
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054

DINGO: Constrained Inference for Diffusion LLMs

Anonymous Authors1

Abstract
Diffusion LLMs have emerged as a promising
alternative to conventional autoregressive LLMs,
offering substantial potential for improving run-
time efficiency. However, existing diffusion mod-
els fail to provably enforce user-specified formal
constraints, such as regular expressions, which
makes them unreliable for tasks that require struc-
tured outputs, such as fixed-schema JSON gener-
ation. Unlike autoregressive models, which gen-
erate tokens sequentially, diffusion LLMs pre-
dict a block of tokens in parallel. This paral-
lelism makes traditional constrained decoding al-
gorithms, designed to enforce constraints with
sequential token prediction, ineffective at pre-
serving the true output distribution. To address
this limitation, we propose DINGO, a dynamic
programming-based constrained decoding strat-
egy that is both efficient and provably distribution-
preserving. DINGO enables sampling of out-
put strings with the highest probability under the
model’s predicted distribution while strictly ad-
hering to any user-specified regular expression.
On standard symbolic math and JSON generation
benchmarks, DINGO achieves up to a 68% points
of improvement over unconstrained inference.

1. Introduction
Autoregressive LLMs demonstrate impressive performance
across a wide range of tasks, including logical reason-
ing (Pan et al., 2023), theorem proving (Yang et al., 2023),
and code generation (et. al., 2021). However, because they
generate one token at a time, they can be slow when pro-
ducing long responses. Recent work has explored using dif-
fusion models to accelerate token generation by predicting
blocks of tokens in parallel. For tasks such as logical reason-
ing, where the LLM output is fed into symbolic solvers like

1Anonymous Institution, Anonymous City, Anonymous Region,
Anonymous Country. Correspondence to: Anonymous Author
<anon.email@domain.com>.

Preliminary work. Under review by the International Conference
on ICML 2025 Workshop on Reliable and Responsible Foundation
Models. Do not distribute.

Z3 (Fedoseev et al., 2024), syntactic correctness of the out-
put is essential. Prior works (Poesia et al., 2022; Ugare et al.,
2024a; Loula et al., 2025) have shown that LLMs frequently
make syntactic and semantic errors, often generating struc-
turally invalid outputs that cause downstream tasks to fail
due to unparsable input. To mitigate this issue, constrained
decoding has emerged as a promising approach that prov-
ably ensures structural correctness by projecting the LLM
output onto a set of valid strings, typically defined by a
regular grammar or, more generally, a context-free grammar
(CFG). However, existing constrained decoding techniques
are designed specifically for autoregressive LLMs and rely
on their step-by-step generation process to prune invalid
tokens that cannot lead to structurally valid outputs. At each
generation step, the decoder selects the highest-probability
token from the set of valid options, based on the LLM’s
output distribution.

In contrast, diffusion LLMs predict blocks of tokens in par-
allel without sequential dependencies, making existing con-
strained decoding algorithms incompatible. Furthermore,
greedy token selection in autoregressive models maximizes
the probability locally at each step but can be suboptimal
over an entire sequence, potentially leading to structurally
valid yet lower-quality outputs that fail to maximize the
overall probability of valid strings. (Lew et al., 2023; Park
et al., 2024b) have reported this distortion in output distribu-
tion for autoregressive LLMs under constrained decoding.
Therefore, any constrained decoding algorithm for diffusion
LLMs should also ensure that enforcing formal constraints
does not come at the cost of distorting the true output distri-
bution.

Key Challenges: Diffusion LLMs generate a block of to-
kens starting from a fully masked string composed of spe-
cial mask tokens ⊥, and iteratively unmask one or more
tokens at each step until producing a fully unmasked output.
Each unmasking step (referred to as a diffusion step) can
unmask tokens at arbitrary positions in the block, with no
left-to-right sequential dependency across steps. As a result,
designing constrained decoding for diffusion LLMs requires
addressing the following:

• RQ1: Efficiently detecting invalid tokens and restricting
token choices at each diffusion step to ensure the final
unmasked string is always structurally correct.

