PICK YOUR CHANNEL: ULTRA-SPARSE READOUTS FOR RECOVERING FUNCTIONAL CELL TYPES

Anonymous authors

000

001

002003004

010 011

012

013

014

016

017

018

019

021

024

025

026

027 028 029

030

032

033

034

035

037

040

041

042

043

044

046

047

051

052

Paper under double-blind review

ABSTRACT

Clustering neurons into distinct functional cell types is a prominent approach to understand how the brain integrates information about the external world. In recent years, digitial-twins of the visual system based on deep neural networks (DNNs) have become the de facto standard for predicting neuronal responses to arbitrary stimuli. Such DNNs are designed with a common core that learns a representation of the visual input that is shared across neurons, and a neuron-specific readout that linearly combines the core outputs to predict single neuron responses. Here, we propose a novel way to learn an ultra-sparse readout that, instead of linearly combining the shared core features, learns to pick a single channel for each neuron. For retinal ganglion cells, we find that, unlike the previous unconstrained models, this ultra-sparse readout triggers the neural predictive model to innately learn functional cell types with minimal loss in predictive performance. Furthermore, we show that state-of-the-art adaptive regularization models are unable to find such single channels, and that applying strong regularization to encourage sparse channels not only deteriorates performance but also results in response shrinkage. When applied to primary visual cortex neurons, our model exhibits a larger drop in performance compared to the unconstrained model, perhaps indicating a more continuous organization of neuronal function.

1 Introduction

Characterizing neurons into distinct functional cell types is key in discovering how the brain integrates and organizes information about the external world. In the retina, the first stage of the visual system, functional cell types are well defined for its output neurons, the retinal ganglion cells, each transmitting distinct information about the visual scene to the brain (Baden et al., 2016). Existence of such distinct functional cell types for the primary visual cortex (V1), however, is unclear with many studies supporting the hypothesis of a rather continuous functional organization. (Ustyuzhaninov et al., 2022; Weiler et al., 2023; Tong et al., 2023).

Recently, data-driven deep neural networks (DNNs) have become the standard approach for modeling stimulus-driven neuronal responses, particularly in vision (Cadieu et al., 2014; Batty et al., 2017; Klindt et al., 2017; McIntosh et al., 2016; Cadena et al., 2019; Kindel et al., 2019; Walker et al., 2019a; Zhang et al., 2018; Ecker et al., 2018; Sinz et al., 2018; Burg et al., 2021; Cowley & Pillow, 2020). Such neural predictive models exhibit a common modular architecture of a *core* shared among neurons and a neuron-specific *readout* (Antolík et al., 2016; Klindt et al., 2017). The core learns shared representations of visual stimuli, while the readout linearly maps the core output features to neural responses. The core-readout architecture was later extended to temporal dynamics (Sinz et al., 2018; Höfling et al., 2024; Turishcheva et al., 2023) and a more efficient readout (Lurz et al., 2020) – called Gaussian readout.

Recently, Wang et al. (2025) trained a 13-mice CNN-based model and showed that readout weight vectors of these "digital twins" can be used to capture biological phenomena beyond their training data, such as cell morphology. Readout vectors have also been applied to cluster mouse V1 cells into functional groups (Ecker et al., 2018; Ustyuzhaninov et al., 2019; 2022). To cluster neurons into different functional cell types based on readout vectors, each type would ideally map onto a single channel in the network to foster interpretability of the learned features. Such sparsity is typically enforced through L1 regularization on the readout weights. However, previous work observed that

Figure 1: **Overview over our approach:** We evaluate different approaches for ultra-sparse readouts for core-readout neural encoding models. We use the same 3D CNN core architecture and a Gaussian readout to pick the spatial location of a neuron (orange circles). Once, a channel-dimensional vector is extracted at the neurons location in the visual field, we explore ultra-sparse readouts (mid and bottom right), and compare them against unconstrained readouts (top right).

too strong regularization causes shrinkage in the predicted responses towards the population mean (Turishcheva et al., 2024), which is undesirable.

To address this problem, we propose a novel approach of an ultra-sparse readout that instead of linearly combining the core output features learns to pick a single channel per neuron to read out from. To this end, we explored three strategies to pick a single channel of the CNN per neuron:

- A **Gumbel-Softmax** readout where single channels are sampled from neuron-specific Gumbel-Softmax distributions (Jang et al., 2016; Maddison et al., 2016).
- A 3D Grid readout, which is an extension of the Gaussian readout (Lurz et al., 2020) to the channel dimension. This readout is not strictly limited to a single channel, but may also interpolate at most two neighboring channels.
- A **REINFORCE** readout based on a policy gradient method where single channels are picked using neuron-specific channel selection policies (Williams, 1992).

We tested our ultra-sparse readout on recordings from mouse retinal ganglion cells and found that it innately identifies established functional cell types, while incurring only minimal loss in predictive performance. We also show that L1 regularization is unable to identify single channel readout vectors, while suffering both from performance loss and response shrinkage. We also tested our sparse models on mouse V1 neurons, where they fell short of the performance of unconstrained Gaussian readout models, consistent with the idea of a more continuous functional organization in V1 (Ustyuzhaninov et al., 2022).

In summary, our ultra-sparse readouts introduce a plug-and-play modification of a Gaussian readout that encourages the model to innately group neurons into functional types and contributes to more interpretable models of the early visual system.

