

# 000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 PICK YOUR CHANNEL: ULTRA-SPARSE READOUTS FOR RECOVERING FUNCTIONAL CELL TYPES

Anonymous authors

Paper under double-blind review

## ABSTRACT

Clustering neurons into distinct functional cell types is a prominent approach to understand how the brain integrates information about the external world. In recent years, digital-twins of the visual system based on deep neural networks (DNNs) have become the de facto standard for predicting neuronal responses to arbitrary stimuli. Such DNNs are designed with a common core that learns a representation of the visual input that is shared across neurons, and a neuron-specific readout that linearly combines the core outputs to predict single neuron responses. Here, we propose a novel way to learn an ultra-sparse readout that, instead of linearly combining the shared core features, learns to pick a single channel for each neuron. For retinal ganglion cells, we find that, unlike the previous unconstrained models, this ultra-sparse readout triggers the neural predictive model to innately learn functional cell types with minimal loss in predictive performance. Furthermore, we show that state-of-the-art adaptive regularization models are unable to find such single channels, and that applying strong regularization to encourage sparse channels not only deteriorates performance but also results in response shrinkage. When applied to primary visual cortex neurons, our model exhibits a larger drop in performance compared to the unconstrained model, perhaps indicating a more continuous organization of neuronal function.

## 1 INTRODUCTION

Characterizing neurons into distinct functional cell types is key in discovering how the brain integrates and organizes information about the external world. In the retina, the first stage of the visual system, functional cell types are well defined for its output neurons, the retinal ganglion cells, each transmitting distinct information about the visual scene to the brain (Baden et al., 2016). Existence of such distinct functional cell types for the primary visual cortex (V1), however, is unclear with many studies supporting the hypothesis of a rather continuous functional organization. (Ustyuzhaninov et al., 2022; Weiler et al., 2023; Tong et al., 2023; Nellen et al., 2025).

Recently, data-driven deep neural networks (DNNs) have become the standard approach for modeling stimulus-driven neuronal responses, particularly in vision (Cadieu et al., 2014; Batty et al., 2017; Klindt et al., 2017; McIntosh et al., 2016; Cadena et al., 2019; Kindel et al., 2019; Walker et al., 2019a; Zhang et al., 2018; Ecker et al., 2018; Sinz et al., 2018; Burg et al., 2021; Cowley & Pillow, 2020). Such neural predictive models exhibit a common modular architecture of a *core* shared among neurons and a neuron-specific *readout* (Antolík et al., 2016; Klindt et al., 2017). The core learns shared representations of visual stimuli, while the readout linearly maps the core output features to neural responses. The core-readout architecture was later extended to temporal dynamics (Sinz et al., 2018; Höfling et al., 2024; Turishcheva et al., 2023) and a more efficient readout (Lurz et al., 2020) – called Gaussian readout.

Recently, Wang et al. (2025) trained a 13-mice CNN-based model and showed that readout weight vectors of these “digital twins” can be used to capture biological phenomena beyond their training data, such as cell morphology. Readout vectors have also been applied to cluster mouse V1 cells into functional groups (Ecker et al., 2018; Ustyuzhaninov et al., 2019; 2022; Nellen et al., 2025). To cluster neurons into different functional cell types based on readout vectors, each type would ideally map onto a single channel in the network to foster interpretability of the learned features. Such sparsity is typically enforced through L1 regularization on the readout weights. However, previous



Figure 1: **Overview over our approach:** We evaluate different approaches for ultra-sparse readouts for core-readout neural encoding models. We use the same 3D CNN core architecture and a Gaussian readout to pick the spatial location of a neuron (orange circles). Once, a channel-dimensional vector is extracted at the neurons location in the visual field, we explore ultra-sparse readouts (mid and bottom right), and compare them against unconstrained readouts (top right).

work observed that too strong regularization causes shrinkage in the predicted responses towards the population mean (Turishcheva et al., 2024a), which is undesirable.

To address this problem, we propose a novel approach of an ultra-sparse readout that instead of linearly combining the core output features learns to pick a single channel per neuron to read out from. To this end, we explored three strategies to pick a single channel of the CNN per neuron:

- A **Gumbel-Softmax** readout where single channels are sampled from neuron-specific Gumbel-Softmax distributions (Jang et al., 2016; Maddison et al., 2016).
- A **3D Grid** readout, which is an extension of the Gaussian readout (Lurz et al., 2020) to the channel dimension. This readout is not strictly limited to a single channel, but may also interpolate at most two neighboring channels.
- A **REINFORCE** readout based on a policy gradient method where single channels are picked using neuron-specific channel selection policies (Williams, 1992).

We tested our ultra-sparse readout on recordings from mouse retinal ganglion cells and found that it innately identifies established functional cell types, while incurring only minimal loss in predictive performance. We also show that L1 regularization is unable to identify single channel readout vectors, while suffering both from performance loss and response shrinkage. We also tested our sparse models on mouse V1 neurons, where they fell short of the performance of unconstrained Gaussian readout models. This is expected and is consistent with the idea of a more continuous functional organization in V1 shown in prior work (Ustyuzhaninov et al., 2022; Nellen et al., 2025).

In summary, our ultra-sparse readouts introduce a plug-and-play modification of a Gaussian readout that encourages the model to innately group neurons into functional types and contributes to more interpretable models of the early visual system.

## 2 MODELS AND METHODS

### 2.1 NEURAL ENCODING MODELS

Our neural encoding models are based on the common CNN core-readout architecture design. Although recent developments extended neural encoding models from CNN to transformer or CNN-transformer hybrid architectures (Li et al., 2023; Lin et al., 2024; Saha et al., 2024; Pierzchlewicz et al., 2023), we focus on CNN architectures because they naturally handle spatiotemporal data from

108 natural movies, are well established for modeling early visual areas (retina and V1), and currently  
 109 offer comparable performance to transformers, which remain less developed for video.  
 110

111 Our **core** is based on a previous architecture (Höfling et al., 2024; Turishcheva et al., 2023) and  
 112 learns shared representations from visual and behavioral inputs. Behavioral parameters (locomotion  
 113 speed and pupil dilation size) were included as additional uniform input channels to the core to  
 114 capture modulation of neural population responses correlating with behavior (Reimer et al., 2014;  
 115 Sinz et al., 2018; Niell & Stryker, 2010; Schröder et al., 2020; Stringer et al., 2019).  
 116

117 The core is a space-time separable 3D factorized Convolutional Neural Network. Within each layer,  
 118 spatial and temporal convolutions are applied separately with kernel sizes treated as hyperparam-  
 119 eters. The input convolutional kernels are regularized using Laplace regularization controlled by  
 120 separate spatial and temporal factors. Each convolutional layer is followed by a batch normaliza-  
 121 tion layer, tuned with a momentum hyperparameter, and a nonlinearity from a selection of ELU,  
 122 Softplus, and ReLU. The exact choices for these hyperparameters for different instantiations of the  
 123 models are specified in Appendix (Table 1 and 3). Apart from different choices of hyperparameters,  
 124 the principal core architecture stays the same across different models. The core outputs a tensor  
 125  $\mathbf{x} \in \mathbb{R}^{w \times h \times c}$  per time point, which represents the learned feature space.  
 126