1

055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109

• RQ2: Ensuring the generated token block maximizes the
probability under the output distribution.

Contributions: We present the first constrained decoding
algorithm for diffusion LLMs, making the following contri-
butions:

• We introduce DINGO, the first constrained decoding algo-
rithm for diffusion LLMs that supports any user-specified
regular expression. DINGO provably ensures that the
output string is always a valid prefix of some string in the
target regular language.

• DINGO uses dynamic programming to ensure that the
output string achieves the maximum probability among
all valid strings over the output block with respect to
the true output distribution. This approach guarantees
scalability while maintaining optimality (e.g., maximiz-
ing the probability), in contrast to existing methods such
as (Park et al., 2024b), which rely on repeated resam-
pling. Resampling-based methods are computationally
expensive and unsuitable for practical deployment.

• Extensive experiments on multiple open-source diffusion
LLMs and benchmarks show that DINGO significantly
outperforms standard unconstrained decoding, achiev-
ing up to a 68% improvement on challenging tasks such
as the GSM-symbolic benchmark for symbolic reason-
ing (Mirzadeh et al., 2024) and a JSON generation bench-
mark (NousResearch, 2024).

Roadmap: We provide the necessary background in Sec-
tion 2, formalize constrained decoding for diffusion LLMs
in Section 3, describe the DINGO algorithm along with its
correctness and optimality proofs in Section 4, and present
experimental results in Section 5.

2. Background
Notation: : In the rest of the paper, we use small case
letters x for constants, bold small case letters (xxx) for strings,
capital letters X for functions, · for string concatenation, |xxx|
to denote the length of xxx.

Diffusion LLM: The diffusion LLM Lm,n : V m → V n

processes finite strings ppp ∈ V m over a finite alphabet V in-
cluding the special mask symbol ⊥ and produces the output
string ooo ∈ V n. Typically ooo = ppp · rrr with length n represents
the entire output string of L where ppp is the input prompt, rrr is
the response, and m+ |rrr| = n. L can compute the response
rrr over a single block (Austin et al., 2021; Ye et al., 2025;
Nie et al., 2025) in pure diffusion setup or over multiple
blocks i.e. r1r1r1 ·r2r2r2 · · ·rkrkrk in a semi-autoregressive setup where
different blocks are computed sequentially from left to right
(Han et al., 2023; Arriola et al., 2025).

At a high level, to compute a block of tokens of size d, L
pads the prompt ppp with a fully masked suffix, resulting in
ppp · ⊥d, where ⊥d denotes a sequence of d special mask
tokens ⊥. The model then iteratively unmasks a subset
of these tokens at each step, ultimately producing a fully
unmasked output string ooo. Each such step is referred to
as a diffusion step, and L typically applies T diffusion
steps to compute ooo. The number of steps T is usually a
fixed, predetermined constant satisfying T < d, which
enables greater scalability compared to their autoregressive
counterparts.

Definition 2.1 (Diffusion step). A diffusion step fn : V n ×
N→ V n applies a single unmasking step to a masked (or, a
partially masked) string of length to compute a new masked
(or, possibly unmasked) string of the same length. The
first argument represents the input string appended with the
output block while the second argument dictates the number
of masked tokens in the output string.

Each diffusion step fn consists of two components: a trans-
former step Nn : V n → R|V |×n

+ , which predicts the token
probability distribution at each output position, and a mask
prediction stepMn : R|V |×n

+ × N → R|V |×n
+ , which de-

termines which token positions to remask. Typically, for
each position, the mask prediction step identifies the token
with the highest probability and compares these maximum
probabilities across positions. Mn then greedily remasks
positions with relatively lower max-probability scores (Nie
et al., 2025) and produces the modified token distribution.
Further details about Nn andMn are in Appendix A.

Formally, the diffusion step is defined as fn(xxxi−1, i) =

Dm,n(Mn(Nn(xxxi−1), i)) where Dm,n : R|V |×n
+ → V n

is the decoder. We now use the diffusion step to formally
define the diffusion LLM for generating strings of length n
in either a single-block or multi-block setting.

