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ABSTRACT

Language is typically modelled with discrete sequences. However, the most suc-
cessful approaches to language modelling, namely neural networks, are continu-
ous and smooth function approximators. In this work, we show that Transformer-
based language models implicitly learn to represent sentences as continuous-time
functions defined over a continuous input space. This phenomenon occurs in
most state-of-the-art Large Language Models (LLMs), including Llama2, Llama3,
Phi3, Gemma, Gemma2, and Mistral, and suggests that LLMs reason about lan-
guage in ways that fundamentally differ from humans. Our work formally extends
Transformers to capture the nuances of time and space continuity in both input and
output space. Our results challenge the traditional interpretation of how LLMs un-
derstand language, with several linguistic and engineering implications.

1 INTRODUCTION

In linguistics and computer science, language is typically modelled as a discrete sequence of sym-
bols: a sentence is a sequence of words, phonemes, characters, or tokens drawn from a finite vocab-
ulary. This characterisation underpins both linguistics (Hockett & Hockett, 1960; Chomsky, 1995;
Studdert-Kennedy, 2005; Akmajian et al., 2017) as well as classic and recent algorithmic approaches
to language modelling (Manning, 1999; Bengio et al., 2000; Mnih & Hinton, 2008).1 In Machine
Learning, a successful paradigm to model language is that of Large Language Models (LLMs, (De-
vlin, 2018; Brown et al., 2020)). In LLMs, language is modelled via an optimisation problem whose
objective is to predict a word given its surrounding context (Peters et al., 2018; Radford et al., 2019),
though recent advancements fine-tune the models with procedures inspired by reinforcement learn-
ing (Schulman et al., 2017; Rafailov et al., 2024).

At their core, the architectures that model language, including feed-forward neural net-
works (Mikolov et al., 2013a), Long-Short Term Memory Networks (LSTMs) (Hochreiter, 1997;
Sundermeyer et al., 2012) and Transformers (Vaswani et al., 2017), approximate a discrete sequence
of tokens with continuous smooth functions. However, training inherently continuous models on
discrete sequences does not imply that the models themselves treat language as discrete.

This paper explores how the tension between discrete data and continuous function approxima-
tors is synthesised in Transformers-based Large Language Models (Vaswani et al., 2017). To do
so, we seamlessly generalise the Transformers architecture to support continuous inputs. This ex-
tension, which does not modify a model’s weights or alter the architecture, allows the study of
existing pretrained LLMs, including Llama (Dubey et al., 2024), Mistral (Jiang et al., 2023), and
Gemma (Gemma Team et al., 2024b), with continuous input sequences.

By running experiments on state-of-the-art LLMs, we find that the language LLMs learn is implicitly
continuous, as they are able to handle, with minor modifications, inputs that are both time continu-
ous and spatial continuous. In particular, we formally show that the results obtained by extending
pretrained LLMs to handle time continuous input strongly depend on a quantity, named duration,
associated with each sentence. We also show in Section 4 that the semantics of this continuum sig-
nificantly deviate from human intuition. Our results suggest that our intuition about human language

1For completeness, a few notable works in linguistics and computer science model language as continuous:
among the others, Alkhouli et al. (2014) and Bowman et al. (2015) model sentences as continuous entities
in latent space, while recent approaches with quantum NLP represent meaning as a superstate of different
words (Guarasci et al., 2022).

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

can be misleading when applied to LLMs, as LLMs hold implicit representations of continuous se-
quences in unintuitive ways. Furthermore, these observations have practical consequences from an
engineering perspective, as they suggest that it is possible to leverage the continuous representations
of LLMs to pretrain them more efficiently.

Our code is available anonymously at anonymous.4open.science/r/continuous-llm-experiments.

2 RELATED WORK

Modern state-of-the-art pretrained language models operate on a discrete number of tokens and do
not handle continuous inputs directly. However, in other domains, extensions of classical Transform-
ers (Vaswani et al. (2017)) to time continuous inputs have been recently explored in tackling differ-
ent problems. In modelling dynamical systems, (Fonseca et al. (2023)) have proposed adding new
regularisations to a classical transformer to create continuous behaviour in an attempt to improve
upon existing time continuous models such as Neural ODEs (Chen et al. (2019); Kidger (2022)). In
time series modelling, (Chen et al. (2024); Moreno-Pino et al. (2024)) further developed the ideas
advanced by Neural ODEs by integrating time continuous transformers and, consequently, supersed-
ing other existing approaches such as Neural CDE (Kidger et al. (2020)) and Neural RDE (Morrill
et al. (2021)).

Another line of work considers time continuous extension of language by processing it through net-
works combining the flexibility of classical Transformers with the mathematical interpretability of
NeuralODEs, such as ODETransformer (Li et al. (2022a)), CSAODE (Zhang et al. (2021)), Tran-
sEvolve (Dutta et al. (2021)), and N-ODE Transformer (Baier-Reinio & De Sterck (2020)). Several
authors have also explored spatial continuous extensions of LLMs Tang et al. (2021); Schwenk
(2007); Östling & Tiedemann (2017), where the embedding space is expanded to include vectors
not directly mapped to specific tokens, thereby enhancing the representational power of the models.
A broad class of Diffusion Language Models (Li et al. (2022b); Gong et al. (2022); Lovelace et al.
(2024a); Gulrajani & Hashimoto (2024); Zhang et al. (2024); Lovelace et al. (2024b)) employs a
similar concept, where the model generates elements not necessarily tied to individual tokens in
the embedding space, thereby effectively incorporating spatial continuous extensions into language
modelling. Additionally, continuous representations in LLMs have been studied either in the con-
text of concepts for which intuitive spectra exist (Gurnee & Tegmark, 2023) or from a neuron-driven
perspective (Anthropic, 2024). In particular, our work can be seen as complementary to the latter:
while the authors of Anthropic (2024) show that certain neurons map to specific concepts (which
can then be steered), we show that such concepts exist even at the embedding level, and we offer a
theoretical framework to study formally such phenomena in an architecture-independent way.

