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Abstract: If a robot masters folding a kitchen towel, we would also expect it to
master folding a beach towel. However, existing works for policy learning that
rely on data set augmentations are still limited in achieving this level of general-
ization. We propose EquivAct which utilizes SIM(3)-equivariant network struc-
tures that guarantee out-of-distribution generalization across object translations,
3D rotations, and scales by construction. Our method first pre-trains a SIM(3)-
equivariant visual representation on simulated scene point clouds and then learns
a SIM(3)-equivariant visuomotor policy on top of the pre-trained visual represen-
tation using a small amount of source task demonstrations. In both simulation
and real robot experiments, we show that the learned policy directly transfers to
objects that substantially differ in scale, position, and orientation from the source
demonstrations. Website: https://equivact.github.io
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Figure 1: Our method takes a few example trajectories, demonstrated in a single source manipulation scenario,
and generalizes zero-shot to scenarios with unseen object visual appearances, scales, and poses.

1 Introduction

Given a few examples of how to solve a manipulation task, humans can extrapolate and learn to
solve variations of the same task where the objects involved have different visual or physical proper-
ties. Existing works in robot learning still require extensive data augmentation to make the learned
policies generalize to varied object scales, orientations, and visual appearances [1, 2, 3, 4, 5]. Even
then, augmentations do not guarantee generalization to unseen variations.

In this work, we focus on the problem of learning a visuomotor policy that can take a few example
trajectories from a single source manipulation scenario as input and generalize zero-shot to scenar-
ios with unseen object visual appearances, scales, and poses. In particular, we want the learned
policies to be capable beyond mere pick-and-place of rigid objects and also handle deformable and
articulated objects. Our insight is to add equivariance into both the visual object representation and
policy architecture, so that the learned policy generalizes to novel object positions, orientations, and
scales by construction. Although prior works have studied equivariant features for robot manipu-
lation [6, 7, 8, 9, 10], most of these works handle only pick-and-place-like tasks and are based on
open-loop policies that do not support sensory feedback during manipulation.
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We present EquivAct, a novel visuomotor policy learning method that can learn closed-loop policies
for 3D robot manipulation tasks from demonstrations in a single source manipulation scenario and
generalize zero-shot to unseen scenarios. Our method is composed of two phases: a representation
learning phase and a policy learning phase. In the representation learning phase, the agent is given
a set of simulated point clouds that are recorded from objects of the same category as the objects
in the target task but with a randomized non-uniform scaling. While the proposed architecture is
equivariant to uniform scaling, we need to augment the training data in this way to account for
non-uniform scaling. With the simulated data, we train a SIM(3)-equivariant [11] encoder-decoder
architecture that takes the scene point cloud as input and outputs the global and local features of
the input point cloud. In the policy learning phase, we assume access to a small set of demonstrated
trajectories of the task. With the demonstration data, we train a closed-loop policy that takes a partial
point cloud of the scene as input, uses the pre-trained encoder from the representation learning phase
to obtain the global and local features of the input point cloud, and then passes the features through
a SIM(3)-equivariant action prediction network to predict end-effector movements.

We evaluate our method in three challenging tasks that go beyond the typical rigid object manipu-
lation tasks of prior work [6, 7, 8, 9, 10]: cloth folding, object covering, and box closing (see Fig.
1). We show that our approach can successfully learn a closed-loop robot manipulation policy from
the source manipulation demonstrations, and complete the target task zero-shot without any further
adaptation.

2 Method

2.1 Preliminaries

Figure 2: Representation learning pipeline.

SIM(3)-equivariance. Given a function f
which takes a point cloud X ∈ RN×3 as input,
we say it is SIM(3)-equivariant if for any 3D
rigid transformation T = (R, t, s) ∈ SIM(3)
with rotation R, translation t, and scale s, the
output of f transforms coherently with the in-
put, that is f(TX) = Tf(X). For the least
trivial rotation component R of T, [12] intro-
duces a framework called Vector Neurons (VN)
for constructing rotation-equivariant point cloud networks. With the vector neuron building block,
[11] then builds a SIM(3)-equivariant shape encoding using implicit representations. Given a partial
point cloud X, a VN encoder Φ encodes the input into a latent code Θ = Φ(X) comprised of four
components Θ = (ΘR,Θinv,Θc,Θs). Here, ΘR ∈ RC×3 is a rotation equivariant latent representa-
tion, Θinv ∈ RC is an invariant latent representation, scalar Θs ∈ R represents object scale, and 3D
vector Θc ∈ R3 represents the object centroid. More details of the encoder network can be found
in [11]. The latent code can be decoded by an implicit decoder Ψ(x; Θ) that takes a query position
x ∈ R3 as input and outputs a per-point feature z(x).