2 Models and Methods

2.1 NEURAL ENCODING MODELS

Our neural encoding models are based on the common CNN core-readout architecture design. Although recent developments extended neural encoding models from CNN to transformer or CNN-transformer hybrid architectures (Li et al., 2023; Lin et al., 2024; Saha et al., 2024; Pierzchlewicz et al., 2023), we focus on CNN architectures because they naturally handle spatiotemporal data from

natural movies, are well established for modeling early visual areas (retina and V1), and currently offer comparable performance to transformers, which remain less developed for video.

Our **core** is based on a previous architecture (Höfling et al., 2024; Turishcheva et al., 2023) and learns shared representations from visual and behavioral inputs. Behavioral parameters (locomotion speed and pupil dilation size) were included as additional uniform input channels to the core to capture modulation of neural population responses correlating with behavior (Reimer et al., 2014; Sinz et al., 2018; Niell & Stryker, 2010; Schröder et al., 2020; Stringer et al., 2019).

The core is a space-time separable 3D factorized Convolutional Neural Network. Within each layer, spatial and temporal convolutions are applied separately with kernel sizes treated as hyperparameters. The input convolutional kernels are regularized using Laplace regularization controlled by separate spatial and temporal factors. Each convolutional layer is followed by a batch normalization layer, tuned with a momentum hyperparameter, and a nonlinearity from a selection of ELU, Softplus, and ReLU. The exact choices for these hyperparameters for different instantiations of the models are specified in Appendix (Table 1 and 3). Apart from different choices of hyperparameters, the principal core architecture stays the same across different models. The core outputs a tensor $\mathbf{x} \in \mathbb{R}^{w \times h \times c}$ per time point, which represents the learned feature space.

The **readout** is neuron-specific, and maps the output of the core onto neuronal responses. Our base for the unconstrained and sparse models is the Gaussian readout introduced by Lurz et al. (2020). Following their method, the location of each neuron's receptive field is sampled from a 2D Gaussian distribution, parameterized with mean $\mu \in \mathbb{R}^2$ and covariance $\Sigma \in \mathbb{R}^{2 \times 2}$. Inspired by the retinotopic organization of visual brain areas, the means of the Gaussian distributions are initialized using a remapping of the anatomical coordinates of neurons recorded during experiments as introduced by Bashiri et al. (2021). During training, receptive field locations are sampled from neuron-specific distributions, while during evaluation they are fixed to the means. The receptive fields (x,y) can also be shifted in accordance with the gaze/pupil position changes, using a separate shifter network (Sinz et al., 2018). The receptive field locations (x,y) are then used to extract the core output features at a single spatial position via bilinear interpolation (Jaderberg et al., 2015; Lurz et al., 2020). This yields a channel dimensional vector $\mathbf{v} \in \mathbb{R}^c$ per time point.

All readout architectures that we explain below, use the same model until this point. They do, however, differ in the way the single dimensions from the extracted feature vector \mathbf{v} are combined into a prediction of the neuronal response (Figure 1).

Unconstrained model. The classical unconstrained models linearly combine the extracted features using neuron-specific learnable readout weights $\mathbf{w}^{\top}\mathbf{v}$. The readout weights \mathbf{w} are L_1 regularized to encourage sparsity. Unless we use an adaptive readout (Turishcheva et al., 2024), we use $\gamma = 1$ applied uniformly for all neurons.

Adaptive Regularization model. Turishcheva et al. (2024) introduce an adaptive regularization for the readout vector \mathbf{w} , for which each neuron's regularization strength is a learnable parameter. Global regularization strength is controlled by γ . The individual coefficients are controlled by a lognormal prior, for which a hyperparameter σ controls how far they deviate from the overall mean.

Ultra-sparse readout: Gumbel-Softmax. Our Gumbel-Softmax model implements an ultra-sparse readout that picks a single channel from the extracted features, instead of linearly combining the channels. Single channels are sampled from neuron-specific Gumbel-Softmax distributions, introduced in Jang et al. (2016); Maddison et al. (2016). This continuous distribution allows an approximation of discrete categorical samples, and thus a reparametrization trick. We set the number of categories equal to core output channels c. During the forward pass, the categorical samples are c-dimensional one-hot vectors, effectively picking a single channel.

We learn one Gumbel-Softmax distribution for each neuron and tune it with a common temperature parameter τ . When τ is high, the distributions become smoother, approximating uniform values. When τ is low, the distributions become sharper, approximating categorical distributions. As we would like to encourage exploration of different channels at the beginning of training and to gradually converge to a single channel choice towards the end, we implement a cosine scheduler for τ , that goes from $\tau=10$ to $\tau=0.5$ over T epochs.

Ultra-sparse readout: 3D Grid. Our 3D Grid model is an extension of the Gaussian readout idea to channels. This sparse readout does not necessarily pick a single channel from the extracted core

output features, but linearly interpolates between at most two neighboring channels in the channel dimension. This is similar to how 2D Gaussian readout interpolated in (x,y) dimensions to extract the core output features at a spatial position (Lurz et al., 2020). We introduced a learnable parameter z that models the "location" in the channel dimension. As the interpolation is handled using grid coordinates of range [-1,1], we initialized z uniformly in a small range [-0.1,0.1], and additionally constrained with a tanh nonlinearity.

