedings of the 14th ACMSIGKDD international
conference on Knowledge discovery and data mining. 426–434.

[36] Page Lawrence. 1998. The pagerank citation ranking: Bringing order to the web.

Technical report (1998).
[37] Mingjie Li, YifeiWang, YisenWang, and Zhouchen Lin. 2022. Unbiased Stochastic

Proximal Solver for Graph Neural Networks with Equilibrium States. In The
Eleventh International Conference on Learning Representations.

[38] Zhao Li, Xin Shen, Yuhang Jiao, Xuming Pan, Pengcheng Zou, Xianling Meng,

Chengwei Yao, and Jiajun Bu. 2020. Hierarchical bipartite graph neural networks:

Towards large-scale e-commerce applications. In 2020 IEEE 36th International
Conference on Data Engineering (ICDE). IEEE, 1677–1688.

[39] Zihan Lin, Changxin Tian, Yupeng Hou, and Wayne Xin Zhao. 2022. Improving

graph collaborative filtering with neighborhood-enriched contrastive learning.

In Proceedings of the ACM Web Conference 2022. 2320–2329.
[40] Kelong Mao, Jieming Zhu, Jinpeng Wang, Quanyu Dai, Zhenhua Dong, Xi Xiao,

and Xiuqiang He. 2021. SimpleX: A simple and strong baseline for collaborative

filtering. In Proceedings of the 30th ACM International Conference on Information
& Knowledge Management. 1243–1252.

[41] Steffen Rendle, Christoph Freudenthaler, Zeno Gantner, and Lars Schmidt-

Thieme. 2009. BPR: Bayesian personalized ranking from implicit feedback. In

Proceedings of the Twenty-Fifth Conference on Uncertainty in Artificial Intelligence.
452–461.

[42] Yelong Shen, Xiaodong He, Jianfeng Gao, Li Deng, and Grégoire Mesnil. 2014.

Learning semantic representations using convolutional neural networks for web

search. In Proceedings of the 23rd international conference on world wide web.
373–374.

[43] Jiliang Tang, Xia Hu, and Huan Liu. 2013. Social recommendation: a review.

Social Network Analysis and Mining 3 (2013), 1113–1133.

[44] Shang-Hua Teng et al. 2016. Scalable algorithms for data and network analysis.

Foundations and Trends® in Theoretical Computer Science 12, 1–2 (2016), 1–274.
[45] Jizhe Wang, Pipei Huang, Huan Zhao, Zhibo Zhang, Binqiang Zhao, and Dik Lun

Lee. 2018. Billion-scale commodity embedding for e-commerce recommendation

in alibaba. In Proceedings of the 24th ACM SIGKDD international conference on
knowledge discovery & data mining. 839–848.

[46] Xiang Wang, Xiangnan He, Yixin Cao, Meng Liu, and Tat-Seng Chua. 2019. Kgat:

Knowledge graph attention network for recommendation. In Proceedings of the
25th ACM SIGKDD international conference on knowledge discovery & data mining.
950–958.

[47] Xiang Wang, Xiangnan He, Liqiang Nie, and Tat-Seng Chua. 2017. Item silk road:

Recommending items from information domains to social users. In Proceedings
of the 40th International ACM SIGIR conference on Research and Development in
Information Retrieval. 185–194.

9

[48] Xiang Wang, Xiangnan He, Meng Wang, Fuli Feng, and Tat-Seng Chua. 2019.

Neural graph collaborative filtering. In Proceedings of the 42nd international ACM
SIGIR conference on Research and development in Information Retrieval. 165–174.

[49] Xiang Wang, Hongye Jin, An Zhang, Xiangnan He, Tong Xu, and Tat-Seng

Chua. 2020. Disentangled graph collaborative filtering. In Proceedings of the 43rd
international ACM SIGIR conference on research and development in information
retrieval. 1001–1010.

[50] Felix Wu, Amauri Souza, Tianyi Zhang, Christopher Fifty, Tao Yu, and Kilian

Weinberger. 2019. Simplifying graph convolutional networks. In International
conference on machine learning. PMLR, 6861–6871.

[51] Jiancan Wu, Xiang Wang, Fuli Feng, Xiangnan He, Liang Chen, Jianxun Lian,

and Xing Xie. 2021. Self-supervised graph learning for recommendation. In

Proceedings of the 44th international ACM SIGIR conference on research and
development in information retrieval. 726–735.

[52] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and

S Yu Philip. 2020. A comprehensive survey on graph neural networks. IEEE
transactions on neural networks and learning systems 32, 1 (2020), 4–24.

[53] Hong-Jian Xue, Xinyu Dai, Jianbing Zhang, Shujian Huang, and Jiajun Chen.

2017. Deep matrix factorization models for recommender systems.. In IJCAI,
Vol. 17. Melbourne, Australia, 3203–3209.

[54] Rui Xue, Haoyu Han, MohamadAli Torkamani, Jian Pei, and Xiaorui Liu. 2023.

LazyGNN: Large-Scale Graph Neural Networks via Lazy Propagation. arXiv
preprint arXiv:2302.01503 (2023).

[55] Menglin Yang, Zhihao Li, Min Zhou, Jiahong Liu, and Irwin King. 2022. Hicf:

Hyperbolic informative collaborative filtering. In Proceedings of the 28th ACM
SIGKDD Conference on Knowledge Discovery and Data Mining. 2212–2221.

[56] Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L Hamilton,

and Jure Leskovec. 2018. Graph convolutional neural networks for web-scale

recommender systems. In Proceedings of the 24th ACM SIGKDD international
conference on knowledge discovery & data mining. 974–983.

[57] Junliang Yu, Hongzhi Yin, Xin Xia, Tong Chen, Lizhen Cui, and Quoc Viet Hung

Nguyen. 2022. Are graph augmentations necessary? simple graph contrastive

learning for recommendation. In Proceedings of the 45th international ACM SIGIR
conference on research and development in information retrieval. 1294–1303.

[58] Wentao Zhang, Ziqi Yin, Zeang Sheng, Yang Li, Wen Ouyang, Xiaosen Li, Yangyu

Tao, Zhi Yang, and Bin Cui. 2022. Graph attention multi-layer perceptron. In

Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and
Data Mining. 4560–4570.

[59] Xiaojin Zhu. 2005. Semi-supervised learning with graphs. Carnegie Mellon

University.

10

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Notations and Definitions
	2.2 Mini-batch Training
	2.3 GNNs and MF for Recommendations

	3 The Proposed Method
	3.1 Implicit Modeling for Recommendations
	3.2 Efficient Variance-Reduced Neighbor Sampling

	4 Experiments
	4.1 Experimental Settings
	4.2 Recommendation Performance
	4.3 Efficiency Analysis
	4.4 Ablation Study

	5 Related Work
	5.1 Graph Collaborative Filtering Models for Recommendations
	5.2 Scalability of Graph Neural Networks

	6 Conclusion
	References