Problem formulation. An agent is given a set of demonstrations Ddemo = {τn}Ndemo
n=1 . Each demon-

stration τi consists of a sequence of transition tuples {(ot, at)}Tt=1, where ot = (Xt, {ye
t}Ee=1) is an

observation that includes a point cloud of the scene Xt and the poses of all end-effectors {ye
t}Ee=1,

and at is an action that consists of velocity and gripper commands for all end-effectors. We train a
policy π(a|o) from the demonstrations to take an observation as input and output an action a. We
then deploy the learned policy in a setup with an unseen object out of the distribution of objects in
Ddemo and is evaluated on the final reward of completing that target task.

2.2 Learning SIM(3)-equivariant 3D Visual Representations from Simulation Data

The first step of our method involves training a 3D representation for the objects involved in the
manipulation task (illustrated in Fig. 2). We assume access to a dataset D = {(Xi ∈ RN×3,Mi ∈
RM×3)}LD

i=1 containing point clouds of simulated scenes that include the objects of interest. In each
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Figure 3: Results for simulation experiment. In all three manipulation tasks, our method outperforms prior
methods that rely on augmentations to achieve generalization or utilize non-equivariant visual representations.

sample, we record the partial point cloud of the scene unprojected from one camera view Xi and the
ground-truth mesh of the objects in the scene Mi. We train the visual representation using a con-
trastive loss similar to [13]. More specifically, we sample a simulated data pair of object point clouds
(X1,M1) and (X2,M2) where two different object instances share a similar pose, articulation, or
deformation. Then, we aim to learn per-point features {z(m1

i )}Mi=1 and {z(m2
i )}Mi=1 at ground-truth

mesh points. Since we know the two ground-truth meshes have one-to-one correspondences, we
know that z(m1

i ) and z(m2
i ) correspond to the same points on the mesh and should have similar

latent features. We then apply a PointInfoNCE loss [13] to train the latent representation.

2.3 Learning Generalizable Visuomotor Policies with SIM(3)-equivariant Architecture

Figure 4: Policy learning architecture.

After the representation learning phase, we freeze
the encoder Φ and learn an action prediction head
on top of the learned feature representation with a
small number of human demonstrations.

The policy learning architecture is illustrated in Fig.
4. Given input observation o = (X, {ye}Ee=1), our
policy π first passes the input point cloud through
the encoder Φ to obtain global feature ΘR and per-point features {V(xi)}Ni=1 of the input scene
point cloud. Then, the policy architecture is split into two branches. The offset prediction branch
takes the local features as input and passes them through 3 VN layers to produce a velocity map
{v̂i}Ni=1, which corresponds to the predicted velocity of the end-effector if the end-effector is close
to the point location. The gripper action prediction branch takes the global feature as input and
passes it through 3 VN layers different from the ones in the offset prediction branch to produce a
binary gripper open/close prediction for each end-effector {ĝe}Ee=1. During inference, we find for
each end-effector e ∈ {1, . . . , E} a point xke on the point cloud that is closest to the end-effector
position ye and then use the velocity map output of that position v̂ke

as the predicted velocity of
the corresponding end-effector. The predicted end-effector velocity and gripper action predictions
are then concatenated to form the output action â = ({v̂ke

}Ee=1, {ĝe}Ee=1). We use a multi-part loss
function that supervises the velocity predictions and the gripper control predictions of the policy
separately. can be found in the appendix.

