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DINGO: Constrained Inference for Diffusion LLMs
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Abstract
Diffusion LLMs have emerged as a promising
alternative to conventional autoregressive LLMs,
offering substantial potential for improving run-
time efficiency. However, existing diffusion mod-
els fail to provably enforce user-specified formal
constraints, such as regular expressions, which
makes them unreliable for tasks that require struc-
tured outputs, such as fixed-schema JSON gener-
ation. Unlike autoregressive models, which gen-
erate tokens sequentially, diffusion LLMs pre-
dict a block of tokens in parallel. This paral-
lelism makes traditional constrained decoding al-
gorithms, designed to enforce constraints with
sequential token prediction, ineffective at pre-
serving the true output distribution. To address
this limitation, we propose DINGO, a dynamic
programming-based constrained decoding strat-
egy that is both efficient and provably distribution-
preserving. DINGO enables sampling of out-
put strings with the highest probability under the
model’s predicted distribution while strictly ad-
hering to any user-specified regular expression.
On standard symbolic math and JSON generation
benchmarks, DINGO achieves up to a 68% points
of improvement over unconstrained inference.

1. Introduction
Autoregressive LLMs demonstrate impressive performance
across a wide range of tasks, including logical reason-
ing (Pan et al., 2023), theorem proving (Yang et al., 2023),
and code generation (et. al., 2021). However, because they
generate one token at a time, they can be slow when pro-
ducing long responses. Recent work has explored using dif-
fusion models to accelerate token generation by predicting
blocks of tokens in parallel. For tasks such as logical reason-
ing, where the LLM output is fed into symbolic solvers like
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Z3 (Fedoseev et al., 2024), syntactic correctness of the out-
put is essential. Prior works (Poesia et al., 2022; Ugare et al.,
2024a; Loula et al., 2025) have shown that LLMs frequently
make syntactic and semantic errors, often generating struc-
turally invalid outputs that cause downstream tasks to fail
due to unparsable input. To mitigate this issue, constrained
decoding has emerged as a promising approach that prov-
ably ensures structural correctness by projecting the LLM
output onto a set of valid strings, typically defined by a
regular grammar or, more generally, a context-free grammar
(CFG). However, existing constrained decoding techniques
are designed specifically for autoregressive LLMs and rely
on their step-by-step generation process to prune invalid
tokens that cannot lead to structurally valid outputs. At each
generation step, the decoder selects the highest-probability
token from the set of valid options, based on the LLM’s
output distribution.

In contrast, diffusion LLMs predict blocks of tokens in par-
allel without sequential dependencies, making existing con-
strained decoding algorithms incompatible. Furthermore,
greedy token selection in autoregressive models maximizes
the probability locally at each step but can be suboptimal
over an entire sequence, potentially leading to structurally
valid yet lower-quality outputs that fail to maximize the
overall probability of valid strings. (Lew et al., 2023; Park
et al., 2024b) have reported this distortion in output distribu-
tion for autoregressive LLMs under constrained decoding.
Therefore, any constrained decoding algorithm for diffusion
LLMs should also ensure that enforcing formal constraints
does not come at the cost of distorting the true output distri-
bution.

Key Challenges: Diffusion LLMs generate a block of to-
kens starting from a fully masked string composed of spe-
cial mask tokens ⊥, and iteratively unmask one or more
tokens at each step until producing a fully unmasked output.
Each unmasking step (referred to as a diffusion step) can
unmask tokens at arbitrary positions in the block, with no
left-to-right sequential dependency across steps. As a result,
designing constrained decoding for diffusion LLMs requires
addressing the following:

• RQ1: Efficiently detecting invalid tokens and restricting
token choices at each diffusion step to ensure the final
unmasked string is always structurally correct.
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• RQ2: Ensuring the generated token block maximizes the
probability under the output distribution.

Contributions: We present the first constrained decoding
algorithm for diffusion LLMs, making the following contri-
butions:

• We introduce DINGO, the first constrained decoding algo-
rithm for diffusion LLMs that supports any user-specified
regular expression. DINGO provably ensures that the
output string is always a valid prefix of some string in the
target regular language.

• DINGO uses dynamic programming to ensure that the
output string achieves the maximum probability among
all valid strings over the output block with respect to
the true output distribution. This approach guarantees
scalability while maintaining optimality (e.g., maximiz-
ing the probability), in contrast to existing methods such
as (Park et al., 2024b), which rely on repeated resam-
pling. Resampling-based methods are computationally
expensive and unsuitable for practical deployment.

• Extensive experiments on multiple open-source diffusion
LLMs and benchmarks show that DINGO significantly
outperforms standard unconstrained decoding, achiev-
ing up to a 68% improvement on challenging tasks such
as the GSM-symbolic benchmark for symbolic reason-
ing (Mirzadeh et al., 2024) and a JSON generation bench-
mark (NousResearch, 2024).

Roadmap: We provide the necessary background in Sec-
tion 2, formalize constrained decoding for diffusion LLMs
in Section 3, describe the DINGO algorithm along with its
correctness and optimality proofs in Section 4, and present
experimental results in Section 5.

2. Background
Notation: : In the rest of the paper, we use small case
letters x for constants, bold small case letters (xxx) for strings,
capital letters X for functions, · for string concatenation, |xxx|
to denote the length of xxx.

Diffusion LLM: The diffusion LLM Lm,n : V m → V n

processes finite strings ppp ∈ V m over a finite alphabet V in-
cluding the special mask symbol ⊥ and produces the output
string ooo ∈ V n. Typically ooo = ppp · rrr with length n represents
the entire output string of L where ppp is the input prompt, rrr is
the response, and m+ |rrr| = n. L can compute the response
rrr over a single block (Austin et al., 2021; Ye et al., 2025;
Nie et al., 2025) in pure diffusion setup or over multiple
blocks i.e. r1r1r1 ·r2r2r2 · · ·rkrkrk in a semi-autoregressive setup where
different blocks are computed sequentially from left to right
(Han et al., 2023; Arriola et al., 2025).

At a high level, to compute a block of tokens of size d, L
pads the prompt ppp with a fully masked suffix, resulting in
ppp · ⊥d, where ⊥d denotes a sequence of d special mask
tokens ⊥. The model then iteratively unmasks a subset
of these tokens at each step, ultimately producing a fully
unmasked output string ooo. Each such step is referred to
as a diffusion step, and L typically applies T diffusion
steps to compute ooo. The number of steps T is usually a
fixed, predetermined constant satisfying T < d, which
enables greater scalability compared to their autoregressive
counterparts.

Definition 2.1 (Diffusion step). A diffusion step fn : V n ×
N→ V n applies a single unmasking step to a masked (or, a
partially masked) string of length to compute a new masked
(or, possibly unmasked) string of the same length. The
first argument represents the input string appended with the
output block while the second argument dictates the number
of masked tokens in the output string.

Each diffusion step fn consists of two components: a trans-
former step Nn : V n → R|V |×n

+ , which predicts the token
probability distribution at each output position, and a mask
prediction stepMn : R|V |×n

+ × N → R|V |×n
+ , which de-

termines which token positions to remask. Typically, for
each position, the mask prediction step identifies the token
with the highest probability and compares these maximum
probabilities across positions. Mn then greedily remasks
positions with relatively lower max-probability scores (Nie
et al., 2025) and produces the modified token distribution.
Further details about Nn andMn are in Appendix A.

Formally, the diffusion step is defined as fn(xxxi−1, i) =

Dm,n(Mn(Nn(xxxi−1), i)) where Dm,n : R|V |×n
+ → V n

is the decoder. We now use the diffusion step to formally
define the diffusion LLM for generating strings of length n
in either a single-block or multi-block setting.

Definition 2.2 (Single block diffusion LLM). A diffusion
LLM that outputs a block of d tokens given an input ppp ∈ V m

using T diffusion steps is a function Lm,n : V m → V n,
where n = m + d, and the output is ooo = ppp · rrr = Lm,n(ppp).
Let fn : V n × N→ V n denote a single diffusion step, and
let Pm,n : V m → V n be the padding function. Then the
output is computed as ooo = Lm,n(ppp) = xxxT , where: xxx0 =
Pm,n(ppp) = ppp · ⊥d and xxxi = fn(xxxi−1, i) for 1 ≤ i ≤ T .