Ultra-sparse readout: REINFORCE. Our REINFORCE readout implements an ultra-sparse readout that picks a single channel similar to the Gumbel-Softmax model. However, in this version of sparse readout we use a policy gradient method: the REINFORCE algorithm (Williams, 1992). For each neuron n we learn a discrete policy π_n over channels via softmax of a learned parameter vector per neuron. The logits of each policy are initialized randomly from a $\mathcal{N}(0,0.01)$. During training we sample channels from the policy probabilities using a multinomial distribution. We use the log probabilities of selected channels, c_n for computing the REINFORCE loss term with a "detach" trick to get the correct gradient with auto-differentiation. In addition to the per-neuron Poisson loss, ℓ_n , we use a neuron-specfic moving-average baseline, b_n , for variance reduction. This yields the final loss term $\mathcal{L}_{\text{reinforce}} = \sum_n \left[\ell_n - b_n\right]_{sg} \log \pi_n(c_n)$ where $\left[\ell_n - b_n\right]_{sg}$ is the advantage term inside a stop gradient operation to treat it as a constant during optimization. Similar to the Gumbel-Softmax model, we encourage exploration in the early stages of training (up to 40 epochs), with an additional entropy regularizer that is scaled dynamically to match the scale of the REINFORCE loss. If $H(\pi_n) = -\sum_c \pi_n(c) \log \pi_n(c)$ is the entropy of neuron n's policy, and \widehat{R} is an exponential moving average of the absolute REINFORCE loss magnitude, then we compute $\beta_{\text{entropy}}^{\text{dyn}} = \frac{\widehat{R}}{\left|\sum_n H(\pi_n)\right| + \varepsilon}$,

at each iteration, where ε is a small constant for numerical stability. $\beta_{\rm entropy}^{\rm dyn}$ is treated as a constant, i.e. does not propagate gradients. The entropy term in the total objective is then given by $\mathcal{L}_{\rm entropy} = \beta_{\rm entropy}^{\rm dyn} \left(-\sum_n H(\pi_n)\right)$. We use a separate optimizer with a fixed learning rate to learn the policies for channel selection.

In all ultra-sparse models, a neuron-specific learnable scale and bias term are applied at the end of the readout. The results are put through an ELU nonlinearity and offset by 1 to ensure positive output neural responses.

2.2 MODEL TRAINING

Our models are trained to minimize a Poisson loss, with early stopping and learning rate schedulers similar to previous neural encoding models (Lurz et al., 2020; Höfling et al., 2024; Turishcheva et al., 2023). Training hyperparameters for the models with retinal data are given in Appendix Table 2, and in Table 4 for primary visual cortex models.

2.3 DATA

Retinal ganglion cell axons. We used a large-scale two-photon imaging dataset from *in vivo* mouse retinal ganglion cell axon endings measured in the superior colliculus of awake, head-fixed mice. This dataset is similar in structure to the public primary visual cortex dataset below (Turishcheva et al., 2023). Notably, it has a set of unique natural movies used for training our models, and 6 natural movies that were shown repeatedly, used to test the predictive performance of our models. Each natural movie is 10s in length. We also used cell responses to simple synthetic light stimuli (chirp and moving bars) commonly used to identify functional cell types (Baden et al., 2016). The chirp stimulus contains a bright full-field white step stimulus with increasing frequency and contrast components that were modulated by two sinusoids. The moving bar stimulus is a bright bar moving in eight directions. Both synthetic stimuli are 32s long, and have repeating trials. This dataset contains quality-controlled 3,175 axonal boutons, which we will refer to as neurons.

Primary visual cortex. For the primary visual cortex experiments, we used a public dataset 29156-11-10 from the dynamic Sensorium 2023 competition. Detailed description of data is provided by the white paper of Turishcheva et al. (2023). Importantly, we measure performance on the *live main test set*.

2.4 METRICS OF MODEL PERFORMANCE

Our neural encoding models predict neuronal responses given videos and behavior as input. We use similar measures of predictive performance, as Turishcheva et al. (2023). To assess the model's performance in capturing stimulus-specific components of neural responses, we use **Correlation to Average**. Correlation is computed per neuron n across stimuli and time, between responses and predictions averaged across repeated presentations of the same stimulus, \bar{r}_n and \bar{p}_n , respectively, $\rho_{\rm ta} = {\rm corr}(\bar{r}_n, \bar{p}_n)$. To assess the model's performance in capturing trial-to-trial variability in neural responses, we use **Single Trial Correlation**. Here, correlation is computed between individual trial responses r_{nk} and predictions p_{nk} across time and stimuli: $\rho_{\rm st} = {\rm corr}(r_{nk}, p_{nk})$.

2.5 Analysis

Consistency of channels To measure the consistency of responses within a single readout channel, we compute the correlation of single neuron's activity to the mean activity of all neurons that pick this channel. For this we concatenate responses to chirp and moving bar. To not confound the correlation by including the single trial in the mean computation, we use a leave-one-out jackknife

estimator: Consistency $(n) = \operatorname{corr}\left(r_n, (|S_n|-1)^{-1}\sum_{\substack{m\in S_n\\m\neq n}}r_m\right)$ where r_n is the response of neuron n to a particular stimulus, S_n is the set of neurons that pick the same channel as neuron n, and r_m are the responses of these neurons to the same stimulus. This measures the consistency of the neuronal responses within a channel.

In addition, we used Adjusted Rand Index (ARI) to measure how consistently our ultra-sparse readout model identifies the same channels for two neurons across model initializations (Pedregosa et al., 2011; Hubert & Arabie, 1985). ARI scores are adjusted for chance and measure similarity between cluster labels. Cluster labels in our case are selected channels in the readout.

