DINGO: Constrained Inference for Diffusion LL.Ms

Anonymous Authors!

Abstract

Diffusion LLMs have emerged as a promising
alternative to conventional autoregressive LLMs,
offering substantial potential for improving run-
time efficiency. However, existing diffusion mod-
els fail to provably enforce user-specified formal
constraints, such as regular expressions, which
makes them unreliable for tasks that require struc-
tured outputs, such as fixed-schema JSON gener-
ation. Unlike autoregressive models, which gen-
erate tokens sequentially, diffusion LLMs pre-
dict a block of tokens in parallel. This paral-
lelism makes traditional constrained decoding al-
gorithms, designed to enforce constraints with
sequential token prediction, ineffective at pre-
serving the true output distribution. To address
this limitation, we propose DINGO, a dynamic
programming-based constrained decoding strat-
egy that is both efficient and provably distribution-
preserving. DINGO enables sampling of out-
put strings with the highest probability under the
model’s predicted distribution while strictly ad-
hering to any user-specified regular expression.
On standard symbolic math and JSON generation
benchmarks, DINGO achieves up to a 68% points
of improvement over unconstrained inference.

1. Introduction

Autoregressive LLMs demonstrate impressive performance
across a wide range of tasks, including logical reason-
ing (Pan et al., 2023), theorem proving (Yang et al., 2023),
and code generation (et. al., 2021). However, because they
generate one token at a time, they can be slow when pro-
ducing long responses. Recent work has explored using dif-
fusion models to accelerate token generation by predicting
blocks of tokens in parallel. For tasks such as logical reason-
ing, where the LLM output is fed into symbolic solvers like

! Anonymous Institution, Anonymous City, Anonymous Region,
Anonymous Country. Correspondence to: Anonymous Author
<anon.email @domain.com>.

Preliminary work. Under review by the International Conference
on ICML 2025 Workshop on Reliable and Responsible Foundation
Models. Do not distribute.

Z3 (Fedoseev et al., 2024), syntactic correctness of the out-
put is essential. Prior works (Poesia et al., 2022; Ugare et al.,
2024a; Loula et al., 2025) have shown that LLMs frequently
make syntactic and semantic errors, often generating struc-
turally invalid outputs that cause downstream tasks to fail
due to unparsable input. To mitigate this issue, constrained
decoding has emerged as a promising approach that prov-
ably ensures structural correctness by projecting the LLM
output onto a set of valid strings, typically defined by a
regular grammar or, more generally, a context-free grammar
(CFG). However, existing constrained decoding techniques
are designed specifically for autoregressive LLMs and rely
on their step-by-step generation process to prune invalid
tokens that cannot lead to structurally valid outputs. At each
generation step, the decoder selects the highest-probability
token from the set of valid options, based on the LLM’s
output distribution.

In contrast, diffusion LLMs predict blocks of tokens in par-
allel without sequential dependencies, making existing con-
strained decoding algorithms incompatible. Furthermore,
greedy token selection in autoregressive models maximizes
the probability locally at each step but can be suboptimal
over an entire sequence, potentially leading to structurally
valid yet lower-quality outputs that fail to maximize the
overall probability of valid strings. (Lew et al., 2023; Park
et al., 2024b) have reported this distortion in output distribu-
tion for autoregressive LLMs under constrained decoding.
Therefore, any constrained decoding algorithm for diffusion
LLMs should also ensure that enforcing formal constraints
does not come at the cost of distorting the true output distri-
bution.

Key Challenges: Diffusion LLMs generate a block of to-
kens starting from a fully masked string composed of spe-
cial mask tokens L, and iteratively unmask one or more
tokens at each step until producing a fully unmasked output.
Each unmasking step (referred to as a diffusion step) can
unmask tokens at arbitrary positions in the block, with no
left-to-right sequential dependency across steps. As a result,
designing constrained decoding for diffusion LLMs requires
addressing the following:

* RQ1: Efficiently detecting invalid tokens and restricting
token choices at each diffusion step to ensure the final
unmasked string is always structurally correct.

* RQ2: Ensuring the generated token block maximizes the
probability under the output distribution.

Contributions: We present the first constrained decoding
algorithm for diffusion LLMs, making the following contri-
butions:

* We introduce DINGO, the first constrained decoding algo-
rithm for diffusion LLMs that supports any user-specified
regular expression. DINGO provably ensures that the
output string is always a valid prefix of some string in the
target regular language.

* DINGO uses dynamic programming to ensure that the
output string achieves the maximum probability among
all valid strings over the output block with respect to
the true output distribution. This approach guarantees
scalability while maintaining optimality (e.g., maximiz-
ing the probability), in contrast to existing methods such
as (Park et al., 2024b), which rely on repeated resam-
pling. Resampling-based methods are computationally
expensive and unsuitable for practical deployment.

» Extensive experiments on multiple open-source diffusion
LLMs and benchmarks show that DINGO significantly
outperforms standard unconstrained decoding, achiev-
ing up to a 68% improvement on challenging tasks such
as the GSM-symbolic benchmark for symbolic reason-
ing (Mirzadeh et al., 2024) and a JSON generation bench-
mark (NousResearch, 2024).

Roadmap: We provide the necessary background in Sec-
tion 2, formalize constrained decoding for diffusion LLMs
in Section 3, describe the DINGO algorithm along with its
correctness and optimality proofs in Section 4, and present
experimental results in Section 5.

2. Background

Notation: : In the rest of the paper, we use small case
letters = for constants, bold small case letters (x) for strings,
capital letters X for functions, - for string concatenation, ||
to denote the length of x.

Diffusion LLM: The diffusion LLM L, ,, : V" — V"
processes finite strings p € V'™ over a finite alphabet V' in-
cluding the special mask symbol L and produces the output
string 0 € V™. Typically o = p - r with length n represents
the entire output string of £ where p is the input prompt, 7 is
the response, and m + |r| = n. £ can compute the response
r over a single block (Austin et al., 2021; Ye et al., 2025;
Nie et al., 2025) in pure diffusion setup or over multiple
blocksi.e. ry -rg - - - T in a semi-autoregressive setup where
different blocks are computed sequentially from left to right
(Han et al., 2023; Arriola et al., 2025).

At a high level, to compute a block of tokens of size d, £
pads the prompt p with a fully masked suffix, resulting in
p - L% where 1? denotes a sequence of d special mask
tokens L. The model then iteratively unmasks a subset
of these tokens at each step, ultimately producing a fully
unmasked output string o. Each such step is referred to
as a diffusion step, and L typically applies 7" diffusion
steps to compute 0. The number of steps 7' is usually a
fixed, predetermined constant satisfying 7" < d, which
enables greater scalability compared to their autoregressive
counterparts.

Definition 2.1 (Diffusion step). A diffusion step f,, : V" x
N — V™ applies a single unmasking step to a masked (or, a
partially masked) string of length to compute a new masked
(or, possibly unmasked) string of the same length. The
first argument represents the input string appended with the
output block while the second argument dictates the number
of masked tokens in the output string.

Each diffusion step f;, consists of two components: a trans-
former step N, : V™ — RLY‘ "™, which predicts the token
probability distribution at each output position, and a mask
prediction step M, : RLY‘X" x N — RLY'X", which de-
termines which token positions to remask. Typically, for
each position, the mask prediction step identifies the token
with the highest probability and compares these maximum
probabilities across positions. M., then greedily remasks
positions with relatively lower max-probability scores (Nie
et al., 2025) and produces the modified token distribution.
Further details about A, and M,, are in Appendix A.

Formally, the diffusion step is defined as f,(x;_1,i) =
D,y (Mo, (N (zi-1),7)) where Dy, 4, - R‘flxn — Vvnr
is the decoder. We now use the diffusion step to formally
define the diffusion LLM for generating strings of length n
in either a single-block or multi-block setting.

Definition 2.2 (Single block diffusion LLM). A diffusion
LLM that outputs a block of d tokens given an inputp € V'™
using 1" diffusion steps is a function L, , : V™" — V"7,
where n = m + d, and the outputiso =p -r = L,,, (D).
Let f,, : V™ x N — V™ denote a single diffusion step, and
let P, , : V™ — V" be the padding function. Then the
output is computed as 0 = L,, ,(p) = 1, where: o =
Pnnp)=p-1%andz; = fo(z;_1,i) for1 <i <T.

Definition 2.3 (Semi Autoregressive diffusion LLM). In
the semi-autoregressive setup, given an inputp € V'™, the
output o € V™+@%k is generated over k blocks, where each
block is computed via a call to the single block diffusion
model. The output of the i-th diffusion model call is z; =
Lo, m; (@i—1), with g = p and the final output 0 = x.
The input and output lengths for each block are defined as
m; =m+(i—1)xdandn; = m+ixdforalll <i < k.

DFA and regular expression: We provide necessary defi-

nitions regarding regular expression.

Definition 2.4. (DFA) A DFA D = (Q, %, 4, qo, F') for a
regular expression R is a finite-state machine that determin-
istically processes input strings to decide membership in the
language L(R) C X* defined by R. It consists of states @,
a start state qo, a set of accepting states [, and transition
rules § : @ x X — @ and the input alphabet 3.

Definition 2.5 (extended transition function). The extended
transition function §* : ¥* x @ — @ maps an input (w, q)
to the resulting state ¢,., obtained by sequentially applying &
to each character ¢; inw = ¢y - - - Cpyy), starting from state g.

Definition 2.6 (Live DFA states). Given a DFA
(Q,%,0,q0, F), let Q; represent the set of live states such
that ¢ € Q; iff Jw € ¥* s.t. §*(w,q) € F.

3. Optimal Constrained Decoding

We formalize the correctness and optimality of constrained
decoding for any diffusion LLM with respect to a user-
defined regular expression R. Given R, let L(R) C ¥* C
(V'\ L)* denote the set of all finite strings that satisfy the
expression K.