3 Experiments

3.1 Comparisons

We compare our method with several baselines, as described below. (1) PointNet+BC: a baseline
behavior cloning (BC) algorithm that trains a neural network architecture, which takes a partial
point cloud of the scene as input, encodes the input with a PointNet [14], concatenates the point
cloud feature with robot proprioception, and then passes the concatenated vector through an MLP
to predict robot actions. Since this baseline does not have a representation learning phase, it only
uses the source task demos and does not utilize simulated data. (2) PointNet+BCaug: a variation
of PointNet+BC that augments the demonstration data on object pose and scale, aiming to make
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test-time scenarios ‘in distribution’ with respect to the augmented data. The total amount of data
used after augmentation equals the amount of data used in our method. (3) PointContrast+BC: this
baseline first trains a latent representation of the 3D scene with PointContrast [13], and then learns
an MLP that takes the learned features and robot proprioception as input to predict robot actions.

3.2 Simulation Experiments

Figure 5: Demonstrations for simulation (left) and
real robot (right) experiments.

Tasks. We evaluate our method on three robot
manipulation tasks involving deformable and
articulated objects: cloth folding, object cover-
ing, and box closing. More details about these
tasks can be found in the appendix.

Evaluation. We test our policy in four different
setups. The ID setup places and sizes the object
the same as the demonstrated scenario; the Rot setup randomizes the rotation of the object while
keeping the object scale constant; the Scale setup randomizes the non-uniform scale of the object
between 1× and 2× while keeping the change of aspect ratio within 1 : 1.33 (shortest vs. longest
dimensions) and keeping the object in a canonical pose; while the Rot+Scale setup randomizes both
the rotation and non-uniform scaling of the object. Note that except for the ID setup, all other setups
test the out-of-distribution performance of the trained policy. We measure the performance of a task
using a task-specific reward function scaled between 0 to 1. See the appendix for more details.

Figure 6: Results of deploying the policy on hard-
ware. We deploy our learned policies to a mobile
robot platform to manipulate target objects that are
at least 6 times larger than the demonstrated objects.
Even with such a large difference between source and
target domains, our policy can zero-shot generalize to
the target objects and can successfully finish the task.

Results. We present the simulation experiment
results in Fig. 3. In the ID evaluation setup, all
methods exhibit good performance. In the other
three setups, the two PointNet+BC baselines dis-
play a significant performance drop. Even af-
ter adding augmentations in PointNet+BC+Aug,
the baseline is still not able to recover the in-
distribution performance for any of the three
tasks. Similarly, the PointContrast+BC baseline
performs well in the Rot setup but struggles to
achieve good performance in the evaluation se-
tups that involve scaling. Our method, in compar-
ison, could achieve good performance in all out-
of-distribution setups, displaying a minor perfor-
mance drop compared to the ID setup.

3.3 Real Robot Experiments

To illustrate the effectiveness of our method in the real world, we qualitatively test it in a mobile
manipulation setup. More details can be found in the appendix and our website. In all three tasks,
our method extrapolates from tabletop-scale demonstrations and successfully manipulates objects
that are up to 6× larger in size. We further demonstrate the robustness of our method by varying
the position, rotation, scale, and appearance of the objects in the task (see Fig. 6). Our qualitative
evaluations show that our method can robustly generalize to all these variations of the task.

4 Conclusion and Future Work

We presented EquivAct, a visuomotor policy learning method that learns generalizable close-loop
policies for 3D manipulation tasks. We showed that our method successfully generalizes from a
small set of source demonstrations to a diverse set of different target scenarios in both simulation
and real robot experiments. Extending our method to use large demonstration datasets to build a
versatile multi-task equivariant policy is a promising direction for future work.
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5 Appendix

5.1 Visualization of Learned Visual Representations

In Figure 7, we visualize the per-point features learned by the first phase of our method. In the figure,
the encoder features are equivariant vector-valued features on the partial point cloud observations,
and the visualizations are done on their invariant components (channel-wise 2-norms). The decoder
features are invariant scalar-valued features on the complete objects. The RGB values are computed
via PCA within each task. All point clouds are aligned to the canonical pose for visualization.

Figure 7: Visualizations of per-point features. Top two rows: Objects of different shapes viewed from dif-
ferent camera angles but at the same poses. Both encoder and decoder features show strong correspondences
within each state due to the contrastive learning. Bottom row: Objects from a different state. The features
become different from the above rows.