Sparseness of readout weights We measured the sparseness of unconstrained readouts with entropy of readout weights. For this we first normalized the absolute readout weights \mathbf{w} to get a probability distribution per neuron n: $\mathbf{p}_n = |\mathbf{w}_n|/||\mathbf{w}_n||_1$ We then calculated the entropy per readout weight $H[\mathbf{p}_n] = -\sum_i p_{ni} \log p_{ni}$. If the readout focuses on a single channel, the entropy is $H[\mathbf{p}_n] = 0$. If the weights spread uniformly across c channels, it is maximal with value $H[\mathbf{p}_n] = \log c$.

Response shrinkage To assess the effect of high regularization on response shrinkage in the Adaptive Regularization model, we obtained the predictions of models trained with different regularization strengths γ to the chirp stimulus (see section 2.3). We first averaged the predictions across repeated presentations of the same stimulus, and then computed the variance of these mean predictions around the mean across time per neuron, and finally report the mean across neurons. If the predicted response shrinks with higher regularization, this variance decreases.

Identifying known functional cell types from chirp and moving bar responses To match readout channel responses with identified cell types, we used maximum Spearman correlation. We correlated the cell type responses to chirp stimulus and moving bars from Baden et al. (2016) with the mean channel responses from our sparse readout model. The best matching cluster was identified by calculating the mean correlation across both chirp and moving bar responses.

3 EXPERIMENTS AND RESULTS

Gumbel-Softmax readout almost matches performance of unconstrained model on retinal data. We compared the predictive performance of unconstrained neural predictive models with sparse readout models trained on retinal ganglion cell dataset. The classical model with an unconstrained readout from Lurz et al. (2020), and its more recent improvement with adaptive regularization from Turishcheva et al. (2024) reached a similar predictive performance and performed the best among all models due to representational flexibility, as expected. When we constrain the readout to be ultrasparse, our model with Gumbel-Softmax sampling outperformed other implementations based on 3D grid interpolation and REINFORCE algorithm (Figure 2A). The Gumbel-Softmax model closely

Figure 2: Gumbel-Softmax Readout almost matches the performance of unconstrained models on retinal data. A Correlations of unconstrained and sparse readout models on validation and test sets averaged over neurons. Validation correlation is also a single trial correlation, but over the input stimuli in the validation set, while the latter is for repeated trials of input stimuli present in the test set. Correlation to average was computed on the test set. Error bars indicate standard deviations of correlations across 5 seeds. Shaded region indicates unconstrained readouts. **B-C** Scatter plots of single trial correlations and correlations to average per neuron of the best across seeds unconstrained vs the Gumbel-Softmax model.

matched ($\approx 90\%$) the performance of the classical unconstrained model in predicting single trial responses and trial-averaged responses, thereby capturing both trial-to-trial variability and visual stimulus specific components of neural responses (Figure 2B,C), despite being constrained to a single channel only.

 L_1 regularized models fail to identify single channel Next we tested whether the unconstrained models could in principle learn to pick single channels through regularization of readout weights (Figure 1). To that end, we used the model with adaptive regularization and the core module of our Gumbel-Softmax ultra-sparse model, since we know that a single channel readout can achieve good performance with that core. We then first selected the σ hyperparameter of the adaptive regularization readout, such that the per-neuron regularization coefficients are distributed broadly with mean closer to 1 (Figure 3A). The spread of the distribution ensure that regularization is indeed adaptive, following the results and guidelines from Turishcheva et al. (2024). Based on this, we fixed $\sigma=0.16$ and trained neural predictive models with varying global regularization strength γ . We then extracted the readout weights of the trained models and measured their sparseness with entropy. Adaptive regularization models were not able to find sparse readout weights even with high regularization as the readout weight entropy never reached zero (Figure 3C).

Somewhat unexpectedly, as we increased the strength of regularization, the entropy of readout weights decreased at first, and then started increasing. This counterintuitive effect of regularization on sparseness can be explained by observing that the norm of readout weights decrease with increasing γ , as expected (Figure 3E). In the limit, the weights are very close to zero and become noisy. When normalizing them for the entropy computation, this is reflected in the increased entropy.

Moreover, at high regularization strengths the unconstrained model substantially suffered in performance (Figure 3B), and the model output predictions shrunk towards the mean of predictions (Figure 3D). Overall, this demonstrates that unconstrained models are not able to find sparse chan-

Figure 3: Adaptive Readout cannot find sparse readout channels at all, and decreases performance with high regularization and leads to response shrinkage. A Hyperparameter selection for the adaptive regularization readout. The plot shows the distributions of per-neuron regularization coefficients at different levels of σ . The global regularization strengths γ were chosen randomly during the hyperparameter search, and are in the range from [10-20]. B-E Analysis on neural predictive models trained at different levels of regularization strength γ . All models were trained with 5 seeds and the shaded regions indicate ± 1 std. B Validation correlation of models. C Entropy of readout weights. D Variance of mean predictions (averaged across trials) around the mean over time. E L_2 norm of readout weights.

nels with strong regularization even when given the best options to achieve that (the ultra-sparse core). Higher regularization mainly results in loss of performance and response shrinkage.