Finally, our work can also be seen as a response to Vilnis & McCallum (2014), which trains inher-
ently continuous embeddings: we show that this process is not necessary, as even discretely trained
LLMs show similar behaviours.

3 A CONTINUOUS GENERALISATION OF LANGUAGE MODELS

In this section, we propose the hypothesis that language can be seen as the discretisation of a spatio-
temporal continuous function whose value corresponds to a valid token for any integer timestep.
As we will show, this assumption allows us to define a continuous extension of the classical ca-
sual Transformer module, namely the Continuous Causal Transformer (CCT). The CCT accepts
spatio-temporal continuous functions as input while including pretrained models on regular time-
and space-discrete data as a special case. Moreover, we will formally discuss the implications of
this construction, showing the basic results required to describe the experiments we presented later.

3.1 TIME CONTINUITY

Following classical approaches (Cotterell et al., 2023), we define a natural sentence as a sequence
{w1,w2, . . . ,wT } ⊂ W of tokens, sampled from an underlying distribution p(w1,w2, . . . ,wT ),
where each token wt only depends on previous timesteps, i.e. p(w1,w2, . . . ,wT ) =

p1(w1)∏
T
t=2 pt(wt∣w<t), where we defined w<t ∶= (w1, . . . ,wt−1). Moreover, given a contin-
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Figure 1: Left. A graphical representation of the time continuity of language. Each observed token
is obtained by sampling at integer timesteps a stepwise constant function defined on the real interval
[0, T ]. The length of each constant interval is the duration of the associated token. Right. A spatial
continuous extension of a sentence, where x(t) can represent any value.

uous function E ∶ W → Rd that embeds any token wt as a d-dimensional vector xt ∶= E(wt),
we name the push-forward distribution p(x≤T ) ∶= E#p(w≤T ) the distribution of natural sentences.
Clearly, since the setW is inherently discrete, then the set X = Rg(E), i.e., the range of E , is a finite
set, to which we refer as the space of valid embeddings. Indeed, in any classical formalisation of
language, a sentence is considered to be finite both in time and space.

In this work, we hypothesise that any observed sentence {xt}
T
t=1 ∼ p(x≤T ) originates from the

integer discretisation of a function x(t), defined on the real interval [0, T ]. Clearly, there exist
infinitely many of these functions. In this section, we assume for x(t) the simplest, possible form:
a stepwise constant function, defined as

x(t) =
T

∑
s=1

xs1[as,bs](t), (1)

where 1[as,bs](t) is the indicator function of the interval [as, bs], whose value is 1 if t ∈ [as, bs], 0
otherwise. For the intervals {[as, bs]}Ts=1 we assume that:

(H1) {[as, bs]}Ts=1 define a partition of the interval [0, T ], i.e.
T

⋃
s=1
[as, bs] = [0, T ],

T

⋂
s=1
[as, bs] = ∅.

(H2) s ∈ [as, bs] for any s = 1, . . . , T .

With this assumption, a sentence can be seen as a continuous flow of information, where the duration
of each word is defined as the length of the interval defining it, i.e. bs − as. Throughout the rest
of this paper, we will refer to the duration of a token xs as ds ∶= bs − as. A representation of this
concept is summarised in Figure 1.

To be able to process time continuous inputs, we need an extension of the typical causal Trans-
former architecture, which we name Continuous Causal Transformer (CCT). We argue that any
Transformer-based LLM can be seen as a discretisation of our CCT, and we propose a technique
to modify the architecture of standard LLMs to handle stepwise-constant sentences as input, which
represents the basis of our experiments in Section 4.

To prove our statement, we begin by considering the classical formulation of multi-head causal
attention module, where the transformed output {yt}

T
t=1 associated with the sequence {xt}

T
t=1 is

defined as:

yt =
t

∑
s=1

1

Zt
exp(

qT
t ks
√
d
)vs, (2)
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where Zt ∶= ∑
t
s′=1 exp(

qT
t k′s√
d
) is a normalisation constant, and:

q(t) =W (q)x(t), k(t) =W (k)x(t), v(t) =W (v)x(t), (3)

where W (q), W (k), and W (v) are the attention matrices that are learned during training. For an
in-depth derivation of Equation 2, refer to Appendix A.1.

Therefore, a continuous extension of Equation 2 can be simply obtained by substituting the sum
with an integral, thus obtaining the continuous causal attention module

y(t) = ∫
t

0

1

Zt
exp(

q(t)Tk(s)
√
d

)v(s)ds, (4)

where Zt ∶= ∫
t
0 exp (q(t)

Tk(s)√
d
)ds.

The multi-head version of Equation 4 is obtained by simply considering H independent copies of
y(t) (namely, {y1(t), . . . ,yH(t)}), concatenating them and multiplying the result with a parameter
matrix W (o):

y(t) =W (o)cat(y1(t), . . . ,yH(t)). (5)

Note that the learned matrices W (q), W (k), W (v), and W (o) do not depend on the time discretisation
(since they act on the feature domain of xt and yt). Consequently, we can use pretrained weights
from any classical LLM.

To complete the construction of our CCT architecture, we remark that the Add&Norm scheme can
be naturally re-used as it is, computing the final output x̃(t) as:

x̃(t) = LayerNorm(W (z)z(t) + x(t)), (6)
z(t) = LayerNorm(y(t) + x(t)). (7)

Finally, we observe that Equation 4 can be simplified by considering our stepwise-constant assump-
tion for the language, as in Equation 1. Indeed, we show in Appendix A.2 that:

y(t) =
T

∑
k=1

1

Zt
exp(

qT
t̄ kk
√
d
)vkdk, (8)

where t̄ is the only integer such that t ∈ [at̄, bt̄], whose existence and uniqueness are guaran-
teed by (H1) and (H2). Note that Equation 8 is equivalent to Equation 2 as long as the partition
{[ak, bk]}

T
k=1 is chosen so that each token has a uniform duration dk = 1 for all k = 1, . . . , T , since

in this case for any integer timestep t,

yt = y(t) =
T

∑
k=1

1

Zt
exp(

qT
t kk
√
d
)vk, (9)

which is exactly Equation 2.

