
CMoS: Rethinking Time Series Prediction Through the Lens of Chunk-wise
Spatial Correlations

Haotian Si 1 2 Changhua Pei 1 3 Jianhui Li 4 1 Dan Pei 5 Gaogang Xie 1

Abstract
Recent advances in lightweight time series fore-
casting models suggest the inherent simplicity
of time series forecasting tasks. In this paper,
we present CMoS, a super-lightweight time se-
ries forecasting model. Instead of learning the
embedding of the shapes, CMoS directly mod-
els the spatial correlations between different time
series chunks. Additionally, we introduce a Cor-
relation Mixing technique that enables the model
to capture diverse spatial correlations with min-
imal parameters, and an optional Periodicity In-
jection technique to ensure faster convergence.
Despite utilizing as low as 1% of the lightweight
model DLinear’s parameters count, experimen-
tal results demonstrate that CMoS outperforms
existing state-of-the-art models across multiple
datasets. Furthermore, the learned weights of
CMoS exhibit great interpretability, providing
practitioners with valuable insights into temporal
structures within specific application scenarios.

1. Introduction
Time series forecasting plays a vital role in many fields
including finance, energy, and weather. By accurately pre-
dicting future time steps, it helps organizations make in-
formed decisions and optimize resource allocation. As data-
driven insights become increasingly essential, several fore-
casting methods based on deep learning are proposed with
the interaction of structures like RNN (Lin et al., 2023),
CNN (Hewage et al., 2020; LIU et al., 2022), and Trans-
formers (Nie et al., 2023; Liu et al., 2024a). However, recent
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studies have shown that lightweight models can even out-
perform their complex counterparts (Zhang et al., 2022;
Zeng et al., 2023; Das et al., 2023; Xu et al., 2024). This
prompts us to reconsider a fundamental question: whether
temporal structures inherently possess a simple but efficient
representation that we have previously overlooked.

Several previous models (Nie et al., 2023; Wang et al., 2024)
emphasized learning the representation of shapes, which is
also called embeddings, to further build abstract dependency
via attention or mixing mechanism. However, we argue that
directly modeling the relative positional relationships be-
tween different time series chunks can be more robust and
interpretable than modeling specific patterns. As shown in
Fig. 1, for the subsequences of the sliding window, while
their shapes vary over time, as long as their relative po-
sitions are consistent, their dependencies, referred to as
chunk-to-chunk spatial correlations, often maintain stable
and reveal the temporal regularity of the system. This phe-
nomenon carries both analytical and practical implications:
from an analytical perspective, it reveals that there’s an in-
herent property with translation-equivariance in time series
data, which can be a robust feature used for forecasting;
from a practical perspective, we can employ relatively sim-
ple parametric methods for modeling such property, thereby
substantially reducing model complexity.

Figure 1. As time advances, the specific patterns in the time win-
dow change greatly, while the spatial correlations of the time series
chunks remain similar.
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Moreover, we find that such spatial correlation has good
decomposability, which offers a new perspective for build-
ing differentiated spatial correlations in multivariate time
series with much fewer parameters. Although the spatial
correlations across different time series may be different,
there could be inherent relationships between these correla-
tions. For example, in power demand forecasting, industrial
load exhibits long-term dependencies as it reflects stable
consumption patterns shaped by long-term economic struc-
tural change, while residential demand shows predominantly
short-term dependencies due to its sensitivity to immedi-
ate factors like weather conditions or public events. As a
result, the total power consumption of this region demon-
strates a hybrid dependency structure. Clearly, the spatial
correlations in these three metrics are different from each
other. However, as shown in Fig. 2, by decomposing the cor-
relation dependencies into long-term parts and short-term
parts, we can represent the spatial correlations of all three se-
ries simultaneously with only two sub-correlation matrices.
Also, since each matrix is shared by multiple time series,
the learned spatial correlation is less sensitive to noise and
outliers within individual series.

Figure 2. The spatial correlations of multiple time series can be
represented by the combination of fewer sub-correlations.

In this paper, we pioneer leveraging the stability and decom-
posability of spatial correlations to build a super-lightweight
forecasting model for multivariate time series. Specifically,
we propose CMoS, a Chunk-wise Mixture of Spatial cor-
relations architecture to predict multivariate time series.
The architecture involves several techniques to investigate
the robust and efficient representation of time series de-
pendencies: (I) Chunk-wise Spatial Correlation Modeling.
Instead of learning the representation of specific patterns,
CMoS focuses on directly building the concise spatial cor-
relation matrices for time series, and we prove both theo-
retically and experimentally that chunk-wise correlations
exhibit stronger noise resistance than point-wise ones. (II)
Correlation Mixing Strategy. CMoS introduces a mixture
of correlation mechanisms to adaptively generate correla-
tion structures across different time series. By learning a
small set of basis correlation matrices and the correspond-
ing mixing weights, CMoS can represent varying spatial
relationships across channels while maintaining great pa-
rameter efficiency. (III) Periodicity Injection by Weight

Editing. Due to the high interpretability of the correla-
tion matrices to be learned, we can inject periodicity into
CMoS by directly editing the initial weights. This makes
CMoS more easier to model the periodic spatial correla-
tions, thereby speeding up convergence and enhancing the
performance for time series with great periodicity. Empow-
ered by the above techniques, CMoS can achieve state-of-
the-art prediction performance with as low as 1% of the
parameter count compared to the lightweight model DLin-
ear. Our code is provided in the anonymous repository
https://github.com/CSTCloudOps/CMoS.

In summary, our contributions are as follows:

• We propose CMoS, a super-lightweight forecasting
method with up to 100× parameter efficiency than
DLinear.

• Benefiting from chunk-wise spatial correlation model-
ing, correlation mixing strategy across channels, and
Periodicity Injection techniques, CMoS achieves top-
tier performance on long-term multivariate time series
forecasting tasks.

• The learned spatial correlation matrices are highly in-
terpretable, which can help us to better understand the
potential temporal regularity of real-world systems.

2. Related Works
2.1. Development of lightweight time series forecasting

models

Several previous works (Zhou et al., 2021; Wu et al., 2021;
Zhou et al., 2022; Nie et al., 2023; Liu et al., 2024a) have
adapted the transformer structure to the time series fore-
casting domain due to its capability of capturing long-term
dependencies. The parameter count of these models of-
ten reaches the scale of tens of millions. However, DLin-
ear (Zeng et al., 2023) demonstrated that merely using sim-
ple linear layers with fewer parameters can lead to competi-
tive or even superior prediction performance, revealing that
complex models with large parameter sizes are not always
necessary to achieve high-quality forecasts. This has signifi-
cantly accelerated the development of lightweight models,
including FITS (Xu et al., 2024), SparseTSF (Lin et al.,
2024b), and CycleNet (Lin et al., 2024a), to achieve state-
of-the-art prediction performance with fewer parameters.