Definition 2.3 (Semi Autoregressive diffusion LLM). In
the semi-autoregressive setup, given an input ppp ∈ V m, the
output ooo ∈ V m+d×k is generated over k blocks, where each
block is computed via a call to the single block diffusion
model. The output of the i-th diffusion model call is xxxi =
Lmi,ni

(xxxi−1), with xxx0 = ppp and the final output ooo = xxxk.
The input and output lengths for each block are defined as
mi = m+(i−1)×d and ni = m+ i×d for all 1 ≤ i ≤ k.

DFA and regular expression: We provide necessary defi-
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nitions regarding regular expression.

Definition 2.4. (DFA) A DFA DR = (Q,Σ, δ, q0, F ) for a
regular expressionR is a finite-state machine that determin-
istically processes input strings to decide membership in the
language L(R) ⊆ Σ∗ defined byR. It consists of states Q,
a start state q0, a set of accepting states F , and transition
rules δ : Q× Σ→ Q and the input alphabet Σ.

Definition 2.5 (extended transition function). The extended
transition function δ∗ : Σ∗ ×Q→ Q maps an input (www, q)
to the resulting state qr, obtained by sequentially applying δ
to each character ci in www = c1 · · · c|www|, starting from state q.

Definition 2.6 (Live DFA states). Given a DFA
(Q,Σ, δ, q0, F ), let Ql represent the set of live states such
that q ∈ Ql iff ∃w ∈ Σ∗ s.t. δ∗(www, q) ∈ F .

3. Optimal Constrained Decoding
We formalize the correctness and optimality of constrained
decoding for any diffusion LLM with respect to a user-
defined regular expressionR. GivenR, let L(R) ⊆ Σ∗ ⊆
(V \ ⊥)∗ denote the set of all finite strings that satisfy the
expressionR.

Correctness: A valid constrained decoding algorithm must
ensure that the output string always remains a valid prefix of
some string in L(R), effectively eliminating any output that
cannot be extended into valid completions. By treating the
output string as a prefix rather than a fully completed string,
we can accommodate the semi-autoregressive setup, where
blocks of tokens are appended to the right of the current
output. This approach avoids prematurely rejecting strings
that may lead to valid completions in subsequent blocks and
also aligns with the notion of correctness adopted in existing
constrained decoding algorithms for the autoregressive LLM
(Ugare et al., 2024b; Banerjee et al., 2025). We denote the
set of all valid prefixes of L(R) as LP (R).

Each diffusion step fn produces a string over the vocabulary
V , which may include one or more special mask tokens
⊥. These tokens act as placeholders for actual (non-mask)
tokens that will be filled in during future diffusion steps. To
account for these future substitutions, we define a masked
(or partially masked) string as valid if there exists a re-
placement for all mask tokens such that the resulting fully
unmasked string is a valid prefix of some string in L(R).
To formalize this notion, we first define the substitution
set, which represents the set of fully unmasked strings ob-
tained by replacing all mask tokens in a masked or partially
masked string. We then use substitution sets to define the
correctness of the constrained decoder.

Definition 3.1 (Substitution Set). Given a masked (or, par-
tially masked) string xxx ∈ V n, the substitution set S(xxx) ⊆
(V \ {⊥})n is the set of all fully unmasked strings obtained
by replacing each occurrence of ⊥ in xxx with a token from

V \ {⊥}. For unmasked strings with no ⊥, S(xxx) = {xxx}
Definition 3.2 (Correctness of Constrained decoder). Any
deterministic decoder Dm,n,R : R|V |×n

+ → V n is a valid
constrained decoder if, for all n ∈ N, input prompt ppp and
for any output distribution Dn provided as n probability
vectors each of size |V |, there exists an unmasked string
xxx in the substitution set S(Dm,n,R(Dn)) of the decoded
output such that actual response ppp · rrr = xxx is a valid prefix
i.e., rrr ∈ LP (R). 1

Optimality: Given a distribution Dn and a regular expres-
sionR, the set of decodings that are valid prefixes forR (as
defined in Definition 3.2) may not be unique. An optimal
constrained decoder selects, among all valid strings, the
string that maximizes the probability under Dn. The output
distribution Dn is represented as n vectors vvv1, . . . , vvvn, each
of size |V |, where the i-th vector vvvi captures the token dis-
tribution at position i. For any masked position j, vvvj assigns
probability 1 to the mask token ⊥ and 0 to all other tokens.
Assuming the input prompt has length m, the token distri-
bution of the actual response is given by vvvm+1, . . . , vvvn. For
any output string rrr = tm+1 · · · tn, let P (rrr | vvvm+1 . . . vvvn)
denote the probability of the string rrr under the output dis-
tribution. Then, the optimal constrained decoding can be
formalized as follows:

r̂rr = argmax
rrr

P
(
rrr | vvvm+1 . . . vvvn

)
s.t. ∃xxx ∈ V ∗.

(
xxx ∈ S(rrr)

)
∧

(
xxx ∈ LP (R)

)
.

(1)

Since the token distributions vvvm+1, . . . , vvvn are independent
across positions, the probability of the string rrr can be writ-
ten as P (rrr | vvvm+1 . . . vvvn) =

∏n
i=m+1 vvvi[ti] where vvvi[ti]

denotes the probability assigned to token ti by the vector vvvi.
Using this, we can rewrite the optimization problem from
Eq. 1 as follows:

rrr∗ = argmax
rrr=tm+1···tn

n∏
i=m+1

vvvi[ti]

s.t. ∃xxx ∈ V ∗. (xxx ∈ S(rrr)) ∧ (xxx ∈ LP (R)) .

(2)

4. DINGO Algorithm
The search space for Eq. 2 is exponential– |V |d, where
d = n − m denotes the block length, making naive
enumeration-based methods impractical. To efficiently re-
trieve the optimal output string rrr∗ from Eq. 2, DINGO
leverages dynamic programming. Given a regular expres-
sionR, it first modifies the transition function to handle the
mask symbol ⊥, which is then utilized during inference.

1More precisely, if there exists at least one rrr that is a valid
prefix (i.e., rrr ∈ LP (R)), then constrained decoding is always
capable of retrieving one of them.
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4.1. Precomputation

For a user-providedR and the corresponding DFA DR =
(Q,Σ, δR, q0, F ) (referred to as character-level DFA) with
Σ ⊆ (V \ ⊥), we first construct the token-level DFA
Dt = (Q, (V \⊥), δt, q0, F ) recognizing L(R) over strings
generated by L. A single token ttt ∈ (V \ ⊥) can span
across multiple characters in Σ i.e. ttt = c1 · · · cl where
ci ∈ Σ. To construct the token-level transition function
δt : Q× (V \ ⊥)→ Q, we process each token ttt ∈ (V \ ⊥)
and state q ∈ Q by executing the character-level DFA DR
on the sequence of constituent characters c1 · · · cl, starting
from state q, and record the resulting state qr. We then
define the token-level transition as δt(q, ttt) = qr.

To handle the special mask token ⊥ ∈ V , we define the
transition function δ⊥ : Q → 2Q. For each state q ∈ Q,
δ⊥(q) returns the set of states Qr ⊆ Q that are reachable
via a single token transition using δt. Formally, δ⊥(q) =
{q′ | q′ = δt(q, ttt); ttt ∈ (V \ ⊥)}. Since δ⊥ may return
multiple states, it resembles the transition function of a non-
deterministic finite automaton (NFA). The precomputation
step combines δt and δ⊥ to define δ : Q× V → 2Q, which
is used in the dynamic programming step. Using the token-
level DFA Dt, we also construct the set of live states Ql ⊆
Q (Definition 2.6).

δ(q, ttt) =

{
{δt(q, t)} if t ∈ (V \ ⊥),
δ⊥(q) if t = ⊥.

4.2. DINGO Dynamic Programming

Before going into details, we present two key observations
that lead to the decoding algorithm.

Observation 1: Determining whether a fully unmasked
string rrr = t1 · · · td ∈ (V \ ⊥)∗ is a valid prefix is equiv-
alent to checking whether the resulting state qr, obtained
by applying δ to the sequence t1 · · · td starting from q0, is
live. Similarly, for a partially (or fully) masked string rrr⊥,
applying δ to t1 · · · td yields a set of resulting states Qr. In
this case, rrr⊥ is a valid prefix if and only if any state q ∈ Qr

is live (Definition 3.2).

Observation 2: For optimality, it is sufficient to track the
maximum probability path from the start state q0 to each
resulting state in Qr. Once these paths are computed, we
select the one with the highest probability that leads to a
live state. The corresponding string is the optimal string rrr∗

(or one of the optimal strings in case of multiple optimal
solutions) for the optimization problem in Eq. 2.