127 The **readout** is neuron-specific, and maps the output of the core onto neuronal responses. Our  
 128 base for the unconstrained and sparse models is the Gaussian readout introduced by Lurz et al.  
 129 (2020). Following their method, the location of each neuron’s receptive field is sampled from a  
 130 2D Gaussian distribution, parameterized with mean  $\mu \in \mathbb{R}^2$  and covariance  $\Sigma \in \mathbb{R}^{2 \times 2}$ . Inspired  
 131 by the retinotopic organization of visual brain areas, the means of the Gaussian distributions are  
 132 initialized using a remapping of the anatomical coordinates of neurons recorded during experiments  
 133 as introduced by Bashiri et al. (2021). During training, receptive field locations are sampled from  
 134 neuron-specific distributions, while during evaluation they are fixed to the means. The receptive  
 135 fields  $(x, y)$  can also be shifted in accordance with the gaze/pupil position changes, using a separate  
 136 shifter network (Sinz et al., 2018). The receptive field locations  $(x, y)$  are then used to extract the  
 137 core output features at a single spatial position via bilinear interpolation (Jaderberg et al., 2015; Lurz  
 138 et al., 2020). This yields a channel dimensional vector  $\mathbf{v} \in \mathbb{R}^c$  per time point.  
 139

140 All readout architectures that we explain below, use the same model until this point. They do,  
 141 however, differ in the way the single dimensions from the extracted feature vector  $\mathbf{v}$  are combined  
 142 into a prediction of the neuronal response (Figure 1).  
 143

144 **Unconstrained model.** The classical unconstrained models linearly combine the extracted features  
 145 using neuron-specific learnable readout weights  $\mathbf{w}^\top \mathbf{v}$ . The readout weights  $\mathbf{w}$  are  $L_1$  regularized  
 146 to encourage sparsity. Unless we use an adaptive readout (Turishcheva et al., 2024a), we use  $\gamma = 1$   
 147 applied uniformly for all neurons.  
 148

149 **Adaptive Regularization model.** Turishcheva et al. (2024a) introduce an adaptive regularization  
 150 for the readout vector  $\mathbf{w}$ , for which each neuron’s regularization strength is a learnable parameter.  
 151 Global regularization strength is controlled by  $\gamma$ . The individual coefficients are controlled by a log-  
 152 normal prior, for which a hyperparameter  $\sigma$  controls how far they deviate from the overall mean.  
 153

154 **Ultra-sparse readout: Gumbel-Softmax.** Our Gumbel-Softmax model implements an ultra-sparse  
 155 readout that picks a single channel from the extracted features, instead of linearly combining the  
 156 channels. Single channels are sampled from neuron-specific Gumbel-Softmax distributions, intro-  
 157 duced in Jang et al. (2016); Maddison et al. (2016). This continuous distribution allows an approx-  
 158 imation of discrete categorical samples, and thus a reparametrization trick. We set the number of  
 159 categories equal to core output channels  $c$ . During the forward pass, the categorical samples are  
 160  $c$ -dimensional one-hot vectors, effectively picking a single channel.  
 161

162 We learn one Gumbel-Softmax distribution for each neuron and tune it with a common temperature  
 163 parameter  $\tau$ . When  $\tau$  is high, the distributions become smoother, approximating uniform values.  
 164 When  $\tau$  is low, the distributions become sharper, approximating categorical distributions. As we  
 165 would like to encourage exploration of different channels at the beginning of training and to grad-  
 166 ually converge to a single channel choice towards the end, we implement a cosine scheduler for  $\tau$ ,  
 167 that goes from  $\tau = 10$  to  $\tau = 0.5$  over  $T$  epochs.  
 168

169 **Ultra-sparse readout: 3D Grid.** Our 3D Grid model is an extension of the Gaussian readout idea  
 170 to channels. This sparse readout does not necessarily pick a single channel from the extracted core  
 171

162 output features, but linearly interpolates between at most two neighboring channels in the channel  
 163 dimension. This is similar to how 2D Gaussian readout interpolated in  $(x, y)$  dimensions to extract  
 164 the core output features at a spatial position (Lurz et al., 2020). We introduced a learnable parameter  
 165  $z$  that models the “location” in the channel dimension. As the interpolation is handled using grid  
 166 coordinates of range  $[-1, 1]$ , we initialized  $z$  uniformly in a small range  $[-0.1, 0.1]$ , and additionally  
 167 constrained with a  $\tanh$  nonlinearity.

168 **Ultra-sparse readout: REINFORCE.** Our REINFORCE readout implements an ultra-sparse read-  
 169 out that picks a single channel similar to the Gumbel-Softmax model. However, in this version of  
 170 sparse readout we use a policy gradient method: the REINFORCE algorithm (Williams, 1992). For  
 171 each neuron  $n$  we learn a discrete policy  $\pi_n$  over channels via softmax of a learned parameter vector  
 172 per neuron. The logits of each policy are initialized randomly from a  $\mathcal{N}(0, 0.01)$ . During training  
 173 we sample channels from the policy probabilities using a multinomial distribution. We use the log  
 174 probabilities of selected channels,  $c_n$  for computing the REINFORCE loss term with a “detach” trick  
 175 to get the correct gradient with auto-differentiation. In addition to the per-neuron Poisson loss,  $\ell_n$ ,  
 176 we use a neuron-specific moving-average baseline,  $b_n$ , for variance reduction. This yields the final  
 177 loss term  $\mathcal{L}_{\text{reinforce}} = \sum_n [\ell_n - b_n]_{sg} \log \pi_n(c_n)$  where  $[\ell_n - b_n]_{sg}$  is the advantage term inside a  
 178 stop gradient operation to treat it as a constant during optimization. Similar to the Gumbel-Softmax  
 179 model, we encourage exploration in the early stages of training (up to 40 epochs), with an addi-  
 180 tional entropy regularizer that is scaled dynamically to match the scale of the REINFORCE loss. If  
 181  $H(\pi_n) = -\sum_c \pi_n(c) \log \pi_n(c)$  is the entropy of neuron  $n$ ’s policy, and  $\hat{R}$  is an exponential moving  
 182 average of the absolute REINFORCE loss magnitude, then we compute  $\beta_{\text{entropy}}^{\text{dyn}} = \frac{\hat{R}}{|\sum_n H(\pi_n)| + \varepsilon}$ ,  
 183 at each iteration, where  $\varepsilon$  is a small constant for numerical stability.  $\beta_{\text{entropy}}^{\text{dyn}}$  is treated as a con-  
 184 stant, i.e. does not propagate gradients. The entropy term in the total objective is then given by  
 185  $\mathcal{L}_{\text{entropy}} = \beta_{\text{entropy}}^{\text{dyn}} (-\sum_n H(\pi_n))$ . We use a separate optimizer with a fixed learning rate to learn  
 186 the policies for channel selection.  
 187

188 In all ultra-sparse models, a neuron-specific learnable scale and bias term are applied at the end  
 189 of the readout. The results are put through an ELU nonlinearity and offset by 1 to ensure positive  
 190 output neural responses.