The success of the lightweight models inspires a crucial
insight: there likely exists an elegantly simple yet highly
effective formulation for the structure of time series within
the existing prediction framework (predicting future time
steps based on lookback windows). Thus we try to shift our
focus from modeling sophisticated pattern representations
to directly learning the inherent and interpretable spatial
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correlations among all channels, and finally design the super-
lightweight model CMoS.

2.2. Channel Strategy for Lightweight Models

Multivariate time series can be viewed as a multi-channel
signal. Whether it is necessary to model the dependen-
cies between different channels has been widely discussed.
Some works claimed that modeling these cross-channel de-
pendencies can enhance the prediction results (Chen et al.,
2023; Han et al., 2024; Liu et al., 2024a), while some
thought that modeling all channels separately with only
one backbone (Nie et al., 2023; Xu et al., 2024), which
is known as Channel Independent Strategy, can provide
more robustness and further lead to better results. Since the
latter does not require the additional overhead associated
with modeling cross-channel dependencies, this greatly de-
creases the overall parameter count. As a result, lightweight
models (Xu et al., 2024; Lin et al., 2024b) whose parameter
counts are comparable to or smaller than DLinear tend to
adopt this Channel Independent strategy.

In this work, we reexamine the drawbacks of the Channel
Independent strategy in the design of lightweight models
from the perspective of model capacity. For lightweight
models, the scarcity of nonlinear relationships inherently
restricts their ability to express diverse temporal structures.
Therefore, employing the channel-independent strategy will
confine the model to representing only one single temporal
structure. In CMoS, we address this issue by introduc-
ing Correlation Mixing, which significantly enhances the
model’s capacity to express a variety of temporal structures
with an affordable parameter cost. Additionally, we provide
a detailed comparison of the modeling overhead associated
with different channel strategies and the predictive perfor-
mance of CMoS variants in the Appendix B, further high-
lighting the superiority of our Correlation Mixing strategy.

3. CMoS
In this section, we introduce each component employed in
CMoS and demonstrate their advantages.

3.1. Chunk-wise Spatial Correlation Modeling

Time series forecasting is the task of predicting future values
of a sequence {x1, x2, . . . , xt} based on its past observa-
tions. Given a sequence of L observations, the goal is to
predict the next value(s) xt+1, xt+2, . . . , xt+H , where H is
the forecasting horizon. Formally, the task can be defined
as:

x̂t+1, . . . , x̂t+H = f({xt−L+1, xt−L+2, . . . , xt},θ) (1)

where f is the forecasting function, θ represents the model
parameters, and {xt−L+1, xt−L+2, . . . , xt} is the window

of past L observations.

Motivated by the translation-equivariance of chunk-to-
chunk spatial correlations mentioned in Sec. 1, we rede-
fine the forecasting task as the following simple formu-
lation. A time series {xt−L+1, xt−L+2, . . . , xt} ∈ RL

with length L can be divided into the chunk-wise se-
ries {xt−L+1:t−L+S ,xt−L+S+1:t−L+2S , . . . ,xt−S+1:t} ∈
RL

S ×S with length L
S when the chunk size is S, and we

denote it as {xt−L
S +1,xt−L

S +2, . . . ,xt} in brief. For each
chunk xt+i to be predicted, from the perspective of spatial
correlations, it can be simply viewed as a linear combination
of previous sequences:

xt+i =

L
S∑

j=0

θijxt−j + bi (2)

where the learnable θij denotes the spatial correlation coef-
ficient, indicating the extent to which the L

S − j-th chunk in
the historical window influences the prediction of the i-th
chunk. The learnable bi can introduce some basic trends
like gradual increase.

In fact, some existing lightweight models, such as DLin-
ear and TSMixer, can be viewed as special cases with a
chunk size of 1, where they model point-to-point spatial
correlations. However, we find that this type of correlation
is more susceptible to random noise. We demonstrate that
chunk-to-chunk spatial correlation can be more robust to
random noise than point-to-point spatial correlation.
Definition 3.1. Consider a linear regression model
f(x;θ) = θ⊤x. Assume the model is subjected to in-
put x′ = x + δ, where δ ∼ N (µ, σ2) is a Gaussian noise
vector. We define the noise sensitivity of the model as the
variance of the output change: V ar(f(x′;θ)− (f(x;θ)) =
V ar(θ⊤δ) = σ2∥θ∥22.
Theorem 3.2. Within each chunk, perform a weighted av-
erage of the point-to-point weights {θ1, θ2, . . . , θn} to ob-
tain new weights θ∗ =

∑n
i=1 αiθi∑n
i=1 αi

(αi ≥ 0). Consequently,
we have σ2

∑n
i=1 θ

2
i ≥ σ2θ∗2, i.e., the chunk-wise linear

model composed of new weights exhibit lower noise sensi-
tivity under Definition 3.1.

The proof of Theorem 3.2 is provided in Appendix F.

Chunking v.s. Patching. The Patching technique, proposed
by Nie et al. (2023), is widely used in many existing time se-
ries forecasting methods (Goswami et al., 2024; Woo et al.,
2024; Liu et al., 2024b). Technically, patching splits only
the historical series into segments, and patch-based models
focus on generating aggregated representation of the cor-
relations between these historical segments (similar to the
high-level semantic information in LLMs) and then decode
the representation to future time points. However, the black-
box nature of such representations make it hard to figure out
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Figure 3. CMoS Architecture.

how specific segment influence the final prediction, limiting
the interpretability of these methods.

In contrast, the proposed chunking technique splits both
historical and future series, and instead of learning the high-
level representations, chunk-based CMoS focus on directly
modeling of the spatial correlation between historical and
future segments. which is quite interpretable. Our further
experiments also demonstrate that chunks enhance both
robustness and efficiency.

3.2. Correlation Mixing

Most recent works either adopt the Channel Independent
strategy which is potentially incompatible with multiple
temporal structures when parameter count is limited, or
adopt the channel-mixing strategy while introducing unaf-
fordable complexity. To address the above shortcuts, we
design the correlation mixing strategy to better model the
spatial correlations meanwhile maintaining great parameter
efficiency. As a simplified version of Mixture-of-Expert (Ja-
cobs et al., 1991) (each expert is just a spatial correlation
matrix), this strategy combines the various basic spatial cor-
relations with weighted sums obtained by the aggregated
information of the lookback windows of each channel, adap-
tively generating channel-specific spatial correlations. The
strategy includes three components: shared spatial correla-
tion matrices, channel-specific information aggregators, and
a shared weight allocator.

Shared spatial correlation matrices. Inspired by the

decomposability of the spatial correlations, we expand
the sole chunk-wise correlations to the combination of
K basic spatial correlations according to the weight set
Γn = {γn

0 , . . . , γ
n
K−1} given chunk-wise lookback window

of the n-th channel {xn
t−L

S +1
,xn

t−L
S +2

, . . . ,xn
t }:

xn
t+i =

1∑K
k=0 e

γn
k

K∑
k=0

eγ
n
k

L
S∑

j=0

(θkijx
n
t−j + bk

i ) (3)

and the K correlation matrices θ0, . . . ,θK−1 are shared by
all channels.