However, the CCT module is more general in the sense that it can easily handle arbitrarily stepwise
constant functions, for example with non-uniform duration. Indeed, we can simply choose any
partition of the interval [0, T ] into sub-intervals satisfying condition (H2), and apply Equation 8 to
compute the continuous transformed output y(t). Interestingly, Equation 8 implies that, for a fixed
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input sentence x(t), the output y(t) does not depends on the chosen partition {[ak, bk]}Tk=1, but
only on the durations dk of each token. This suggests that our CCT shows shifting-invariance, i.e.
the output does not change if the input gets shifted in time, as long as the shifted partition satisfies
(H1) and (H2). On the other hand, the CCT is not scale-invariant, since scaling will alter the token
duration. These properties have been observed empirically in Section 4.3.

3.2 SPACE CONTINUITY

Note that, in our construction, we never explicitly used the fact that the range of x(t) is a subset
of X , i.e. that any value of x(t) is an admissible token. This motivates the introduction of spatial
continuous CCTs, where we consider a more general sentence in the form of equation 1, where xs is
not necessarily the embedding of a meaningful word ws. Note that our CCT model does not require
any explicit modifications to be adapted to this setup.

Spatial continuity is particularly relevant when the value xs ∉ X is obtained by interpolating be-
tween two meaningful tokens. Interestingly, we show in Section 4.4 that pretrained LLMs assign
a semantic meaning to these intermediate embeddings, which results in something distinct from
the two tokens which are used to compute the interpolation. Note that this is non-trivial and non-
predictable, since the LLM never explicitly saw the majority of non-meaningful tokens as input
during training, suggesting intriguing properties of the CCT architecture itself (which we aim to
analyse more in-depth in future work).

To conclude, we remark that the stepwise constant assumption on the continuous language structure
as in Equation 1 can be easily generalised to any other function structure for which a closed-form
solution of the integral in Equation 4 can be obtained. This happens, for example, for any choice of
piece-wise polynomial function defined over a partition of [0, T ], satisfying the assumptions (H1)
and (H2). Testing the behaviour of the CCT architecture for other choices of x(t) is left to future
work.

In the next sections, we will prove through several experiments that not only our proposed CCT
model acts as a natural generalisation of classical Causal Transformer, recovering the same be-
haviour when a uniform discretisation of the domain into intervals of length 1 is considered, but also
that the CCT seems to understand the concept of temporal fraction of a word.

4 PRETRAINED LLMS ARE IMPLICITLY CONTINUOUS

In this section, we use our generalisation of LLMs to study the time continuous and space-continuous
behaviours of pretrained LLMs. Thanks to our extension, we identify several novel properties of dis-
cretely trained models, such as the key role of duration as a semantic component and the existence of
meaningful intermediate embeddings that do not map to any known token. Unless otherwise spec-
ified, our results hold for a wide variety of models, including Llama2-13B-Chat (Touvron et al.,
2023), Llama3-8B (Dubey et al., 2024), Phi-3-Medium-4k-Instruct (Abdin et al., 2024), Gemma-1-
7B (Gemma Team et al., 2024a), Gemma-2-9B (Gemma Team et al., 2024b), and Mistral-7B (Jiang
et al., 2023).

4.1 SINGLE-TOKEN TIME CONTINUITY

We begin by studying how LLMs respond to variations in the time duration of a token. Consider the
following input prompt to Llama3-8B:

In the sentence "apple
´¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¶
ds = 1

apple
´¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¶
ds = 1

apple
´¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¶
ds = 1

apple
´¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¶
ds = 1

", how many fruits are mentioned?

The answer is naturally “4”, and we expect language models to reply similarly.2 However, suppose
that we reduce the duration of the portion of the sentence between double quotes, as defined in
Section 3), i.e.,

2Indeed, all the models we studied replied with “4”.
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Figure 2: Time continuity experiments on the example in Section 4.1. If we reduce the time duration
of the “apple” tokens, the transition between each output answer (a number between 1 and 4) is
continuous.

In the sentence "apple apple apple apple
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

∑ ds ∈ [1,4]

", how many fruits are mentioned?

As the duration of the four “apple” tokens varies, we expect the model to output either (1) “4”, since
the number of tokens has not changed or (2) nonsensical/unrelated tokens, since such an input would
be out-of-distribution. Instead, Llama 3 returns an output that both is meaningful and differs from
that of the original sentence. As shown in Figure 2, the output consists of each number from 1 to
4, with peaks that vary with the token duration. In other words, the LLM interprets the sentence’s
content as if there were, respectively, 1, 2, 3 and 4 “apple” tokens.

From a linguistic perspective, the model returns outputs that, while reasonable, are hard to reconcile
with the traditional interpretation of language in humans. LLMs naturally embody notions such as
half a token (i.e., a token whose duration is not one time step), which humans lack.3 This suggests
that LLMs interpret language differently compared to humans.

Our findings are robust across different sentences and models, as shown in Appendix C.1. In the
next section, we stress the generality of this observation by applying the notion of time duration to
multiple tokens and entire sentences.

4.2 BEYOND SINGLE-TOKEN TIME CONTINUITY

A natural extension of token-level time continuity involves changing the duration of entire linguistic
units.