Ultra-sparse readout consistently identifies cell types After we identified the best sparse readout based on Gumbel-Softmax sampling, we tested whether the channels that neurons learned to pick are consistent in terms of their responses (Figure 1). For this we took the mean responses of all neurons of a channel to chirp and moving bar stimuli, commonly used to identify functional cell types for retinal ganglion cells (Baden et al., 2016), and measured their consistency with a jackknifed correlation of the single neuron responses against the group mean (see Analysis). We found that the responses of neurons within the sparse readout channels are highly consistent (Figure 4A). Furthermore, the channel labels for neurons learned by our sparse readout across different model initializations were also highly consistent, as measured by Adjusted Rand Index scores (Figure 4B). While the ARI scores of our sparse readouts might be lower than those of dedicated clustering algorithms, we report high functional consistency within readout channels, important for recovering functional cell types. Furthermore, the ARI scores reported for our sparse readouts might be underestimated, due to the fact different readout channels might represent the same functional cell type. We have done an approximate measure of how ARI would increase, if our readout had smaller number of channels (Appendix Figure S1). Finally, a high ARI score only implies that repeated runs of the clustering yield similar results. It does not measure the goodness or even separation of the clusters.

Results of our sparse readout shows that the model learned to group neurons into channels based on their functional responses (Figure 4A). Next, we tested whether the mean responses of these channels correspond to known functional cell types in retinal ganglion cells, as previously identified in Baden et al. (2016) using parametric chirp and moving bar stimuli. Using our sparse model, we were able to recover a diverse set of functional response types, including direction selective, non-direction selective, on transient, on sustained, off transient, off sustained, on-off, and contrast-

Figure 4: Ultra-sparse model picks functionally consistent channels across model initializations. A Consistency of responses within readout channels measured with jackknifed correlation. The results are shown for the best performing Gumbel-Softmax model seed. The overall mean (red dashed line) is the consistency correlation averaged across channels and model seeds. The random baseline (grey dashed line) is a consistency correlation (averaged across seeds) of a random group with number of elements equal to average readout channel size. B Consistency of picked readout channel labels across different seeds measured with Adjusted Rand Index.

Figure 5: Responses of readout channels correspond to known functional cell types in retinal ganglion cells such as direction selective (DS) cells, non-direction selective cells, ON transient (trans), ON sustained (sust), OFF trans., OFF sust., ON-OFF responses, and neurons that are suppressed by contrast (SbC). These functional cell types are identified using chirp and moving bar stimuli (schematics on the top right).

suppressed responses. These categories map well onto distinct retinal ganglion cell types identified in earlier work (Figure 5).

Application to Primary Visual Cortex So far we have validated that our sparse readout models can learn to identify functional cell types with minimal loss in performance over unconstrained models using data from retinal ganglion cells. While we know that there are clearly defined cell types in the retina, the existence of functional cell types in the primary visual cortex (V1) is not as clear (Ustyuzhaninov et al., 2022; Weiler et al., 2023; Tong et al., 2023). Hence, we wanted to test whether our sparse readout model can rival the performance of state-of-the-art unconstrained models for V1, which would indicate a cluster structure. We trained our sparse readout models on data from V1, and found that the ultra-sparse model based on Gumbel-Softmax sampling outperforms the interpolation based 3D Grid model (Figure 6). However, when comparing the best sparse model against the unconstrained readout model, we found that the sparse readout suffers a larger performance hit ($\approx 40\%$ loss) in V1 models compared to retinal models. This could be evidence that functional cell

types are not as clearly separated in V1 as they are in the retina, and that a continuum of functional cell types in V1 could be an alternative explanation.

Figure 6: Application of sparse readouts to V1 neurons. A-C Legends identical to Figure 2

4 Summary and Discussion

We explored different novel ultra-sparse readouts that trigger neural predictive models to innately learn functional cell types with minimal performance loss. We found that the Gumbel-Softmax implementation performed best across datasets. While the method successfully identified consistent retinal ganglion cell types, the larger performance drop on V1 neurons suggests it may be best applicable to brain areas with discrete rather than continuous functional organization – by design. In that case our sparse readouts can offer improved biological interpretability by mapping readout channels to functional cell types in neural encoding models.

There are also several limitations to our current approach. First, the ultra-sparse readout is currently restricted to selecting exactly one channel per neuron, which may be overly restrictive for neural systems that genuinely integrate information across multiple feature dimensions. Secondly, as the true number of functional cell types is oftentimes unknown, if we set the number of core output channels for our models high, then the same functional cell type might be represented at multiple readout channels. Thus, ideally one would need to empirically detect a minimum number of readout channels that gives a desirable tradeoff between predictive performance and consistent readout channels. Third, the consistency of channel selection across model initializations, while good, is not perfect, although this does not reflect the quality of the clusters which seem to be good based on visual inspection and our consistency measure.

Future work could extend this framework in several promising directions. The ultra-sparse constraint could be relaxed to allow selection of a fixed small number of channels (e.g., 2-5), potentially revealing how multiple features combine hierarchically in visual processing. The identified feature channels could serve as a foundation for generating synthetic stimuli that maximally excite specific cell types, providing a powerful tool for experimental neuroscience (Walker et al., 2019b; Bashivan et al., 2019). Furthermore, the approach could be applied to study developmental changes in functional organization or to investigate how cell type specialization emerges across different species. Finally, incorporating temporal dynamics into channel selection could reveal how functional cell types adapt their feature preferences based on behavioral context or stimulus history.

REPRODUCIBILITY STATEMENT

Code implementation required to reproduce the experiments presented in this paper, including an Apptainer container for easy setup, will be made available in a public repository upon acceptance. All relevant model and training hyperparameters are provided in the appendix for full transparency. The experiments were conducted using Python 3.9, PyTorch Version: 1.13.1+cu117, CUDA Version: 11.7. All models were trained with A100 GPUs.