## 191 2.2 MODEL TRAINING

192 Our models are trained to minimize a Poisson loss, with early stopping and learning rate schedulers  
 193 similar to previous neural encoding models (Lurz et al., 2020; Höffling et al., 2024; Turishcheva  
 194 et al., 2023). Training hyperparameters for the models with retinal data are given in Appendix Table  
 195 2, and in Table 4 for primary visual cortex models.

## 200 2.3 DATA

201 **Retinal ganglion cell axons.** We used a large-scale two-photon imaging dataset from *in vivo* mouse  
 202 retinal ganglion cell axon endings measured in the superior colliculus of awake, head-fixed mice.  
 203 This dataset is similar in structure to the public primary visual cortex dataset below (Turishcheva  
 204 et al., 2023). Notably, it has a set of unique natural movies used for training our models, and 6  
 205 natural movies that were shown repeatedly, used to test the predictive performance of our models.  
 206 Each natural movie is 10s in length. We also used cell responses to simple synthetic light stimuli  
 207 (chirp and moving bars) commonly used to identify functional cell types (Baden et al., 2016). The  
 208 chirp stimulus contains a bright full-field white step stimulus with increasing frequency and contrast  
 209 components that were modulated by two sinusoids. The moving bar stimulus is a bright bar moving  
 210 in eight directions. Both synthetic stimuli are 32s long, and have repeating trials. This dataset  
 211 contains quality-controlled 3,175 axonal boutons, which we will refer to as neurons.

212 **Primary visual cortex.** For the primary visual cortex experiments, we used a public dataset 29156-  
 213 11-10 from the dynamic Sensorium 2023 competition. Detailed description of data is provided by  
 214 the white paper of Turishcheva et al. (2023). Importantly, we measure performance on the *live main*  
 215 *test set*.

216 2.4 METRICS OF MODEL PERFORMANCE  
217

218 Our neural encoding models predict neuronal responses given videos and behavior as input. We  
219 use similar measures of predictive performance, as Turishcheva et al. (2023). To assess the model’s  
220 performance in capturing stimulus-specific components of neural responses, we use **Correlation to**  
221 **Average**. Correlation is computed per neuron  $n$  across stimuli and time, between responses and  
222 predictions averaged across repeated presentations of the same stimulus,  $\bar{r}_n$  and  $\bar{p}_n$ , respectively,  
223  $\rho_{ta} = \text{corr}(\bar{r}_n, \bar{p}_n)$ . To assess the model’s performance in capturing trial-to-trial variability in neural  
224 responses, we use **Single Trial Correlation**. Here, correlation is computed between individual trial  
225 responses  $r_{nk}$  and predictions  $p_{nk}$  across time and stimuli:  $\rho_{st} = \text{corr}(r_{nk}, p_{nk})$ .  
226

227 2.5 ANALYSIS  
228

229 **Consistency of channels** To measure the consistency of responses within a single readout channel,  
230 we compute the correlation of single neuron’s activity to the mean activity of all neurons that pick  
231 this channel. For this we concatenate responses to chirp and moving bar. To not confound the  
232 correlation by including the single trial in the mean computation, we use a leave-one-out jackknife  
233 estimator:  $\text{Consistency}(n) = \text{corr}\left(r_n, \left(|S_n| - 1\right)^{-1} \sum_{m \in S_n, m \neq n} r_m\right)$  where  $r_n$  is the response of  
234 neuron  $n$  to a particular stimulus,  $S_n$  is the set of neurons that pick the same channel as neuron  $n$ ,  
235 and  $r_m$  are the responses of these neurons to the same stimulus. This measures the consistency of  
236 the neuronal responses within a channel.

237 In addition, we used Adjusted Rand Index (ARI) to measure how consistently our ultra-sparse read-  
238 out model identifies the same channels for two neurons across model initializations (Pedregosa et al.,  
239 2011; Hubert & Arabie, 1985). ARI scores are adjusted for chance and measure similarity between  
240 cluster labels. Cluster labels in our case are selected channels in the readout.  
241

242 **Sparseness of readout weights** We measured the sparseness of unconstrained readouts with en-  
243 tropy of readout weights. For this we first normalized the absolute readout weights  $\mathbf{w}$  to get a  
244 probability distribution per neuron  $n$ :  $\mathbf{p}_n = |\mathbf{w}_n| / \|\mathbf{w}_n\|_1$ . We then calculated the entropy per  
245 readout weight  $H[\mathbf{p}_n] = -\sum_i p_{ni} \log p_{ni}$ . If the readout focuses on a single channel, the en-  
246 tropy is  $H[\mathbf{p}_n] = 0$ . If the weights spread uniformly across  $c$  channels, it is maximal with value  
247  $H[\mathbf{p}_n] = \log c$ .  
248

249 **Response shrinkage** To assess the effect of high regularization on response shrinkage in the Adaptive  
250 Regularization model, we obtained the predictions of models trained with different regularization  
251 strengths  $\gamma$  to the chirp stimulus (see section 2.3). We first averaged the predictions across  
252 repeated presentations of the same stimulus, and then computed the variance of these mean predic-  
253 tions around the mean across time per neuron, and finally report the mean across neurons. If the  
254 predicted response shrinks with higher regularization, this variance decreases.  
255

256 **Identifying known functional cell types from chirp and moving bar responses** To match read-  
257 out channel responses with identified cell types, we used maximum Spearman correlation. We cor-  
258 related the cell type responses to chirp stimulus and moving bars from Baden et al. (2016) with the  
259 mean channel responses from our sparse readout model. The best matching cluster was identified  
260 by calculating the mean correlation across both chirp and moving bar responses.  
261

3 EXPERIMENTS AND RESULTS  
262

263 **Gumbel-Softmax readout almost matches performance of unconstrained model on retinal data**  
264 We compared the predictive performance of unconstrained neural predictive models with sparse  
265 readout models trained on retinal ganglion cell dataset. The classical model with an unconstrained  
266 readout from Lurz et al. (2020), and its more recent improvement with adaptive regularization from  
267 Turishcheva et al. (2024a) reached a similar predictive performance and performed the best among  
268 all models due to representational flexibility, as expected. When we constrain the readout to be ultra-  
269 sparse, our model with Gumbel-Softmax sampling outperformed other implementations based on 3D  
grid interpolation and REINFORCE algorithm (Figure 2A). The Gumbel-Softmax model closely



Figure 2: Gumbel-Softmax Readout almost matches the performance of unconstrained models on retinal data. **A** Correlations of unconstrained and sparse readout models on validation and test sets averaged over neurons. Validation correlation is also a single trial correlation, but over the input stimuli in the validation set, while the latter is for repeated trials of input stimuli present in the test set. Correlation to average was computed on the test set. Error bars indicate standard deviations of correlations across 5 seeds. Shaded region indicates unconstrained readouts. **B-C** Scatter plots of single trial correlations and correlations to average per neuron of the best across seeds unconstrained vs the Gumbel-Softmax model.

matched ( $\approx 90\%$ ) the performance of the classical unconstrained model in predicting single trial responses and trial-averaged responses, thereby capturing both trial-to-trial variability and visual stimulus specific components of neural responses (Figure 2B,C), despite being constrained to a single channel only.