We first study how LLMs behave when summing 2-digit numbers, where the duration of one of the
addends is reduced. Consider the following input to Llama2-13B.4

The sum of 24 and 1´¸¶
ds1

3´¸¶
ds2

is

As shown in Figure 3a, by shrinking the duration of the tokens “1” and “3”, we observe that the
model transitions from predicting “3” (i.e., the first token of the sum 24 + 13) to “1” (i.e., the model
progressively treats “13” as a single-digit number). Refer to Appendix C.3 for more examples of
this behaviour across models and choices of digits.

3To obtain the same output from humans, one would modify the input to include instructions such as
‘Consider each apple word as half an apple’. We do not need to prompt an LLM with such
instructions.

4We use Llama2 instead of Llama3 as the latter treats both digits as a single token.

6
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(b) If we reduce the time duration of each sentence,
the transition between each output answer (a number
between “1” and “4”) is continuous.

Figure 3: Time continuity experiments as per Section 4.2 with Llama3-8B.

Additionally, we study how LLMs behave when we reduce the duration of entire sentences. For
instance, consider the following passage, which is fed to Llama3-8B:

Alice goes to the shop.

She buys a carton of milk.
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

ds1

She buys an apple.
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

ds2

She buys a potato.
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

ds3

She buys a loaf of bread.
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

ds4

How many items did Alice buy?

By reducing the duration of each sentence {ds1 , ds2 , ds3 , ds4}, we once again observe the model
replying as if Alice bought 1, 2, 3 or 4 items (Figure 3b), which is consistent with our findings in
the previous section. Refer to Appendix C.2 for further examples of this behaviour.

There are thus reasons to believe that the notion of time continuity is innate in pretrained LLMs, and
emerges as a natural consequence of their nature as smooth function approximations.

4.3 LLMS ARE SHIFTING-INVARIANT, BUT NOT SCALE-INVARIANT

We complement our previous observations on time continuity with experiments on two common
sequence transformations, namely shifting and scaling. For shifting, we increment the positional
embeddings of each token (as well as the lower bound of integration) by a fixed amount without
actually changing the sentence’s duration. In particular, we feed the following input to Llama3-8B:

The´¸¶
∆d
ÐÐ→ ds1

capital
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

∆d
ÐÐ→ ds2

of´¸¶
∆d
ÐÐ→ ds3

France´¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∆d
ÐÐ→ ds4

is´¸¶
∆d
ÐÐ→ ds5

On the other hand, for scaling we increase/decrease the duration of the entire sentence:

The´¹¹¹¹¹¸¹¹¹¹¹¶
ds1 > 1

capital
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

ds2 > 1

of´¸¶
ds3 > 1

France´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
ds4 > 1

is´¸¶
ds5 > 1

As shown in Figure 4, we find that while the impact of shifting on an LLM’s output is negligible,
scaling significantly changes how the LLM interprets the input (and thus what the LLM outputs).
This phenomenon occurs regardless of the model and sentence (see Appendices C.4 and C.5), em-
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(b) Scaling visibly impacts an LLM’s output.

Figure 4: Effect of shifting and scaling on Llama 3 for the sentence “The capital of France is”.
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at any point of the interpolation. For the other
tokens, we report the cumulative distribution.

Figure 5: The linear embedding hypothesis holds for Llama3 and extends to the output prediction.

pirically confirming the theoretical observations we already made about translation invariance in
Section 3.

We believe that shifting does not affect an LLM’s output due to the fact that positional and rotary-
embeddings (Vaswani et al., 2017; Gemma Team et al., 2024b) are robust to translations: as long
as the relative positions between tokens are preserved, a model’s output remains consistent. On the
other hand, scaling leads to significant variations in an LLM’s output.

Our results suggest that beyond interpreting time continuously, duration is itself an intrinsic property
of our generalised Transformers that can explain why LLMs are robust on inputs with low frequency
in the training data (e.g., their embedding may interpolate with others with similar semantics).

4.4 SPACE CONTINUITY IN PRETRAINED LLMS

In addition to time continuity, we study the nature of space continuity in LLMs.
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Figure 6: Beyond the linear embedding hypothesis on Llama 3.

In the NLP literature, it is widely known that the embeddings of semantically similar tokens tend
to share some of their semantics, an observation often referred as the linear embedding hypothe-
sis (Mikolov et al., 2013b; Park et al., 2023). However, thanks to our generalisation we discover
that such hypothesis also holds for LLMs at prediction time. In other words, inputs undergo a
series of non-linear transformations to make an LLM predict the next word; yet, the intermediate
embeddings and the output preserve the semantics of the interpolated inputs, with the region of the
embedding space that, while not having any meaningful interpretation, are treated as proper concepts
with well-defined properties.

Consider the following example for Llama3-8B:

Are 8 red?

In the previous example,8 represents a linear interpolation of the embeddings of the “apples” and
“bananas” tokens. Intuitively, such an interpolation does not have a proper semantics in human
language (there is no such thing as “apple-bananas”). In fact, the interpolation does not map to
the embedding of any known token (see Appendix C). Nevertheless, Llama3’s output (as well as
other LLMs’) smoothly transitions between outputting “yes” and “no”, as shown in Figure 5 (left).
This behaviour is further confirmed by similar prompts like “Alice bought some 8 at the” (Fig-
ure 5 (right)). In other words, any interpolation between “apples” and “bananas” is treated as a
grammatically correct part of a sentence.

While one may argue that the context plays a role in modelling the range of possible answers to
these questions (e.g., in the first example “yes” and “no” are the only reasonable options), this
interpretation only partially captures the nuances of LLMs’ behaviour with space-continuous
inputs. In fact, if we prompt the model with the following input:

Are 8 fruits?

the model always replies “yes”, as reported in Figure 6 (left). Any interpolation of “apples” and
“bananas” is indeed a valid fruit for the LLM. Additionally, for a subset of models (namely Llama
3, Gemma 1, Mistral, and partially Gemma 2), when we feed the input:

The most common colour for 8 is

we discover that the intermediate colour of “apples” and “bananas” is “green” (Figure 6), i.e., these
Transformers hold the knowledge that there is a fruit in between “apples” and “bananas” whose
colour is neither “red” nor “yellow”. Refer to Appendix C for more results.
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In short, LLMs assign a semantic meaning to their embedding space, but this meaning is neither
trivial nor consistent with human intuition. These results challenge the assumption that the way
LLMs interpret language is a surrogate of that of humans.