Based on these observations, the main challenge is to ef-
ficiently maintain the maximum probability path to each
reachable state in Qr. We address this using a dynamic pro-
gramming (DP) approach, similar to traditional graph-based
DP algorithms such as (Forney, 1973).

DP states: For each token position 1 ≤ i ≤ d in the block,
the DP maintains: a) W [i, q], which records the maximum
probability with which a state q ∈ Q can be reached from
the start state q0 via transitions on some token sequence with
length i; and b) Pr[q, i], which stores the last transition, i.e.,
the previous state and the corresponding token, that led
to the maximum probability stored in W [i, q]. If a state
q is unreachable, then W [i, q] = 0. Formally, given the
probability vectors vvv1, . . . , vvvi, W [i, q] is defined as follows
where δ∗t is extended transition function (Definition 2.5).

W [i, q] = max
t1...ti

i∏
j=1

vvvj [tj ] s.t. q = δ∗t (tm+1 · · · tn, q0)

DP state update: Given the states at token position i,
we describe the computation for position i + 1. Initially,
W [i, q] = 0 for all q ̸= q0, and W [i, q0] = 1 (lines 1 – 3
in Algo. 1). To compute W [i + 1, q] for each q ∈ Q, we
consider all tokens t ∈ V (including the mask token ⊥)
that can transition to q from some previous state q′ at step
i. Among all such transitions, we select the one with the
highest probability and add it to the maximum probability
path reaching q′ at step i. The value Pr[i+ 1, q] stores the
previous state and token that lead to the maximum prob-
ability path to q at step i + 1 (lines 12 – 15 in Algo. 1).
Formally,

Vi+1(q, q
′) =

{
max
t∈V

vvvi+1(t) s.t. q ∈ δ(q′, t)

0 if q, q′ are not connected

W [i+ 1, q] = max
q′∈Q

W [i, q′]× Vi+1(q, q
′)

Path construction: We consider all reachable states q at
the end of the block with W [d, q] > 0. Among the live
states ql ∈ Ql satisfying this condition, we select the state
qmax with the highest value of W [d, ql]. We then use Pr
to iteratively reconstruct the token sequence backward that
forms the maximum probability path starting from qmax and
ending at q0 (lines 20 – 22 in Algo. 1).

Semi-autoregressive setup: In semi-autoregressive setup,
we may not start from DFA start state q0 since one or more
blocks of tokens rrr1 · · ·rrrl may have been generated in left
the current block. Provide the string rrr1 · · ·rrrl ends at a live
state ql, we can apply dynamic programming approach with
the intializtion W [0, ql] = 1 and W [0, q] = 0 for all state
q ̸= ql. Details are in Appendix D.

4.3. Correctness of DINGO

Proposition 4.1. [Correctness] Given any regular expres-
sionR, input prompt ppp ∈ V m, block length d, output distri-
bution Dm+d = vvv1 . . . vvvm+d, if LP (R) ∩ (V \ ⊥)d ̸= {}
and rrr ∼ vvvm+1 . . . vvvm+d be the decoded string, then ∃xxx ∈
V ∗.(xxx ∈ S(rrr)) ∧ (xxx ∈ LP (R)) holds.

4



220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

Algorithm 1 DINGO DP
Require: q0, block length d, probability vectors vvv1, . . . vvvd for the

current block, Ql, Q, δ.
1: W [0, q]← 0 for all (q ∈ Q) ∧ (q ̸= q0)
2: W [0, q0]← 1
3: Pr[0, q]← (None,None) for all (q ∈ Q) ▷ Initialization of

the DP
4: Vi ← {} for all i ∈ {1, . . . , d}▷ maximum token probability

transtion (q′ → q) at position i
5: Ti ← {} for all i ∈ {1, . . . , d} ▷ token for the maximum

probability transition (q′ → q)
6: for i ∈ {1, . . . , d} do
7: for (q ∈ Q) do
8: for t ∈ V do
9: q′ ← δ(q, t)

10: Vi(q, q
′), Ti(q, q

′)←MaxTransition(vvvi, t, q, q′)
11: for i ∈ {1, . . . , d} do ▷ DP computation loop
12: for (q ∈ Q) ∧ (q′ ∈ Q) do
13: if W [i, q] < W [i− 1, q′]× Vi(q, q

′) then
14: W [i, q]←W [i− 1, q′]× Vi(q, q

′) ▷ Update
maximum probability path to q

15: Pr[i, q]← (q′, Ti(q, q
′)) ▷ Update the parents

accordingly
16: qmax ← argmaxq∈Ql

W [d, q]

17: if W [d, qmax] = 0 then ▷ No valid prefixes
18: return None, qmax

19: rrr∗ ← {}, qcurr ← qmax

20: for i ∈ {d, . . . , 1} do ▷ Decoding the optimal string rrr∗

21: qcurr, t← Pr[i, qcurr]
22: rrr∗ ← rrr∗ · t
23: return reverse(rrr∗), qmax

Proof sketch: DINGO ensures that if a state q ∈ Q is
reachable in i tokens, then W [i, q] > 0 for all 1 ≤ i ≤ d.
Since LP (R)∩ (V \ ⊥)d ̸= {}, there exists a state ql ∈ Ql

that is reachable in d steps. Therefore, W [d, qmax] > 0 (see
line 16 in Alg.1). Consequently, there exists a sequence
xxx ∈ S(rrr) such that δ∗(xxx, q0) = qmax ∈ Ql, implying that
xxx ∈ LP (R). Formal proof is in AppendixB.

Proposition 4.2. [Optimality] Given any regular expression
R, input prompt ppp ∈ V m, block length d, output distribution
Dm+d = vvv1 . . . vvvm+d, if LP (R)∩(V \⊥)d ̸= {} and rrr∗ ∼
vvvm+1 . . . vvvm+d be the decoded string, then for any valid
string rrr′ satisfying ∃xxx ∈ V ∗.(xxx ∈ S(r′r′r′)) ∧ (xxx ∈ LP (R)),
P (r′r′r′ | vvvm+1 . . . vvvn) ≤ P (rrr∗ | vvvm+1 . . . vvvn).

Proof Sketch: Formal proof is in Appendix B.

4.4. DINGO algorithm

Algorithm 1 presents DINGO steps. The two main loops
dominating its computational complexity involve calculat-
ing transition costs and performing the DP updates respec-
tively.

First, for each of the d time steps, the algorithm com-
putes the optimal single-token transition costs Vi(qs, qt)
between all source states qs ∈ Q and target states qt ∈ Q.

This is achieved by iterating through each source state qs,
each token t ∈ V , and then for each state qt reached
from qs via t (i.e., qt ∈ δ(qs, t)), updating the cost
Vi(qs, qt) with vvvi[t] if it is better. The complexity for this
part is O(d · (|Q|2 +

∑
qs∈Q

∑
t∈V |δ(qs, t)|)). The sum∑

qs

∑
t |δ(qs, t)| represents the total number of transitions,

Ntrans = O(|Q|·|V |+|Q|·N⊥), where N⊥ is the maximum
number of states reachable via the ⊥ token. Thus, this part
takes O(d · (|Q|2 + |Q| · |V |)).

Second, the core dynamic programming update calculates
W [i, q] for each diffusion step i and state q. This involves
iterating over d diffusion steps, |Q| current states q, and for
each q, considering all |Q| possible previous states q′. This
leads to a complexity of O(d · |Q|2).

Combining these dominant parts, the total complexity is
O(d · (|Q|2 + |Q| · |V |) + d · |Q|2), which simplifies to
O(d · (|Q|2 + |Q| · |V |)). This can be expressed as O(d ·
|Q| · (|Q|+ |V |)).

5. Experiments
In this section, we evaluate DINGO on a math reasoning
task (GSM-Symbolic (Mirzadeh et al., 2024)) and a schema-
based text-to-JSON task (JSONModeEval (NousResearch,
2024)) and demonstrate significant improvement over base-
lines. In both tasks, we use the LLaDA-8B-Base (LLaDA-
8B-B) (Nie et al., 2025), LLaDA-8B-Instruct (LLaDA-8B-
I) (Nie et al., 2025), Dream-v0-Base-7B (Dream-B-7B) (Ye
et al., 2025), and Dream-v0-Instruct-7B (Dream-I-7B) (Ye
et al., 2025) models.

Experimental Setup. We run experiments on a 48-core
Intel Xeon Silver 4214R CPU with 2 Nvidia RTX A5000
GPUs. DINGO is implemented using PyTorch (Paszke
et al., 2019) and the HuggingFace transformers library (Wolf
et al., 2020). The token-level DFA is implemented in Rust
using a highly efficient regex-DFA library to minimize over-
head during DFA construction and LLM inference. We
report the mean number of DFA states and transitions as
well as the offline pre-computation time in Appendix E.