Definition 2.2 (Single block diffusion LLM). A diffusion
LLM that outputs a block of d tokens given an input ppp ∈ V m

using T diffusion steps is a function Lm,n : V m → V n,
where n = m + d, and the output is ooo = ppp · rrr = Lm,n(ppp).
Let fn : V n × N→ V n denote a single diffusion step, and
let Pm,n : V m → V n be the padding function. Then the
output is computed as ooo = Lm,n(ppp) = xxxT , where: xxx0 =
Pm,n(ppp) = ppp · ⊥d and xxxi = fn(xxxi−1, i) for 1 ≤ i ≤ T .

Definition 2.3 (Semi Autoregressive diffusion LLM). In
the semi-autoregressive setup, given an input ppp ∈ V m, the
output ooo ∈ V m+d×k is generated over k blocks, where each
block is computed via a call to the single block diffusion
model. The output of the i-th diffusion model call is xxxi =
Lmi,ni

(xxxi−1), with xxx0 = ppp and the final output ooo = xxxk.
The input and output lengths for each block are defined as
mi = m+(i−1)×d and ni = m+ i×d for all 1 ≤ i ≤ k.

DFA and regular expression: We provide necessary defi-

2

110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

nitions regarding regular expression.

Definition 2.4. (DFA) A DFA DR = (Q,Σ, δ, q0, F) for a
regular expressionR is a finite-state machine that determin-
istically processes input strings to decide membership in the
language L(R) ⊆ Σ∗ defined byR. It consists of states Q,
a start state q0, a set of accepting states F , and transition
rules δ : Q× Σ→ Q and the input alphabet Σ.

Definition 2.5 (extended transition function). The extended
transition function δ∗ : Σ∗ ×Q→ Q maps an input (www, q)
to the resulting state qr, obtained by sequentially applying δ
to each character ci in www = c1 · · · c|www|, starting from state q.

Definition 2.6 (Live DFA states). Given a DFA
(Q,Σ, δ, q0, F), let Ql represent the set of live states such
that q ∈ Ql iff ∃w ∈ Σ∗ s.t. δ∗(www, q) ∈ F .

3. Optimal Constrained Decoding
We formalize the correctness and optimality of constrained
decoding for any diffusion LLM with respect to a user-
defined regular expressionR. GivenR, let L(R) ⊆ Σ∗ ⊆
(V \ ⊥)∗ denote the set of all finite strings that satisfy the
expressionR.

Correctness: A valid constrained decoding algorithm must
ensure that the output string always remains a valid prefix of
some string in L(R), effectively eliminating any output that
cannot be extended into valid completions. By treating the
output string as a prefix rather than a fully completed string,
we can accommodate the semi-autoregressive setup, where
blocks of tokens are appended to the right of the current
output. This approach avoids prematurely rejecting strings
that may lead to valid completions in subsequent blocks and
also aligns with the notion of correctness adopted in existing
constrained decoding algorithms for the autoregressive LLM
(Ugare et al., 2024b; Banerjee et al., 2025). We denote the
set of all valid prefixes of L(R) as LP (R).

Each diffusion step fn produces a string over the vocabulary
V , which may include one or more special mask tokens
⊥. These tokens act as placeholders for actual (non-mask)
tokens that will be filled in during future diffusion steps. To
account for these future substitutions, we define a masked
(or partially masked) string as valid if there exists a re-
placement for all mask tokens such that the resulting fully
unmasked string is a valid prefix of some string in L(R).
To formalize this notion, we first define the substitution
set, which represents the set of fully unmasked strings ob-
tained by replacing all mask tokens in a masked or partially
masked string. We then use substitution sets to define the
correctness of the constrained decoder.