5 IMPLICATIONS

Our results show that the current understanding of language models is incomplete. In this section,
we highlight what we believe are promising implications of our findings.

LLMs learn a continuous representation of language. While LLMs are mostly trained on dis-
crete data, they learn representations that go beyond the meaning and interplay of each token. We
thus argue that our generalisation of Transformers opens up to new inference techniques: for ex-
ample, multiple sub-tokens can be generated in parallel as interpolations of sentences with similar
templates but different semantics. The same intuition can be applied to training. Yet, it requires
solving a non-trivial issue: tokens fed simultaneously and in “superposition” (e.g., an interpolation
of multiple, semantically similar words) generate an output where each corresponding token should
be disentangled and reassigned to its original sentence.

Language models treat language differently than humans. Most of the examples reported in
this paper contradict human intuition about language. Duration deeply affects a model’s output
in ways humans hardly grasp. Similarly, LLMs assign meaning to interpolations of embeddings
even when such representations do not map to well-defined concepts. These behaviours represent
a significant deviation from how humans reason about language, one that cannot be explained by
a simple lack of data. We believe that the field of linguistics, alongside that of Machine Learning,
should embrace the challenge of studying the continuous language of LLMs, synthesising classic
tools from linguistics and deep learning. For instance, the notion of space continuity is deeply
intertwined with how LLMs interpret language: we believe that our generalisation of Transformers
can help us better understand the strong performance of LLMs on low-frequency inputs, as well as
explain why they fail on edge cases that are semantically meaningful to humans.

Overall, our findings suggest that understanding more in-depth the continuous nature of LLMs can
both improve their performance and align their representations with human reasoning.

6 CONCLUSION

In this paper, we introduced a generalisation of causal Transformers to study how pretrained LLMs
respond to continuous inputs. We characterise the notions of time and space continuity, which
we use to show that the language LLMs learn diverges from that of humans. In particular, LLMs
assign complex semantic meanings to otherwise meaningless interpolations of embeddings and treat
duration as a key property of their language. These results suggest that our traditional understanding
of LLMs is incomplete.

We hope that, by studying the continuous behaviour of LLMs, future work will be able to shed
further insight into the language of Large Language Models, with implications for both linguistics
and LLM design.
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A DETAILED DERIVATION OF SECTION 3

A.1 A RECAP ON DISCRETE TRANSFORMER

In this section, we briefly recall how classical causal transformers work. Let X ∈ RT×d be the matrix
whose rows are xT

t . Then, each head of a causal attention mechanism computes a matrix Y ∈ RT×d,
such that:

Y = Attention(Q,K,V ) ∶= softmax(
QKT

√
d
+M)V, (10)

where Q,K ∈ RT×dk , V ∈ RT×d are the queries, the keys, and the value, respectively, while M ∈

RT×T is the causal attention mask, which is introduced to ensure that each row yT
t of Y only depends

on observations xs with s ≤ t. The matrices Q, K, V are defined as:

Q =XW (q)T , K =XW (k)T , V =XW (v)T , (11)

where W (q), W (k), and W (v) are the attention matrices that are learned during training, while the
causal attention mask M is defined as:

Mt,s = {
0 if t ≤ s,
−∞ if t > s.

(12)

The multi-head version of this causal attention mechanism typically used in modern architecture
is obtained by computing H independent versions {Y1, . . . , YH} of Equation 10, and defining a
learnable matrix W (o) ∈ RdH×d, which combines them to obtain a single transformed observation
matrix:

Y = cat(Y1, . . . , YH)W
(o)T . (13)

A continuous version of a multi-head attention network can be simply obtained by considering
Equation 10 on a single timestep t ∈ [0, T ]. Indeed, it can be rewritten as:

yt =
T

∑
s=1

softmax
⎛

⎝
[
QKT

√
d
+M]

t,s

⎞

⎠
vs, (14)

where:

softmax
⎛

⎝
[
QKT

√
d
+M]

t,s

⎞

⎠
=

exp([QKT

√
d
+M]

t,s
)

∑
T
s′=1 exp([

QKT√
d
+M]

t,s′
)

. (15)

Consequently,
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softmax
⎛

⎝
[
QKT

√
d
+M]

t,s

⎞

⎠
∝ exp

⎛

⎝
[
QKT

√
d
]
t,s

⎞

⎠
⋅ exp [M]t,s

=

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

exp(
qT
t ks√
d
) if s < t,

0 otherwise,

(16)

Where qT
t and ks are the t-th and the s-th rows of Q and KT , respectively. Altogether, the above

equations imply that:

yt =
t

∑
s=1

1

Zt
exp(

qT
t ks
√
d
)vs, (17)

where Zt ∶= ∑
t
s′=1 exp(

qT
t k′s√
d
) is a normalisation constant. The above formula is then used in

Section 3 to define CCT.