Two-stage weight allocation. The key to building robust
spatial correlation matrices as well as obtaining the best
correlation for each channel is establishing a stable mapping
between raw time series data and weights of each matrix. In
our formulation, channels with similar temporal structures
should have similar weight combinations. However, due to
the potential differences in noise levels across time series
data from different channels, the weight allocation process
may still be affected by the noise level, even if their tem-
poral structures are similar. Thus the first stage of weight
allocation is to reduce the effect raised by different noise
levels. Specifically, for each channel, we design a specific
information aggregator via a convolution kernel with size c
and stride c

2 . This operation applies the specific degree of
smoothing to the raw data of a certain channel to obtain its
stable and sparse representation z ∈ R

2L−c
c :

znt = Conv1Dn(xn
t−L+1:t) (4)
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In the second stage, since the effect of the noise level has
been mitigated, which means that channels with similar
temporal structures have a similar representation, we employ
a linear layer (the parameter matrix ∈ R

2L−c
c ×K) shared

by all channels as a weight allocator to map the sparse
representation znt to the weight set Γn = {γn

0 , . . . , γ
n
K−1}:

Γn = Linear(znt ) (5)

which is used for combining correlation matrices in Eq. (3).

3.3. Periodicity Injection by Weight Editing

Some recent works (Lin et al., 2024b;a) have shown that
explicitly leveraging the periodic features of time series can
effectively improve the prediction accuracy of the model. In
CMoS, given a periodic time series with the main period p,
the time series chunks to be predicted should be more closely
related to the corresponding chunks of previous periods,
i.e., Correlation(xt,xt−i) ≫ Correlation(xt,xt−j) for
∀i, j such that i mod p

S = 0 and j mod p
S ̸= 0. As a

result, the spatial correlation matrix will exhibit a significant
peak every p

S chunks.

According to this assumption, we can directly edit the pa-
rameters in the first spatial correlation matrix by initializing
it with the pre-defined periodic peaks. Specifically, the θeditij

in the matrix θedit that satisfy L
S − i + j mod p

S = 0 is
assigned to p

L , while others are assigned to 0, as shown in
Fig 4. For time series data with significant periodicity, since
the initialized parameters already incorporate most periodic
correlations, the model’s learning burden is reduced. By
providing a strong inductive bias towards periodicity, this op-
eration not only accelerates convergence but also enhances
model robustness. Meanwhile, the remaining correlation
matrices are freed to focus on capturing non-periodic tem-
poral structures, which can lead to an improvement in final
prediction performance. In CMoS, we apply this strategy to
those datasets with human activities involvement (demon-
strating periodicity that aligns with human calendar cycles,
e.g., daily or weekly routines), and calculate the period of
these datasets by AutoCorrelation Function (Madsen, 2007).
More details about Periodicity Injection are provided in
Appendix E.

Figure 4. Illustration of Periodicity Injection.

3.4. Instance Normalization

We employ the Reversible Instance Normalization (Kim
et al., 2022) technique, which is commonly used in many
previous works, to address the potential distribution shift
issue and improve prediction performance. Specifically, we
normalize the original data and add statistical features back
to the model’s output to obtain the original distribution:

xn
t−L+1:t =

xn
t−L+1:t − µ

√
σ

(6)

x̂n
t+1:t+H = x̂n

t+1:t+H ×
√
σ + µ (7)

where µ and σ denote the mean and the variance of the input
window.

3.5. Loss Function

We apply the Mean Squared Error (MSE) of the predicted
values and the ground truth values as the loss function L:

L =
1

N

N∑
n=0

∥x̂n
t+1:t+H − xn

t+1:t+H∥22 (8)

3.6. Parameter Efficiency Analysis

Suppose the length of the lookback window is L and the
forecast horizon is H for N channels. Even with an overly
naive strategy of sharing only one temporal structure across
all channels, the total parameter count of DLinear is higher
than 2 × L ×H . In CMoS, given chunk size S, convolu-
tion kernel size c, and number of basic correlation matrices
K (K is a constant and K ≪ N ). The total number of
parameters in CMoS is:

K × L

S
× H

S︸ ︷︷ ︸
CorrelationPart

+ N × c︸ ︷︷ ︸
Aggregators Part

+
2L− c

c
×K︸ ︷︷ ︸

WeightAllocator Part

For the dataset ETTh1 with N = 7, S is set to 24, K is
set to 4, and c is set to 8, the total number of the CMoS’s
parameters ≈ L×H

96 +L, which is less than 1% of DLinear’s
parameter count, while CMoS can additionally deal with
multiple temporal structures.

4. Experiments
In this section, we present both the performance and pa-
rameter efficiency advantages of CMoS against existing
state-of-the-art baselines, and demonstrate the effectiveness
of each design in CMoS. Additional experimental results on
hyperparameter sensitivity are listed in Appendix C.2.

4.1. Setup

Datasets. We conduct experiments on 7 widely used
datasets for long-term time series forecasting, including
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Table 1. The prediction performance of CMoS and baselines on long-term multivariate time series forecasting task. The results are
averaged from all prediction horizons of H ∈ {96, 192, 336, 720}. The best result is highlighted in bold and the second best is highlighted
with underline. The results of CMoS are averaged over 5 runs on each horizon with standard deviation STD. For detailed results on each
prediction horizon, please refer to Appendix C.1.

Datasets Electricity Traffic Weather ETTh1 ETTh2 ETTm1 ETTm2

Metrics MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

C
om

pl
ex

M
od

el
s Informer 0.389 0.406 1.898 0.866 0.292 0.348 0.739 0.589 0.422 0.440 0.584 0.503 0.362 0.387

FedFormer 0.219 0.329 0.62 0.382 0.301 0.345 0.433 0.454 0.406 0.438 0.567 0.519 0.334 0.380
TimesNet 0.190 0.284 0.617 0.327 0.255 0.282 0.468 0.459 0.390 0.417 0.408 0.415 0.292 0.331
PatchTST 0.171 0.270 0.397 0.275 0.224 0.261 0.429 0.436 0.351 0.395 0.349 0.381 0.256 0.314

TimeMixer 0.185 0.284 0.410 0.279 0.226 0.264 0.427 0.441 0.350 0.397 0.356 0.380 0.258 0.318
iTransformer 0.163 0.258 0.397 0.281 0.232 0.270 0.439 0.448 0.370 0.403 0.361 0.390 0.269 0.327

L
ig

ht
w

ei
gh

tM
od

el
s

DLinear 0.167 0.264 0.428 0.287 0.242 0.295 0.430 0.443 0.470 0.468 0.356 0.378 0.259 0.324
FITS 0.168 0.265 0.429 0.302 0.244 0.281 0.408 0.427 0.335 0.386 0.357 0.377 0.254 0.313

SparseTSF 0.165 0.258 0.412 0.278 0.240 0.280 0.406 0.419 0.344 0.364 0.361 0.382 0.251 0.312
CycleNet 0.158 0.250 0.421 0.289 0.242 0.278 0.415 0.426 0.355 0.398 0.355 0.379 0.252 0.309

CMoS 0.158 0.250 0.396 0.271 0.220 0.260 0.403 0.416 0.331 0.383 0.354 0.378 0.259 0.316
STD ±0.001 ±0.001 ±0.001 ±0.001 ±0.002 ±0.002 ±0.004 ±0.003 ±0.003 ±0.002 ±0.003 ±0.003 ±0.004 ±0.004

Electricity , Traffic, Weather, ETTh1, ETTh2, ETTm1, and
ETTm2. More details of datasets are listed in Appendix D.1.