Definition 3.1 (Substitution Set). Given a masked (or, par-
tially masked) string xxx ∈ V n, the substitution set S(xxx) ⊆
(V \ {⊥})n is the set of all fully unmasked strings obtained
by replacing each occurrence of ⊥ in xxx with a token from

V \ {⊥}. For unmasked strings with no ⊥, S(xxx) = {xxx}
Definition 3.2 (Correctness of Constrained decoder). Any
deterministic decoder Dm,n,R : R|V |×n

+ → V n is a valid
constrained decoder if, for all n ∈ N, input prompt ppp and
for any output distribution Dn provided as n probability
vectors each of size |V |, there exists an unmasked string
xxx in the substitution set S(Dm,n,R(Dn)) of the decoded
output such that actual response ppp · rrr = xxx is a valid prefix
i.e., rrr ∈ LP (R). 1

Optimality: Given a distribution Dn and a regular expres-
sionR, the set of decodings that are valid prefixes forR (as
defined in Definition 3.2) may not be unique. An optimal
constrained decoder selects, among all valid strings, the
string that maximizes the probability under Dn. The output
distribution Dn is represented as n vectors vvv1, . . . , vvvn, each
of size |V |, where the i-th vector vvvi captures the token dis-
tribution at position i. For any masked position j, vvvj assigns
probability 1 to the mask token ⊥ and 0 to all other tokens.
Assuming the input prompt has length m, the token distri-
bution of the actual response is given by vvvm+1, . . . , vvvn. For
any output string rrr = tm+1 · · · tn, let P (rrr | vvvm+1 . . . vvvn)
denote the probability of the string rrr under the output dis-
tribution. Then, the optimal constrained decoding can be
formalized as follows:

r̂rr = argmax
rrr

P
(
rrr | vvvm+1 . . . vvvn

)
s.t. ∃xxx ∈ V ∗.

(
xxx ∈ S(rrr)

)
∧

(
xxx ∈ LP (R)

)
.

(1)

Since the token distributions vvvm+1, . . . , vvvn are independent
across positions, the probability of the string rrr can be writ-
ten as P (rrr | vvvm+1 . . . vvvn) =

∏n
i=m+1 vvvi[ti] where vvvi[ti]

denotes the probability assigned to token ti by the vector vvvi.
Using this, we can rewrite the optimization problem from
Eq. 1 as follows:

rrr∗ = argmax
rrr=tm+1···tn

n∏
i=m+1

vvvi[ti]

s.t. ∃xxx ∈ V ∗. (xxx ∈ S(rrr)) ∧ (xxx ∈ LP (R)) .

(2)

4. DINGO Algorithm
The search space for Eq. 2 is exponential– |V |d, where
d = n − m denotes the block length, making naive
enumeration-based methods impractical. To efficiently re-
trieve the optimal output string rrr∗ from Eq. 2, DINGO
leverages dynamic programming. Given a regular expres-
sionR, it first modifies the transition function to handle the
mask symbol ⊥, which is then utilized during inference.

1More precisely, if there exists at least one rrr that is a valid
prefix (i.e., rrr ∈ LP (R)), then constrained decoding is always
capable of retrieving one of them.

3

165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

4.1. Precomputation

For a user-providedR and the corresponding DFA DR =
(Q,Σ, δR, q0, F) (referred to as character-level DFA) with
Σ ⊆ (V \ ⊥), we first construct the token-level DFA
Dt = (Q, (V \⊥), δt, q0, F) recognizing L(R) over strings
generated by L. A single token ttt ∈ (V \ ⊥) can span
across multiple characters in Σ i.e. ttt = c1 · · · cl where
ci ∈ Σ. To construct the token-level transition function
δt : Q× (V \ ⊥)→ Q, we process each token ttt ∈ (V \ ⊥)
and state q ∈ Q by executing the character-level DFA DR
on the sequence of constituent characters c1 · · · cl, starting
from state q, and record the resulting state qr. We then
define the token-level transition as δt(q, ttt) = qr.