5.2 Training Details

Loss function of the policy learning phase. We use a loss function that consists of two parts for
training the policy. To supervise the outputs of the velocity map, we want to apply a loss term on
every point on the point cloud. However, points that are located farther away from any end-effector
in the demonstration should receive less supervision than points closer to one of the end-effectors.
To achieve this, we weight the loss term applied to each point on the point cloud such that the closer
a point is to the end-effector, the higher the loss is weighted. We construct a velocity prediction loss
defined by Lvel =

1
N

∑N
i=1

∑E
e=1 w(xi,ye) · (vi − v̂i), where vi denotes the ground truth velocity

of the i-th end-effector, v̂i denotes the predicted velocity of the i-th end-effector, and w(xi,ye) =
exp(−(xi − ye)

2/(2σ)) is a weighting function that is large when xi is close to ye and small when
xi is far from ye. The gripper control prediction loss is simply defined as the MSE loss between
the predicted gripper actions ĝe and the ground truth actions ge: Lgrip = MSE(ĝe, ge). The policy
learning loss is a weighted sum of the velocity prediction and gripper loss terms: L = λvelLvel+Lgrip,
where λvel is a weighting term.

5.3 Task Details

We evaluate our method in three manipulation tasks in both simulation and real robot experiments:
(1) Cloth Folding: two robots fold a piece of cloth together by grasping two corners of the cloth.
This task is designed to test if our method can handle deformable object manipulation. (2) Object
Covering: two robots grasp a cloth on two corners and place the cloth on top of an object so that
the object is fully covered. This task is designed to test handling scenarios with several objects. (3)
Box Closing: two robots close a box with three flaps by first closing the side flaps and then closing
the larger front/back flap. This task tests manipulation with articulated objects. In particular, in
the simulated Box Closing task, we add a further challenge to the trained policy by removing the
contents in the box at test time, so that the test-time objects have different shapes compared to the
training-time object.
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Figure 8: Ablation results in simulation. The comparisons show that the pre-training and the equivariance
components of our framework positively contribute to the performance of our framework.

Evaluation. We measure the performance of a task using a task-specific reward function scaled
between 0 to 1. In the Cloth Folding task, the reward is measured by how close the bottom two
corners of the cloth are to the top two corners of the cloth; in the Object Covering task, the reward
equals the percentage of the object volume within the convex hull of the final cloth mesh; in the
Box Closing task, the reward equals the average percentage that each of the three flaps of the box is
closed.

5.4 Details on Simulation Data

Representation learning data. Our simulation environments use PyBullet simulation engine [15].
For simplicity, we use floating end-effectors, which can physically push objects and can also attach
to objects to imitate grasping. We generate randomized simulation data in each task to be used for
representation pre-training. In Cloth Folding and Object Covering tasks, we generate representation
learning data by grasping two corners of the object and performing a scripted pick and place motion
to random target positions around the cloth. We collected 200 episodes of simulation data in each
of the two tasks, varying the non-uniform scaling and camera viewpoint of each episode. Note that
these 200 episodes are not successful executions of the target task and do not include recorded robot
actions. In the Box Closing task, we generate representation learning data by taking snapshots of the
object at various articulated poses. We collect a total of 20k images, equivalent to 200 episodes of
episode rollouts in this task. We vary non-uniform scaling and camera viewpoint of each collected
image.

Demonstration data. We collect 50 noisy demonstrations for all tasks. In each task, the 50 demos
include the same object at the canonical pose. This means that the policy is trained using demon-
strations of only one manipulation scenario.

5.5 Simulation Ablation Experiments

To illustrate that each component of our method individuallly contributes to the overall perfor-
mance of our method, we compare our method with the following variations of our method: (1)
PointContrastaug+BC: a variation of PointContrast+BC that uses augmented object poses during
feature training, which is a way of approximating equivariant features with Siamese training [16].
(2) Ours w/o pre-training: this ablation is a variation of our method without a pre-training phase,
which trains the whole architecture, including the visual encoder and the action prediction head, to-
gether with the policy. (3) Ours w/o equivariance: this ablation uses a variation of our architecture
that replaces all SIM(3) equivariant architecture with non-equivariant PointNet-based architecture
with similar size. (4) Ours w/o equivariance with aug: this ablation is our method without SIM(3)
equivariance, but with using augmented object poses during feature training.