Baselines. We compare DINGO against unconstrained dif-
fusion LLM generation. Furthermore, to highlight the bene-
fit of optimal constrained decoding with DINGO, we imple-
ment a constrained decoding strategy Greedy Constrained
that mirrors existing autoregressive constrained generation
methods (Willard & Louf, 2023; Ugare et al., 2024b).
Greedy Constrained iterates over the diffusion block and
at each position i computes a binary mask m ∈ {0, 1}|V |

based on the DFA, specifying valid tokens (m = 1) and
excluded tokens (m = 0). Decoding is then performed
on the masked probability distribution m ⊙ vivivi, where ⊙
denotes element-wise multiplication. Since in some cases,
Unconstrained outperforms Greedy Constrained, we also
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report Best of Greedy + Unconstrained , which takes the
better result of the two approaches for each problem in the
dataset.

Math Reasoning: We evaluate DINGO on GSM-
Symbolic (Mirzadeh et al., 2024) dataset, which consists
of reasoning-based math world problems where numerical
values and names are replaced by symbolic variables. Dif-
fusion LLMs are tasked with generating correct symbolic
expression solutions to those word problems. We evaluate
correctness by using the Z3 solver (De Moura & Bjørner,
2008) to check if the final expressions from the LLM gener-
ations are functionally equivalent to the ground truth expres-
sions. We set the generation length to 128, number of blocks
to 8, and total diffusion steps to 64 and prompt the LLMs
with 4-shot examples from GSM-Symbolic (Mirzadeh et al.,
2024) (the prompts can be found in Appendix F.1). We
initialize DINGO and Greedy Constrained with a regex
(shown in Appendix F.2) that permits math expressions
wrapped in « and » and natural language text outside these
expressions for reasoning as done in CRANE (Banerjee
et al., 2025).

Table 1 compares the performance of DINGO with the
baseline methods. The Accuracy (%) column reports the
percentage of functionally correct LLM-generated expres-
sions, Parse (%) indicates the percentage of syntactically
valid responses (i.e., expressions without invalid operations),
and Time provides the average time in seconds taken to gen-
erate a completion.

As displayed in the table, DINGO significantly improves
functional correctness over the baselines. For instance, for
LLaDA-8B-I, DINGO outperforms unconstrained genera-
tion by 13 percentage points and Greedy Constrained genera-
tion by 5 percentage points. Furthermore, DINGO achieves
100% syntactic accuracy across all models evaluated. On the
other hand, unconstrained and Greedy Constrained genera-
tion make many syntactic errors, especially for non-instruct
tuned models. For these cases, generation with Greedy Con-
strained results in responses that are syntactically valid pre-
fixes but not syntactically valid by themselves. We present
case studies in Appendix F.3. Importantly, DINGO is ex-
tremely efficient, introducing marginal overhead compared
to unconstrained generation.

JSON Generation: We further evaluate DINGO on a
text-to-JSON generation task JSON-Mode-Eval, which con-
ists of zero-shot problems specifying a JSON schema and
a request to generate a JSON object that contains speci-
fied contents. Generating JSON that adheres to a specified
schema is extremely important for applications like tool use
and function calling (Ugare et al., 2024b; Willard & Louf,
2023). We evaluate the correctness of JSON generated by
an LLM by first evaluating whether the JSON string can
be parsed and converted to a valid JSON object. We fur-

ther evaluate whether the generated JSON is valid against
the schema specified in the prompt. We set the generation
length to 128, number of blocks to 1, and the total diffusion
steps to 64. For the constrained generation methods, we
convert each problem’s JSON schema into its corresponding
regular expression and guide the diffusion LLM to generate
output conforming to that regex.

Table 2 presents the results of our experiment. The Parse
(%) column reports the percentage of syntactically valid
LLM generations while the Accuracy (%) column reports
the percentage of generations that are both syntactically
valid and valid against their respective schemas. Notably,
DINGO achieves 100% schema validation and syntactic
accuracy, while baseline methods struggle in many cases
to generate valid JSON. We attribute this to the fact that
Greedy Constrained may distort the distribution through its
greedy approximation and can only generate a valid prefix,
not a fulll parsable generation (Park et al., 2024a).

Ablation Study on The Number of Diffusion Blocks: We
analyze the performance of DINGO on GSM-Symbolic
using different numbers of diffusion blocks. We run genera-
tion with a response length of 128, using 64 total diffusion
steps, and each of 1, 2, and 8 blocks. As shown in Figure 1,
DINGO performs well across all block settings, outperform-
ing baselines in both functional and syntactic correctness.
Further ablations on the number of diffusion blocks are
presented in Appendix I.

6. Related Works
To the best of our knowledge, our work is the first to provide
provable guarantees on constrained adherence for inference
in diffusion language models. We next discuss the broader
set of related works on diffusion language models and con-
strained language model decoding.

Diffusion Language Models: Diffusion Language Mod-
els (Austin et al., 2021) have emerged as a promising alter-
native to traditional autoregressive architectures (Radford
et al., 2019), offering advantages in parallel processing and
controllability while addressing limitations in sequential
generation. Recent advances in semi-autoregressive diffu-
sion models (Han et al., 2023; Nie et al., 2025; Ye et al.,
2025; Arriola et al., 2025) have significantly narrowed the
performance gap with autoregressive counterparts. SSD-
LM (Han et al., 2023) introduced a semi-autoregressive
approach that performs diffusion over the natural vocabu-
lary space, enabling flexible output length and improved
controllability by iteratively generating blocks of text while
facilitating local bidirectional context updates. More re-
cently, several breakthrough models have advanced the field:
LLaDA (Large Language Diffusion with mAsking) achieved
competitive performance with SOTA open-source autore-
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Table 1. Comparison of constrained and unconstrained generation methods on GSM-Symbolic.

Model Method Acc. (%) Parse (%) Time (s)

Unconstrained 25 54 9.06
Greedy Constrained 30 75 9.31

LLaDA-8B-B Best of Greedy + Unconstrained 30 75 9.08
DINGO 31 100 9.22

Unconstrained 19 35 23.78
Greedy Constrained 27 98 23.97

LLaDA-8B-I Best of Greedy + Unconstrained 27 98 23.8
DINGO 32 100 23.92

Unconstrained 17 33 16.02
Greedy Constrained 21 41 16.13

Dream-B-7B Best of Greedy + Unconstrained 21 41 16.04
DINGO 23 100 16.19

Unconstrained 32 61 23.89
Greedy Constrained 34 93 24.01

Dream-I-7B Best of Greedy + Unconstrained 34 93 23.9
DINGO 36 100 23.91

gressive models of a similar size like LLaMA3-8B through
a forward data masking process and a reverse process, pa-
rameterized by a vanilla Transformer to predict masked

(a) LLaDA-8B-I

(b) Dream-I-7B

Figure 1. Ablation Study on The Number of Diffusion Blocks For
GSM-Symbolic

tokens (Nie et al., 2025). BD3-LMs (Block Discrete De-
noising Diffusion Language Models)(Arriola et al., 2025)
introduced a novel approach that interpolates between dis-
crete denoising diffusion and autoregressive models while
supporting flexible-length generation and improving infer-
ence efficiency with KV caching. Most recently, Dream-
7B(Ye et al., 2025) emerged as a strong open diffusion large
language model that matches state-of-the-art autoregressive
(AR) language models of similar size.

Constrained Decoding with Autoregressive LLMs: Con-
strained decoding has shown promising results in augment-
ing autoregressive language models. Researchers have de-
veloped efficient techniques for ensuring syntactic correct-
ness in regular (Deutsch et al., 2019; Willard & Louf, 2023;
Kuchnik et al., 2023) or context-free (Koo et al., 2024;
Ugare et al., 2024a; Dong et al., 2024; Banerjee et al., 2025)
languages. Other works have focused on semantically con-
strained decoding through Monte Carlo sampling (Lew et al.,
2023; Loula et al., 2025) or backtracking (Poesia et al., 2022;
Ugare et al., 2025). (Lew et al., 2023; Park et al., 2024a)
demonstrated that all these approaches that perform greedy
constrained approximation for inference can distort the sam-
pling distribution. DINGO addresses this challenge by per-
forming optimal constrained sampling on blocks of tokens
in a diffusion language model, which partially mitigates
distribution distortion issues.