Correctness: A valid constrained decoding algorithm must
ensure that the output string always remains a valid prefix of
some string in L(R), effectively eliminating any output that
cannot be extended into valid completions. By treating the
output string as a prefix rather than a fully completed string,
we can accommodate the semi-autoregressive setup, where
blocks of tokens are appended to the right of the current
output. This approach avoids prematurely rejecting strings
that may lead to valid completions in subsequent blocks and
also aligns with the notion of correctness adopted in existing
constrained decoding algorithms for the autoregressive LLM
(Ugare et al., 2024b; Banerjee et al., 2025). We denote the
set of all valid prefixes of L(R) as Lp(R).

Each diffusion step f,, produces a string over the vocabulary
V', which may include one or more special mask tokens
L. These tokens act as placeholders for actual (non-mask)
tokens that will be filled in during future diffusion steps. To
account for these future substitutions, we define a masked
(or partially masked) string as valid if there exists a re-
placement for all mask tokens such that the resulting fully
unmasked string is a valid prefix of some string in L(R).
To formalize this notion, we first define the substitution
set, which represents the set of fully unmasked strings ob-
tained by replacing all mask tokens in a masked or partially
masked string. We then use substitution sets to define the
correctness of the constrained decoder.

Definition 3.1 (Substitution Set). Given a masked (or, par-
tially masked) string € V™, the substitution set S(x) C
(V'\ {L})™ is the set of all fully unmasked strings obtained
by replacing each occurrence of L in with a token from

V'\ {L}. For unmasked strings withno L, S(z) = {z}

Definition 3.2 (Correctness of Constrained decoder). Any
deterministic decoder D, , r : R‘flxn — V™ is a valid
constrained decoder if, for all n € N, input prompt p and
for any output distribution D,, provided as n probability
vectors each of size |V|, there exists an unmasked string
z in the substitution set S(D,, = (Dy)) of the decoded
output such that actual response p - r = z is a valid prefix
ie,r€ Lp(R).!

Optimality: Given a distribution D,, and a regular expres-
sion R, the set of decodings that are valid prefixes for R (as
defined in Definition 3.2) may not be unique. An optimal
constrained decoder selects, among all valid strings, the
string that maximizes the probability under D,,. The output
distribution D,, is represented as n vectors v1, . . . ,¥,, each
of size |V'|, where the i-th vector v; captures the token dis-
tribution at position 7. For any masked position j, v; assigns
probability 1 to the mask token L and O to all other tokens.
Assuming the input prompt has length m, the token distri-
bution of the actual response is given by v,,,41, ..., v,. For
any output string © = ty41 -+ by, let P(r | Upg1 ... 0p)
denote the probability of the string r under the output dis-
tribution. Then, the optimal constrained decoding can be
formalized as follows:

7 = arg max P(r | Vit - .’un)
i (1)
st.3z e V*. (e S(r)) A (z € Lp(R)).

Since the token distributions v, 41, - . . , v, are independent
across positions, the probability of the string can be writ-
ten as P(r | vpmy1...v,) = [[i,, 1 vilti] where v;[t;]
denotes the probability assigned to token ¢; by the vector v;.
Using this, we can rewrite the optimization problem from

Eq. 1 as follows:

n

r* = argmax H v;[t;]
T=tmet b ()

st.Iz eV . (zeSr) N (x€Lp(R)).

4. DINGO Algorithm
The search space for Eq. 2 is exponential- |V'|¢, where
d = mn — m denotes the block length, making naive

enumeration-based methods impractical. To efficiently re-
trieve the optimal output string r* from Eq. 2, DINGO
leverages dynamic programming. Given a regular expres-
sion R, it first modifies the transition function to handle the
mask symbol _L, which is then utilized during inference.

"More precisely, if there exists at least one r that is a valid
prefix (i.e., r € Lp(R)), then constrained decoding is always
capable of retrieving one of them.

4.1. Precomputation

For a user-provided R and the corresponding DFA Dr =
(Q,X%, 0%, qo, F') (referred to as character-level DFA) with
¥ C (V\ 1), we first construct the token-level DFA
D; = (Q,(V\1),0,qo, F) recognizing L(R) over strings
generated by L. A single tokent € (V \ L) can span
across multiple characters in ¥ i.e. t = ¢;---¢; where
c¢; € Y. To construct the token-level transition function
5t : Q x (V' \ L) = Q, we process each tokent € (V' \ 1)
and state ¢ €) by executing the character-level DFA Dg
on the sequence of constituent characters c; - - - ¢, starting
from state g, and record the resulting state g,.. We then
define the token-level transition as d;(q,t) = g,

To handle the special mask token 1. € V', we define the
transition function §, : Q — 29. For each state ¢ € Q,
0.1 (q) returns the set of states @), C (that are reachable
via a single token transition using ;. Formally, ¢, (¢) =
{¢ | ¢ = d(q,t);t € (V\ 1)}, Since §; may return
multiple states, it resembles the transition function of a non-
deterministic finite automaton (NFA). The precomputation
step combines ¢; and 0 todefined : Q x V — 29 which
is used in the dynamic programming step. Using the token-
level DFA D;, we also construct the set of live states (); C
@ (Definition 2.6).

5(g.t) = {éjt((;)’ &

4.2. DINGO Dynamic Programming

ifte (V\L1),
ift= 1.

Before going into details, we present two key observations
that lead to the decoding algorithm.

Observation 1: Determining whether a fully unmasked
stringr = t1---tq € (V \ L)* is a valid prefix is equiv-
alent to checking whether the resulting state g,., obtained
by applying 9 to the sequence ¢; - - - t4 starting from gy, is
live. Similarly, for a partially (or fully) masked string r ,
applying d to t1 - - - t4 yields a set of resulting states),.. In
this case, r is a valid prefix if and only if any state ¢ € @,
is live (Definition 3.2).

Observation 2: For optimality, it is sufficient to track the
maximum probability path from the start state gy to each
resulting state in ... Once these paths are computed, we
select the one with the highest probability that leads to a
live state. The corresponding string is the optimal string r*
(or one of the optimal strings in case of multiple optimal
solutions) for the optimization problem in Eq. 2.

Based on these observations, the main challenge is to ef-
ficiently maintain the maximum probability path to each
reachable state in (). We address this using a dynamic pro-
gramming (DP) approach, similar to traditional graph-based
DP algorithms such as (Forney, 1973).

DP states: For each token position 1 < ¢ < d in the block,
the DP maintains: a) Wi, g], which records the maximum
probability with which a state ¢ € @) can be reached from
the start state g via transitions on some token sequence with
length ; and b) Pr[q, 7], which stores the last transition, i.e.,
the previous state and the corresponding token, that led
to the maximum probability stored in Wi, q]. If a state
q is unreachable, then Wi, q] = 0. Formally, given the
probability vectors vy, . .., v;, W[i, ¢| is defined as follows
where J; is extended transition function (Definition 2.5).

7
Wli.q) = max [wjlt;] st g =0} (tms1+tn, q0)
1’_’}':1

DP state update: Given the states at token position ¢,
we describe the computation for position 7 + 1. Initially,
Wli,q] = 0 for all ¢ # qo, and Wi, qo] = 1 (lines 1 — 3
in Algo. 1). To compute Wi + 1, g] for each ¢ € Q, we
consider all tokens ¢t € V (including the mask token 1)
that can transition to ¢ from some previous state ¢’ at step
1. Among all such transitions, we select the one with the
highest probability and add it to the maximum probability
path reaching ¢’ at step i. The value Pr[i + 1, g] stores the
previous state and token that lead to the maximum prob-
ability path to ¢ at step % + 1 (lines 12 — 15 in Algo. 1).
Formally,

max v;4+1(t) s.t. ¢ € 6(¢',¢)

Viti(q,q') = {tev

0if ¢, ¢’ are not connected

WE+1.0 = maxWii,] x Viea (0,4
q

Path construction: We consider all reachable states ¢ at
the end of the block with W(d, ¢] > 0. Among the live
states ¢; € @) satisfying this condition, we select the state
gmax With the highest value of W([d, ¢;]. We then use Pr
to iteratively reconstruct the token sequence backward that
forms the maximum probability path starting from gm.x and
ending at gg (lines 20 — 22 in Algo. 1).

Semi-autoregressive setup: In semi-autoregressive setup,
we may not start from DFA start state gy since one or more
blocks of tokens r; - - - 7; may have been generated in left
the current block. Provide the string 1 - - - r; ends at a live
state q;, we can apply dynamic programming approach with
the intializtion W10, ¢;] = 1 and W0, q] = 0 for all state
q # q;. Details are in Appendix D.

4.3. Correctness of DINGO

Proposition 4.1. [Correctness] Given any regular expres-
sion R, input prompt p € V'™, block length d, output distri-
bution Dyyyq = V1 ... Umta lpr(R) n (V \ J_)d 7£ {}
and r ~ V1 - . . Unyq be the decoded string, then 3x €
V*(x e S(r)) A(x € Lp(R)) holds.

Algorithm 1 DINGO DP

Require: go, block length d, probability vectors v1, . .. vq4 for the

current block, Q;, Q, 0.