**$L_1$  regularized models fail to identify single channel** Next we tested whether the unconstrained models could in principle learn to pick single channels through regularization of readout weights (Figure 1). To that end, we used the model with adaptive regularization and the core module of our Gumbel-Softmax ultra-sparse model, since we know that a single channel readout can achieve good performance with that core. We then first selected the  $\sigma$  hyperparameter of the adaptive regularization readout, such that the per-neuron regularization coefficients are distributed broadly with mean closer to 1 (Figure 3A). The spread of the distribution ensure that regularization is indeed adaptive, following the results and guidelines from Turishcheva et al. (2024a). Based on this, we fixed  $\sigma = 0.16$  and trained neural predictive models with varying global regularization strength  $\gamma$ . We then extracted the readout weights of the trained models and measured their sparseness with entropy. Adaptive regularization models were not able to find sparse readout weights even with high regularization as the readout weight entropy never reached zero (Figure 3C).

Somewhat unexpectedly, as we increased the strength of regularization, the entropy of readout weights decreased at first, and then started increasing. This counterintuitive effect of regularization on sparseness can be explained by observing that the norm of readout weights decrease with increasing  $\gamma$ , as expected (Figure 3E). In the limit, the weights are very close to zero and become noisy. When normalizing them for the entropy computation, this is reflected in the increased entropy.

Moreover, at high regularization strengths the unconstrained model substantially suffered in performance (Figure 3B), and the model output predictions shrunk towards the mean of predictions (Figure 3D). Overall, this demonstrates that unconstrained models are not able to find sparse chan-



Figure 3: Adaptive Readout cannot find sparse readout channels at all, and decreases performance with high regularization and leads to response shrinkage. **A** Hyperparameter selection for the adaptive regularization readout. The plot shows the distributions of per-neuron regularization coefficients at different levels of  $\sigma$ . The global regularization strengths  $\gamma$  were chosen randomly during the hyperparameter search, and are in the range from  $[10 - 20]$ . **B-E** Analysis on neural predictive models trained at different levels of regularization strength  $\gamma$ . All models were trained with 5 seeds and the shaded regions indicate  $\pm 1$  std. **B** Validation correlation of models. **C** Entropy of readout weights. **D** Variance of mean predictions (averaged across trials) around the mean over time. **E**  $L_2$  norm of readout weights.

nels with strong regularization even when given the best options to achieve that (the ultra-sparse core). Higher regularization mainly results in loss of performance and response shrinkage.

**Ultra-sparse readout consistently identifies cell types** After we identified the best sparse readout based on Gumbel-Softmax sampling, we tested whether the channels that neurons learned to pick are consistent in terms of their responses (Figure 1). For this we took the mean responses of all neurons of a channel to chirp and moving bar stimuli, commonly used to identify functional cell types for retinal ganglion cells (Baden et al., 2016), and measured their consistency with a jackknifed correlation of the single neuron responses against the group mean (see Analysis). We found that the responses of neurons within the sparse readout channels are highly consistent (Figure 4A). Furthermore, the channel labels for neurons learned by our sparse readout across different model initializations were also highly consistent, as measured by Adjusted Rand Index scores (Figure 4B). While the ARI scores of our sparse readouts might be lower than those of dedicated clustering algorithms, we report high functional consistency within readout channels, important for recovering functional cell types. Furthermore, the ARI scores reported for our sparse readouts might be underestimated, due to the fact different readout channels might represent the same functional cell type. We have done an approximate measure of how ARI would increase, if our readout had smaller number of channels (Appendix Figure S1). Finally, a high ARI score only implies that repeated runs of the clustering yield similar results. It does not measure the goodness or even separation of the clusters.

Results of our sparse readout shows that the model learned to group neurons into channels based on their functional responses (Figure 4A). Next, we tested whether the mean responses of these channels correspond to known functional cell types in retinal ganglion cells, as previously identified in Baden et al. (2016) using parametric chirp and moving bar stimuli. Using our sparse model, we were able to recover a diverse set of functional response types, including direction selective, non-direction selective, on transient, on sustained, off transient, off sustained, on-off, and contrast-



Figure 4: Ultra-sparse model picks functionally consistent channels across model initializations. **A** Consistency of responses within readout channels measured with jackknifed correlation. The results are shown for the best performing Gumbel-Softmax model seed. The overall mean (red dashed line) is the consistency correlation averaged across channels and model seeds. The random baseline (grey dashed line) is a consistency correlation (averaged across seeds) of a random group with number of elements equal to average readout channel size. **B** Consistency of picked readout channel labels across different seeds measured with Adjusted Rand Index.



Figure 5: Responses of readout channels correspond to known functional cell types in retinal ganglion cells such as direction selective (DS) cells, non-direction selective cells, ON transient (trans), ON sustained (sust), OFF trans., OFF sust., ON-OFF responses, and neurons that are suppressed by contrast (SbC). These functional cell types are identified using chirp and moving bar stimuli (schematics on the top right). Solid lines represent means of all neurons grouped into the readout channel. And shaded regions are  $\pm$  standard deviations.

suppressed responses. These categories map well onto distinct retinal ganglion cell types identified in earlier work (Figure 5).

**Application to Primary Visual Cortex** So far we have validated that our sparse readout models can learn to identify functional cell types with minimal loss in performance over unconstrained models using data from retinal ganglion cells. While we know that there are clearly defined cell types in the retina, the existence of functional cell types in the primary visual cortex (V1) is not as clear. Prior work suggests that there are no distinct cell types in V1 and neurons rather form a continuum of functions (Ustyuzhaninov et al., 2022; Weiler et al., 2023; Tong et al., 2023; Nellen et al., 2025). Hence, we wanted to test whether our sparse readout model can rival the performance of state-of-the-art unconstrained models for V1, which would indicate a cluster structure. We trained our sparse readout models on data from V1, and found that the ultra-sparse model based on Gumbel-Softmax sampling outperforms the interpolation based 3D Grid model (Figure 6). However, when

432 comparing the best sparse model against the unconstrained readout model, we found that the sparse  
 433 readout suffers a larger performance hit ( $\approx 40\%$  loss) in V1 models compared to retinal models.  
 434 This could be evidence that functional cell types are not as clearly separated in V1 as they are in the  
 435 retina, and that a continuum of functional cell types in V1 could be an alternative explanation.  
 436  
 437



457 Figure 6: Application of sparse readouts to V1 neurons. **A-C** Legends identical to Figure 2  
 458  
 459  
 460

## 4 SUMMARY AND DISCUSSION

461 We explored different novel ultra-sparse readouts that trigger neural predictive models to innately  
 462 learn functional cell types with minimal performance loss. We found that the Gumbel-Softmax  
 463 implementation performed best across datasets. While the method successfully identified consistent  
 464 retinal ganglion cell types, the larger performance drop on V1 neurons suggests it may be best  
 465 applicable to brain areas with discrete rather than continuous functional organization – by design.  
 466 In that case our sparse readouts can offer improved biological interpretability by mapping readout  
 467 channels to functional cell types in neural encoding models.  
 468  
 469

470 There are also several limitations to our current approach. First, the ultra-sparse readout is currently  
 471 restricted to selecting exactly one channel per neuron, which may be overly restrictive for neural  
 472 systems that genuinely integrate information across multiple feature dimensions. Secondly, as the  
 473 true number of functional cell types is oftentimes unknown, if we set the number of core output  
 474 channels for our models high, then the same functional cell type might be represented at multiple  
 475 readout channels. Thus, ideally one would need to empirically detect a minimum number of readout  
 476 channels that gives a desirable tradeoff between predictive performance and consistent readout  
 477 channels. Third, the consistency of channel selection across model initializations, while good, is not  
 478 perfect, although this does not reflect the quality of the clusters which seem to be good based on  
 479 visual inspection and our consistency measure.