Concurrent to our work, (Cardei et al., 2025) performs con-
strained sampling from diffusion language models by mini-
mizing a loss function defined using a surrogate model used
for scoring constraints. However, their proposed method

7
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Table 2. Comparison of constrained and unconstrained generation methods for JSON Schema.

Model Method Acc. (%) Parse (%) Time (s)

Unconstrained 57 59 6.37
Greedy Constrained 80 80 6.47

LLaDA-8B-B Best of Greedy + Unconstrained 88 90 6.41
DINGO 100 100 6.43

Unconstrained 87 91 6.7
Greedy Constrained 78 79 6.81

LLaDA-8B-I Best of Greedy + Unconstrained 99 99 6.73
DINGO 100 100 6.78

Unconstrained 15 18 5.31
Greedy Constrained 23 23 5.41

Dream-B-7B Best of Greedy + Unconstrained 32 35 5.34
DINGO 100 100 5.45

Unconstrained 85 87 6.4
Greedy Constrained 30 30 6.51

Dream-I-7B Best of Greedy + Unconstrained 91 93 6.43
DINGO 100 100 6.55

does not guarantee convergence to the constraint and ne-
cessitates a differentiable surrogate model. In contrast, our
work focuses on providing provable guarantees for con-
straint satisfaction during inference without the need of an
additional surrogate model.

Limitations DINGO is optimal for per-block generation,
making it ideal for pure diffusion settings. However, this op-
timality may not hold in semi-autoregressive setups involv-
ing multiple blocks. Currently, our approach is limited to
regular language constraints, while programming languages
often belong to context-free or context-sensitive classes. As
a result, our method cannot directly enforce these more ex-
pressive constraints, which have been addressed in prior
work on autoregressive constrained generation. Nonethe-
less, we believe the core dynamic programming framework
behind DINGO can be extended to support richer language
classes in future work. Moreover, important constraints
like toxicity mitigation fall outside formal language classes,
highlighting directions for further research.

7. Conclusion
We presented DINGO, a novel dynamic programming ap-
proach that enables diffusion LLMs to generate outputs that
strictly adhere to regular language constraints while pre-
serving the model’s underlying distribution. Our method
overcomes the limitations of traditional constrained decod-
ing algorithms that fail with parallel token prediction. Our
experimental results on symbolic math and JSON genera-
tion tasks demonstrate significant improvements over uncon-
strained inference, demonstrates that DINGO is an effective

solution for structured output generation with diffusion mod-
els. Our work bridges an important gap in making diffusion
LLMs reliable for applications requiring formal guarantees.
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A. Transformer and Remasking Step

Algorithm 2 Diffusion Step

Require: Transformer Nn, full output length n, prompt ppp, input prompt length m, block length d, current diffusion step i,
total diffusion steps T , vocabulary V .

1: xxx← ppp · ⊥d ▷ Pad the input prompt where n = m+ d

2: v1v1v1 . . . vnvnvn ← Nn(xxx) ▷ vivivi ∈ R|V |
+ output distribution at position i

3: lll← RemaskPositions(vvvm+1, . . . , vvvm+d, i, T ) ▷ Decides which positions to remask
4: for j ∈ lll do
5: vjvjvj ← 000
6: vjvjvj [⊥]← 1 ▷ Set probability of all tokens except ⊥ to 0.
7: rrr ← Dm,n(v1v1v1 . . . vnvnvn) ▷ Decoding that outputs response with first m tokens are input prompt ppp
8: return rrr

We describe the two key components of a single diffusion step: a) Transformer step: Computes the output distribution
over all tokens in the vocabulary (line 2 Algo. 2). b) Remasking step: Based on the output from the transformer step, it
greedily decides which token positions to mask. The remasking step can be viewed as updating the output distribution
such that, at the masked positions, the mask token ⊥ is assigned probability 1, while all other tokens receive probability 0
(lines 3 – 6 Algo. 2). Popular greedy remasking strategies include (line 3 Algo. 2): (i) Random: Masks tokens at randomly
selected positions (Nie et al., 2025). (ii) Top token probability: Masks positions where the top-predicted token has the lowest
probability (Nie et al., 2025). (iii) Entropy-based: Computes the entropy of the output distribution at each position and
masks the positions with the highest entropy (Ye et al., 2025).

The number of token positions to remask at the i-th step typically depends on the total number of diffusion steps T and the
block length d. At step 0, all d positions are masked, and the number of masked tokens decreases linearly to 0 over T steps.
Thus, at the i-th step, the number of masked tokens is given by

⌊
d×(T−i)

T

⌋
.

B. Proofs
Proposition 4.1. [Correctness] Given any regular expressionR, input prompt ppp ∈ V m, block length d, output distribution
Dm+d = vvv1 . . . vvvm+d, if LP (R) ∩ (V \ ⊥)d ̸= {} and rrr ∼ vvvm+1 . . . vvvm+d be the decoded string, then ∃xxx ∈ V ∗.(xxx ∈
S(rrr)) ∧ (xxx ∈ LP (R)) holds.

Proof. We assume that ∃xxx ∈ LP (R) ∩ (V \ ⊥)d ∧ (P (xxx|vvvm+1 . . . vvvm+d) ≥ 0) then the decoded string rrr satisfy the
soundness property (see Definition 3.2). In other words, if there is at least one fully unmasked valid prefix with non-zero
probability then DINGO retrieves a valid string.

We show this by induction on the position of tokens. Before moving to the proof, we first define extended transition function
δ∗ when δ : Q× V → 2Q outputs a set of states instead of single state due to mask token ⊥. In this case, for any string
www ∈ V ∗, δ∗(www, q0) represents the state of reachable states starting from q0. This can be defined as δ∗({}, q0) = {q0} and
δ∗(t1 · · · tm+1, q0) = ∪q∈δ∗(t1···tm,q0)δ(q, tm+1).

1. Let 0 ≤ i ≤ d, and let t1 . . . ti ∈ V i denote any token sequence with positive probability mass
∏i

j=1 vvvm+j [tj ] > 0.
Let q ∈ δ∗(t1 · · · ti, q0). Then, W [i, q] > 0. We prove this using induction on i.

(a) Base case i = 0: For empty strings only start state q0 is reachable. DINGO initializes W [0, q0] = 1 > 0 and for
all q ̸= q0, W [0, q] = 0. (lines 1 – 3 in Algo. 1).

(b) Inductive Step: At position i + 1, let t1 . . . ti+1 ∈ V i+1 s.t.
∏i+1

j=1 vvvm+j [tj ] > 0. Let q′ ∈ δ∗(t1 · · · ti, q0) and
q ∈ δ(q′, ti+1). By the inductive hypothesis, for all such q′ W [i, q′] > 0. Recall,

Vi+1(q, q
′) =

{
max
t∈V

vvvi+1(t) s.t. q ∈ δ(q′, t)

0 if q, q′ are not connected
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W [i+ 1, q] = max
q′∈Q

W [i, q′]× Vi+1(q, q
′)

Thus, Vi+1(q, q
′) ≥ vvvm+i+1(ti+1) > 0 which implies W [i, q′] × Vi+1(q, q

′) > 0. Therefore, W [i + 1, q] =
maxq′∈Q W [i, q′]× Vi+1(q, q

′) > 0.

2. Since LP (R) ∩ (V \ ⊥)d ̸= {} by assumption, there exists some yyy ∈ LP (R) ∩ (V \ ⊥)d. By the Definition 2.6,
ql = δ∗t (yyy, q0) ∈ Ql. From the induction above, W [d, ql] > 0. From line 16 in Algo. 1, qmax = argmaxq∈Ql

W [d, q].
Thus, by the definition of argmax, W [d, qmax] ≥W [d, ql] > 0.

3. In lines 20-22 in Algo. 1), DINGO reconstructs a d-length sequence r = t1 . . . td ∈ V d such that qmax ∈ δ∗(r, q0).
For any tj ∈ r, if tj = ⊥, choose any token τj ∈ (V \ ⊥) satisfying δt(qj−1, τj) = qj where qj = δ∗t (t1 . . . tj , q0).
By definition of δ⊥, τj exists. Substituting every ⊥ in this manner yields, by Definition 3.1, xxx = x1x1x1 . . .xdxdxd ∈ (V \⊥)d.
xxx ∈ S(rrr). δ∗t (xxx, q0) = qmax. From above, W [d, qmax] > 0.

4. Since qmax ∈ Ql, by Definition 2.6, ∃w ∈ Σ∗ s.t. δ∗(www, qmax) ∈ F . Equivalently, xxx · w ∈ L(R), hence xxx ∈ LP (R).