1: WI0,q] < Oforall (¢ € Q) A (g # qo)

2: W0, q0] + 1

3: Pr|0,q] < (None, None) for all (¢ € Q) © Initialization of
the DP

4: Vi« {}foralli € {1,...,d}> maximum token probability
transtion (¢’ — q) at position i

5: Ty < {}foralli € {1,...,d}
probability transition (¢’ — ¢q)

> token for the maximum

6: for: € {1,...,d} do

7: for (¢ € Q) do

8: fort € V do

9: g« 6(q,t)

10: Vi(q,q'), Ti(q, q') + MaxTransition(v;, t, q,q’)

11: for: € {1,...,d} do > DP computation loop

12: for (g€ Q)N (¢ €Q)do

13: if Wii,q] < W[i —1,q4'] x Vi(q,q') then

14 Wli,q] <+ Wi —1,¢'] x Vi(g,q') > Update
maximum probability path to ¢

15: Prli,q] < (¢',Ti(q,q")) > Update the parents

accordingly
16: Gmas < argmax o, Wld, q]
17: if W[d, gmaz] = 0 then
18: return None, ¢maqz

19: r* {}, Geurr < Qmax
20: fori € {d,...,1} do

21: qecurr, t < PT‘[i, qcuﬂ‘}
22: rf—rt -t

23: return reverse(r*), ¢max

> No valid prefixes

> Decoding the optimal string r*

Proof sketch: DINGO ensures that if a state ¢ € @ is
reachable in ¢ tokens, then Wi, q] > 0 forall 1 < i < d.
Since Lp(R) N (V '\ L) # {}, there exists a state ; € Q;
that is reachable in d steps. Therefore, W[d, gimaz] > 0 (see
line 16 in Alg.1). Consequently, there exists a sequence
T < S(’I") such that §* (.’IT, QO) = Qmaz € Ql’ lmplylng that
z € Lp(R). Formal proof is in AppendixB.

Proposition 4.2. [Optimality] Given any regular expression
R, input promptp € V™, block length d, output distribution
Ditd =V1...-Um+d lpr(R)ﬁ(V\J_)d 75 {} andr* ~
Vmt1 - - - Umtq be the decoded string, then for any valid
string v’ satisfying 3x € V*.(x € S(r')) A (x € Lp(R)),
P | vms1...vn) < P(r* | vims ... 0p).

Proof Sketch: Formal proof is in Appendix B.

4.4. DINGO algorithm

Algorithm 1 presents DINGO steps. The two main loops
dominating its computational complexity involve calculat-
ing transition costs and performing the DP updates respec-
tively.

First, for each of the d time steps, the algorithm com-
putes the optimal single-token transition costs V;(gs, g:)
between all source states gs € () and target states q; € Q.

This is achieved by iterating through each source state g,
each token t € V, and then for each state ¢; reached
from ¢, via ¢t (ie., ¢¢ € 0(gs,t)), updating the cost
Vi(gs, g+) with v;[¢] if it is better. The complexity for this
partis O(d - (|Q* + X, co >rev 10(s;1)])). The sum
> 4. 2t 6(gs, t)| represents the total number of transitions,
Nuans = O(|Q]-|V'|+]Q]- NL), where N is the maximum
number of states reachable via the L token. Thus, this part
takes O(d - (|Q* +1Q| - [V])).

Second, the core dynamic programming update calculates
Wi, q] for each diffusion step ¢ and state ¢. This involves
iterating over d diffusion steps, |Q)| current states ¢, and for
each ¢, considering all |@Q| possible previous states ¢’. This
leads to a complexity of O(d - |Q|?).

Combining these dominant parts, the total complexity is
O(d- (|IQ* +1Q| - V) + d - |Q|*), which simplifies to
O(d- (|Q|*> +|Q| - |[V|)). This can be expressed as O(d -
Q- (IQI+ V).

5. Experiments

In this section, we evaluate DINGO on a math reasoning
task (GSM-Symbolic (Mirzadeh et al., 2024)) and a schema-
based text-to-JSON task (JSONModeEval (NousResearch,
2024)) and demonstrate significant improvement over base-
lines. In both tasks, we use the LLaDA-8B-Base (LLaDA-
8B-B) (Nie et al., 2025), LLaDA-8B-Instruct (LLaDA-8B-
I) (Nie et al., 2025), Dream-v0-Base-7B (Dream-B-7B) (Ye
et al., 2025), and Dream-vO-Instruct-7B (Dream-I-7B) (Ye
et al., 2025) models.

Experimental Setup. We run experiments on a 48-core
Intel Xeon Silver 4214R CPU with 2 Nvidia RTX A5000
GPUs. DINGO is implemented using PyTorch (Paszke
etal., 2019) and the HuggingFace transformers library (Wolf
et al., 2020). The token-level DFA is implemented in Rust
using a highly efficient regex-DFA library to minimize over-
head during DFA construction and LLM inference. We
report the mean number of DFA states and transitions as
well as the offline pre-computation time in Appendix E.

Baselines. We compare DINGO against unconstrained dif-
fusion LLM generation. Furthermore, to highlight the bene-
fit of optimal constrained decoding with DINGO, we imple-
ment a constrained decoding strategy Greedy Constrained
that mirrors existing autoregressive constrained generation
methods (Willard & Louf, 2023; Ugare et al., 2024b).
Greedy Constrained iterates over the diffusion block and
at each position 4 computes a binary mask m € {0, 1}!V
based on the DFA, specifying valid tokens (m = 1) and
excluded tokens (m = 0). Decoding is then performed
on the masked probability distribution m ® v;, where ®
denotes element-wise multiplication. Since in some cases,
Unconstrained outperforms Greedy Constrained, we also

report Best of Greedy + Unconstrained , which takes the
better result of the two approaches for each problem in the
dataset.

Math Reasoning: We evaluate DINGO on GSM-
Symbolic (Mirzadeh et al., 2024) dataset, which consists
of reasoning-based math world problems where numerical
values and names are replaced by symbolic variables. Dif-
fusion LLMs are tasked with generating correct symbolic
expression solutions to those word problems. We evaluate
correctness by using the Z3 solver (De Moura & Bjgrner,
2008) to check if the final expressions from the LLM gener-
ations are functionally equivalent to the ground truth expres-
sions. We set the generation length to 128, number of blocks
to 8, and total diffusion steps to 64 and prompt the LLMs
with 4-shot examples from GSM-Symbolic (Mirzadeh et al.,
2024) (the prompts can be found in Appendix F.1). We
initialize DINGO and Greedy Constrained with a regex
(shown in Appendix F.2) that permits math expressions
wrapped in « and » and natural language text outside these
expressions for reasoning as done in CRANE (Banerjee
et al., 2025).

Table 1 compares the performance of DINGO with the
baseline methods. The Accuracy (%) column reports the
percentage of functionally correct LLM-generated expres-
sions, Parse (%) indicates the percentage of syntactically
valid responses (i.e., expressions without invalid operations),
and Time provides the average time in seconds taken to gen-
erate a completion.

As displayed in the table, DINGO significantly improves
functional correctness over the baselines. For instance, for
LLaDA-8B-I, DINGO outperforms unconstrained genera-
tion by 13 percentage points and Greedy Constrained genera-
tion by 5 percentage points. Furthermore, DINGO achieves
100% syntactic accuracy across all models evaluated. On the
other hand, unconstrained and Greedy Constrained genera-
tion make many syntactic errors, especially for non-instruct
tuned models. For these cases, generation with Greedy Con-
strained results in responses that are syntactically valid pre-
fixes but not syntactically valid by themselves. We present
case studies in Appendix F.3. Importantly, DINGO is ex-
tremely efficient, introducing marginal overhead compared
to unconstrained generation.

JSON Generation: We further evaluate DINGO on a
text-to-JSON generation task JSON-Mode-Eval, which con-
ists of zero-shot problems specifying a JSON schema and
a request to generate a JSON object that contains speci-
fied contents. Generating JSON that adheres to a specified
schema is extremely important for applications like tool use
and function calling (Ugare et al., 2024b; Willard & Louf,
2023). We evaluate the correctness of JSON generated by
an LLM by first evaluating whether the JSON string can
be parsed and converted to a valid JSON object. We fur-

ther evaluate whether the generated JSON is valid against
the schema specified in the prompt. We set the generation
length to 128, number of blocks to 1, and the total diffusion
steps to 64. For the constrained generation methods, we
convert each problem’s JSON schema into its corresponding
regular expression and guide the diffusion LLM to generate
output conforming to that regex.

Table 2 presents the results of our experiment. The Parse
(%) column reports the percentage of syntactically valid
LLM generations while the Accuracy (%) column reports
the percentage of generations that are both syntactically
valid and valid against their respective schemas. Notably,
DINGO achieves 100% schema validation and syntactic
accuracy, while baseline methods struggle in many cases
to generate valid JSON. We attribute this to the fact that
Greedy Constrained may distort the distribution through its
greedy approximation and can only generate a valid prefix,
not a fulll parsable generation (Park et al., 2024a).

Ablation Study on The Number of Diffusion Blocks: We
analyze the performance of DINGO on GSM-Symbolic
using different numbers of diffusion blocks. We run genera-
tion with a response length of 128, using 64 total diffusion
steps, and each of 1, 2, and 8 blocks. As shown in Figure 1,
DINGO performs well across all block settings, outperform-
ing baselines in both functional and syntactic correctness.
Further ablations on the number of diffusion blocks are
presented in Appendix L.

6. Related Works

To the best of our knowledge, our work is the first to provide
provable guarantees on constrained adherence for inference
in diffusion language models. We next discuss the broader
set of related works on diffusion language models and con-
strained language model decoding.

Diffusion Language Models: Diffusion Language Mod-
els (Austin et al., 2021) have emerged as a promising alter-
native to traditional autoregressive architectures (Radford
et al., 2019), offering advantages in parallel processing and
controllability while addressing limitations in sequential
generation. Recent advances in semi-autoregressive diffu-
sion models (Han et al., 2023; Nie et al., 2025; Ye et al.,
2025; Arriola et al., 2025) have significantly narrowed the
performance gap with autoregressive counterparts. SSD-
LM (Han et al., 2023) introduced a semi-autoregressive
approach that performs diffusion over the natural vocabu-
lary space, enabling flexible output length and improved
controllability by iteratively generating blocks of text while
facilitating local bidirectional context updates. More re-
cently, several breakthrough models have advanced the field:
LLaDA (Large Language Diffusion with mAsking) achieved
competitive performance with SOTA open-source autore-

Table 1. Comparison of constrained and unconstrained generation methods on GSM-Symbolic.