480 Future work could extend this framework in several promising directions. The ultra-sparse constraint  
 481 could be relaxed to allow selection of a fixed small number of channels (e.g., 2-5), potentially  
 482 revealing how multiple features combine hierarchically in visual processing. The identified feature  
 483 channels could serve as a foundation for generating synthetic stimuli that maximally excite specific  
 484 cell types, providing a powerful tool for experimental neuroscience (Walker et al., 2019b; Bashivan  
 485 et al., 2019). Furthermore, the approach could be applied to study developmental changes in functional  
 486 organization or to investigate how cell type specialization emerges across different species.

486 Finally, incorporating temporal dynamics into channel selection could reveal how functional cell  
487 types adapt their feature preferences based on behavioral context or stimulus history.  
488  
489  
490  
491  
492  
493  
494  
495  
496  
497  
498  
499  
500  
501  
502  
503  
504  
505  
506  
507  
508  
509  
510  
511  
512  
513  
514  
515  
516  
517  
518  
519  
520  
521  
522  
523  
524  
525  
526  
527  
528  
529  
530  
531  
532  
533  
534  
535  
536  
537  
538  
539

540 REPRODUCIBILITY STATEMENT  
541542 Code implementation required to reproduce the experiments presented in this paper, including an  
543 Apptainer container for easy setup, will be made available in a public repository upon acceptance.  
544 All relevant model and training hyperparameters are provided in the appendix for full transparency.  
545 The experiments were conducted using Python 3.9, PyTorch Version: 1.13.1+cu117, CUDA Ver-  
546 sion: 11.7. All models were trained with A100 GPUs.547  
548  
549  
550  
551  
552  
553  
554  
555  
556  
557  
558  
559  
560  
561  
562  
563  
564  
565  
566  
567  
568  
569  
570  
571  
572  
573  
574  
575  
576  
577  
578  
579  
580  
581  
582  
583  
584  
585  
586  
587  
588  
589  
590  
591  
592  
593

594 REFERENCES  
595

596 Ján Antolík, Sonja B Hofer, James A Bednar, and Thomas D Mrsic-Flogel. Model constrained by  
597 visual hierarchy improves prediction of neural responses to natural scenes. *PLoS computational  
598 biology*, 12(6):e1004927, 2016.

599 Anurag Arnab, Mostafa Dehghani, Georg Heigold, Chen Sun, Mario Lučić, and Cordelia Schmid.  
600 Vivit: A video vision transformer. In *Proceedings of the IEEE/CVF international conference on  
601 computer vision*, pp. 6836–6846, 2021.

602 Tom Baden, Philipp Berens, Katrin Franke, Miroslav Román Rosón, Matthias Bethge, and Thomas  
603 Euler. The functional diversity of retinal ganglion cells in the mouse. *Nature*, 529(7586):345–350,  
604 2016.

605 Mohammad Bashiri, Edgar Walker, Konstantin-Klemens Lurz, Akshay Jagadish, Taliah Muham-  
606 mad, Zhiwei Ding, Zhuokun Ding, Andreas Tolias, and Fabian Sinz. A flow-based latent state  
607 generative model of neural population responses to natural images. *Advances in Neural Informa-  
608 tion Processing Systems*, 34:15801–15815, 2021.

609 Pouya Bashivan, Kohitij Kar, and James J DiCarlo. Neural population control via deep image  
610 synthesis. *Science*, 364(6439):eaav9436, 2019.

611 Eleanor Batty, Josh Merel, Nora Brackbill, Alexander Heitman, Alexander Sher, Alan Litke,  
612 EJ Chichilnisky, and Liam Paninski. Multilayer recurrent network models of primate retinal  
613 ganglion cell responses. In *International Conference on Learning Representations*, 2017.

614 Max F Burg, Santiago A Cadena, George H Denfield, Edgar Y Walker, Andreas S Tolias, Matthias  
615 Bethge, and Alexander S Ecker. Learning divisive normalization in primary visual cortex. *PLOS  
616 Computational Biology*, 17(6):e1009028, 2021.

617 Santiago A. Cadena, George H. Denfield, Edgar Y. Walker, Leon A. Gatys, Andreas S. Tolias,  
618 Matthias Bethge, and Alexander S. Ecker. Deep convolutional models improve predictions of  
619 macaque v1 responses to natural images. *PLOS Computational Biology*, 15(4):e1006897, April  
620 2019. doi: 10.1371/journal.pcbi.1006897.

621 Charles F Cadieu, Ha Hong, Daniel L K Yamins, Nicolas Pinto, Diego Ardila, Ethan A Solomon,  
622 Najib J Majaj, and James J DiCarlo. Deep neural networks rival the representation of primate IT  
623 cortex for core visual object recognition. *PLOS Comput. Biol.*, 10(12):e1003963, 2014.

624 BR Cowley and JW Pillow. High-contrast "gaudy" images improve the training of deep neural  
625 network models of visual cortex. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and  
626 H. Lin (eds.), *Advances in Neural Information Processing Systems 33*, pp. 21591–21603. Curran  
627 Associates, Inc., 2020.

628 Alexander S Ecker, Fabian H Sinz, Emmanouil Froudarakis, Paul G Fahey, Santiago A Cadena,  
629 Edgar Y Walker, Erick Cobos, Jacob Reimer, Andreas S Tolias, and Matthias Bethge. A  
630 rotation-equivariant convolutional neural network model of primary visual cortex. *arXiv preprint  
631 arXiv:1809.10504*, 2018.

632 Larissa Höfling, Klaudia P Szatko, Christian Behrens, Yuyao Deng, Yongrong Qiu, David Alexander  
633 Klindt, Zachary Jessen, Gregory W Schwartz, Matthias Bethge, Philipp Berens, et al. A chromatic  
634 feature detector in the retina signals visual context changes. *Elife*, 13:e86860, 2024.

635 Lawrence Hubert and Phipps Arabie. Comparing partitions. *Journal of classification*, 2(1):193–218,  
636 1985.

637 Max Jaderberg, Karen Simonyan, Andrew Zisserman, and Koray Kavukcuoglu. Spatial transformer  
638 networks. In *Advances in Neural Information Processing Systems*, 2015.

639 Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization with gumbel-softmax. *arXiv  
640 preprint arXiv:1611.01144*, 2016.

641 William F Kindel, Elijah D Christensen, and Joel Zylberberg. Using deep learning to probe the  
642 neural code for images in primary visual cortex. *Journal of vision*, 19(4):29–29, 2019.

648 David Klindt, Alexander S Ecker, Thomas Euler, and Matthias Bethge. Neural system identification  
 649 for large populations separating “what” and “where”. *Advances in neural information processing*  
 650 *systems*, 30, 2017.

651

652 Bryan M Li, Isabel M Cornacchia, Nathalie L Rochefort, and Arno Onken. V1t: large-scale mouse  
 653 v1 response prediction using a vision transformer. *arXiv preprint arXiv:2302.03023*, 2023.