Proposition 4.2. [Optimality] Given any regular expressionR, input prompt ppp ∈ V m, block length d, output distribution
Dm+d = vvv1 . . . vvvm+d, if LP (R)∩ (V \⊥)d ̸= {} and rrr∗ ∼ vvvm+1 . . . vvvm+d be the decoded string, then for any valid string
rrr′ satisfying ∃xxx ∈ V ∗.(xxx ∈ S(r′r′r′)) ∧ (xxx ∈ LP (R)), P (r′r′r′ | vvvm+1 . . . vvvn) ≤ P (rrr∗ | vvvm+1 . . . vvvn).

Proof. 1. First, we show that P (rrr∗ | vvvm+1 . . . vvvn) = W [d, qmax], or equivalently
∏d

j=1 vvvm+j [rjrjrj
∗] = W [d, qmax]. Let

rrr∗ = r1r1r1
∗ . . . rdrdrd

∗ and 0 ≤ i ≤ d. We prove by induction on i that if DINGO’s backtracking (lines 19 – 23 in Algo 1)
has brought us to state q ∈ Q at position i, then W [i, q] =

∏i
j=1 vvvm+j [rjrjrj

∗].

(a) Base case i = 0: W [0, q0] = 1 =
∏0

j=1 vvvm+j [rjrjrj
∗].

(b) Inductive Step: At position i, let q′, ririri∗ = Pr[i, q] (line 21 in Algo 1). From lines 14 – 15 in Algo 1,
W [i, q] = W [i − 1, q′] × vvvm+i(ririri

∗). By the inductive hypothesis, W [i − 1, q′] =
∏i−1

j=1 vvvm+j [rjrjrj
∗]. Thus,

W [i, q] =
∏i−1

j=1 vvvm+j [rjrjrj
∗]× vvvm+i(ririri

∗) =
∏i

j=1 vvvm+j [rjrjrj
∗].

Let qd ∈ δ∗(r1r1r1
∗ . . . rdrdrd

∗, q0). Since qd = qmax (line 19 in Algo 1), W [d, qmax] =
∏d

j=1 vvvm+j [rjrjrj
∗] =

P (rrr∗ | vvvm+1 . . . vvvn).

2. We show that for every valid string rrr′ = r1r1r1
′ . . . rdrdrd

′ satisfying ∃xxx ∈ V ∗.(xxx ∈ S(r′r′r′))∧(xxx ∈ LP (R)),
∏d

j=1 vvvm+j [rjrjrj
′] ≤

W [d, qmax]. Let 0 ≤ i ≤ d and q ∈ δ∗(r1r1r1
′ . . . ririri

′, q0). We show that
∏i

j=1 vvvm+j [rjrjrj
′] ≤W [d, q] using induction on i.

(a) Base case i = 0: W [0, q0] = 1 =
∏0

j=1 vvvm+j [rjrjrj
′].

(b) Inductive Step: At position i + 1, let q′ ∈ δ∗(r1r1r1
′ · · ·ririri′, q0) and q ∈ δ(q′, ri+1ri+1ri+1

′). By the inductive hypothesis,∏i
j=1 vvvm+j [rjrjrj

′] ≤W [i, q′]. Recall,

Vi+1(q, q
′) =

{
max
t∈V

vvvi+1(t) s.t. q ∈ δ(q′, t)

0 if q, q′ are not connected

W [i+ 1, q] = max
q′∈Q

W [i, q′]× Vi+1(q, q
′)

Thus, vvvm+i+1(ri+1ri+1ri+1
′) ≤ Vi+1(q, q

′). Hence,
∏i+1

j=1 vvvm+j [rjrjrj
′] =

∏i
j=1 vvvm+j [rjrjrj

′]×vvvm+i+1(ri+1ri+1ri+1
′) ≤W [i, q′]×

Vi+1(q, q
′) ≤W [i+ 1, q].

Let qd ∈ δ∗(r1r1r1
′ . . . rdrdrd

′, q0). Since xxx ∈ V ∗.(xxx ∈ S(r′r′r′)) ∧ (xxx ∈ LP (R)), qd ∈ Ql. From line 16 in Algo. 1,
qmax = argmaxq∈Ql

W [d, q]. Thus, by the definition of argmax, W [d, qd] ≤ W [d, qmax]. From the inductive
hypothesis above,

∏d
j=1 vvvm+j [rjrjrj

′] ≤W [d, qd] ≤W [d, qmax].

3. Hence, P (r′r′r′ | vvvm+1 . . . vvvn) =
∏d

j=1 vvvm+j [rjrjrj
′] ≤W [d, qmax] =

∏d
j=1 vvvm+j [rjrjrj

∗] = P (rrr∗ | vvvm+1 . . . vvvn).
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C. Time complexity analysis of parallelized DINGO DP

Algorithm 3 DINGO DP
Require: q0, block length d, probability vectors vvv1, . . . vvvd for the current block, Ql, Q, δ.
1: W [0, q]← 0 for all (q ∈ Q) ∧ (q ̸= q0)
2: W [0, q0]← 1
3: Pr[0, q]← (None,None) for all (q ∈ Q) ▷ Initialization of the DP
4: Vi ← {} for all i ∈ {1, . . . , d} ▷ maximum token probability transtion (q′ → q) at position i
5: Ti ← {} for all i ∈ {1, . . . , d} ▷ token for the maximum probability transition (q′ → q)
6: for i ∈ {1, . . . , d} do ▷ The computation along all d can be parallelized
7: # Parallelize for each {1, . . . d}
8: for (q ∈ Q) do
9: for t ∈ V do

10: q′ ← δ(q, t)
11: Vi(q, q

′), Ti(q, q
′)←MaxTransition(vvvi, t, q, q′)

12: for i ∈ {1, . . . , d} do ▷ DP computation loop
13: for (q ∈ Q) ∧ (q′ ∈ Q) do
14: if W [i, q] < W [i− 1, q′]× Vi(q, q

′) then
15: W [i, q]←W [i− 1, q′]× Vi(q, q

′) ▷ Update maximum probability path to q
16: Pr[i, q]← (q′, Ti(q, q

′)) ▷ Update the parents accordingly
17: qmax ← argmaxq∈Ql

W [d, q]

18: if W [d, qmax] = 0 then ▷ No valid prefixes
19: return None, qmax

20: rrr∗ ← {}, qcurr ← qmax

21: for i ∈ {d, . . . , 1} do ▷ Decoding the optimal string rrr∗

22: qcurr, t← Pr[i, qcurr]
23: rrr∗ ← rrr∗ · t
24: return reverse(rrr∗), qmax

The parallelism step at line 6 in Algo. 3 can be efficiently implemented using popular frameworks like PyTorch. With
parallelism, the computational depth (i.e., the minimum number of sequential steps) reduces to O(max(|Q|2, |Q| × |V |) +
|Q|2 × d). For regular expressions, where the number of states |Q| is a small constant, the computational depth becomes
O(|V |+ d), which is linear in both the vocabulary size |V | and the block length d.

D. Semi-Autoregressive
In the semi-autoregressive setup, given an input ppp ∈ V m, the output ooo ∈ V m+d×k is generated over k blocks, where
each block is computed via a call to the single block diffusion model. The output of the i-th diffusion model call is
xxxi = Lmi,ni

(xxxi−1), with xxx0 = ppp and the final output ooo = xxxk. The input and output lengths for each block are defined as
mi = m+ (i− 1)× d and ni = m+ i× d for all 1 ≤ i ≤ k.

Algorithm 4 Semi-Autoregressive diffusion LLM Generation

Require: diffusion LLM L, prompt ppp, answer length n, block length d, diffusion steps T , vocabulary V , number of blocks
k.

1: xxx← ppp ▷ Initialize xxx with input prompt ppp
2: rrr ← {} ▷ Intialize the output string
3: for i ∈ {1, . . . , k} do
4: xxx · ririri ← Diffusion(xxx,m+ (i− 1)× d, d, T, V ) ▷ ririri ∈ V d is i-th output block
5: rrr ← rrr · ririri
6: xxx← xxx · ririri ▷ Compute the input prompt for the next block
7: Return rrr
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Algorithm 5 Semi-Autoregressive Constrained diffusion LLM Generation

Require: diffusion LLM L, prompt ppp, answer length n, block length d, diffusion steps T , vocabulary V , number of blocks
k, regular expressionR.