Model Method Acc. (%) Parse (%) Time (s)
Unconstrained 25 54 9.06
Greedy Constrained 30 75 9.31
LLaDA-8B-B Best of Greedy + Unconstrained 30 75 9.08
DINGO 31 100 9.22
Unconstrained 19 35 23.78
Greedy Constrained 27 98 23.97
LLaDA-8B-I Best of Greedy + Unconstrained 27 98 23.8
DINGO 32 100 23.92
Unconstrained 17 33 16.02
Greedy Constrained 21 41 16.13
Dream-B-7B Best of Greedy + Unconstrained 21 41 16.04
DINGO 23 100 16.19
Unconstrained 32 61 23.89
Greedy Constrained 34 93 24.01
Dream-1-7B Best of Greedy + Unconstrained 34 93 239
DINGO 36 100 2391

gressive models of a similar size like LLaMA3-8B through
a forward data masking process and a reverse process, pa-
rameterized by a vanilla Transformer to predict masked

Method
mmm Unconstrained
mmm Greedy Constrained
mmm DINGO
| N —

Number of Blocks

w
o

N
w

N
o

—
w

Accuracy (%)

=
o

w

o

(a) LLaDA-8B-I

L Greedy Constrained
mmm DINGO
o | N —

N W W
v o u

N
o

Accuracy (%)
=
w

Method
mmm Unconstrained

=
o

Number of Blocks

(b) Dream-1-7B

Figure 1. Ablation Study on The Number of Diffusion Blocks For
GSM-Symbolic

tokens (Nie et al., 2025). BD3-LMs (Block Discrete De-
noising Diffusion Language Models)(Arriola et al., 2025)
introduced a novel approach that interpolates between dis-
crete denoising diffusion and autoregressive models while
supporting flexible-length generation and improving infer-
ence efficiency with KV caching. Most recently, Dream-
7B(Ye et al., 2025) emerged as a strong open diffusion large
language model that matches state-of-the-art autoregressive
(AR) language models of similar size.

Constrained Decoding with Autoregressive LLMs: Con-
strained decoding has shown promising results in augment-
ing autoregressive language models. Researchers have de-
veloped efficient techniques for ensuring syntactic correct-
ness in regular (Deutsch et al., 2019; Willard & Louf, 2023;
Kuchnik et al., 2023) or context-free (Koo et al., 2024,
Ugare et al., 2024a; Dong et al., 2024; Banerjee et al., 2025)
languages. Other works have focused on semantically con-
strained decoding through Monte Carlo sampling (Lew et al.,
2023; Loula et al., 2025) or backtracking (Poesia et al., 2022;
Ugare et al., 2025). (Lew et al., 2023; Park et al., 2024a)
demonstrated that all these approaches that perform greedy
constrained approximation for inference can distort the sam-
pling distribution. DINGO addresses this challenge by per-
forming optimal constrained sampling on blocks of tokens
in a diffusion language model, which partially mitigates
distribution distortion issues.

Concurrent to our work, (Cardei et al., 2025) performs con-
strained sampling from diffusion language models by mini-
mizing a loss function defined using a surrogate model used
for scoring constraints. However, their proposed method

Table 2. Comparison of constrained and unconstrained generation methods for JSON Schema.

Model Method Acc. (%) Parse (%) Time (s)
Unconstrained 57 59 6.37
Greedy Constrained 80 80 6.47
LLaDA-8B-B Best of Greedy + Unconstrained 88 90 6.41
DINGO 100 100 6.43
Unconstrained 87 91 6.7
Greedy Constrained 78 79 6.81
LLaDA-8B-I Best of Greedy + Unconstrained 99 99 6.73
DINGO 100 100 6.78
Unconstrained 15 18 5.31
Greedy Constrained 23 23 541
Dream-B-7B Best of Greedy + Unconstrained 32 35 5.34
DINGO 100 100 545
Unconstrained 85 87 6.4
Greedy Constrained 30 30 6.51
Dream-1-7B Best of Greedy + Unconstrained 91 93 6.43
DINGO 100 100 6.55

does not guarantee convergence to the constraint and ne-
cessitates a differentiable surrogate model. In contrast, our
work focuses on providing provable guarantees for con-
straint satisfaction during inference without the need of an
additional surrogate model.

Limitations DINGO is optimal for per-block generation,
making it ideal for pure diffusion settings. However, this op-
timality may not hold in semi-autoregressive setups involv-
ing multiple blocks. Currently, our approach is limited to
regular language constraints, while programming languages
often belong to context-free or context-sensitive classes. As
a result, our method cannot directly enforce these more ex-
pressive constraints, which have been addressed in prior
work on autoregressive constrained generation. Nonethe-
less, we believe the core dynamic programming framework
behind DINGO can be extended to support richer language
classes in future work. Moreover, important constraints
like toxicity mitigation fall outside formal language classes,
highlighting directions for further research.

7. Conclusion

We presented DINGO, a novel dynamic programming ap-
proach that enables diffusion LLMs to generate outputs that
strictly adhere to regular language constraints while pre-
serving the model’s underlying distribution. Our method
overcomes the limitations of traditional constrained decod-
ing algorithms that fail with parallel token prediction. Our
experimental results on symbolic math and JSON genera-
tion tasks demonstrate significant improvements over uncon-
strained inference, demonstrates that DINGO is an effective

solution for structured output generation with diffusion mod-
els. Our work bridges an important gap in making diffusion
LLMs reliable for applications requiring formal guarantees.

Impact Statement

This paper introduces research aimed at advancing the field
of Machine Learning. We do not identify any specific so-
cietal consequences of our work that need to be explicitly
emphasized here.

References

Arriola, M., Sahoo, S. S., Gokaslan, A., Yang, Z., Qi, Z.,
Han, J., Chiu, J. T., and Kuleshov, V. Block diffusion:
Interpolating between autoregressive and diffusion lan-
guage models. In The Thirteenth International Confer-
ence on Learning Representations, 2025. URL https:
//openreview.net/forum?id=tyEyYT267x.

Austin, J., Johnson, D. D., Ho, J., Tarlow, D., and van den
Berg, R. Structured denoising diffusion models in dis-
crete state-spaces. In Beygelzimer, A., Dauphin, Y.,
Liang, P., and Vaughan, J. W. (eds.), Advances in Neural
Information Processing Systems, 2021. URL https:
//openreview.net/forum?id=h7-XixPCAL.

Banerjee, D., Suresh, T., Ugare, S., Misailovic, S., and
Singh, G. CRANE: Reasoning with constrained LLM
generation. arXiv preprint arXiv:2502.09061,2025. URL
https://arxiv.org/pdf/2502.09061.

Cardei, M., Christopher, J. K., Hartvigsen, T., Bartoldson,
B. R., Kailkhura, B., and Fioretto, F. Constrained lan-
guage generation with discrete diffusion models, 2025.
URL https://arxiv.org/abs/2503.09790.

De Moura, L. and Bjgrner, N. Z3: an efficient smt
solver. In Proceedings of the Theory and Practice of
Software, 14th International Conference on Tools and
Algorithms for the Construction and Analysis of Systems,
TACAS’08/ETAPS’08, pp. 337-340, Berlin, Heidelberg,
2008. Springer-Verlag. ISBN 3540787992.

Deutsch, D., Upadhyay, S., and Roth, D. A general-
purpose algorithm for constrained sequential inference.
In Proceedings of the Conference on Computational
Natural Language Learning, 2019. URL https://
aclanthology.org/K19-1045/.

Dong, Y., Ruan, C. F, Cai, Y., Lai, R., Xu, Z., Zhao,
Y., and Chen, T. XGrammar: Flexible and efficient
structured generation engine for large language mod-
els. arXiv preprint arXiv:2411.15100, 2024. URL
https://arxiv.org/pdf/2411.15100.

et. al., C. Evaluating large language models trained
on code, 2021. URL https://arxiv.org/abs/
2107.03374.

Fedoseev, T., Dimitrov, D. 1., Gehr, T., and Vechev, M. LLM
training data synthesis for more effective problem solving

using satisfiability modulo theories. In The 4th Work-
shop on Mathematical Reasoning and Al at NeurIPS’24,
2024. URL https://openreview.net/forum?
id=hR4Hskr4GX.

Forney, G. D. The viterbi algorithm. Proc. of the IEEE, 61:
268 — 278, March 1973.

Han, X., Kumar, S., and Tsvetkov, Y. Ssd-lm: Semi-
autoregressive simplex-based diffusion language model
for text generation and modular control, 2023. URL
https://arxiv.org/abs/2210.17432.

Koo, T., Liu, F., and He, L. Automata-based constraints for
language model decoding. In Conference on Language
Modeling, 2024. URL https://openreview.net/
forum?id=BDBdblmyzY.

Kuchnik, M., Smith, V., and Amvrosiadis, G. Val-
idating large language models with RELM. Pro-
ceedings of Machine Learning and Systems, 3,
2023. URL https://proceedings.mlsys.
org/paper_files/paper/2023/file/

93c7d9da6lccb2a60ac047e92787c3ef-Paper-mlsys2023.

pdf.

Lew, A. K., Zhi-Xuan, T., Grand, G., and Mansinghka,
V. Sequential Monte Carlo steering of large language
models using probabilistic programs. In ICML 2023
Workshop: Sampling and Optimization in Discrete
Space, 2023. URL https://openreview.net/
pdf?1id=U12K0gXxXy.

Loula, J., LeBrun, B., Du, L., Lipkin, B., Pasti, C., Grand,
G., Liu, T., Emara, Y., Freedman, M., Eisner, J., Cot-
terell, R., Mansinghka, V., Lew, A., Vieira, T., and
O’Donnell, T. Syntactic and semantic control of large
language models via sequential Monte Carlo. In The Thir-
teenth International Conference on Learning Represen-
tations, 2025. URL https://openreview.net/
pdf?id=x0Xn62FzDO.