REFERENCES

- Ján Antolík, Sonja B Hofer, James A Bednar, and Thomas D Mrsic-Flogel. Model constrained by visual hierarchy improves prediction of neural responses to natural scenes. *PLoS computational* biology, 12(6):e1004927, 2016.
- Tom Baden, Philipp Berens, Katrin Franke, Miroslav Román Rosón, Matthias Bethge, and Thomas Euler. The functional diversity of retinal ganglion cells in the mouse. *Nature*, 529(7586):345–350, 2016.
- Mohammad Bashiri, Edgar Walker, Konstantin-Klemens Lurz, Akshay Jagadish, Taliah Muhammad, Zhiwei Ding, Zhuokun Ding, Andreas Tolias, and Fabian Sinz. A flow-based latent state generative model of neural population responses to natural images. *Advances in Neural Information Processing Systems*, 34:15801–15815, 2021.
- Pouya Bashivan, Kohitij Kar, and James J DiCarlo. Neural population control via deep image synthesis. *Science*, 364(6439):eaav9436, 2019.
- Eleanor Batty, Josh Merel, Nora Brackbill, Alexander Heitman, Alexander Sher, Alan Litke, EJ Chichilnisky, and Liam Paninski. Multilayer recurrent network models of primate retinal ganglion cell responses. In *International Conference on Learning Representations*, 2017.
- Max F Burg, Santiago A Cadena, George H Denfield, Edgar Y Walker, Andreas S Tolias, Matthias Bethge, and Alexander S Ecker. Learning divisive normalization in primary visual cortex. *PLOS Computational Biology*, 17(6):e1009028, 2021.
- Santiago A. Cadena, George H. Denfield, Edgar Y. Walker, Leon A. Gatys, Andreas S. Tolias, Matthias Bethge, and Alexander S. Ecker. Deep convolutional models improve predictions of macaque v1 responses to natural images. *PLOS Computational Biology*, 15(4):e1006897, April 2019. doi: 10.1371/journal.pcbi.1006897.
- Charles F Cadieu, Ha Hong, Daniel L K Yamins, Nicolas Pinto, Diego Ardila, Ethan A Solomon, Najib J Majaj, and James J DiCarlo. Deep neural networks rival the representation of primate IT cortex for core visual object recognition. *PLoS Comput. Biol.*, 10(12):e1003963, 2014.
- BR Cowley and JW Pillow. High-contrast "gaudy" images improve the training of deep neural network models of visual cortex. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), *Advances in Neural Information Processing Systems 33*, pp. 21591–21603. Curran Associates, Inc., 2020.
- Alexander S Ecker, Fabian H Sinz, Emmanouil Froudarakis, Paul G Fahey, Santiago A Cadena, Edgar Y Walker, Erick Cobos, Jacob Reimer, Andreas S Tolias, and Matthias Bethge. A rotation-equivariant convolutional neural network model of primary visual cortex. arXiv preprint arXiv:1809.10504, 2018.
- Larissa Höfling, Klaudia P Szatko, Christian Behrens, Yuyao Deng, Yongrong Qiu, David Alexander Klindt, Zachary Jessen, Gregory W Schwartz, Matthias Bethge, Philipp Berens, et al. A chromatic feature detector in the retina signals visual context changes. *Elife*, 13:e86860, 2024.
- Lawrence Hubert and Phipps Arabie. Comparing partitions. *Journal of classification*, 2(1):193–218, 1985.
- Max Jaderberg, Karen Simonyan, Andrew Zisserman, and Koray Kavukcuoglu. Spatial transformer networks. In *Advances in Neural Information Processing Systems*, 2015.
- Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization with gumbel-softmax. *arXiv* preprint arXiv:1611.01144, 2016.
- William F Kindel, Elijah D Christensen, and Joel Zylberberg. Using deep learning to probe the neural code for images in primary visual cortex. *Journal of vision*, 19(4):29–29, 2019.
- David Klindt, Alexander S Ecker, Thomas Euler, and Matthias Bethge. Neural system identification for large populations separating "what" and "where". *Advances in neural information processing systems*, 30, 2017.