To handle the special mask token ⊥ ∈ V , we define the
transition function δ⊥ : Q → 2Q. For each state q ∈ Q,
δ⊥(q) returns the set of states Qr ⊆ Q that are reachable
via a single token transition using δt. Formally, δ⊥(q) =
{q′ | q′ = δt(q, ttt); ttt ∈ (V \ ⊥)}. Since δ⊥ may return
multiple states, it resembles the transition function of a non-
deterministic finite automaton (NFA). The precomputation
step combines δt and δ⊥ to define δ : Q× V → 2Q, which
is used in the dynamic programming step. Using the token-
level DFA Dt, we also construct the set of live states Ql ⊆
Q (Definition 2.6).

δ(q, ttt) =

{
{δt(q, t)} if t ∈ (V \ ⊥),
δ⊥(q) if t = ⊥.

4.2. DINGO Dynamic Programming

Before going into details, we present two key observations
that lead to the decoding algorithm.

Observation 1: Determining whether a fully unmasked
string rrr = t1 · · · td ∈ (V \ ⊥)∗ is a valid prefix is equiv-
alent to checking whether the resulting state qr, obtained
by applying δ to the sequence t1 · · · td starting from q0, is
live. Similarly, for a partially (or fully) masked string rrr⊥,
applying δ to t1 · · · td yields a set of resulting states Qr. In
this case, rrr⊥ is a valid prefix if and only if any state q ∈ Qr

is live (Definition 3.2).

Observation 2: For optimality, it is sufficient to track the
maximum probability path from the start state q0 to each
resulting state in Qr. Once these paths are computed, we
select the one with the highest probability that leads to a
live state. The corresponding string is the optimal string rrr∗

(or one of the optimal strings in case of multiple optimal
solutions) for the optimization problem in Eq. 2.

Based on these observations, the main challenge is to ef-
ficiently maintain the maximum probability path to each
reachable state in Qr. We address this using a dynamic pro-
gramming (DP) approach, similar to traditional graph-based
DP algorithms such as (Forney, 1973).

DP states: For each token position 1 ≤ i ≤ d in the block,
the DP maintains: a) W [i, q], which records the maximum
probability with which a state q ∈ Q can be reached from
the start state q0 via transitions on some token sequence with
length i; and b) Pr[q, i], which stores the last transition, i.e.,
the previous state and the corresponding token, that led
to the maximum probability stored in W [i, q]. If a state
q is unreachable, then W [i, q] = 0. Formally, given the
probability vectors vvv1, . . . , vvvi, W [i, q] is defined as follows
where δ∗t is extended transition function (Definition 2.5).

W [i, q] = max
t1...ti

i∏
j=1

vvvj [tj] s.t. q = δ∗t (tm+1 · · · tn, q0)

DP state update: Given the states at token position i,
we describe the computation for position i + 1. Initially,
W [i, q] = 0 for all q ̸= q0, and W [i, q0] = 1 (lines 1 – 3
in Algo. 1). To compute W [i + 1, q] for each q ∈ Q, we
consider all tokens t ∈ V (including the mask token ⊥)
that can transition to q from some previous state q′ at step
i. Among all such transitions, we select the one with the
highest probability and add it to the maximum probability
path reaching q′ at step i. The value Pr[i+ 1, q] stores the
previous state and token that lead to the maximum prob-
ability path to q at step i + 1 (lines 12 – 15 in Algo. 1).
Formally,

Vi+1(q, q
′) =

{
max
t∈V

vvvi+1(t) s.t. q ∈ δ(q′, t)

0 if q, q′ are not connected

W [i+ 1, q] = max
q′∈Q

W [i, q′]× Vi+1(q, q
′)

Path construction: We consider all reachable states q at
the end of the block with W [d, q] > 0. Among the live
states ql ∈ Ql satisfying this condition, we select the state
qmax with the highest value of W [d, ql]. We then use Pr
to iteratively reconstruct the token sequence backward that
forms the maximum probability path starting from qmax and
ending at q0 (lines 20 – 22 in Algo. 1).