Baselines. We compare CMoS with several well-known and
state-of-the-art methods, including Informer (Zhou et al.,
2021), FedFormer (Zhou et al., 2022), TimesNet (Wu et al.,
2023), PatchTST (Nie et al., 2023), TimeMixer (Wang et al.,
2024), iTransformer (Liu et al., 2024a), and lightweight
models like DLinear (Zeng et al., 2023), FITS (Xu et al.,
2024), SparseTSF (Lin et al., 2024b), and CycleNet (Lin
et al., 2024a). More implementation details about baselines
are provided in Appendix D.4.

Experimental Settings. Following previous lightweight
methods like FITS and SparseTSF, we conduct a grid search
on the lookback window of 96, 336, 720. For each set-
ting, the results of CMoS are averaged over 5 runs with
random seeds. More setting details about CMoS are listed
in Appendix D.3.

4.2. Main Results

Table 1 presents a comprehensive comparison of prediction
results between CMoS and other baseline models across
multiple datasets. Overall, CMoS demonstrates superior
predictive performance, achieving state-of-the-art results
on the majority of benchmarks, ranking first in 9 out of 14
evaluation metrics and second in 3 metrics. It is noteworthy
that CMoS consistently achieves optimal results on datasets
containing more than 20 channels (Eletricity, Traffic, and
Weather). Interestingly, on these datasets, for methods em-
ploying the channel independence strategy, complex models
(PatchTST, TimeMixer, iTransformer) generally outperform
the simpler models by a significant margin. The reason
lies in that under this strategy, the representation capacity

of complex models is sufficient enough, while lightweight
models are limited to modeling only one temporal struc-
ture (e.g., spatial correlation). As a result, they struggle to
effectively handle multiple time series with varying tempo-
ral structures at the same time. Owing to the mixture of
correlations mechanism, CMoS is able to deal with vari-
ous temporal structures inherent in numerous time series
samples, and even surpasses the prediction performance of
complex models.

Furthermore, CMoS exhibits remarkable stability in perfor-
mance across varying random seed initializations, which
can be attributed to the minimal parameter count and multi-
ple robustness-enhancing strategies, particularly the Chunk-
wise Modeling and Periodicity Injection mechanisms. The
combined effect of these design choices notably contributes
to the model’s reproducibility and practical deployment ca-
pabilities.

4.3. Ablation Study

We validate the effectiveness of each technique in CMoS
through multiple ablation studies as follows.

Effectiveness of Chunk-wise Correlation Modeling. To
investigate the effectiveness of chunk-wise modeling against
point-wise modeling, we compare the prediction perfor-
mance of CMoS and its variant, CMoS w/o Chunk, imple-
mented by setting the chunk size to 1. Even though the
parameter size of models using chunk-wise modeling is typ-
ically only one-tenth to one-hundredth of that of models
using point-wise modeling, according to Table 2, the former
outperforms the latter in terms of prediction performance
on the majority of datasets, and the improvement is par-
ticularly notable on the ETT-series datasets which exhibit
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higher noise levels. This suggests that chunk-wise correla-
tion modeling is an approach with both greater parameter
efficiency and robustness.

Effectiveness of Correlation Mixing. To evaluate the im-
pact of the Correlation Mixing mechanism, we implement a
variant of CMoS by restricting the number of spatial corre-
lation matrices to one (CMoS w/o Correlation Mixing). In
this simplified configuration, all channels are constrained
to share a single spatial correlation, which is equivalent to
adopting the channel independence strategy. Our experi-
mental results demonstrate that this restriction significantly
impacts model performance. Consistent with our compre-
hensive comparison against other lightweight models pre-
sented in Sec. 4.2, CMoS with Correlation Mixing exhibits
substantial performance advantages over its variants, and
this superiority is especially pronounced in datasets contain-
ing more channels (achieving remarkable improvements of
up to 17.5% on the Weather dataset). These results provide
compelling evidence for the effectiveness of our correlation
mixing strategy and its crucial role in representing various
temporal structures while maintaining model efficiency.

Table 2. The MSE and MAE results of CMoS and its variants on
7 datasets with horizon = 96. CorMix is the abbreviation of
Correlation Mixing. The best results are highlighted in bold, and
the worst results are marked with *.

Variants CMoS w/o CorMix w/o Chunk

Metrics MSE MAE MSE MAE MSE MAE

Electricity 0.129 0.223 0.137∗ 0.231∗ 0.132 0.226
Traffic 0.367 0.256 0.385∗ 0.266∗ 0.368 0.259

Weather 0.144 0.193 0.171∗ 0.226∗ 0.147 0.203
ETTh1 0.361 0.383 0.362 0.385 0.368∗ 0.393∗

ETTh2 0.274 0.341 0.276 0.338 0.280∗ 0.344∗

ETTm1 0.292 0.345 0.308 0.349 0.288 0.340
ETTm2 0.167 0.257 0.168 0.257 0.170∗ 0.262∗

Effectiveness of Periodicity Injection. The implemen-
tation of Periodicity Injection enables the model to more
efficiently learn spatial correlations associated with primary
periodic patterns, resulting in substantial improvements in
the speed of loss reduction, as shown in Fig.5.

Furthermore, this mechanism provides strong prior knowl-
edge about periodic structures, allowing the remaining pa-
rameters to concentrate on capturing secondary periodici-
ties and non-periodic components of the time series. This,
as shown in Table 3, can potentially enhance overall per-
formance in most cases. However, from the experimental
results, we observe an exception in the Weather dataset.
Unlike other datasets that are dominated by human activ-
ities and are highly correlated with human-made cyclical
patterns, the Weather dataset is derived from natural phe-
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(a) Electricity.
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Figure 5. Test loss during training process on different datasets
with horizon= 96. PI is the abbreviation of Periodicity Injection.
The model with Periodicity Injection exhibits faster loss reduction.

nomena and is influenced by more random and complex
factors. As a result, the periodicity of most metrics in this
dataset is either not imprecise or not significant. Therefore,
for such datasets, Periodicity Injection may have a negative
impact. In practice, we recommend using this strategy only
when significant and stable periodicity exists in the majority
of the time series.

Table 3. The MSE results of CMoS with Periodictiy Injection and
w/o Periodicity Injection.

Electricity Traffic Weather ETTh1 ETTh2 ETTm1 ETTm2

with PI 0.129 0.367 0.148 0.361 0.274 0.292 0.167
w/o PI 0.130 0.369 0.144 0.366 0.292 0.293 0.170

4.4. Effectiveness and Efficiency

Figure 6. Comparison of the prediction performance and parameter
count between CMoS and other baselines on Electricity dataset
with horizon= 192.