A.2 DERIVATION OF EQUATION 8

We recall that:

q(t) =W (q)x(t) =
T

∑
k=1

W (q)xk1[ak,bk](t), (18)

k(t) =W (k)x(t) =
T

∑
k=1

W (k)xk1[ak,bk](t), (19)

v(t) =W (v)x(t) =
T

∑
k=1

W (v)xk1[ak,bk](t). (20)

Consequently,

y(t) = ∫
t

0

1

Zt
exp(

q(t)Tk(s)
√
d

)v(s)ds

(20)
= ∫

t

0

1

Zt

T

∑
k=1

exp(
q(t)Tk(s)
√
d

)W (v)xk1[ak,bk](s)ds

=
T

∑
k=1
∫

bk

ak

1

Zt
exp(

q(t)Tk(s)
√
d

)W (v)xkds

(19)
=

T

∑
k=1

1

Zt
W (v)xk ∫

bk

ak

exp
⎛

⎝

q(t)T ∑
T
k′=1W

(k)xk′1[ak′ ,bk′ ](s)√
d

⎞

⎠
ds

=
T

∑
k=1

1

Zt
W (v)xk ∫

bk

ak

exp(
q(t)TW (k)xk

√
d

)ds

(18)
=

T

∑
k=1

1

Zt
W (v)xk exp

⎛
⎜
⎝

(∑
T
t′=1W

(q)xt′1[at′ ,bt′ ](t))
T
W (k)xk

√
d

⎞
⎟
⎠
∫

bk

ak

ds

=
T

∑
k=1

1

Zt
W (v)xk exp

⎛
⎜
⎝

(W (q)xt̄)
T
W (k)xk

√
d

⎞
⎟
⎠
(bk − ak)

=
T

∑
k=1

1

Zt
exp(

qT
t̄ kk
√
d
)vkdk,

(21)
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which proves Equation 8.

B EXPERIMENTAL SETUP

We now describe the shared aspects of our experiments.

B.1 IMPLEMENTING A CCT

CCTs can be implemented with little effort by starting with the implementation of a regular trans-
former and applying three modifications:

1. Modifying it so that it accepts arbitrary embeddings, rather than only tokens;

2. Modifying it so that positional indices can be floating points, instead of only integers;

3. Adding support for custom floating-point attention masks.

In our experiments, we used HuggingFace, which natively supports 1. and 3. and can be easily
adapted to support 2.

Note that the last modification is necessary in order to support non-standard durations. In fact, the
Euler discretisation of the integral in Equation (4) is equivalent to regular attention with carefully
chosen attention coefficients.

Proof The discretisation of Equation (4) is, assuming that we have n samples at positions
p1, . . . , pn, which represent the value of a piecewise constant function defined over the intervals
(0, p1], (p1, p2], . . . , (pn−1, pn]:

y(t) = ∑
i∈1,...,n

1

Zt
(pi − pi−1) exp(

q(i)Tk(pi)
√
d

)v(pi), (22)

with p0 = 0. In other words, if we are using multiplicative attention coefficients, the discretisation is
equivalent to applying attention coefficients of the form pi − pi − 1. Intuitively, this means that the
further apart two samples are, the higher the weight of the latter sample.

Note that for additive coefficients we can simply bring pi − pi−1 inside the exponential:

y(t) = ∑
i∈1,...,n

1

Zt
exp(log(pi − pi−1) +

q(i)Tk(pi)
√
d

)v(pi), (23)

which is equivalent to an additive coefficient of pi − pi−1.

In Practice At the implementation level, a sequence of n elements with durations d1, . . . , dn and
embeddings e1, . . . , en is fed to the extended transformer as follows:

• The embeddings e1, . . . , en are fed directly, rather than feeding the sequence as tokens and
mapping them to embeddings;

• The positional encodings are defined such that no “holes” are left in the piecewise constant
function. In other words, the position pi is defined as pi = ∑i−1

j=1 dj ;

• The durations are encoded using the formulae described in Equations (22) and (23).

B.2 EXPERIMENT HYPERPARAMETERS

Since we study the logits, we do not use any typically generation-related hyperparameters (e.g. tem-
perature and top-k). Aside from those described in Appendix B.1, we do not perform any other mod-
ification. Experiment-specific parameters are reported in the respective subsections of Appendix C.
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C CONTINUITY - FULL RESULTS

C.1 SINGLE-TOKEN CONTINUITY

For single-token continuity, we shrink the subset of considered tokens with a coefficient in the range
[0.1,1].

Since the LLMs do not necessarily return a numeric value, all of the queries were wrapped with a
prompt to coax the model into doing so. The template for our prompts is thus:

Question: In the sentence "[REPEATED WORDS]", how many times is
[CATEGORY] mentioned? Reply with a single-digit number
Answer:

For Gemma 1, Llama 2 and Mistral we used a slight variation, since they did not return a numeric
output:

Question: How many [CATEGORY] are listed in the sentence
"[REPEATED WORDS]"? Reply with a single-digit number
Answer:

We used variations of these two prompts throughout most of this paper (although they were often not
reported in the examples in the main body for the sake of brevity). See the source code for further
information. Alongside apples, we also tested the same prompt with the word “cat” (category:
“animal”) and “rose” (category: “flower”). See Figures 7 to 9 for full results.
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(f) Mistral

Figure 7: Predicted next token for the sentence “In the sentence ‘apple apple apple apple’, how many
fruits are mentioned?” with duration shrinking for all studied models.

C.2 COUNTING EVENTS

Similarly to Appendix C.1, we used a prompt to coax the models into giving numeric outputs, as
well as coefficients in the range [0.1,1]. Alongside the shop example, we tested two other passages:

• The class went to the zoo. They saw a lion. They saw an elephant. They saw a giraffe.
They saw a penguin. How many animals did the class see?
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(f) Mistral

Figure 8: Predicted next token for the sentence “In the sentence ‘cat cat cat cat’, how many animals
are mentioned?” with duration shrinking for all studied models.

• Emily went to the beach. She found a seashell. She found a starfish. She found a smooth
stone. She found a piece of seaweed. How many things did Emily find?

See Figures 10 to 12 for full results.
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Figure 9: Predicted next token for the sentence “In the sentence ‘rose rose rose rose’, how many
flowers are mentioned?” with duration shrinking for all studied models.

C.3 NUMBER SUMS

Our experimental setup is identical to that of Appendix C.1. In addition to 24 + 13, we repeat our
experiments with the sums 13 + 74 and 32 + 56. Refer to Figures 13 to 15 for full results.
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Figure 10: Predicted next token for the shop passage for all studied models, with duration shrinking.