Mirzadeh, 1., Alizadeh, K., Shahrokhi, H., Tuzel, O., Ben-
gio, S., and Farajtabar, M. Gsm-symbolic: Understand-
ing the limitations of mathematical reasoning in large
language models, 2024. URL https://arxiv.org/
abs/2410.052209.

Nie, S., Zhu, F.,, You, Z., Zhang, X., Ou, J., Hu, J., Zhou,
J., Lin, Y., Wen, J.-R., and Li, C. Large language dif-
fusion models, 2025. URL https://arxiv.org/
abs/2502.09992.

NousResearch. json-mode-eval, 2024. URL
https://huggingface.co/datasets/

NousResearch/json-mode-eval.

https://openreview.net/forum?id=tyEyYT267x
https://openreview.net/forum?id=tyEyYT267x
https://openreview.net/forum?id=h7-XixPCAL
https://openreview.net/forum?id=h7-XixPCAL
https://arxiv.org/pdf/2502.09061
https://arxiv.org/abs/2503.09790
https://aclanthology.org/K19-1045/
https://aclanthology.org/K19-1045/
https://arxiv.org/pdf/2411.15100
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://openreview.net/forum?id=hR4Hskr4GX
https://openreview.net/forum?id=hR4Hskr4GX
https://arxiv.org/abs/2210.17432
https://openreview.net/forum?id=BDBdblmyzY
https://openreview.net/forum?id=BDBdblmyzY
https://proceedings.mlsys.org/paper_files/paper/2023/file/93c7d9da61ccb2a60ac047e92787c3ef-Paper-mlsys2023.pdf
https://proceedings.mlsys.org/paper_files/paper/2023/file/93c7d9da61ccb2a60ac047e92787c3ef-Paper-mlsys2023.pdf
https://proceedings.mlsys.org/paper_files/paper/2023/file/93c7d9da61ccb2a60ac047e92787c3ef-Paper-mlsys2023.pdf
https://proceedings.mlsys.org/paper_files/paper/2023/file/93c7d9da61ccb2a60ac047e92787c3ef-Paper-mlsys2023.pdf
https://openreview.net/pdf?id=Ul2K0qXxXy
https://openreview.net/pdf?id=Ul2K0qXxXy
https://openreview.net/pdf?id=xoXn62FzD0
https://openreview.net/pdf?id=xoXn62FzD0
https://arxiv.org/abs/2410.05229
https://arxiv.org/abs/2410.05229
https://arxiv.org/abs/2502.09992
https://arxiv.org/abs/2502.09992
https://huggingface.co/datasets/NousResearch/json-mode-eval
https://huggingface.co/datasets/NousResearch/json-mode-eval

Pan, L., Albalak, A., Wang, X., and Wang, W. Y. Logic-
Im: Empowering large language models with symbolic
solvers for faithful logical reasoning, 2023. URL https:
//arxiv.org/abs/2305.12295.

Park, K., Wang, J,
pova, N., and D’Antoni,
decoding. Advances
Processing Systems,
URL
cc/paper_files/paper/2024/file/

Berg-Kirkpatrick, T., Polikar-
L. Grammar-aligned
in Neural Information
37:24547-24568, 2024a.

https://proceedings.neurips.

Willard, B. T. and Louf, R.

Representations, 2025. URL https://openreview.
net/pdf?id=ac93gRzxxV.

Efficient guided gen-
eration for large language models. arXiv preprint
arXiv:2307.09702, 2023. URL https://arxiv.
org/pdf/2307.09702.

Wolf, T., Debut, L., Sanh, V., Chaumond, J., Delangue,

C., Moi, A., Cistac, P, Rault, T., Louf, R., Funtow-
icz, M., Davison, J., Shleifer, S., von Platen, P., Ma,

2bdc2267¢3d7d01523e2e17ac0a754 f3-Paper—ConFe S, Y. Plu, J., Xu, C., Le Scao, T., Gugger, S.,

pdf.

Park, K., Wang, J., Berg-Kirkpatrick, T., Polikarpova,
N., and D’ Antoni, L. Grammar-aligned decoding. In
The Thirty-eighth Annual Conference on Neural Infor-
mation Processing Systems, 2024b. URL https://
openreview.net/forum?id=5G7ve8E1Lu.

Drame, M., Lhoest, Q., and Rush, A. Transformers:
State-of-the-art natural language processing. In Confer-
ence on Empirical Methods in Natural Language Pro-
cessing: System Demonstrations, 2020. URL https:
//aclanthology.org/2020.emnlp—-demos. 6.

Yang, K., Swope, A. M., Gu, A., Chalamala, R., Song,

P, Yu, S, Godil, S., Prenger, R., and Anandkumar, A.
Leandojo: Theorem proving with retrieval-augmented
language models, 2023. URL https://arxiv.org/
abs/2306.15626.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J.,
Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga,
L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison,
M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L.,
Bai, J., and Chintala, S. Pytorch: An imperative style,
high-performance deep learning library. In Advances in
Neural Information Processing Systems 32. 2019.

Ye, J., Xie, Z., Zheng, L., Gao, J., Wu, Z., Jiang, X., Li,
Z., and Kong, L. Dream 7b, 2025. URL https://
hkunlp.github.io/blog/2025/dream.

Poesia, G., Polozov, A., Le, V., Tiwari, A., Soares, G.,
Meek, C., and Gulwani, S. Synchromesh: Reliable
code generation from pre-trained language models. In
International Conference on Learning Representations,
2022. URL https://openreview.net/forum?
1d=KmtVD97J43e.

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D.,
and Sutskever, I. Language models are unsupervised
multitask learners. OpenAl, 2019. URL https://cdn.
openai.com/better-language-models/
language_models_are_unsupervised_
multitask_learners.pdf. Accessed: 2024-11-
15.

Ugare, S., Suresh, T., Kang, H., Misailovic, S., and Singh, G.
SynCode: Improving LLM code generation with gram-
mar augmentation. arXiv preprint arXiv:2403.01632,
2024a. URL https://arxiv.org/pdf/2403.
01632.

Ugare, S., Suresh, T., Kang, H., Misailovic, S., and Singh,
G. Syncode: Llm generation with grammar augmen-
tation, 2024b. URL https://arxiv.org/abs/
2403.01632.

Ugare, S., Gumaste, R., Suresh, T., Singh, G., and Mis-
ailovic, S. IterGen: Iterative structured LLM generation.
In The Thirteenth International Conference on Learning

10

https://arxiv.org/abs/2305.12295
https://arxiv.org/abs/2305.12295
https://proceedings.neurips.cc/paper_files/paper/2024/file/2bdc2267c3d7d01523e2e17ac0a754f3-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/2bdc2267c3d7d01523e2e17ac0a754f3-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/2bdc2267c3d7d01523e2e17ac0a754f3-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/2bdc2267c3d7d01523e2e17ac0a754f3-Paper-Conference.pdf
https://openreview.net/forum?id=5G7ve8E1Lu
https://openreview.net/forum?id=5G7ve8E1Lu
https://openreview.net/forum?id=KmtVD97J43e
https://openreview.net/forum?id=KmtVD97J43e
https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://arxiv.org/pdf/2403.01632
https://arxiv.org/pdf/2403.01632
https://arxiv.org/abs/2403.01632
https://arxiv.org/abs/2403.01632
https://openreview.net/pdf?id=ac93gRzxxV
https://openreview.net/pdf?id=ac93gRzxxV
https://arxiv.org/pdf/2307.09702
https://arxiv.org/pdf/2307.09702
https://aclanthology.org/2020.emnlp-demos.6
https://aclanthology.org/2020.emnlp-demos.6
https://arxiv.org/abs/2306.15626
https://arxiv.org/abs/2306.15626
https://hkunlp.github.io/blog/2025/dream
https://hkunlp.github.io/blog/2025/dream

A. Transformer and Remasking Step

Algorithm 2 Diffusion Step

Require: Transformer A,,, full output length n, prompt p, input prompt length m, block length d, current diffusion step 7,
total diffusion steps 7', vocabulary V.

Lz+p-L9 > Pad the input prompt where n = m + d
2: vy ... < Ny(2) >v; € RLV‘ output distribution at position 7
3: 1 < RemaskPositions(v,,, 11, - - - , Umn+d, i, 1) > Decides which positions to remask
4: for j € ldo

5: v — 0

6: vi[l] 1 > Set probability of all tokens except L to 0.
7: 7 4= Dy (V1 ...0p) > Decoding that outputs response with first m tokens are input prompt p
8: returnr

We describe the two key components of a single diffusion step: a) Transformer step: Computes the output distribution
over all tokens in the vocabulary (line 2 Algo. 2). b) Remasking step: Based on the output from the transformer step, it
greedily decides which token positions to mask. The remasking step can be viewed as updating the output distribution
such that, at the masked positions, the mask token _L is assigned probability 1, while all other tokens receive probability O
(lines 3 — 6 Algo. 2). Popular greedy remasking strategies include (line 3 Algo. 2): (i) Random: Masks tokens at randomly
selected positions (Nie et al., 2025). (ii) Top token probability: Masks positions where the top-predicted token has the lowest
probability (Nie et al., 2025). (iii) Entropy-based: Computes the entropy of the output distribution at each position and
masks the positions with the highest entropy (Ye et al., 2025).

The number of token positions to remask at the i-th step typically depends on the total number of diffusion steps 7" and the
block length d. At step 0, all d positions are masked, and the number of masked tokens decreases linearly to 0 over 7" steps.

Thus, at the i-th step, the number of masked tokens is given by {%J .

B. Proofs

Proposition 4.1. [Correctness] Given any regular expression R, input prompt p € V'™, block length d, output distribution
Dpid =1 .. Vmia if Lp(R)N(V\ L) # {}andr ~ i1 ... 01 q be the decoded string, then 3x € V*.(x €
S(r)) A (x € Lp(R)) holds.