A key advantage of CMoS lies in its ability to achieve su-
perior predictive performance with remarkably few param-
eters. As demonstrated in our experimental results on the
Electricity dataset in Fig. 6, CMoS achieves state-of-the-
art prediction accuracy while utilizing only a fraction of
the parameters required by most existing lightweight mod-
els - even one to two orders of magnitude fewer. This
demonstrates that our modeling approach, combining spa-
tial correlation modeling and correlation mixing, though
concise, effectively captures temporal structures in forecast-
ing tasks. This reveals the potentially inherent low-rank
nature of time series prediction. Furthermore, such a com-
pact parametrization enables CMoS to be readily deployed

7
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on edge devices, enabling high-quality time series forecast-
ing even in resource-constrained environments. Meanwhile,
to further verify the efficiency of CMoS in practice, we
provide the inference FLOPs, GPU memory footprint, and
inference time of CMoS and other baselines on Electricity
dataset on our platform in Appendix C.3.

5. Interpretability
In the CMoS model, each weight θi,j in the spatial correla-
tion matrix θ directly reflects the strength of the relationship
between the corresponding historical chunk and the pre-
dicted chunk. A larger value of θi,j in the matrix indicates
that the model places greater emphasis on the i-th histori-
cal chunk when predicting the j-th future chunk. To gain
deeper insights into the model’s ability to learn and capture
these spatial correlations, as shown in Fig. 7, we visualize
four spatial correlation matrices, which are also referred to
as correlation mappings, that are learned from the weather
dataset without periodicity injection.

Figure 7. Visualization of the learned spatial correlation matrices
(mappings) on the Weather dataset. The chunk size is set to 4.

The visualization analysis reveals that each spatial correla-
tion mapping captures and emphasizes distinct patterns of
temporal dependencies, which can help understand the in-
herent patterns of the whole system. We explain the features
of each mapping one by one:

Mapping 2. Under the setting with a chunk size of 4, the
weights in Mapping 2 exhibit a very distinct diagonal stripe
pattern at the tail end, where each weight θi,j on this stripe
roughly satisfies the condition 180−i+j = 36. Considering
that the weather dataset is sampled every ten minutes (6×
24/4 = 36 chunks per day), this stripe indicates that the
predicted chunk is highly dependent on the historical data
from the same chunk one day prior. In other words, Mapping
2 primarily models the short-term dependency between the
predicted value and its observation from the previous day.

Mapping 3. In contrast, the larger weights in Mapping
3 are almost entirely concentrated at the very end of the
matrix. This indicates that the mapping models very short-
term dependencies, relying heavily on observations from
the past hour or even the last few minutes during prediction.
This is a more effective forecasting strategy for time series
where long-term trends are unpredictable but short-term
trends remain relatively stable.

Mapping 4. Mapping 4, on the other hand, exhibits sev-
eral noticeable diagonal stripes near the beginning of the
matrix, suggesting that the prediction of a particular chunk
depends more on data from other chunks observed a long
time ago. Therefore, Mapping 4 models long-term depen-
dencies, which are likely to be more prominent in time series
with strong and stable periodic features.

Mapping 1. The weights in Mapping 1 are distributed
relatively evenly, without showing very strong or specific
dependencies. We hypothesize that the model uses Mapping
1 to capture finer-grained dependencies that other mappings
overlook, namely residual dependencies.

To further explore how the model combines these founda-
tional correlations to perform prediction on each channel,
we visualize the original time series along with the average
mapping allocation situation corresponding to each time
series as shown in Fig. 8 (for all cases please refer to Ap-
pendix H). As previously discussed, Channel 1 exhibits slow
and unpredictable trend variations, prompting the model to
exclusively utilize Mapping 3 to capture very short-term
dependencies. Channel 3 also exhibits some slow trends,
but a peak occurs every other day, and the shape of the
peak is more similar to that of nearby peaks. Consequently,
the model primarily combines Mapping 2 and Mapping 3
to jointly model the very short-term and cross-day depen-
dencies. Channel 4 demonstrates more distinct periodic
characteristics, leading the model to additionally leverage
the long-term dependencies captured in Mapping 4 to en-
hance prediction performance and robustness.

Figure 8. Raw time series and their corresponding averaged map-
ping allocation proportion.
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6. Conclusion
In this paper, we propose a super-lightweight time series
forecasting model CMoS, which directly builds the spatial
correlation within different time series chunks. To enhance
the model’s capacity to model varying temporal structures,
we propose the Correlation Mixing strategy to adaptively
combine the foundational correlations for one specific chan-
nel. Also, we introduce the Periodicity Injection trick to
accelerate the convergence. The experimental results show
that CMoS achieves top-tier prediction performance with
an extremely limited number of parameters. Additionally,
our further analysis demonstrates that the model has excel-
lent interpretability, which helps us better understand the
underlying patterns of the system.
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A. CMOS Circuit & Our CMoS Model
The design of our model, which coincidentally shares the CMoS nomenclature, partly draws some inspiration from CMOS
(Complementary Metal-Oxide-Semiconductor) circuits. There exists an interesting parallel between the two: just as CMOS
circuits dynamically switch their outputs between VDD (high voltage level) and GND (ground level) in response to varying
input signals, our model adaptively combines different spatial correlations in response to various channels within the
lookback window, as shown in Fig. 9.

(a) The logic of CMOS circuits (take the NOT gate as
an example).

(b) The logic of our CMoS model.

Figure 9. The logical similarity between CMOS circuits and CMoS model.

B. More Information about Channel Strategy
B.1. Classification of Channel Strategies

We summarize the channel strategies that existing methods applied as follows (and shown in Fig. 10):

• Private Line. This strategy is adopted by some methods that decompose multivariate time series forecasting task
to multiple univariate time series forecasting tasks (Box & Pierce, 1970; Oreshkin et al., 2020). In this mode, each
channel is modeled completely separately, with each channel having its own dedicated network. For a dataset with N
channels, this results in a model complexity of O(N), and may suffer from overfitting since the training data of each
network is not enough.

• One Bus. This strategy is also called Channel-Independence in several works (Nie et al., 2023; Liu et al., 2024b;
Goswami et al., 2024; Lin et al., 2024b). Each channel can only receive past information from its own, and all channels
share only one temporal structure. Although this strategy is claimed to be able to avoid overfitting since the network
is trained with more data, a unified structure may struggle to handle the diverse temporal structures when faced with
different time series from the same system.

• Data-Mixing. This strategy, adopted by several recent works (Zhang & Yan, 2023; Chen et al., 2023; Liu et al.,
2024a; Han et al., 2024), assumes that data from the other channels can benefit the predictions for one specific channel.
However, this will result in the model complexity of O(N2) for building cross-channel dependencies, making it a
cumbersome solution that is not suitable for many cases, especially for edge devices.