654

655 Isaac Lin, Tianye Wang, Shang Gao, Shiming Tang, and Tai Sing Lee. Incremental learning and  
 656 self-attention mechanisms improve neural system identification. *arXiv e-prints*, pp. arXiv–2406,  
 657 2024.

658

659 Konstantin-Klemens Lurz, Mohammad Bashiri, Konstantin Willeke, Akshay K Jagadish, Eric Wang,  
 660 Edgar Y Walker, Santiago A Cadena, Taliah Muhammad, Erick Cobos, Andreas S Tolias, et al.  
 661 Generalization in data-driven models of primary visual cortex. *BioRxiv*, pp. 2020–10, 2020.

662

663 Chris J Maddison, Andriy Mnih, and Yee Whye Teh. The concrete distribution: A continuous  
 664 relaxation of discrete random variables. *arXiv preprint arXiv:1611.00712*, 2016.

665

666 Lane T McIntosh, Niru Maheswaranathan, Aran Nayebi, Surya Ganguli, and Stephen A Baccus.  
 667 Deep learning models of the retinal response to natural scenes. *Adv. Neural Inf. Process. Syst.*, 29  
 668 (Nips):1369–1377, 2016.

669

670 Nina S Nellen, Polina Turishcheva, Michaela Vystrčilová, Shashwat Sridhar, Tim Gollisch, An-  
 671 dreas S Tolias, and Alexander S Ecker. Learning to cluster neuronal function. *arXiv preprint*  
 672 *arXiv:2506.03293*, 2025.

673

674 Cristopher M Niell and Michael P Stryker. Modulation of visual responses by behavioral state in  
 675 mouse visual cortex. *Neuron*, 65(4):472–479, 2010.

676

677 F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Pretten-  
 678 hofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and  
 679 E. Duchesnay. Scikit-learn: Machine learning in Python. *Journal of Machine Learning Research*,  
 680 12:2825–2830, 2011.

681

682 Paweł A Pierzchlewicz, Konstantin F Willeke, Arne F Nix, Pavithra Elumalai, Kelli Restivo, Tori  
 683 Shinn, Cate Nealey, Gabrielle Rodriguez, Saumil Patel, Katrin Franke, Andreas S Tolias, and  
 684 Fabian H Sinz. Energy guided diffusion for generating neurally exciting images. In *Advances in  
 685 Neural Processing Systems (NeurIPS 2023)*, pp. 2023.05.18.541176, May 2023.

686

687 Jacob Reimer, Emmanouil Froudarakis, Cathryn R Cadwell, Dimitri Yatsenko, George H Denfield,  
 688 and Andreas S Tolias. Pupil fluctuations track fast switching of cortical states during quiet wake-  
 689 fulness. *neuron*, 84(2):355–362, 2014.

690

691 Shreya Saha, Ishaan Chadha, et al. Modeling the human visual system: Comparative insights from  
 692 response-optimized and task-optimized vision models, language models, and different readout  
 693 mechanisms. *arXiv preprint arXiv:2410.14031*, 2024.

694

695 Sylvia Schröder, Nicholas A Steinmetz, Michael Krumin, Marius Pachitariu, Matteo Rizzi, Leon  
 696 Lagnado, Kenneth D Harris, and Matteo Carandini. Arousal modulates retinal output. *Neuron*,  
 697 107(3):487–495, 2020.

698

699 Fabian Sinz, Alexander S Ecker, Paul Fahey, Edgar Walker, Erick Cobos, Emmanouil Froudarakis,  
 700 Dimitri Yatsenko, Zachary Pitkow, Jacob Reimer, and Andreas Tolias. Stimulus domain transfer  
 701 in recurrent models for large scale cortical population prediction on video. *Advances in neural  
 702 information processing systems*, 31, 2018.

703

704 Carsen Stringer, Marius Pachitariu, Nicholas Steinmetz, Charu Bai Reddy, Matteo Carandini, and  
 705 Kenneth D Harris. Spontaneous behaviors drive multidimensional, brainwide activity. *Science*,  
 706 364(6437):eaav7893, 2019.

707

708 Rudi Tong, Ronan da Silva, Dongyan Lin, Arna Ghosh, James Wilsenach, Erica Cianfarano, Pouya  
 709 Bashivan, Blake Richards, and Stuart Trenholm. The feature landscape of visual cortex. *bioRxiv*,  
 710 pp. 2023–11, 2023.

702 Polina Turishcheva, Paul G Fahey, Laura Hansel, Rachel Froebe, Kayla Ponder, Michaela  
 703 Vystrčilová, Konstantin F Willeke, Mohammad Bashiri, Eric Wang, Zhiwei Ding, et al. The dy-  
 704 namic sensorium competition for predicting large-scale mouse visual cortex activity from videos.  
 705 *ArXiv*, 2023.

706 Polina Turishcheva, Max F Burg, Fabian H Sinz, and Alexander S Ecker. Reproducibility of predic-  
 707 tive networks for mouse visual cortex. *Advances in Neural Information Processing Systems*, 37:  
 708 7930–7956, 2024a.

709 Polina Turishcheva, Paul Fahey, Michaela Vystrčilová, Laura Hansel, Rachel Froebe, Kayla Ponder,  
 710 Yongrong Qiu, Konstantin Willeke, Mohammad Bashiri, Ruslan Baikulov, et al. Retrospective  
 711 for the dynamic sensorium competition for predicting large-scale mouse primary visual cortex  
 712 activity from videos. *Advances in Neural Information Processing Systems*, 37:118907–118929,  
 713 2024b.

714 Ivan Ustyuzhaninov, Santiago A Cadena, Emmanouil Froudarakis, Paul G Fahey, Edgar Y Walker,  
 715 Erick Cobos, Jacob Reimer, Fabian H Sinz, Andreas S Tolias, Matthias Bethge, et al. Rotation-  
 716 invariant clustering of neuronal responses in primary visual cortex. In *International Conference  
 717 on Learning Representations*, 2019.

718 Ivan Ustyuzhaninov, Max F Burg, Santiago A Cadena, Jiakun Fu, Taliah Muhammad, Kayla Ponder,  
 719 Emmanouil Froudarakis, Zhiwei Ding, Matthias Bethge, Andreas S Tolias, et al. Digital twin re-  
 720 veals combinatorial code of non-linear computations in the mouse primary visual cortex. *bioRxiv*,  
 721 pp. 2022–02, 2022.

722 Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler Reddy, David Cournapeau,  
 723 Evgeni Burovski, Pearu Peterson, Warren Weckesser, Jonathan Bright, Stéfan J. van der  
 724 Walt, Matthew Brett, Joshua Wilson, K. Jarrod Millman, Nikolay Mayorov, Andrew R. J. Nel-  
 725 son, Eric Jones, Robert Kern, Eric Larson, C J Carey, İlhan Polat, Yu Feng, Eric W. Moore,  
 726 Jake VanderPlas, Denis Laxalde, Josef Perktold, Robert Cimrman, Ian Henriksen, E. A. Quintero,  
 727 Charles R. Harris, Anne M. Archibald, Antônio H. Ribeiro, Fabian Pedregosa, Paul van Mul-  
 728 bregt, and SciPy 1.0 Contributors. SciPy 1.0: Fundamental Algorithms for Scientific Computing  
 729 in Python. *Nature Methods*, 17:261–272, 2020. doi: 10.1038/s41592-019-0686-2.