Proof. We assume that 3z € Lp(R) N (V' \ L)? A (P(Z|¥smi1 ... Vmia) > 0) then the decoded string r satisfy the
soundness property (see Definition 3.2). In other words, if there is at least one fully unmasked valid prefix with non-zero
probability then DINGO retrieves a valid string.

We show this by induction on the position of tokens. Before moving to the proof, we first define extended transition function
§* when § : Q x V' — 2% outputs a set of states instead of single state due to mask token L. In this case, for any string
w € V*, §*(w, qo) represents the state of reachable states starting from gg. This can be defined as 6*({}, ¢o) = {¢o} and

6" (t1 - tms1,90) = Uges= (b1t q0)0 (@ tmt1).-

1. Let0 <4 < d,andlett; ...t; € V' denote any token sequence with positive probability mass H;:1 Vm;(t;] > 0.
Let g € 0*(¢1 - - - i, qo). Then, Wi, ¢] > 0. We prove this using induction on 1.

(a) Base case i = 0: For empty strings only start state go is reachable. DINGO initializes [0, go] = 1 > 0 and for
all ¢ # qo, W[0, ¢] = 0. (lines 1 — 3 in Algo. 1).

(b) Inductive Step: At positioni + 1,lett;...t;41 € Vitlsit. H;ill Umj[tj] > 0. Letq’ € 6*(¢1---ti,qo) and
q € 6(¢’, t;+1). By the inductive hypothesis, for all such ¢’ Wi, ¢’] > 0. Recall,

max v;4+1(t) s.t. ¢ € 6(¢', %)

Vita(g,q') = { tev

0if g, ¢’ are not connected

11

Wli+1,q) = max Wi, ¢ x Vis1(g,4)
q

Thus, Vi+1(¢,q’) > Ym4it1(tir1) > 0 which implies Wi, ¢'] x Vi11(q,¢') > 0. Therefore, W[i + 1,q] =
maxg e Wi, q'] x Viza(q,¢') > 0.

2. Since Lp(R) N (V \ L)¢ # {} by assumption, there exists some y € Lp(R) N (V \ L)% By the Definition 2.6,
@ = 6; (Y, qo) € Qi From the induction above, W[d, ¢;] > 0. From line 16 in Algo. 1, ¢mqee = argmax ¢, Wld, ql.
Thus, by the definition of arg max, W|(d, ¢maz] > W|d, qi] > 0.

3. In lines 20-22 in Algo. 1), DINGO reconstructs a d-length sequence 7 = t; ...t; € V¢ such that g,,q. € 5*(7, qo)-
For any t; € r, if t; = L, choose any token 7; € (V \ L) satisfying (5t(qj_1,7'J) = ¢; where ¢; = 65 (t1...tj,qo)-
By definition of § | , 7; exists. Substituting every _L in this manner yields, by Definition 3.1,z = ...2q € (V 1)d,
z € S(r). 67 (2, 90) = ¢max- From above, Wd, ¢maz] > 0.

4. Since Gmaz € Q, by Definition 2.6, Jw € ¥* s.t. §* (W, ¢maz) € F. Equivalently, z - w € L(R), hencez € Lp(R).

O

Proposition 4.2. [Optimality] Given any regular expression R, input prompt p € V™, block length d, output distribution
Dpid =01 - VUmia, if Lp(R)N(V'\ L)% # {} and 1* ~ V.11 - . . Upn1a be the decoded string, then for any valid string
v’ satisfying Ix € V*.(x € S()) A (x € Lp(R)), P(r' | vma1---v0) < P(r* | Vg1 - .- v0).

Proof. 1. First, we show that P(r* | v, 41 ... V5) = WI[d, ¢maz], OF equivalently H?Zl Vit [157°] = WId, ¢maz). Let
™ =r1"...1q" and 0 < 7 < d. We prove by induction on i that if DINGO’s backtracking (lines 19 — 23 in Algo 1)
has brought us to state ¢ € () at position ¢, then Wi, ¢] = H;Zl Vit [157].

(a) Basecasei=0: W[0,q0] =1= H] L Um4j(ri*].
(b) Inductive Step: At position i, let ¢',m;* = Pr[i,q] (line 21 in Algo 1). From lines 14 — 15 in Algo 1,
Wli,q) = Wi —1,¢'] X Uym4i(ri*). By the inductive hypothesis, W[i — 1,¢'] = H;;ll V4[], Thus,
. i—1 * * % *
Wi, q] = Hj:1'vm+j [rj*] X Vipgi(ri™) = Hj:l V[
Let ¢q¢ € 6*(r1*...7a% qo). Since gg = Gmax (line 19 in Algo 1), WId, gmaz] = H?:l Umjlri*] =
Pr* | vmy1 ... 0n).
2. We show that for every valid string 7’ =1’ ... 74’ satisfying 3z € V*.(x € S(r'))A(x € Lp(R)), szl U [157] <
Wd, gmaz)- Let 0 < i < dand q € 6*(r1’ ... 7', qo). We show that H§:1 U4 [15'] < W]d, g] using induction on 1.
(a) Basecasei=0: W[0,q0] =1 = H] 1vm+; [r;'].

(b) Inductive Step: At position i + 1, let ¢’ € 6*(r1"---7i’,q0) and g € 6(¢',ri41"). By the inductive hypothesis,
1=y vmjlrs’l < Wi, q]. Recall,

max v;41(t) s.t. ¢ € (¢, t)

Viti(q,q') = {tev

0 if g, ¢’ are not connected
Wli+1,q] = H}ggW[i?q'] x Viy1(a,q')
q

Thus, Vi 4it1(ri+1’) < Viti(g, ¢'). Hence, HJ 1Oy’ = Hj-zl Vintj[15'] X Vi1 (rig1’) < Wi, ¢'] %
‘/;+1(Q7q/> S W[Z + 17q]

Let gqg € 6*(r1’...rd’,q0). Sincexz € V*.(z € S(r')) A (x € Lp(R)), qu € Q. From line 16 in Algo. 1,
Gmaz = argmax,cq, W[d, q]. Thus, by the definition of arg max, W(d, qs] < W{d, ¢naz]. From the inductive

hypothesis above, H?Zl VUt [r5'] S WId, qa] < W[d, gmaaz)-

3. Hence, P(r' | vps1 - 0n) = [[_1 Vimts 5] < WId, Gmaz] = [1—y Vmsslr*] = P [msr .. vn).

12

C. Time complexity analysis of parallelized DINGO DP

Algorithm 3 DINGO DP

Require: o, block length d, probability vectors v1, . . . v4 for the current block, @Q;, @, 9.
: WI0,q] « Oforall (g € Q) A (g # qo)

1:
2: WI0,qo] < 1
3: Pr[0, q] + (None, None) for all (¢ € Q) > Initialization of the DP
4: Vi« {}foralli € {1,...,d} > maximum token probability transtion (¢' — g) at position i
5: T; < {}foralli € {1,...,d} > token for the maximum probability transition (¢ — ¢)
6: forie {1,...,d} do > The computation along all d can be parallelized
7: # Parallelize for each {1,...d}
8: for (¢ € Q) do
9: fort € V do
10: q + (q,t)
11: Vi(q,q'), Ti(q, q') + MaxTransition(v;, t, q,q")
12: fori € {1,...,d} do > DP computation loop
13: for (g€ Q)N (¢ €Q)do
14: if Wi, q] < W[i —1,q4'] x Vi(q,q") then
15: Wli,q] < Wi —1,¢'] x Vi(q,q") > Update maximum probability path to ¢
16: Prli,q] < (¢',T:(q,q")) > Update the parents accordingly
17! @max + argmax,cq, Wld, q]
18: if W([d, gmaz] = 0 then > No valid prefixes
19: return None, ¢max
20: 7" <+ {}, qeurr < Gma=
21: fori € {d,...,1} do > Decoding the optimal string r*
22: Geurry t < Pr[i, geurr)
23: et -t
24: return reverse(r”), ¢max

The parallelism step at line 6 in Algo. 3 can be efficiently implemented using popular frameworks like PyTorch. With
parallelism, the computational depth (i.e., the minimum number of sequential steps) reduces to O(max(|Q|?, |Q| x |V]) +
|Q|? x d). For regular expressions, where the number of states |Q| is a small constant, the computational depth becomes
O(|V'| 4 d), which is linear in both the vocabulary size |V'| and the block length d.

D. Semi-Autoregressive

In the semi-autoregressive setup, given an input p € V™, the output 0 € V™+4xF is generated over k blocks, where
each block is computed via a call to the single block diffusion model. The output of the i-th diffusion model call is
; = Lo, n; (1), with £y = p and the final output 0 = x,. The input and output lengths for each block are defined as
m; =m+ (i—1)xdandn; =m+ixdforall <i<k.

Algorithm 4 Semi-Autoregressive diffusion LLM Generation

Require: diffusion LLM L, prompt p, answer length n, block length d, diffusion steps 7', vocabulary V', number of blocks

k.
l:x+p > Initialize with input prompt p
2:r+{} > Intialize the output string
3: forie {1,...,k} do
4: x - r; < Diffusion(z,m + (i — 1) x d,d, T, V) >7; € V% is i-th output block
5 TTT;
6 T4—T-T > Compute the input prompt for the next block
7: Returnr

13

Algorithm 5 Semi-Autoregressive Constrained diffusion LLM Generation

Require: diffusion LLM £, prompt p, answer length n, block length d, diffusion steps 7', vocabulary V', number of blocks
k, regular expression R.