- Bryan M Li, Isabel M Cornacchia, Nathalie L Rochefort, and Arno Onken. V1t: large-scale mouse v1 response prediction using a vision transformer. *arXiv preprint arXiv:2302.03023*, 2023.
- Isaac Lin, Tianye Wang, Shang Gao, Shiming Tang, and Tai Sing Lee. Incremental learning and self-attention mechanisms improve neural system identification. *arXiv e-prints*, pp. arXiv–2406, 2024.
- Konstantin-Klemens Lurz, Mohammad Bashiri, Konstantin Willeke, Akshay K Jagadish, Eric Wang, Edgar Y Walker, Santiago A Cadena, Taliah Muhammad, Erick Cobos, Andreas S Tolias, et al. Generalization in data-driven models of primary visual cortex. *BioRxiv*, pp. 2020–10, 2020.
- Chris J Maddison, Andriy Mnih, and Yee Whye Teh. The concrete distribution: A continuous relaxation of discrete random variables. *arXiv preprint arXiv:1611.00712*, 2016.
- Lane T McIntosh, Niru Maheswaranathan, Aran Nayebi, Surya Ganguli, and Stephen A Baccus. Deep learning models of the retinal response to natural scenes. *Adv. Neural Inf. Process. Syst.*, 29 (Nips):1369–1377, 2016.
- Cristopher M Niell and Michael P Stryker. Modulation of visual responses by behavioral state in mouse visual cortex. *Neuron*, 65(4):472–479, 2010.
- F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python. *Journal of Machine Learning Research*, 12:2825–2830, 2011.
- Paweł A Pierzchlewicz, Konstantin F Willeke, Arne F Nix, Pavithra Elumalai, Kelli Restivo, Tori Shinn, Cate Nealley, Gabrielle Rodriguez, Saumil Patel, Katrin Franke, Andreas S Tolias, and Fabian H Sinz. Energy guided diffusion for generating neurally exciting images. In *Advances in Neural Processing Systems (NeurIPS 2023)*, pp. 2023.05.18.541176, May 2023.
- Jacob Reimer, Emmanouil Froudarakis, Cathryn R Cadwell, Dimitri Yatsenko, George H Denfield, and Andreas S Tolias. Pupil fluctuations track fast switching of cortical states during quiet wakefulness. *neuron*, 84(2):355–362, 2014.
- Shreya Saha, Ishaan Chadha, et al. Modeling the human visual system: Comparative insights from response-optimized and task-optimized vision models, language models, and different readout mechanisms. *arXiv* preprint arXiv:2410.14031, 2024.
- Sylvia Schröder, Nicholas A Steinmetz, Michael Krumin, Marius Pachitariu, Matteo Rizzi, Leon Lagnado, Kenneth D Harris, and Matteo Carandini. Arousal modulates retinal output. *Neuron*, 107(3):487–495, 2020.
- Fabian Sinz, Alexander S Ecker, Paul Fahey, Edgar Walker, Erick Cobos, Emmanouil Froudarakis, Dimitri Yatsenko, Zachary Pitkow, Jacob Reimer, and Andreas Tolias. Stimulus domain transfer in recurrent models for large scale cortical population prediction on video. *Advances in neural information processing systems*, 31, 2018.
- Carsen Stringer, Marius Pachitariu, Nicholas Steinmetz, Charu Bai Reddy, Matteo Carandini, and Kenneth D Harris. Spontaneous behaviors drive multidimensional, brainwide activity. *Science*, 364(6437):eaav7893, 2019.
- Rudi Tong, Ronan da Silva, Dongyan Lin, Arna Ghosh, James Wilsenach, Erica Cianfarano, Pouya Bashivan, Blake Richards, and Stuart Trenholm. The feature landscape of visual cortex. *bioRxiv*, pp. 2023–11, 2023.
- Polina Turishcheva, Paul G Fahey, Laura Hansel, Rachel Froebe, Kayla Ponder, Michaela Vystrčilová, Konstantin F Willeke, Mohammad Bashiri, Eric Wang, Zhiwei Ding, et al. The dynamic sensorium competition for predicting large-scale mouse visual cortex activity from videos. *ArXiv*, 2023.
- Polina Turishcheva, Max F Burg, Fabian H Sinz, and Alexander S Ecker. Reproducibility of predictive networks for mouse visual cortex. *Advances in Neural Information Processing Systems*, 37: 7930–7956, 2024.

- Ivan Ustyuzhaninov, Santiago A Cadena, Emmanouil Froudarakis, Paul G Fahey, Edgar Y Walker, Erick Cobos, Jacob Reimer, Fabian H Sinz, Andreas S Tolias, Matthias Bethge, et al. Rotation-invariant clustering of neuronal responses in primary visual cortex. In *International Conference on Learning Representations*, 2019.
- Ivan Ustyuzhaninov, Max F Burg, Santiago A Cadena, Jiakun Fu, Taliah Muhammad, Kayla Ponder, Emmanouil Froudarakis, Zhiwei Ding, Matthias Bethge, Andreas S Tolias, et al. Digital twin reveals combinatorial code of non-linear computations in the mouse primary visual cortex. *bioRxiv*, pp. 2022–02, 2022.
- Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler Reddy, David Cournapeau, Evgeni Burovski, Pearu Peterson, Warren Weckesser, Jonathan Bright, Stéfan J. van der Walt, Matthew Brett, Joshua Wilson, K. Jarrod Millman, Nikolay Mayorov, Andrew R. J. Nelson, Eric Jones, Robert Kern, Eric Larson, C J Carey, İlhan Polat, Yu Feng, Eric W. Moore, Jake VanderPlas, Denis Laxalde, Josef Perktold, Robert Cimrman, Ian Henriksen, E. A. Quintero, Charles R. Harris, Anne M. Archibald, Antônio H. Ribeiro, Fabian Pedregosa, Paul van Mulbregt, and SciPy 1.0 Contributors. SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods, 17:261–272, 2020. doi: 10.1038/s41592-019-0686-2.
- Edgar Y Walker, Fabian H Sinz, Erick Cobos, Taliah Muhammad, Emmanouil Froudarakis, Paul G Fahey, Alexander S Ecker, Jacob Reimer, Xaq Pitkow, and Andreas S Tolias. Inception loops discover what excites neurons most using deep predictive models. *Nat. Neurosci.*, 22(12):2060–2065, December 2019a.
- Edgar Y Walker, Fabian H Sinz, Erick Cobos, Taliah Muhammad, Emmanouil Froudarakis, Paul G Fahey, Alexander S Ecker, Jacob Reimer, Xaq Pitkow, and Andreas S Tolias. Inception loops discover what excites neurons most using deep predictive models. *Nature neuroscience*, 22(12): 2060–2065, 2019b.
- Eric Y Wang, Paul G Fahey, Zhuokun Ding, Stelios Papadopoulos, Kayla Ponder, Marissa A Weis, Andersen Chang, Taliah Muhammad, Saumil Patel, Zhiwei Ding, et al. Foundation model of neural activity predicts response to new stimulus types. *Nature*, 640(8058):470–477, 2025.
- Simon Weiler, Drago Guggiana Nilo, Tobias Bonhoeffer, Mark Hübener, Tobias Rose, and Volker Scheuss. Functional and structural features of 12/3 pyramidal cells continuously covary with pial depth in mouse visual cortex. *Cerebral cortex*, 33(7):3715–3733, 2023.
- Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforcement learning. *Machine learning*, 8(3):229–256, 1992.
- Yimeng Zhang, T-S Tai Sing Lee, Ming Li, Fang Liu, Shiming Tang, Tai Sing, Lee Ming, Li Fang, Liu Shiming, T-S Tai Sing Lee, Ming Li, Fang Liu, and Shiming Tang. Convolutional neural network models of V1 responses to complex patterns. *J. Comput. Neurosci.*, pp. 1–22, 2018.