1: q0, Ql, δ ← PreProcess(R) ▷ Pre-compute the dfa start state, live states and δ
2: xxx← ppp ▷ Initialize xxx with input prompt ppp
3: rrr ← {} ▷ Intialize the output string
4: qcurr ← q0 ▷ Intialize the current dfa state the response is at
5: for i ∈ {1, . . . , k} do
6: xxx · ririri, qnext ← Diffusion(xxx,m+ (i− 1)× d, d, T, V ,Ql, δ, qcurr)
7: if qnext ̸∈ Ql then
8: return None ▷ No valid completion
9: rrr ← rrr · ririri

10: xxx← xxx · ririri ▷ Compute the input prompt for the next block
11: qcurr ← qnext ▷ Update current DFA state for next block
12: Return rrr

In the semi-autoregressive setting, after each block, we ensure that the output generated so far ends in a live state from
Ql; otherwise, we return the None string (line 7, Algo. 5). Additionally, we maintain a variable qcurr to track the current
DFA state at the end of each block. This state is then used as the starting state for the dynamic programming step in the
constrained generation of the next block.
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E. Token Transitions Statistics

Table 3. Token Transitions Pre-Computation Statistics

GSM-Symbolic JSON-Mode
Model Family |V | Time(s) #States Time(s) #States

LLaDA-8B 126349 32.09 40 13.22 169.31
Dream-7B 151667 37.01 40 11.87 169.31

In Table 3, we report the precomputation time and the number of states in the DFA for both tasks. For JSON generation,
different regular expressions are used for different schemas; therefore, we report the mean precomputation time and mean
number of states. The maximum number of states and precomputation times across all questions are 455 and 17.7 (Dream)
21.3 (LLaDA) seconds, respectively.

F. GSM-Symbolic
F.1. GSM-Symbolic Prompt
You are an expert in solving grade school math tasks. You will be presented with a grade-school math

word problem with symbolic variables and be asked to solve it.

Before answering you should reason about the problem (using the <reasoning> field in the response
described below). Intermediate symbolic expressions generated during reasoning should be wrapped
in << >>.

Only output the symbolic expression wrapped in << >> that answers the question. The expression must
use numbers as well as the variables defined in the question. You are only allowed to use the
following operations: +, -, /, //, %, *, and **.

You will always respond in the format described below:
Let’s think step by step. <reasoning> The final answer is <<symbolic expression>>

There are {t} trees in the {g}. {g} workers will plant trees in the {g} today. After they are done,
there will be {tf} trees. How many trees did the {g} workers plant today?

Let’s think step by step. Initially, there are {t} trees. After planting, there are {tf} trees. The
number of trees planted is <<tf - t>>. The final answer is <<tf - t>>.

If there are {c} cars in the parking lot and {nc} more cars arrive, how many cars are in the parking
lot?

Let’s think step by step. Initially, there are {c} cars. {nc} more cars arrive, so the total becomes
<<c + nc>>. The final answer is <<c + nc>>.

{p1} had {ch1} {o1} and {p2} had {ch2} {o1}. If they ate {a} {o1}, how many pieces do they have left
in total?

Let’s think step by step. Initially, {p1} had {ch1} {o1}, and {p2} had {ch2} {o1}, making a total of
<<ch1 + ch2>>. After eating {a} {o1}, the remaining total is <<ch1 + ch2 - a>>. The final answer
is <<ch1 + ch2 - a>>.

{p1} had {l1} {o1}. {p1} gave {g} {o1} to {p2}. How many {o1} does {p1} have left?

Let’s think step by step. {p1} started with {l1} {o1}. After giving {g} {o1} to {p2}, {p1} has <<l1 -
g>> {o1} left. The final answer is <<l1 - g>>.

{question}

Listing 1. Prompt template for the GSM-Symbolic task (Mirzadeh et al., 2024).

F.2. GSM-Symbolic Regex
(?:(?:(?:(?:(?:[ -;=?-~\n]+))*(?:<<(?:(?:\ ))?(?:(?:(?:(?:(?:[a-j])|(?:[0-9]{1,3})|\((?:(?:(?:(?:[a-j

])|(?:[0-9]{1,3})|\((?:(?:(?:(?:[a-j])|(?:[0-9]{1,3})|\((?:(?:(?:(?:[a-j])|(?:[0-9]{1,3})))
(?:(?:(?:(?:\ ))?(?:(?:\+|\-|//|/|%|\*|\*\*))(?:(?:\ ))?(?:(?:(?:[a-j])|(?:[0-9]{1,3})))))*)\)))
(?:(?:(?:(?:\ ))?(?:(?:\+|\-|//|/|%|\*|\*\*))(?:(?:\ ))?(?:(?:(?:[a-j])|(?:[0-9]{1,3})
|\((?:(?:(?:(?:[a-j])|(?:[0-9]{1,3})))(?:(?:(?:(?:\ ))?(?:(?:\+|\-|//|/|%|\*|\*\*))(?:(?:\ ))
?(?:(?:(?:[a-j])|(?:[0-9]{1,3})))))*)\)))))*)\)))(?:(?:(?:(?:\ ))?(?:(?:\+|\-|//|/|%|\*|\*\*))
(?:(?:\ ))?(?:(?:(?:[a-j])|(?:[0-9]{1,3})|\((?:(?:(?:(?:[a-j])|(?:[0-9]{1,3})|\((?:(?:(?:(?:[a-j
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])|(?:[0-9]{1,3})))(?:(?:(?:(?:\ ))?(?:(?:\+|\-|//|/|%|\*|\*\*))(?:(?:\ ))?(?:(?:(?:[a-j])
|(?:[0-9]{1,3})))))*)\)))(?:(?:(?:(?:\ ))?(?:(?:\+|\-|//|/|%|\*|\*\*))(?:(?:\ ))?(?:(?:(?:[a-j])
|(?:[0-9]{1,3})|\((?:(?:(?:(?:[a-j])|(?:[0-9]{1,3})))(?:(?:(?:(?:\ ))?(?:(?:\+|\-|//|/|%|\*|\*\*)
)(?:(?:\ ))?(?:(?:(?:[a-j])|(?:[0-9]{1,3})))))*)\)))))*)\)))))*)\)))(?:(?:(?:(?:\ ))
?(?:(?:\+|\-|//|/|%|\*|\*\*))(?:(?:\ ))?(?:(?:(?:[a-j])|(?:[0-9]{1,3})|\((?:(?:(?:(?:[a-j])
|(?:[0-9]{1,3})|\((?:(?:(?:(?:[a-j])|(?:[0-9]{1,3})|\((?:(?:(?:(?:[a-j])|(?:[0-9]{1,3})))
(?:(?:(?:(?:\ ))?(?:(?:\+|\-|//|/|%|\*|\*\*))(?:(?:\ ))?(?:(?:(?:[a-j])|(?:[0-9]{1,3})))))*)\)))
(?:(?:(?:(?:\ ))?(?:(?:\+|\-|//|/|%|\*|\*\*))(?:(?:\ ))?(?:(?:(?:[a-j])|(?:[0-9]{1,3})
|\((?:(?:(?:(?:[a-j])|(?:[0-9]{1,3})))(?:(?:(?:(?:\ ))?(?:(?:\+|\-|//|/|%|\*|\*\*))(?:(?:\ ))
?(?:(?:(?:[a-j])|(?:[0-9]{1,3})))))*)\)))))*)\)))(?:(?:(?:(?:\ ))?(?:(?:\+|\-|//|/|%|\*|\*\*))
(?:(?:\ ))?(?:(?:(?:[a-j])|(?:[0-9]{1,3})|\((?:(?:(?:(?:[a-j])|(?:[0-9]{1,3})|\((?:(?:(?:(?:[a-j
])|(?:[0-9]{1,3})))(?:(?:(?:(?:\ ))?(?:(?:\+|\-|//|/|%|\*|\*\*))(?:(?:\ ))?(?:(?:(?:[a-j])
|(?:[0-9]{1,3})))))*)\)))(?:(?:(?:(?:\ ))?(?:(?:\+|\-|//|/|%|\*|\*\*))(?:(?:\ ))?(?:(?:(?:[a-j])
|(?:[0-9]{1,3})|\((?:(?:(?:(?:[a-j])|(?:[0-9]{1,3})))(?:(?:(?:(?:\ ))?(?:(?:\+|\-|//|/|%|\*|\*\*)
)(?:(?:\ ))?(?:(?:(?:[a-j])|(?:[0-9]{1,3})))))*)\)))))*)\)))))*)\)))))*))(?:(?:\ ))?>>)))
+(?:(?:\.))?)