730 Edgar Y Walker, Fabian H Sinz, Erick Cobos, Taliah Muhammad, Emmanouil Froudarakis, Paul G  
 731 Fahey, Alexander S Ecker, Jacob Reimer, Xaq Pitkow, and Andreas S Tolias. Inception loops  
 732 discover what excites neurons most using deep predictive models. *Nat. Neurosci.*, 22(12):2060–  
 733 2065, December 2019a.

734 Edgar Y Walker, Fabian H Sinz, Erick Cobos, Taliah Muhammad, Emmanouil Froudarakis, Paul G  
 735 Fahey, Alexander S Ecker, Jacob Reimer, Xaq Pitkow, and Andreas S Tolias. Inception loops  
 736 discover what excites neurons most using deep predictive models. *Nature neuroscience*, 22(12):  
 737 2060–2065, 2019b.

738 Eric Y Wang, Paul G Fahey, Zhuokun Ding, Stelios Papadopoulos, Kayla Ponder, Marissa A Weis,  
 739 Andersen Chang, Taliah Muhammad, Saumil Patel, Zhiwei Ding, et al. Foundation model of  
 740 neural activity predicts response to new stimulus types. *Nature*, 640(8058):470–477, 2025.

741 Simon Weiler, Drago Guggiana Nilo, Tobias Bonhoeffer, Mark Hübener, Tobias Rose, and Volker  
 742 Scheuss. Functional and structural features of l2/3 pyramidal cells continuously covary with pial  
 743 depth in mouse visual cortex. *Cerebral cortex*, 33(7):3715–3733, 2023.

744 Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforcement  
 745 learning. *Machine learning*, 8(3):229–256, 1992.

746 Yimeng Zhang, T-S Tai Sing Lee, Ming Li, Fang Liu, Shiming Tang, Tai Sing, Lee Ming, Li Fang,  
 747 Liu Shiming, T-S Tai Sing Lee, Ming Li, Fang Liu, and Shiming Tang. Convolutional neural  
 748 network models of V1 responses to complex patterns. *J. Comput. Neurosci.*, pp. 1–22, 2018.

749

750

751

752

753

754

755

## APPENDIX

## HYPERPARAMETERS FOR MODELS AND TRAINING

We conducted a hyperparameter search for each model type separately to give a fair chance to find the best performing models. The selection of hyperparameters to tune were identical across models, except for the training hyperparameters that were specific to the model. This includes the max epochs for cosine scheduler of temperature  $\tau$  in the Gumbel Softmax model, and baseline momentum and learning rate of channel policies in the REINFORCE model. In the readout of the V1 models, we additionally tuned the hyperparameters for Gaussian sampling of spatial positions: initial  $\mu$  and  $\Sigma$  of each model. As we are modeling a different visual area with potentially different receptive fields of neurons, tuning these hyperparameters gives a fair chance for V1 models to improve predictive performance.

Table 1: Hyperparameters for the factorized 3D convolutional cores of retinal ganglion cell models

| Hyperparameter                                         | Unconstrained  | Adaptive Reg | Gumbel-Softmax | 3D Grid        | REINFORCE      |
|--------------------------------------------------------|----------------|--------------|----------------|----------------|----------------|
| Number of Layers                                       | 3              | 3            | 4              | 4              | 4              |
| Hidden Channels (per layer)                            | 64, 64, 64     | 128, 64, 64  | 32, 32, 64, 64 | 16, 32, 64, 64 | 32, 32, 64, 64 |
| Spatial Input Kernel Size                              | $11 \times 11$ | $3 \times 3$ | $7 \times 7$   | $4 \times 4$   | $17 \times 17$ |
| Temporal Input Kernel Size                             | 11             | 11           | 3              | 20             | 7              |
| Spatial Hidden Kernel Size                             | $5 \times 5$   | $5 \times 5$ | $3 \times 3$   | $6 \times 6$   | $4 \times 4$   |
| Temporal Hidden Kernel Size                            | 5              | 14           | 7              | 7              | 10             |
| Activation Function                                    | ELU            | ELU          | Softplus       | ELU            | Softplus       |
| Spatial Regularization ( $\gamma_{\text{spatial}}$ )   | 10.0000        | 21.0403      | 0.2456         | 18.7300        | 21.6397        |
| Temporal Regularization ( $\gamma_{\text{temporal}}$ ) | 0.0100         | 0.4043       | 0.0149         | 0.1652         | 0.4733         |
| Batch Normalization Momentum                           | 0.7000         | 0.4575       | 0.7442         | 0.7906         | 0.6494         |

Table 2: Training hyperparameters for the Retinal Ganglion Cell models.

| Hyperparameter                  | Unconstrained | Adaptive Reg | Gumbel-Softmax | 3D Grid | REINFORCE |
|---------------------------------|---------------|--------------|----------------|---------|-----------|
| LR decay steps                  | 8             | 6            | 8              | 8       | 6         |
| LR decay factor                 | 0.3           | 0.5264       | 0.3            | 0.3202  | 0.5908    |
| LR initial                      | 0.0050        | 0.0043       | 0.0068         | 0.0174  | 0.0156    |
| Optimizer                       | AdamW         | AdamW        | Adam           | AdamW   | Adam      |
| Max epochs for $\tau$ scheduler | -             | -            | 75             | -       | -         |
| Baseline momentum               | -             | -            | -              | -       | 0.8621    |
| LR channel policies             | -             | -            | -              | -       | 0.3232    |

## CONSISTENCY MEASURES

We performed hierarchical clustering of mean readout channel responses from Figure 4. We first computed correlation distance and a linkage matrix between the mean readout channel responses. Then we assigned cluster labels for each readout channel (*scipy pdist*, *linkage*, *fcluster* with specified number of clusters) (Virtanen et al., 2020). This allowed us to obtain hierarchical clusters from readout channels with number of clusters in the range from 1 to 64. Then we mapped the neurons from the readout channels to the hierarchical clusters, and computed the consistency of these clusters using Adjusted Rand Index and Jackknife correlation (Figure S1).