1: qo, Qi, 0 < PreProcess(R) > Pre-compute the dfa start state, live states and §
2. x+Dp > Initialize with input prompt p
3r+«{} > Intialize the output string
4 Qeurr < Qo > Intialize the current dfa state the response is at
5: forie {1,...,k} do
6: Z - T, Gnext < Diffusion(z,m + (i — 1) x d,d, T,V ,Q1, 0, qeurr)
7 if next ¢ Ql then
8: return None > No valid completion
9: rTr-T;
10: T4 ZT-T > Compute the input prompt for the next block
11: Qeurr < Qneat > Update current DFA state for next block

12: Returnr

In the semi-autoregressive setting, after each block, we ensure that the output generated so far ends in a live state from
Q1; otherwise, we return the None string (line 7, Algo. 5). Additionally, we maintain a variable g, to track the current
DFA state at the end of each block. This state is then used as the starting state for the dynamic programming step in the
constrained generation of the next block.

14

E. Token Transitions Statistics

Table 3. Token Transitions Pre-Computation Statistics

GSM-Symbolic JSON-Mode
Model Family V| Time(s) #States Time(s) #States

LLaDA-8B 126349 32.09 40 13.22 169.31
Dream-7B 151667 37.01 40 11.87 169.31

In Table 3, we report the precomputation time and the number of states in the DFA for both tasks. For JSON generation,
different regular expressions are used for different schemas; therefore, we report the mean precomputation time and mean
number of states. The maximum number of states and precomputation times across all questions are 455 and 17.7 (Dream)
21.3 (LLaDA) seconds, respectively.

F. GSM-Symbolic
F.1. GSM-Symbolic Prompt

You are an expert in solving grade school math tasks. You will be presented with a grade-school math
word problem with symbolic variables and be asked to solve it.

Before answering you should reason about the problem (using the <reasoning> field in the response
described below). Intermediate symbolic expressions generated during reasoning should be wrapped
in << >>.

Only output the symbolic expression wrapped in << >> that answers the question. The expression must
use numbers as well as the variables defined in the question. You are only allowed to use the
following operations: +, -, /, //, %, *, and xx.

You will always respond in the format described below:
Let’s think step by step. <reasoning> The final answer is <<symbolic expression>>

There are {t} trees in the {g}. {g} workers will plant trees in the {g} today. After they are done,
there will be {tf} trees. How many trees did the {g} workers plant today?

Let’s think step by step. Initially, there are {t} trees. After planting, there are {tf} trees. The
number of trees planted is <<tf - t>>. The final answer is <<tf - t>>.

If there are {c} cars in the parking lot and {nc} more cars arrive, how many cars are in the parking
lot?

Let’s think step by step. Initially, there are {c} cars. {nc} more cars arrive, so the total becomes
<<c + nc>>. The final answer is <<c + nc>>.

{pl} had {chl} {ol} and {p2} had {ch2} {ol}. If they ate {a} {ol}, how many pieces do they have left
in total?

Let’s think step by step. Initially, {pl} had {chl} {ol}, and {p2} had {ch2} {ol}, making a total of
<<chl + ch2>>. After eating {a} {ol}, the remaining total is <<chl + ch2 - a>>. The final answer
is <<chl + ch2 - a>>.

{pl} had {11} {ol}. {pl} gave {g} {ol} to {p2}. How many {ol} does {pl} have left?

Let’s think step by step. {pl} started with {11} {ol}. After giving {g} {ol} to {p2}, {pl} has <<11 -
g>> {ol} left. The final answer is <<11 - g>>.

{question}

Listing 1. Prompt template for the GSM-Symbolic task (Mirzadeh et al., 2024).

F.2. GSM-Symbolic Regex

(22 (2:(2:(2:(2:[—;=2—~\nl+)) *(2:<<(?2:(2:\))2(2:(2:(2:(2:(?:[a=-3F]) | (?:[0-](1,3})|\(((2 (?:(?:[a-]
1) 1(2:00-91{1, 31 IN((2: (22 (22 (?: [@a=31) [(2:[0-91{1,3}) IN((?:(?:(?:(?:[a])\(° [o](1 31)))
(2022 (2:(2:N)22 (2:\HIN=1// 1/ 151\ * I\ *)) (?: 28\ P) 2 (28 (28 (28 [[&= j])\(:[0-91{1,31)))))*)\)))
(2:(2:(2:(2:N) 2(2: (2\+IN=1// 1/ 1% 1\ % | * * }Y (2 (2:\))2(2:(2:(2:[a-3]) | (?:[0-9]{1,3})

IN((2: (22 (2: (2: [a- j])\(j [0-91{1 })))(j (7 (2:\)2 (71(”:\+I\—\//\/\%***))(?:(?:\)
2(2:(2:(2:[a=31) 1 (2:00-91{1,3})))))*)\)) A)N))) (20 (2 (2:(2:\)2 (2 (2NN // 1/ 1%\ x| \x*)
(2:(2:\)2 (2:(?:(?:[a=31) | (2: [0-91 (1, 3) \\ ((?:(2:(2:(2:[a=31) [(2:[0-91{1,3}) IN((2:(2:(?:(?:[a—]

15

])\(?:[0—9](1,3})) (? -'(?:(?:\ 1) 2 (20 (2 \FIN=1// 1715 I\« I*\x)) (2:(2:\))2(2:(2:(2: [a=3])
[(2:00-91{1,3})))))*) \) $(?: (22 (2:\))?(?: (?: \+\\-\//I/\o*l**))(" (?:\))2(2:(2: (2: [a- j])
[(2:10-91{1,3}) I\ ((2:(2: (?:(° [a=31) 1(2:00-91{1,3}))) (2:(2:(2:(2:\)) 2 (22 (2:\+[\=1//1/1%1\ x| **
) (22 (2:\))2(?:(2:(?: [a-3]) [(2:[0-9]1(1, 3))))))*)\))))))\)))))*)\)))(” (?: (?: (?: \))

2(2: (2\FIN=1// 1/ 1% I\ I*\%)) (2:(2:\) 2(2: (2:(2:[a=3]) | (2:[0— 9]{1 3P IN((? :[a-31)

[(?:[0- 9](1 3P IN((?: (2 (?:(2: [a=]]) | (?:[0- 9](1 3})\\((" (?'(7 [a—j])l([]{ 3D))

(2:(2:(2: (2:\))2(2: °\+\\—\//I/I%* **))(N\)2 (2 (?:(-:[1) 1 (2: [0~ 9]{1 3})))) *)\)
(s (28 (Ba (z8\y J)2(28(°\+*\//I/I%*I\\)(° \))°(° (2:(2:[a=31) 1 (2: 1[0]{l 31

IN((2: ((1 (?2:[a=31) 1 (2:[0-91{1,3}))) (2:(2:(2: 7\))’(°\+I*|//\/\%*\\\ (@8 (2a\y)
?2(?:(?:(?: [a- j])\(” [0-91{1, 3}) 1)) *)\)))) *)\) (2 (2: (2 (° \)2 (?:(2: H*I//\/I [\N* [\ *\ %))
(?:(2:\))?(?1(? :la=31) 1 (2:[0-91{1,3}) | \((”’ (° (?:(2: [a-]])\(° [0-91{1,3}) IN((((7 (?:[a-]
])\(":[0-9](1,3})))((2 (2 ("\))"(" (2:\+]\ —I//\/Iel*\\\ (?: 7\))?(?:([a—j])
[(?:00-91{1,3})))))* \)) (28 (28 (%8 (28Y D)2 (28 °\+*\//I/\o*l\ *\x) (?\))?(?:(?;(?:[a il
[(?:[0-91{1,3}) I\ ((z ?:(° (?:[a=31) 1 (2: [0*9](1 3))))(8 (®a (28 (B))’(? (2NFIN=1/7 17151\ x [\x\ %)
) (?:(? \))’(7 1 (? [31 1(2:00-91{1,3})))))*)\)))\)))))*)\)))) *)) (2:(2:\))2>>)))
+(2:(2:\.))?)

Listing 2. GSM-Symbolic Regex

F.3. GSM-Symbolic Case Studies
Case Study 1:

Question: {s1} gets {b} emails a day. {c}% of those
emails don't require any response. He responds to
the rest of them. How many emails does he respond
to in a {a} day work week?

Variables are shown in blue

Unconstrained: Let's think step by step. “"Reasoning
Text ... that require a response is <<b - <<c/100>> *
b>> * a>> = <<b - <<¢/100>> * b>> * a>>The final

answer is <<b - <<c/100_.
Syntax error Q

Greedy Constrained: Let's think step by step.
“"Reasoning Text ...”” of emails requiring require a
response is <<b - (c/100* b ** b * a) ** a>>. The
final answer is <<b - (c/100* b ** b * a) ** a>>.

Functionally incorrect Q

DINGO: Let's think step by step. “"Reasoning Text
“The number of emails responded to is {b -

:<c/100>> * b} * a. The final answer is -l-
*b)*a>>.

Syntactically and Functionally Correct @

Figure 2. An example from the GSM-symbolic dataset (variables in blue), where unconstrained generation produces syntactically incorrect
output, and greedy constrained generation yields a syntactically valid but incorrect answer. In contrast, DINGO generates the correct

answer.

Case Study 2:

16

Question: A new {s1} infects {b} people. Every day,
each infected person infects {c} others. How many
people are infected after {a} days?

Variables are shown in blue

Unconstrained: Let's think step by step. “"Reasoning
Text ...”” so on, effectively increasing the number of
infected people by {-}. The final answer is <<b * (1

+ c)f8>>.
Syntax error e

Greedy Constrained: Let's think step by step.
“"Reasoning Text ..."" The final answeris <<b * (1 +

DINGO: Let's think step by step. “'Reasoning Text ..."
and so on, resulting in (1 + c) * {a} a day. The final

c)*a*1/c-b-(1+c)*a>>=<<b*(1+c)*a/c-b answer is

-(1+c) *a>>.

Functionally incorrecte Syntactically and Functionally Correct @

Figure 3. An example from the GSM-symbolic dataset (variables in blue), where unconstrained generation produces syntactically incorrect
output, and greedy constrained generation yields a syntactically valid but incorrect answer. In contrast, DINGO generates the correct
answer.

G. JSON-Mode
G.1. JSON-Mode Example Prompt

You are a helpful assistant that answers in JSON.