Our ablation experiments are presented in Fig. 8. The performance of the Ours w/o Pretraining and
Ours w/o Equivariance ablations show that having pre-training and equivariance in our framework
positively contribute to the performance of our framework.
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5.6 Real Robot setup

Tasks and data collection. We run our method in the same three manipulation tasks as our simula-
tion experiments. In each task, our method takes 20 human demonstrations collected on a tabletop
setup as training data. In the Cloth Folding task, we use a square cloth with a side length of 27.5cm;
in the Object Covering task, we use a square cloth with a side length of 27.5cm to cover a box with
size 13× 8× 8cm; in the Box Closing task, we use a small 15× 13.5× 9.5cm electronics box with
three flaps. We use a ZED 2 stereo camera positioned above the table to record the movement of the
objects and human hands. After data collection, we segment out the part of the point cloud of that
corresponds to the objects the human is manipulating, and also parse out the human finger positions
in each frame. We treat segmentation as a separate research problem, which could be addressed by
state-of-the-art methods, such as [17]. However, to avoid conflating the evaluation of the perfor-
mance of various segmentation methods with the main evaluation of our method, we segment out
the objects using simple (robust) color filtering techniques.

Mobile robot setup. We train our method on data extracted from human demonstrations and then
deploy it in the real world. The real robots operate in a large workspace with size 4× 3 meters. We
use holonomic mobile bases with a powered-caster drive system [18], and Kinova Gen3 7-DoF arms
equipped with Robotiq 2F-85 grippers. We use Zed 2 stereo cameras positioned on the ceiling to
obtain point clouds of the scene, then segment out the relevant parts of the scene. The policy takes
the partial point cloud of the objects in the scene as well as the proprioception readings of the two
mobile robots as input, then outputs a velocity and gripper open/close commands for each robot.
For simplicity, we initialize the robot end-effectors close to the object and select an appropriate end-
effector rotation for completing the task. As before, we treat segmentation as a problem beyond the
scope of this work and use simple color filtering to separate the objects from the background and
robots.

5.7 Evaluations on Task Variations

To illustrate the generalization capability of our method, we test it on various objects and initial
poses. The first two columns show Box Closing policy on two differently sized boxes placed in
different initial rotations. The same policy successfully closes the boxes in both cases. In the
third column, we show that the Cloth Folding policy could handle different cloths that have distinct
appearance, scale, and physical properties compared to the pink cloth blanket shown in Fig. 6.

Figure 9: Task variations.
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5.8 More Related Works

5.8.1 Equivariant 3D Learning

A number of 3D deep learning works have studied the construction of neural network architectures
that are equivariant to 3D transformations such as rigid transformations [19, 20, 21, 12, 22, 23, 24,
25], multi-part motions [26, 27, 11, 28], or more general and arbitrary group actions [29, 30, 31, 32,
33]. Such network designs enable natural and robust generalizations to out-of-distribution inputs by
construction without additional data augmentation in the training process. In our work, we leverage
the implicit shape representation from [11] powered by the network structures from [12] to facilitate
more geometrically interpretable and generalizable feature learning.

5.8.2 Equivariant Representations for Robot Manipulation

Prior works have studied equivariant features for robot manipulation [6, 7, 8, 9, 10]. But these works
have a series of limitations: (1) they are designed to handle only pick-and-place-like tasks, and
are not capable of learning harder tasks involving articulated and deformable objects; (2) they are
mostly based on open-loop policies or hand-designed pick-and-place primitives, so their framework
does not support closed-loop feedback, which is important for scenarios that involve deformable
and articulated objects, where the policy needs to react to changes in object poses throughout task
completion; (3) they only handle equivalences in translation and rotation and did not consider scale
equivariance. Compared to prior works, our work learns a robot manipulation policy that supports
closed-loop feedback, can handle deformable and articulated objects, and is equivariant to objects
with different uniform scaling by construction.

5.8.3 3D Representations for Deformable and Articulated Object Manipulation

The problem of 3D manipulation of deformable and articulated objects has been studied by a number
of prior works, including FlingBot [34], GarmentNets [35], FabricFlowNet [36], and ACID [37].
However, these works often are very focused on specific manipulation problems. For example,
FlingBot focuses on the task of flinging only, FabricFlowNet is designed for pick-and-place tasks on
cloths, and ACID is designed to manipulate volumetric deformable objects. We design a framework
that is capable of learning a variety of 3D manipulation tasks, including ones that involve deformable
and articulated objects.
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