• Correlation-Mixing. This strategy is proposed by CMoS. We posit that channel dependencies manifest through similar
spatial correlations across different channels. By mixing K (K ≪ N ) fundamental correlations, we can derive the
unique temporal structure for each channel while maintaining great parameter efficiency.

Table 4 shows the model complexity when using different channel strategies with the same backbone (assuming the
complexity of the backbone is constant C) on a dataset containing N channels.

B.2. Experimental Results on Different Channel Strategy

We further compare CMoS with its variants under these channel strategies by removing or rewriting the correlation mixing
module. For the data-mixing strategy, since the model with complexity of O(CN2) exceeds the GPU memory limit when the
number of channels is large (more than 100), for comprehensive analysis, we chose TSMixer, a model based on Multilayer
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Figure 10. Illustration of different channel strategies.

Table 4. The model complexity under different channel strategies. The complexity of the backbone is constant C, and the number of
channel is N .

Strategy Private Line One Bus Data Mixing Correlation Mixing

Complexity O(CN) O(C) O(CN2) O(CK),K ≪ N

Perceptron (MLP) architecture that incorporates simplified data mixing techniques (the model’s parameter count is still
several hundred times that of CMoS), as our benchmark model under data-mixing strategy. Table 5 includes the forecasting
results under all channel strategies. One Bus strategy, as mentioned above, will limit the capacity of the model, while
the Private Line strategy will limit the number of training samples for each separate network, both would degrade the
performance. Although the Data Mixing strategy brings heavy complexity, its performance still does not surpass that of
CMoS. We will discuss this intriguing phenomenon in the next section.

Table 5. Predicition performance under different channel strategies. All datasets include > 20 channels.

Strategy Private Line One Bus Data Mixing Correlation Mixing

Metric MSE MAE MSE MAE MSE MAE MSE MAE

Electricity 0.135 0.229 0.137 0.231 0.131 0.229 0.129 0.223
Traffic 0.399 0.281 0.385 0.266 0.376 0.264 0.367 0.256

Weather 0.148 0.206 0.171 0.226 0.147 0.203 0.144 0.193

B.3. Cross-channel Dependency from the Perspective of Information Theory

Contrary to the assumption of Data Mixing strategy that building cross-channel needs additional modules compared with
models using Private Line strategy, from the perspective of information theory, we believe that cross-channel dependencies
should not lead to an increase in model complexity, but rather provide greater opportunities for model compression.
Consider the Shannon Entropy for the i-th channel H(Xi) = −

∑
P (xi) logP (xi) , the Shannon Entropy for the j-th

channel H(Xj) = −
∑

P (xj) logP (xj), and their joint entropy H(Xi, Xj) = −
∑∑

P (xi, xj) logP (xi, xj). The
existence of cross-channel dependency means that Xi provides some information for Xj . Under the information theory
framework, this means the mutual information I(Xi, Xj) of the two channels is greater than 0. Since I(Xi, Xj) =
H(Xi) +H(Xj)−H(Xi, Xj), we have H(Xi, Xj) < H(Xi) +H(Xj) if the cross-channel independency exists. The
Private Line strategy can be seen as a modeling of

∑
H(Xi). Therefore, in the presence of cross-channel dependencies,

we assume that fewer parameters are required to model the mapping from the historical window to the prediction
window, as the joint information entropy of the data H(X1, . . . , XN ) is smaller than

∑
H(Xi).

C. More Results
C.1. Full Results Compared with Baselines

The full results compared with baselines with horizons ∈ {96, 192, 336, 720} are shown in Table 6. Compared to all
state-of-the-art methods, CMoS maintains top-2 prediction accuracy in most settings.
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Table 6. The full prediction performance of CMoS and baselines on long-term multivariate time series forecasting task with horizons
∈ {96, 192, 336, 720}. The best result is highlighted in bold and the second best is highlighted with underline. The results of CMoS are
averaged over 5 runs on each horizon.

Datasets Electricity Traffic Weather ETTh1 ETTh2 ETTm1 ETTm2

Metrics MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

H
or
iz
on

=
96

Informer 0.215 0.321 0.682 0.391 0.206 0.253 0.715 0.571 0.362 0.394 0.419 0.422 0.216 0.302
FedFormer 0.191 0.305 0.593 0.365 0.175 0.242 0.379 0.419 0.337 0.380 0.463 0.463 0.216 0.309
TimesNet 0.169 0.271 0.595 0.312 0.168 0.214 0.389 0.412 0.334 0.370 0.340 0.378 0.189 0.265
PatchTST 0.143 0.247 0.370 0.262 0.149 0.196 0.377 0.397 0.274 0.337 0.289 0.343 0.165 0.255

TimeMixer 0.153 0.256 0.369 0.256 0.147 0.198 0.372 0.401 0.281 0.351 0.293 0.345 0.165 0.256
iTransformer 0.134 0.230 0.363 0.265 0.157 0.207 0.386 0.405 0.297 0.348 0.300 0.353 0.175 0.266

DLinear 0.140 0.237 0.395 0.275 0.170 0.230 0.379 0.403 0.300 0.364 0.300 0.345 0.164 0.255
FITS 0.139 0.237 0.400 0.280 0.172 0.225 0.376 0.396 0.277 0.345 0.303 0.345 0.165 0.254

SparseTSF 0.138 0.233 0.389 0.268 0.169 0.223 0.362 0.388 0.294 0.346 0.312 0.354 0.163 0.252
CycleNet 0.129 0.223 0.397 0.278 0.167 0.221 0.374 0.396 0.279 0.341 0.299 0.348 0.160 0.247

CMoS 0.129 0.223 0.367 0.256 0.144 0.193 0.361 0.383 0.274 0.341 0.292 0.345 0.167 0.257

H
or
iz
on

=
19

2

Informer 0.263 0.362 2.802 1.275 0.261 0.300 0.726 0.574 0.460 0.448 0.547 0.480 0.320 0.365
FedFormer 0.203 0.316 0.614 0.381 0.274 0.344 0.420 0.444 0.415 0.428 0.575 0.516 0.297 0.360
TimesNet 0.180 0.280 0.613 0.322 0.219 0.262 0.440 0.443 0.404 0.413 0.392 0.404 0.254 0.310
PatchTST 0.158 0.260 0.386 0.269 0.191 0.239 0.409 0.425 0.348 0.384 0.329 0.368 0.221 0.293

TimeMixer 0.168 0.269 0.400 0.271 0.192 0.243 0.413 0.430 0.349 0.387 0.335 0.372 0.225 0.298
iTransformer 0.154 0.250 0.384 0.273 0.200 0.248 0.424 0.440 0.372 0.403 0.341 0.380 0.242 0.312

DLinear 0.154 0.250 0.407 0.280 0.216 0.275 0.427 0.435 0.387 0.423 0.336 0.366 0.224 0.304
FITS 0.149 0.248 0.412 0.288 0.215 0.261 0.400 0.418 0.331 0.379 0.337 0.365 0.219 0.291