C.4 SHIFTING INVARIANCE

For shifting invariance, we increase the positional embeddings by a value up to 10. In addition to
the sentence “The capital of France is”, we study the following sentences:

• “The Great Gatsby is my favourite”;
• “O Romeo, Romeo, wherefore art thou”.

We report our full results in Figures 16 to 18.
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Figure 11: Predicted next token for the zoo passage for all studied models, with duration shrinking.

C.5 (LACK OF) SCALE INVARIANCE

We repeat our experiments using the same sentences as our shifting invariance experiments, using
instead a scaling coefficient for the entire sentence in the range [0.1,1.5]. See Figures 19 to 21 for
our results.
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Figure 12: Predicted next token for the beach passage for all studied models, with duration shrinking.

C.6 SPACE CONTINUITY

We report the full results concerning interpolations of embeddings in the main paper in Figures 22
to 24 and 26. We also check that the intermediate interpolation does not correspond to any existing
token by asking the LLM to repeat the embedding:

Repeat the word 8.
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Figure 13: Predicted next token for the sentence “The sum of 24 and 13 is” in all studied models
(except Llama 3) with shrinking of 13.

As shown in Figure 26, the repetition of8 does not correspond to any existing token (as shown by
the lack of peaks for tokens other than those related to apples and bananas).

Additionally, we adapt some experiments to another pair of tokens, namely cats and dogs, where we
find that the interpolation of cats and dogs is an animal, but whether cats-dogs meow depends on the
position along the interpolation axis (see Figures 27 to 30). Similarly, refer to Figures 31 to 34 for
our results on the water-juice interpolation.
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Figure 14: Predicted next token for the sentence “The sum of 13 and 74 is” in all studied models
(except Llama 3) with shrinking of 74.

D ADDITIONAL QUALITATIVE RESULTS

On top of our main findings, in this section we report additional experiments we performed concern-
ing continuity properties.
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Figure 15: Predicted next token for the sentence “The sum of 32 and 56 is” in all studied models
(except Llama 3) with shrinking of 32.

D.1 SHIFTING INVARIANCE WITH LEARNED POSITIONAL EMBEDDINGS

While the properties of common positional encodings (in particular sinusoidal position encoding and
Rotary Positional Encoding) inherently incentivise translation invariance, we study whether such a
phenomenon takes place in models with learned positional encodings. To do so, we repeat our
experiments with translation in GPT2, which uses this form of encoding.
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Figure 16: Predicted next token for the sentence “The capital of France is” in all studied models
with shifting. We report all tokens with a probability of at least 5% at any point of the interpolation.

We report our results in Figure 35. While the magnitude of the effect is certainly less strong com-
pared to RoPE encodings, we observe that the top class remains consistent under translation for
moderate shifts, which is consistent with our RoPE results.
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Figure 17: Predicted next token for the sentence “The Great Gatsby is my favourite” in all studied
models with shifting. We report all tokens with a probability of at least 5% at any point of the
interpolation.

D.2 BOOLEAN INTERPOLATION

We then test how our results compare with studies on interpolation of Boolean formulae. To do so,
we perform linear interpolations of Boolean binary operators and study how intermediate operators
behave. In particular, we study interpolations of:

• AND and OR;
• AND and XOR;
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Figure 18: Predicted next token for the sentence “O Romeo, Romeo, wherefore art thou” in all
studied models with shifting. We report all tokens with a probability of at least 5% at any point of
the interpolation.

• AND and NAND;

• OR and NOR.

We report our results for all models whose tokenizers treat the operators as having the same number
of tokens. While the models often struggle to compute the correct Boolean results for discrete
inputs, we nonetheless observe the emergence of “fuzzy” operators, whose truth values can be best
represented as floating points.
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Figure 19: Predicted next token for the sentence “The capital of France is” in all studied models
with scaling. We report all tokens with a probability of at least 5% at any point of the interpolation.

E QUANTITATIVE RESULTS

In addition to our qualitative results, we report further quantitative experiments for time duration.

We consider the sequential dataset from Lin et al. (2024), which contains 200 curated how-to tuto-
rials split by step. Our template is as follows:
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Figure 20: Predicted next token for the sentence “The Great Gatsby is my favourite” in all studied
models with scaling. We report all tokens with a probability of at least 5% at any point of the
interpolation.

Tutorial: [Tutorial Title]
[Steps]
Question: How many steps are necessary to complete the tutorial?
Reply with a single-digit number
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Figure 21: Predicted next token for the sentence “O Romeo, Romeo, wherefore art thou” in all
studied models with scaling. We report all tokens with a probability of at least 5% at any point of
the interpolation.

Answer: It takes

We reduce the duration of all the steps (following the procedure described in Appendix B) and
measure the time sensitivity, i.e. the number k of unique applicable token peaks divided by the
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Figure 22: Predicted next token for the sentence “Are 8 red?”, where 8 is an interpolation of
“apples” and “bananas”.

expected number of peaks n. For instance, if there are 4 steps, we expect to see peaks for 1, 2, 3 and
4.5

We define a unique token peak as any token xt such that there exists a duration factor φ ∈ [0.1,1]
for which

P (xt∣x0, . . . , xm−1, s(xm . . . xq;φ), xq+1, . . . xt−1) ≥ τ, (24)

5We treat 0 as an unexpected peak due to the fact that the semantics of a zero-duration sentence are ill-
defined.
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Figure 23: Predicted next token for the sentence “Are8 a fruit?”, where8 is an interpolation of
“apples” and “bananas”.

where τ is a peak threshold and s(xm . . . xq;φ) is the portion of the tokens with index in [m,q]
whose duration is reduced by a factor of φ. In our context, the indices [m,q] are the indices of the
tokens representing the tutorial steps.