APPENDIX

HYPERPARAMETERS FOR MODELS AND TRAINING

We conducted a hyperparameter search for each model type separately to give a fair chance to find the best performing models. The selection of hyperparameters to tune were identical across models, except for the training hyperparameters that were specific to the model. This includes the max epochs for cosine scheduler of temperature τ in the Gumbel Softmax model, and baseline momentum and learning rate of channel policies in the REINFORCE model. In the readout of the V1 models, we additionally tuned the hyperparameters for Gaussian sampling of spatial positions: initial μ and Σ of each model. As we are modeling a different visual area with potentially different receptive fields of neurons, tuning these hyperparameters gives a fair chance for V1 models to improve predictive performance.

Table 1: Hyperparameters for the factorized 3D convolutional cores of retinal ganglion cell models

Hyperparameter	Unconstrained	Adaptive Reg	Gumbel-Softmax	3D Grid	REINFORCE
Number of Layers	3	3	4	4	4
Hidden Channels (per	64, 64, 64	128, 64, 64	32, 32, 64, 64	16, 32, 64, 64	32, 32, 64, 64
layer)					
Spatial Input Kernel	11×11	3×3	7×7	4×4	17×17
Size					
Temporal Input Kernel	11	11	3	20	7
Size					
Spatial Hidden Kernel	5×5	5×5	3×3	6×6	4×4
Size					
Temporal Hidden Kernel	5	14	7	7	10
Size					
Activation Function	ELU	ELU	Softplus	ELU	Softplus
Spatial Regularization	10.0000	21.0403	0.2456	18.7300	21.6397
$(\gamma_{\text{spatial}})$					
Temporal Regularization	0.0100	0.4043	0.0149	0.1652	0.4733
$(\gamma_{\text{temporal}})$					
Batch Normalization	0.7000	0.4575	0.7442	0.7906	0.6494
Momentum					

Table 2: Training hyperparameters for the Retinal Ganglion Cell models.

ruole 2. Training hyperparameters for the Retmar Ganghon een models.						
Hyperparameter	Unconstrained	Adaptive Reg	Gumbel-Softmax	3D Grid	REINFORCE	
LR decay steps	8	6	8	8	6	
LR decay factor	0.3	0.5264	0.3	0.3202	0.5908	
LR initial	0.0050	0.0043	0.0068	0.0174	0.0156	
Optimizer	AdamW	AdamW	Adam	AdamW	Adam	
Max epochs for τ scheduler	-	-	75	-	-	
Baseline momentum	-	-	-	-	0.8621	
LR channel policies	-	-	-	-	0.3232	

CONSISTENCY MEASURES

We performed hierarchical clustering of mean readout channel responses from Figure 4. We first computed correlation distance and a linkage matrix between the mean readout channel responses. Then we assigned cluster labels for each readout channel (*scipy* pdist, linkage, fcluster with specified number of clusters) (Virtanen et al., 2020). This allowed us to obtain hierarchical clusters from readout channels with number of clusters in the range from 1 to 64. Then we mapped the neurons from the readout channels to the hierarchical clusters, and computed the consistency of these clusters using Adjusted Rand Index and Jackknife correlation (Figure S1).

Table 3: Hyperparameters for the core and readout of V1 models

Hyperparameter	Unconstrained	Gumbel-Softmax	3D Grid
Number of Layers	3	3	5
Hidden Channels (per layer)	128, 128, 128	128, 128, 128	32, 64, 128, 64, 32
Spatial Input Kernel Size	14×14	12×12	10×10
Temporal Input Kernel Size	7	14	12
Spatial Hidden Kernel Size	8×8	9×9	5×5
Temporal Hidden Kernel	9	5	10
Size			
Activation Function	ReLU	ELU	ELU
Spatial Regularization	19.2068	8.9025	25.7434
$(\gamma_{\rm spatial})$			
Temporal Regularization	0.1919	0.2305	0.3625
$(\gamma_{\text{temporal}})$			
Batch Normalization	0.3153	0.2885	0.4621
Momentum			
Readout: Initial μ	0.9087	0.0810	0.2211
Readout: Initial Σ	0.6664	0.6520	0.6928

Table 4: Trainer hyperparameters for the V1 models.

Hyperparameter	Unconstrained	Gumbel-Softmax	3D Grid
LR decay steps	3	8	7
LR decay factor	0.5716	0.3416	0.5925
LR initial	0.0021	0.0137	0.0074
Optimizer	AdamW	Adam	AdamW
Max epochs for τ scheduler	-	64	-

Figure S1: Consistency of hierarchical clusters from readout channels. Adjusted Rand Index for consistency of labels. Jackknife correlation for consistency of responses within clusters of readout channels. Shaded regions indicate standard deviation across 5 seeds.