SparseTSF 0.151 0.244 0.398 0.270 0.214 0.262 0.403 0.411 0.339 0.377 0.347 0.376 0.217 0.290
CycleNet 0.144 0.237 0.411 0.283 0.212 0.258 0.406 0.415 0.342 0.385 0.334 0.367 0.214 0.286

CMoS 0.142 0.236 0.379 0.261 0.186 0.237 0.405 0.409 0.333 0.383 0.334 0.366 0.228 0.299

H
or
iz
on

=
33

6

Informer 0.334 0.416 0.881 0.496 0.309 0.332 0.741 0.588 0.454 0.464 0.654 0.531 0.400 0.414
FedFormer 0.221 0.333 0.627 0.389 0.331 0.374 0.458 0.466 0.389 0.457 0.618 0.544 0.366 0.400
TimesNet 0.204 0.293 0.626 0.332 0.278 0.302 0.523 0.487 0.389 0.435 0.423 0.426 0.313 0.345
PatchTST 0.168 0.267 0.396 0.275 0.242 0.279 0.431 0.444 0.377 0.416 0.362 0.390 0.276 0.327

TimeMixer 0.189 0.291 0.407 0.272 0.247 0.284 0.438 0.450 0.367 0.413 0.368 0.386 0.277 0.332
iTransformer 0.169 0.265 0.396 0.277 0.252 0.287 0.449 0.460 0.388 0.417 0.374 0.396 0.282 0.337

DLinear 0.169 0.268 0.417 0.286 0.258 0.307 0.440 0.440 0.490 0.487 0.367 0.386 0.277 0.337
FITS 0.170 0.268 0.426 0.301 0.261 0.295 0.419 0.435 0.350 0.396 0.368 0.384 0.272 0.326

SparseTSF 0.166 0.260 0.411 0.275 0.257 0.293 0.434 0.428 0.359 0.307 0.367 0.386 0.270 0.327
CycleNet 0.161 0.254 0.424 0.289 0.260 0.293 0.431 0.430 0.371 0.413 0.368 0.386 0.269 0.322

CMoS 0.161 0.254 0.397 0.270 0.240 0.281 0.412 0.420 0.342 0.384 0.366 0.386 0.273 0.325

H
or
iz
on

=
72

0

Informer 0.502 0.525 3.225 1.302 0.390 0.388 0.772 0.623 0.410 0.454 0.715 0.578 0.512 0.468
FedFormer 0.259 0.364 0.646 0.394 0.423 0.418 0.474 0.488 0.483 0.488 0.612 0.551 0.459 0.450
TimesNet 0.206 0.293 0.635 0.340 0.353 0.351 0.521 0.495 0.434 0.448 0.475 0.453 0.413 0.402
PatchTST 0.214 0.307 0.435 0.295 0.312 0.330 0.457 0.477 0.406 0.441 0.416 0.423 0.362 0.381

TimeMixer 0.228 0.320 0.462 0.316 0.318 0.330 0.486 0.484 0.401 0.436 0.426 0.417 0.360 0.387
iTransformer 0.194 0.288 0.445 0.308 0.320 0.336 0.495 0.487 0.424 0.444 0.429 0.430 0.375 0.394

DLinear 0.203 0.300 0.454 0.308 0.324 0.367 0.473 0.494 0.704 0.597 0.419 0.416 0.371 0.401
FITS 0.212 0.304 0.478 0.339 0.326 0.341 0.435 0.458 0.382 0.425 0.420 0.413 0.359 0.381

SparseTSF 0.205 0.293 0.448 0.297 0.321 0.340 0.426 0.447 0.383 0.424 0.419 0.413 0.352 0.379
CycleNet 0.198 0.287 0.450 0.305 0.328 0.339 0.450 0.464 0.426 0.451 0.417 0.414 0.363 0.382

CMoS 0.200 0.288 0.442 0.295 0.311 0.332 0.433 0.451 0.374 0.423 0.425 0.417 0.367 0.385
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C.2. Parameter Sensitivity

We conduct experiments to investigate the impact of the hyperparameters chunk size and the number of spatial correlation
matrices on the final prediction performance. Fig. 11a demonstrates the prediction results with different chunk sizes. Since
the main period in the Electricity dataset is 24× 7 = 168, when the chunk size is set to 16 which is not a common factor of
the period, the MSE increases greatly. In practice, setting the chunk size as a common divisor of the potential periods would
be a better strategy for CMoS.

Fig. 11b demonstrates the prediction results with different numbers of spatial correlation matrices. For the Electricity
dataset which contains over 100 channels, when the number is small (1 and 2), the model fails to capture sufficient
temporal dependencies, leading to suboptimal performance. However, more matrices bring more parameter count and
more computational cost, and may lead to the network becoming overly sparse, which might also slightly affect the overall
performance. Therefore, for datasets with a medium or large number of channels, it would be a better choice when the
number of spatial correlation matrices is set to an integer between 4 and 8.
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(a) MSE results with varied chunk size.
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(b) MSE results with the varied number of spatial correlation
matrices.

Figure 11. MSE results on Electricity dataset with multiple hyperparameter settings. The horizon is set to 96.

C.3. Inference Efficiency

We additionally provide the inference FLOPs, GPU memory footprint, and inference time of CMoS and other baselines on
Electricity dataset using a 3090 GPU as follows. The batch size of all methods is set to 64 for fair comparison.

Table 7. The inference FLOPs, GPU memory footprint, and inference time of CMoS and other baselines on Electricity dataset using one
3090 GPU.

Method DLinear CycleNet SparseTSF FITS iTransformer PatchTST TimeMixer CMoS

FLOPS 5.31G 5.68G 1.02G 5.33G 249.51G 1196.08G 10.58G 2.96G
GPU Memory 245MB 267MB 262MB 691MB 2271MB 22014MB 18642MB 252MB
Inference Time 1.81s 1.83s 1.49s 4.71s 1.92s 2.90s 2.85s 1.58s

D. Detailed Experimental Settings
D.1. Datasets

We train and test all methods on 7 well-known datasets that are widely used for long-term forecasting: Electricity, Traffic,
Weather, ETTh1, ETTh2, ETTm1, and ETTm2. Since Christoph Bergmeir (2024) strongly questioned the reasonability of
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another dataset called Exchange rate on the NIPS’24 workshop, we excluded this dataset from our experiments. The number
of time steps, number of channels, sample rate, the period obtained by AutoCorrelation Function, and the description of
each dataset are listed in Table 8. Following most previous works (Zhou et al., 2022; Nie et al., 2023; Xu et al., 2024; Lin
et al., 2024a), the ETT-series datasets are divided into training, validation, and test sets with a 6:2:2 ratio, while others are
divided into training, validation, and test sets with a 7:1:2 ratio.

Table 8. The detailed information of datasets.