Listing 2. GSM-Symbolic Regex

F.3. GSM-Symbolic Case Studies

Case Study 1:

Figure 2. An example from the GSM-symbolic dataset (variables in blue), where unconstrained generation produces syntactically incorrect
output, and greedy constrained generation yields a syntactically valid but incorrect answer. In contrast, DINGO generates the correct
answer.

Case Study 2:
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Figure 3. An example from the GSM-symbolic dataset (variables in blue), where unconstrained generation produces syntactically incorrect
output, and greedy constrained generation yields a syntactically valid but incorrect answer. In contrast, DINGO generates the correct
answer.

G. JSON-Mode
G.1. JSON-Mode Example Prompt
You are a helpful assistant that answers in JSON. Here’s the json schema you must adhere to:
<schema>
{’title’: ’PromotionalCampaign’, ’type’: ’object’, ’properties’: {’campaignID’: {’title’: ’Campaign ID

’, ’type’: ’string’}, ’productID’: {’title’: ’Product ID’, ’type’: ’string’}, ’startDate’: {’
title’: ’Start Date’, ’type’: ’string’, ’format’: ’date’}, ’endDate’: {’title’: ’End Date’, ’type
’: ’string’, ’format’: ’date’}, ’discountDetails’: {’title’: ’Discount Details’, ’type’: ’string
’}}, ’required’: [’campaignID’, ’productID’, ’startDate’, ’endDate’]}

</schema>

I’m organizing a promotional campaign for our new eco-friendly laundry detergent, which is part of our
household products line. The campaign will start on June 1, 2023, and end on June 30, 2023. We’
re planning to offer a 15% discount on all purchases during this period. The campaign ID is
CAMP123456, the product ID is PROD7891011, and the discount details are 15% off on all purchases.

Only output the JSON object, no other text or comments.

Listing 3. Example JSON Prompt from the JSON-Mode-Eval task (NousResearch, 2024). The prompt includes a system
message that specifies a schema and a user message that explicitly instructs the model to output a JSON object
following that schema with certain parameters.

G.2. JSON-Mode Example Regex
\\{[ ]?"campaignID"[ ]?:[ ]?"([^"\\\\\\x00-\\x1F\\x7F-\\x9F]|\\\\["\\\\])*"[ ]?,[ ]?"productID"[ ]?:[

]?"([^"\\\\\\x00-\\x1F\\x7F-\\x9F]|\\\\["\\\\])*"[ ]?,[ ]?"startDate"[ ]?:[ ]?"(?:\\d{4})
-(?:0[1-9]|1[0-2])-(?:0[1-9]|[1-2][0-9]|3[0-1])"[ ]?,[ ]?"endDate"[ ]?:[ ]?"(?:\\d{4})
-(?:0[1-9]|1[0-2])-(?:0[1-9]|[1-2][0-9]|3[0-1])"([ ]?,[ ]?"discountDetails"[ ]?:[ ]?"([^"\\\\\\
x00-\\x1F\\x7F-\\x9F]|\\\\["\\\\])*")?[ ]?\\}

Listing 4. Regex for the JSON Schema in Appendix G.2
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935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989

G.3. JSON-Mode Case Studies

Figure 4. An example from JSON generation, where unconstrained generation produces a syntactically incorrect output, and greedy
constrained generation yields a valid but incomplete prefix. In contrast, DINGO generates a syntactically correct answer.

Figure 5. An example from JSON generation, where unconstrained generation produces a syntactically incorrect output, and greedy
constrained generation yields a valid but incomplete prefix. In contrast, DINGO generates a syntactically correct answer.
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990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044

H. Ablation Study on Number of Blocks for Diffusion LLM Generation (GSM-Symbolic)
We run generation with a response length of 128, using 64 total diffusion steps, and each of 1, 2, and 8 blocks. Table 4
presents the result.

Table 4. Ablation Study on The Number of Diffusion Blocks for GSM-Symbolic
Model #Blocks Method Acc. (%) Parse (%) Time (s)

Unconstrained 20 54 23.66
Greedy Constrained 26 94 23.7

1 Best of Greedy + Unconstrained 26 94 23.66
DINGO 29 100 23.73
Unconstrained 22 54 23.63
Greedy Constrained 30 96 23.81

LLaDA-8B-I 2 Best of Greedy + Unconstrained 30 96 23.65
DINGO 32 100 23.93
Unconstrained 19 35 23.78
Greedy Constrained 27 98 23.97

8 Best of Greedy + Unconstrained 27 98 23.8
DINGO 32 100 23.92

Unconstrained 28 69 23.56
Greedy Constrained 32 90 23.64

1 Best of Greedy + Unconstrained 32 90 23.65
DINGO 34 100 23.67
Unconstrained 30 55 23.62
Greedy Constrained 33 87 23.71

Dream-I-7B 2 Best of Greedy + Unconstrained 33 87 23.62
DINGO 34 100 23.65
Unconstrained 32 61 23.89
Greedy Constrained 34 93 24.01

8 Best of Greedy + Unconstrained 34 93 23.89
DINGO 36 100 23.91
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1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099

I. Ablation Study on Number of Blocks for Diffusion LLM Generation (JSON-Mode)
We run generation with a response length of 128, using 64 total diffusion steps, and each of 1, 2, and 8 blocks. Table 5
presents the result.

Table 5. Ablation Study on The Number of Diffusion Blocks for JSON-Mode.
Model #Blocks Method Acc. (%) Parse (%) Time (s)

Unconstrained 87 91 6.7
Greedy Constrained 78 79 6.81

1 Best of Greedy + Unconstrained 99 99 6.73
DINGO 100 100 6.78
Unconstrained 84 92 6.72
Greedy Constrained 92 94 6.83

LLaDA-8B-I 2 Best of Greedy + Unconstrained 99 99 6.73
DINGO 100 100 6.86
Unconstrained 84 89 6.73
Greedy Constrained 98 98 6.87

8 Best of Greedy + Unconstrained 100 100 6.75
DINGO 100 100 6.85

Unconstrained 85 87 6.4
Greedy Constrained 30 30 6.51

1 Best of Greedy + Unconstrained 91 93 6.43
DINGO 100 100 6.55
Unconstrained 79 82 6.47
Greedy Constrained 37 39 6.68

Dream-I-7B 2 Best of Greedy + Unconstrained 86 88 6.5
DINGO 100 100 6.63
Unconstrained 70 74 6.44
Greedy Constrained 52 52 6.65

8 Best of Greedy + Unconstrained 86 89 6.46
DINGO 100 100 6.67
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1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154

J. Ablation Study on Number of Steps for Diffusion LLM Generation (GSM-Symbolic)
We run generation with a response length of 128, 1 block, and each of 16, 32, 64, and 128 total diffusion steps. Table 6
presents the result.

Table 6. Ablation Study on The Number of Diffusion Steps for GSM-Symbolic with Dream-I-7B
#Steps Method Acc. (%) Parse (%) Time (s)

Unconstrained 6 20 5.99
Greedy Constrained 13 78 6.18

16 Best of Greedy + Unconstrained 13 78 5.99
DINGO 18 100 6.09

Unconstrained 18 48 11.96
Greedy Constrained 25 87 12.06

32 Best of Greedy + Unconstrained 25 87 11.96
DINGO 28 100 12.03

Unconstrained 28 69 23.56
Greedy Constrained 32 90 23.64

64 Best of Greedy + Unconstrained 32 90 23.65
DINGO 34 100 23.67

Unconstrained 31 74 47.83
Greedy Constrained 30 89 47.88

128 Best of Greedy + Unconstrained 31 90 47.83
DINGO 33 100 47.86

21



1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209

K. Ablation Study on Number of Steps for Diffusion LLM Generation (JSON-Mode)
We run generation with a response length of 128, 1 block, and each of 16, 32, 64, and 128 total diffusion steps. Table 7
presents the result.

Table 7. Ablation Study on The Number of Diffusion Steps for JSON-Mode with Dream-I-7B
#Steps Method Acc. (%) Parse (%) Time (s)

Unconstrained 54 59 1.51
Greedy Constrained 32 32 1.62

16 Best of Greedy + Unconstrained 68 71 1.52
DINGO 100 100 1.6

Unconstrained 67 71 3.23
Greedy Constrained 35 35 3.35

32 Best of Greedy + Unconstrained 78 82 3.24
DINGO 100 100 3.31

Unconstrained 85 87 6.4
Greedy Constrained 30 30 6.51

64 Best of Greedy + Unconstrained 91 93 6.43
DINGO 100 100 6.55

Unconstrained 85 87 13.42
Greedy Constrained 46 46 13.53

128 Best of Greedy + Unconstrained 95 97 13.43
DINGO 100 100 13.51
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