A discrete interpretation of LLMs would predict that the model consistently assigns the same prob-
abilities to the same tokens regardless of the duration factor. This would correspond to the time
sensitivity computed with a fixed φ = 1 (i.e. no shrinking). We thus compute the expected average
time sensitivity for the sequential dataset assuming that, instead of our hypothesis, the discrete in-
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Figure 24: Predicted next token for the sentence “The most common colour of8 is”, where8 is
an interpolation of “apples” and “bananas”. We report all tokens with a probability of at least 5% at
any point of the interpolation.

terpretation is correct. We name such measure the counterfactual time sensitivity. Our results are
reported in Figure 48.

For very high thresholds φ, the time sensitivity and the counterfactual time sensitivity are roughly
the same, since nothing is counted as a peak and thus both scores are close to 0. However, for all
other values, the time sensitivity is significantly higher than the counterfactual time sensitivity.

We report in Table 1 the AUCs of the time sensitivity and counterfactual time sensitivity, which
further confirm that time sensitivity is higher than what we would expect should the discrete in-
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Figure 25: Predicted next token for the sentence “Alice bought some 8 at the”, where 8 is an
interpolation of “apples” and “bananas”. We report all tokens with a probability of at least 5% at
any point of the interpolation.

terpretation be correct. In other words, our quantitative results are incompatible with a discrete
interpretation of LMs, which is further evidence in support of our thesis.

Note that, in our analysis, we only measure the number of “correct” peaks divided by the number
of expected peaks: for instance, if there are four steps and we observe peaks for 1, 2, 3, 4 and 5,
our time sensitivity score is 1, even if there is a spurious peak (namely 5). While the presence of
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Figure 26: Predicted next token for the sentence “Repeat the word8”, where8 is an interpolation
of “apples” and “bananas”. We report all tokens with a probability of at least 5% at any point of the
interpolation.

extra peaks does not contradict our thesis that LLMs meaningfully respond to variations in duration,
for the sake of thoroughness we also compute another metric, namely the Intersection over Union,
defined as follows:

#(uniquePeaks ∩ expectedPeaks)
#(uniquePeaks ∪ expectedPeaks)

(25)
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Figure 27: Predicted next token for the sentence “Do 8 meow?”, where 8 is an interpolation of
“cats” and “dogs”. Results for Llama 2 and Phi 3 are not reported due to the two sentences having a
different number of tokens.

Model Time Sensitivity AUC
Counterfactual Observed

Llama 3 8b 0.1316 0.2746

Llama 2 13b 0.1507 0.4412

Gemma 7b 0.1349 0.2453

Gemma 2 9b 0.1581 0.3014

Phi 3 0.1660 0.3782
Mistral 0.1429 0.2297

Table 1: Counterfactual and observed time sensitivity AUC for quantitative experiments.

Our IoU scores are reported in Figure 49.
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Figure 28: Predicted next token for the sentence “Are8 animals?”, where8 is an interpolation of
“cats” and “dogs”. Results for Llama 2 and Phi 3 are not reported due to the two sentences having a
different number of tokens.
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Figure 29: Predicted next token for the sentence “We bought two8 at the”, where8 is an inter-
polation of “cats” and “dogs”. We report all tokens with a probability of at least 5% at any point of
the interpolation. Results for Llama 2 and Phi 3 are not reported due to the two sentences having a
different number of tokens.
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Figure 30: Predicted next token for the sentence “Repeat the word8.”, where8 is an interpolation
of “cats” and “dogs”. We report all tokens with a probability of at least 5% at any point of the
interpolation. Results for Llama 2 and Phi 3 are not reported due to the two sentences having a
different number of tokens.
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Figure 31: Predicted next token for the sentence “Does8 contain sugar?”, where8 is an interpola-
tion of “water” and “juice”. Results for Llama 2 and Phi 3 are not reported due to the two sentences
having a different number of tokens.
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Figure 32: Predicted next token for the sentence “Is 8 a drink?”, where 8 is an interpolation of
“water” and “juice”. Results for Llama 2 and Phi 3 are not reported due to the two sentences having
a different number of tokens.
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Figure 33: Predicted next token for the sentence “We drank some8 in the”, where8 is an interpo-
lation of “water” and “juice”. We report all tokens with a probability of at least 5% at any point of
the interpolation. Results for Llama 2 and Phi 3 are not reported due to the two sentences having a
different number of tokens.
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Figure 34: Predicted next token for the sentence “Repeat the word8.”, where8 is an interpolation
of “water” and “juice”. We report all tokens with a probability of at least 5% at any point of the
interpolation. Results for Llama 2 and Phi 3 are not reported due to the two sentences having a
different number of tokens.
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Figure 35: Predicted next token for the France, Gatsby and Romeo sentences in GPT2 with transla-
tion.
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Figure 36: Predicted next token for interpolations of AND and OR in Llama 3.
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Figure 37: Predicted next token for interpolations of AND and OR in Llama 2.
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Figure 38: Predicted next token for interpolations of AND and OR in Gemma.
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Figure 39: Predicted next token for interpolations of AND and OR in Gemma 2.
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Figure 40: Predicted next token for interpolations of AND and OR in Phi 3.
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Figure 41: Predicted next token for interpolations of AND and OR in Mistral.
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Figure 42: Predicted next token for interpolations of AND and XOR in Llama 3.
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Figure 43: Predicted next token for interpolations of AND and XOR in Gemma.
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Figure 44: Predicted next token for interpolations of AND and XOR in Gemma 2.
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Figure 45: Predicted next token for interpolations of AND and NAND in Llama 3.
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Figure 46: Predicted next token for interpolations of AND and NAND in Gemma.
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Figure 47: Predicted next token for interpolations of AND and NAND in Gemma 2.
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Figure 48: Counterfactual and expected time sensitivity scores.
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Figure 49: Intersection over Union for our time sensitivity experiments.
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