Datasets Time steps Channels Sample rate Period
obtained by ACF Description

Electricity (2021) 26304 321 1 hour 168 Electricity consumption data of 321 clients

Traffic (2021) 17544 862 1 hour 168 Road occupancy rates measured by 862 sensors

Weather (2021) 52696 21 10 min 144 21 meteorological factors

ETTh1 (2021) 17420 7 1 hour 24 7 factors of electricity transformer

ETTh2 (2021) 17420 7 1 hour 24 7 factors of electricity transformer

ETTm1 (2021) 69680 7 15 min 96 7 factors of electricity transformer

ETTm2 (2021) 69680 7 15 min 96 7 factors of electricity transformer

D.2. Environment

All model instances in the paper are implemented with PyTorch (Paszke et al., 2019). We conducted all experiments on the
server equipped with 12 Intel(R) Xeon(R) Gold 5317 CPUs @ 3.00GHz and 4 NVIDIA GA102 GeForce RTX 3090 GPUs.
Each experiment is conducted with one GPU.

D.3. Implementation Details of CMoS

Due to the simplicity of CMoS, we only need to set a few hyperparameters. In our experiment, one set of hyperparameters is
searched for each dataset. The chunk size is searched from {2,4,8,24}, the number of spatial correlation matrices is searched
from {2,4,8}, and the lookback window is searched from {96,336,720}. We use the AdamW (Loshchilov & Hutter, 2019)
optimizer and the learning rate is searched from {2 × 10−5, 5 × 10−5, 8 × 10−5, 8 × 10−4}. We additionally adopt the
StepLR scheduler with stepsize = 20 and gamma = 0.75. Each model is trained for 200 epochs with batch size= 64.

D.4. Experimental Settings on other baselines

We reimplement CycleNet and SparseTSF according to their source code in https://github.com/lss-1138/
SparseTSF and https://github.com/ACAT-SCUT/CycleNet. TFB (Qiu et al., 2024) searches the lookback
window and other hyperparameters for all baselines, providing a comprehensive and reliable benchmark for these baselines.
Therefore, for other baselines included in the latest version of TFB, we directly refer to the prediction performance provided
by TFB.

E. Details of Periodicity Injection
E.1. Implementation Details of Periodicity Injection

For each dataset, firstly, we use the AutoCorrelation Function (ACF) to calculate the dominant period of this dataset (the
period of all datasets calculated by ACF are listed in the 5th column in Table 8 in Appendix D.1). Next, during the grid search
process for the hyperparameter chunk size, for each experiment setting, we input the the calculated and the hyperparameter
chunk size into Algorithm 1 provided in Appendix E.2, to obtain a modified matrix initialized via Periodicity Injection. This
matrix is then used to replace the first basic correlation matrix of the initialized model, thereby completing the Periodicity
Injection operation.

E.2. Pseudocode of Periodicity Injection
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Algorithm 1 Pseudocode of Periodicity Injection

Input: Zero-Initialized Spatial Correlation Matrix θ ∈ RH
S ×L

S , period p, chunk size S
for i = 1 to H

S do
for j = L

S − p
S to 1 with step p

S do
if i+ j < L

S then
θi,j+i =

p
L

end if
end for

end for
Return: Modified Matrix θ

F. Theoretical Proof of Theorem 3.2
Proof. To prove Theorem 3.2, we need to demonstrate that:(∑n

i=1 αiθi∑n
i=1 αi

)2

≤
n∑

i=1

θ2i (αi ≥ 0) (9)

Since αi ≥ 0, we have (
∑n

i=1 αi)
2 ≥

∑n
i=1 α

2
i . Thus, we have:(∑n

i=1 αiθi∑n
i=1 αi

)2

≤
(
∑n

i=1 αiθi)
2∑n

i=1 α
2
i

(10)

According to the Cauchy-Schwarz inequality, we have:

(

n∑
i=1

αiθi)
2 ≤

n∑
i=1

α2
i

n∑
i=1

θ2i (11)

Thus, we finally prove that: (∑n
i=1 αiθi∑n
i=1 αi

)2

≤
(
∑n

i=1 αiθi)
2∑n

i=1 α
2
i

≤
n∑

i=1

θ2i (αi ≥ 0) (12)

The equality holds if and only if at most one αi is non-zero (i ∈ {0, . . . , n− 1}). Therefore, the original theorem is proven.

G. Further Discussion
Although CMoS has demonstrate its superior prediction performance and efficiency on existing datasets, we further discuss
some theoretical aspects that are not yet fully developed.

Spatial Correlation Modeling. The premise of modeling spatial correlation is that the time series data exhibit certain
relatively stable patterns, including but not limited to local smoothness, periodicity, and long-term trends. For those irregular
time series, such as in the case of a time series generated by random walks, the effectiveness of this modeling approach has
yet to be fully validated. Nevertheless, it is notable that periodicity or stationary trend constitutes a fundamental indicator of
time series predictability and forecasting potential. Long-term forecasting can be very challenging if time series exhibit no
periodicity or stationary trend.

Extension of Theorem 3.2 Theorem 3.2 considers Gaussian noise, which is one of the most common and widely adopted
assumptions. For those Non-Gaussian noise, take the burst noise as an example, it can be viewed as extreme deviations that
occur in the tail of a noise distribution. So we can define burst noise B(t) mathematically as follows based on extreme value
theory. Let X(t) be a noise process. According to the Pickands–Balkema–de Haan theorem, the conditional distribution of
the exceedances events exceeding a sufficiently high threshold u follow a Generalized Pareto Distribution (GPD):

GPD(y;σ, ξ) = P (Y (t) ≤ y|X(t) > u) ≈ 1−
(
1 +

ξy

σ

)−1/ξ
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where y = x− u > 0, σ > 0 is the scale parameter, and ξ > 0 is the shape parameter.

Next, since the burst noise can be regarded as discrete events, we define their occurence times Ti follow a Poisson process
with intensity λ(u). So we can finally define burst noise B(t) as

B(t) = y + u, if t ∈ {Ti}, otherwise 0

where y is i.i.d. GPD(σ, ξ).

However, when we attempt to replace δ with B in Definition 3.1, we find it difficult to theoratically analyze V ar(θTB)
since B is sparse and thus V ar(θTB) relies heavily on specific samples of GPD.

As an alternative, we choose to experimentally compare the performance of chunk/point-level modeling on the time series
with random burst noise. Specifically, we construct several time series using sine functions, and following the above
formulation, we additionally inject some burst noises into all time series. The prediction results are listed in Table 9, and we
can conclude that chunk-level modeling is more robust than point-level modeling when facing burst noise, which can be
seen as an empirical extension of Theorem 3.2 on other non-Gaussian noise like burst noise.

Table 9. Prediction performance on time series with burst noise.

MSE MAE

Chunk-level 0.0246 0.1166
Point-level 0.0249 0.1176

H. Extended Visualization on the Weather Dataset
We provide more visualization on the Weather dataset to showcase more relationships between the raw time series and their
corresponding mapping allocation proportions. Fig. 12 provides visualizations of all the raw time series channels within a
long time window in the Weather dataset, and Fig. 13 provides visualizations of mapping allocation situation on all channels.
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Figure 12. Visualizations of all channels within a long time window in the Weather dataset.
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Figure 13. Visualizations of mapping allocation situation on all channels.
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