810  
811  
812

813 Table 3: Hyperparameters for the core and readout of V1 models

| Hyperparameter                                         | Unconstrained | Gumbel-Softmax | 3D Grid             |
|--------------------------------------------------------|---------------|----------------|---------------------|
| Number of Layers                                       | 3             | 3              | 5                   |
| Hidden Channels (per layer)                            | 128, 128, 128 | 128, 128, 128  | 32, 64, 128, 64, 32 |
| Spatial Input Kernel Size                              | 14×14         | 12×12          | 10×10               |
| Temporal Input Kernel Size                             | 7             | 14             | 12                  |
| Spatial Hidden Kernel Size                             | 8×8           | 9×9            | 5×5                 |
| Temporal Hidden Kernel Size                            | 9             | 5              | 10                  |
| Activation Function                                    | ReLU          | ELU            | ELU                 |
| Spatial Regularization ( $\gamma_{\text{spatial}}$ )   | 19.2068       | 8.9025         | 25.7434             |
| Temporal Regularization ( $\gamma_{\text{temporal}}$ ) | 0.1919        | 0.2305         | 0.3625              |
| Batch Normalization                                    | 0.3153        | 0.2885         | 0.4621              |
| Momentum                                               |               |                |                     |
| Readout: Initial $\mu$                                 | 0.9087        | 0.0810         | 0.2211              |
| Readout: Initial $\Sigma$                              | 0.6664        | 0.6520         | 0.6928              |

830  
831  
832  
833  
834

835 Table 4: Trainer hyperparameters for the V1 models.

| Hyperparameter                  | Unconstrained | Gumbel-Softmax | 3D Grid |
|---------------------------------|---------------|----------------|---------|
| LR decay steps                  | 3             | 8              | 7       |
| LR decay factor                 | 0.5716        | 0.3416         | 0.5925  |
| LR initial                      | 0.0021        | 0.0137         | 0.0074  |
| Optimizer                       | AdamW         | Adam           | AdamW   |
| Max epochs for $\tau$ scheduler | -             | 64             | -       |

843  
844  
845  
846  
847860 Figure S1: Consistency of hierarchical clusters from readout channels. Adjusted Rand Index for  
861 consistency of labels. Jackknife correlation for consistency of responses within clusters of readout  
862 channels. Shaded regions indicate standard deviation across 5 seeds.

863

864  
865

## CLUSTERING READOUT WEIGHTS OF UNCONSTRAINED MODELS

866  
867  
868  
869  
870  
871  
872  
873

We compared the clustering consistency of our sparse readout to dedicated clustering methods. We performed Gaussian Mixture Model (GMM) and K-means clustering on the readout weights of the better performing unconstrained model. We set the number of clusters in both cases to be 64, same as the number of readout channels in the sparse model. Using the resulting labels from GMM and K-means clustering, we computed the consistency of these clusters using Adjusted Rand Index and Jackknife correlation (same as Figure 4). We report that clustering the readout weights of unconstrained model resulted in higher cluster consistency than from the readout channels of our sparse model (Table 5).

874

Table 5: Clustering metrics for the GMM and K-means on readout weights of unconstrained models. Values shown are means over 5 models with different seeds.

877  
878  
879  
880

| Metric                 | Gumbel-Softmax | Unconstrained GMM | Unconstrained K-means |
|------------------------|----------------|-------------------|-----------------------|
| ARI                    | 0.448          | 0.599             | 0.613                 |
| Jackknifed correlation | 0.652          | 0.757             | 0.767                 |

881

This result intrigued us whether we can predict neural responses posthoc from the unconstrained model using the cluster mean readout weights. We first grouped the neurons in the unconstrained model based on the labels obtained from GMM and K-means clustering the readout weights. Then for each group we computed the mean readout weight, and replaced the neuron-specific readout weights with the cluster mean. To find the right scale for each neuron we divided the mean readout weight with its norm, and multiplied with the norm of the neuron-specific "old" readout weight. From this we computed the predictive performance of the unconstrained models, where neuron-specific readout weights are replaced with their cluster mean readout weights (Figure S2). We report that the predictive performance of these models are practically the same as our sparse models, and show similar minimal loss in predictive performance over the unconstrained model. This results in yet another method to achieve our goal of finding functional cell types in neural encoding models. Unlike the sparse model, this new method is posthoc and required manually changing the model parameters.

894

911  
912  
913  
914  
915  
916  
917

Figure S2: Predictive performance of unconstrained models with clusters from readout weights. Legends identical to Figure 2A

918  
919

## ULTRA-SPARSE MODEL WITH A TRANSFORMER CORE

920  
921  
922  
923  
924  
925  
926  
927  
928  
929  
930  
931  
932  
933  
934

To show that our ultra-sparse readout remains applicable to other architectures besides CNNs, we exchanged the core of our models to a Video Vision Transformer (Arnab et al., 2021). Specifically, we adapted the transformer core of the ViViT model, which was among the winners of the neural encoding dynamic Sensorium challenge (Turishcheva et al., 2024b; Li et al., 2023). We replaced our previous CNN core with a video transformer, where the core embedding dimension becomes the equivalent of CNN feature channels. We tested the performance of unconstrained and ultra-sparse (Gumbel-Softmax) readout models (Table 6). The reported performances are from the best performing models, found through a search for suitable architecture and training hyperparameters (Table 7). We report that the unconstrained and sparse (Gumbel-Softmax) models with a transformer core achieved performance slightly lower to the models with CNN cores. Similar to before, the unconstrained models, given the same architecture of the core, outperform the sparse models (Table 6). Crucially, however, the ultra-sparse model with the transformer core consistently identified functional groups of neurons (Clustering consistency in Table 6). This highlights ultra-sparse readouts as readily applicable to other architectures than CNNs, where our method still recovers functionally consistent groups of neurons.

935  
936  
937

Table 6: Performance and clustering metrics for the sparse models with a ViViT core. Values shown are means (and standard deviations for correlations) over 5 models with different seeds.

| Metrics                       | Unconstrained     | Gumbel-Softmax    |
|-------------------------------|-------------------|-------------------|
| Predictive performance        |                   |                   |
| Validation correlation        | $0.538 \pm 0.014$ | $0.470 \pm 0.014$ |
| Test single trial correlation | $0.519 \pm 0.018$ | $0.450 \pm 0.014$ |
| Test correlation to average   | $0.715 \pm 0.024$ | $0.630 \pm 0.021$ |
| Clustering consistency        |                   |                   |
| ARI                           | <i>N/A</i>        | 0.523             |
| Jackknifed correlation        | <i>N/A</i>        | 0.718             |

947  
948

Table 7: Hyperparameters for ViViT models of retinal ganglion cells

| Hyperparameter                  | Unconstrained  | Gumbel-Softmax |
|---------------------------------|----------------|----------------|
| ViViT Core Architecture         |                |                |
| Spatial Transformer Depth       | 4              | 4              |
| Temporal Transformer Depth      | 3              | 7              |
| Embedding Dimension             | 64             | 64             |
| MLP Hidden Dimension            | 128            | 128            |
| Number of Attention Heads       | 4              | 8              |
| Head Dimension                  | 32             | 32             |
| Spatial Patch Size              | $10 \times 10$ | $13 \times 13$ |
| Temporal Patch Size             | 15             | 10             |
| Positional Encoding Mode        | None           | Learned        |
| Regularization                  |                |                |
| Patch Embedding Dropout         | 0.0104         | 0.0190         |
| Multi-Head Attention Dropout    | 0.3812         | 0.3043         |
| Feed-Forward Dropout            | 0.4159         | 0.1635         |
| Drop Path                       | 0.2836         | 0.2244         |
| Readout Dropout                 | 0.1460         | 0.0805         |
| Training                        |                |                |
| Learning Rate (Readout)         | 0.0013         | 0.0028         |
| Learning Rate (Core)            | 0.0033         | 0.0024         |
| Weight Decay (Readout)          | 0.0001         | 0.0140         |
| Weight Decay (Core)             | 0.0001         | 0.0690         |
| Adam $\beta_1$                  | 0.9            | 0.8            |
| Max epochs for $\tau$ scheduler | N/A            | 125            |