<schema>

{"title’: 'PromotionalCampaign’,
’, 'type’: ’string’},
title’: ’Start Date’,
’: ’string’, ’format’:
’}}, 'required’:

</schema>

Here’s the json schema you must adhere to:

"type’: ’'object’,
'productID’: {’title’:

'properties’: {’campaignID’: {’title’:
'Product ID’, ’type’: ’'string’}, ’startDate’:
'type’: ’'string’, 'format’: ’'date’}, ’'endDate’: {’title’: ’"End Date’

"date’}, ’discountDetails’: {’title’: ’'Discount Details’, ’type’:
[’ campaignID’, ’'productID’, ’startDate’, ’endDate’]}

’Campaign ID
(o

"type

’string

I’m organizing a promotional campaign for our new eco-friendly laundry detergent, which is part of our
household products line. The campaign will start on June 1, 2023, and end on June 30, 2023. wWe’
re planning to offer a 15% discount on all purchases during this period. The campaign ID is
CAMP123456, the product ID is PROD7891011, and the discount details are 15% off on all purchases.
Only output the JSON object, no other text or comments.

Listing 3. Example JSON Prompt from the JSON-Mode-Eval task (NousResearch, 2024). The prompt includes a system
message that specifies a schema and a user message that explicitly instructs the model to output a JSON object
following that schema with certain parameters.

G.2. JSON-Mode Example Regex

\\A{ [12"campaignID" [12:[12" ([""\\\\\\x00-\\xIF\\x7F-\\x9F] I\\\\["\\\\1)*"[1?2, []?"productID"[]2:[
12" (A" \NNNN\AX00-\\XIF\\x7F-\\x9F] IN\\NN["\\\\T) =" [1?2, []12"startDate"[J2:[12" (2:\\d{4})
=(2:0[1-9]11[0-2])-(?:0[1-9]11[1-2][0-9](3[0-1]1)"[12,[]1?"endDate"[1?:[12" (2:\\d{4})
—(?2:0[1-9]111[0-2])-(?:0[1-9]11[1-2]1[0-9113[0-11)"([1?,[]?"discountDetails"[]2:[12" ([""\\\\\\
x00-\\x1IF\\x7F-\\x9F] [\\\\N["\\\\T) «™) 2 [12\\}

Listing 4. Regex for the JSON Schema in Appendix G.2

17

G.3. JSON-Mode Case Studies

Question: Here's the json schema you must adhere
to:<schema> ... </schema>. <Question ... Please
respond with a valid JSON object for this order.>
Only output the JSON object, no other text or
comments.

I'name': 'Wireless Mouse', 'price': 15.99}, {'name":

Unconstrained: {'orderld': 'ORD10234', 'items":

(]

'Bluetooth Keyboard', 'price'; 29.99}, {'name":
'"Webcam HD', 'price': 45.50}}

Syntax error (missing ']') Q

Greedy Constrained: { "orderld" : "4, 'items":
[{'name': 'Wireless Mouse', 'price': 15.99}, {'name":
'Bluetooth Keyboard', 'price': 29.99}, {'name":
'Webcam HD', 'price’:
455013111111112111231722112213112317121113112111
1

Syntax error (incomplete output) g

DINGO: {'orderld': 'ORD10234', 'items': [{'name":
'Wireless Mouse', 'price': 15.99}, {'name': 'Bluetooth
Keyboard', 'price': 29.99}, {'name': 'Webcam HD',
'price': 45.50}1}

Syntactically Correct @

Figure 4. An example from JSON generation, where unconstrained generation produces a syntactically incorrect output, and greedy
constrained generation yields a valid but incomplete prefix. In contrast, DINGO generates a syntactically correct answer.

Question: Here's the json schema you must adhere
to:<schema> ... </schema>. Question ... service was
very prompt and professional, but | wish there was
more variety in the product options.'Only output
the JSON object, no other text or comments.

Unconstrained: \n\n.customerID": "CUST29382",
"feedbackScore": 4, "comments": "The service was
very prompt and professional, but | wish there was

more variety in the product options."}

Syntax error (missing ‘{') 9

Greedy Constrained: { "customerID":
"1UST29382", "feedbackScore": 4,
\n\n\n\n"comments"\n\n\n\n\n: \n\n\n". Think
like the are D to a five year Bible. ... a little about the
and the human world. Is the author review

Syntax error (incomplete output) e

DINGO: {'customerID': 'CUST29382',
'feedbackScore'; 4, 'comments': 'The service was very
prompt and professional, but | wish there was more
variety in the product options.'}

Syntactically Correct @

Figure 5. An example from JSON generation, where unconstrained generation produces a syntactically incorrect output, and greedy
constrained generation yields a valid but incomplete prefix. In contrast, DINGO generates a syntactically correct answer.

18

H. Ablation Study on Number of Blocks for Diffusion LLM Generation (GSM-Symbolic)

We run generation with a response length of 128, using 64 total diffusion steps, and each of 1, 2, and 8 blocks. Table 4
presents the result.

Table 4. Ablation Study on The Number of Diffusion Blocks for GSM-Symbolic

Model #Blocks Method Acc. (%) Parse (%) Time (s)
Unconstrained 20 54 23.66

Greedy Constrained 26 94 23.7

1 Best of Greedy + Unconstrained 26 94 23.66

DINGO 29 100 23.73

Unconstrained 22 54 23.63

Greedy Constrained 30 96 23.81

LLaDA-8B-1 2 Best of Greedy + Unconstrained 30 96 23.65
DINGO 32 100 23.93

Unconstrained 19 35 23.78

Greedy Constrained 27 98 23.97

8 Best of Greedy + Unconstrained 27 98 23.8

DINGO 32 100 23.92

Unconstrained 28 69 23.56

Greedy Constrained 32 90 23.64

1 Best of Greedy + Unconstrained 32 90 23.65

DINGO 34 100 23.67

Unconstrained 30 55 23.62

Greedy Constrained 33 87 23.71

Dream-I-7B 2 Best of Greedy + Unconstrained 33 87 23.62
DINGO 34 100 23.65

Unconstrained 32 61 23.89

Greedy Constrained 34 93 24.01

8 Best of Greedy + Unconstrained 34 93 23.89

DINGO 36 100 23.91

19

I. Ablation Study on Number of Blocks for Diffusion LLM Generation (JSON-Mode)

We run generation with a response length of 128, using 64 total diffusion steps, and each of 1, 2, and 8 blocks. Table 5
presents the result.

Table 5. Ablation Study on The Number of Diffusion Blocks for JSON-Mode.

Model #Blocks Method Acc. (%) Parse (%) Time (s)
Unconstrained 87 91 6.7

Greedy Constrained 78 79 6.81

1 Best of Greedy + Unconstrained 99 99 6.73

DINGO 100 100 6.78

Unconstrained 84 92 6.72

Greedy Constrained 92 94 6.83

LLaDA-8B-1 2 Best of Greedy + Unconstrained 99 99 6.73
DINGO 100 100 6.86

Unconstrained 84 89 6.73

Greedy Constrained 98 98 6.87

8 Best of Greedy + Unconstrained 100 100 6.75

DINGO 100 100 6.85

Unconstrained 85 87 6.4

Greedy Constrained 30 30 6.51

1 Best of Greedy + Unconstrained 91 93 6.43

DINGO 100 100 6.55

Unconstrained 79 82 6.47

Greedy Constrained 37 39 6.68

Dream-I-7B 2 Best of Greedy + Unconstrained 86 88 6.5
DINGO 100 100 6.63

Unconstrained 70 74 6.44

Greedy Constrained 52 52 6.65

8 Best of Greedy + Unconstrained 86 89 6.46

DINGO 100 100 6.67

20

J. Ablation Study on Number of Steps for Diffusion LLM Generation (GSM-Symbolic)

We run generation with a response length of 128, 1 block, and each of 16, 32, 64, and 128 total diffusion steps. Table 6
presents the result.

Table 6. Ablation Study on The Number of Diffusion Steps for GSM-Symbolic with Dream-1-7B

#Steps Method Acc. (%) Parse (%) Time (s)
Unconstrained 6 20 5.99
Greedy Constrained 13 78 6.18
16 Best of Greedy + Unconstrained 13 78 5.99
DINGO 18 100 6.09
Unconstrained 18 48 11.96
Greedy Constrained 25 87 12.06
32 Best of Greedy + Unconstrained 25 87 11.96
DINGO 28 100 12.03
Unconstrained 28 69 23.56
Greedy Constrained 32 90 23.64
64 Best of Greedy + Unconstrained 32 90 23.65
DINGO 34 100 23.67
Unconstrained 31 74 47.83
Greedy Constrained 30 89 47.88
128 Best of Greedy + Unconstrained 31 90 47.83
DINGO 33 100 47.86

21

K. Ablation Study on Number of Steps for Diffusion LLM Generation (JSON-Mode)

We run generation with a response length of 128, 1 block, and each of 16, 32, 64, and 128 total diffusion steps. Table 7
presents the result.

Table 7. Ablation Study on The Number of Diffusion Steps for JSON-Mode with Dream-1-7B

#Steps Method Acc. (%) Parse (%) Time (s)
Unconstrained 54 59 1.51
Greedy Constrained 32 32 1.62
16 Best of Greedy + Unconstrained 68 71 1.52
DINGO 100 100 1.6
Unconstrained 67 71 3.23
Greedy Constrained 35 35 3.35
32 Best of Greedy + Unconstrained 78 82 3.24
DINGO 100 100 3.31
Unconstrained 85 87 6.4
Greedy Constrained 30 30 6.51
64 Best of Greedy + Unconstrained 91 93 6.43
DINGO 100 100 6.55
Unconstrained 85 87 13.42
Greedy Constrained 46 46 13.53
128 Best of Greedy + Unconstrained 95 97 13.43
DINGO 100 100 13.51

22