Semi-autoregressive setup: In semi-autoregressive setup,
we may not start from DFA start state q0 since one or more
blocks of tokens rrr1 · · ·rrrl may have been generated in left
the current block. Provide the string rrr1 · · ·rrrl ends at a live
state ql, we can apply dynamic programming approach with
the intializtion W [0, ql] = 1 and W [0, q] = 0 for all state
q ̸= ql. Details are in Appendix D.

4.3. Correctness of DINGO

Proposition 4.1. [Correctness] Given any regular expres-
sionR, input prompt ppp ∈ V m, block length d, output distri-
bution Dm+d = vvv1 . . . vvvm+d, if LP (R) ∩ (V \ ⊥)d ̸= {}
and rrr ∼ vvvm+1 . . . vvvm+d be the decoded string, then ∃xxx ∈
V ∗.(xxx ∈ S(rrr)) ∧ (xxx ∈ LP (R)) holds.

4

220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

Algorithm 1 DINGO DP
Require: q0, block length d, probability vectors vvv1, . . . vvvd for the

current block, Ql, Q, δ.
1: W [0, q]← 0 for all (q ∈ Q) ∧ (q ̸= q0)
2: W [0, q0]← 1
3: Pr[0, q]← (None,None) for all (q ∈ Q) ▷ Initialization of

the DP
4: Vi ← {} for all i ∈ {1, . . . , d}▷ maximum token probability

transtion (q′ → q) at position i
5: Ti ← {} for all i ∈ {1, . . . , d} ▷ token for the maximum

probability transition (q′ → q)
6: for i ∈ {1, . . . , d} do
7: for (q ∈ Q) do
8: for t ∈ V do
9: q′ ← δ(q, t)

10: Vi(q, q
′), Ti(q, q

′)←MaxTransition(vvvi, t, q, q′)
11: for i ∈ {1, . . . , d} do ▷ DP computation loop
12: for (q ∈ Q) ∧ (q′ ∈ Q) do
13: if W [i, q] < W [i− 1, q′]× Vi(q, q

′) then
14: W [i, q]←W [i− 1, q′]× Vi(q, q

′) ▷ Update
maximum probability path to q

15: Pr[i, q]← (q′, Ti(q, q
′)) ▷ Update the parents

accordingly
16: qmax ← argmaxq∈Ql

W [d, q]

17: if W [d, qmax] = 0 then ▷ No valid prefixes
18: return None, qmax

19: rrr∗ ← {}, qcurr ← qmax

20: for i ∈ {d, . . . , 1} do ▷ Decoding the optimal string rrr∗

21: qcurr, t← Pr[i, qcurr]
22: rrr∗ ← rrr∗ · t
23: return reverse(rrr∗), qmax

Proof sketch: DINGO ensures that if a state q ∈ Q is
reachable in i tokens, then W [i, q] > 0 for all 1 ≤ i ≤ d.
Since LP (R)∩ (V \ ⊥)d ̸= {}, there exists a state ql ∈ Ql

that is reachable in d steps. Therefore, W [d, qmax] > 0 (see
line 16 in Alg.1). Consequently, there exists a sequence
xxx ∈ S(rrr) such that δ∗(xxx, q0) = qmax ∈ Ql, implying that
xxx ∈ LP (R). Formal proof is in AppendixB.

Proposition 4.2. [Optimality] Given any regular expression
R, input prompt ppp ∈ V m, block length d, output distribution
Dm+d = vvv1 . . . vvvm+d, if LP (R)∩(V \⊥)d ̸= {} and rrr∗ ∼
vvvm+1 . . . vvvm+d be the decoded string, then for any valid
string rrr′ satisfying ∃xxx ∈ V ∗.(xxx ∈ S(r′r′r′)) ∧ (xxx ∈ LP (R)),
P (r′r′r′ | vvvm+1 . . . vvvn) ≤ P (rrr∗ | vvvm+1 . . . vvvn).

Proof Sketch: Formal proof is in Appendix B.

4.4. DINGO algorithm

Algorithm 1 presents DINGO steps. The two main loops
dominating its computational complexity involve calculat-
ing transition costs and performing the DP updates respec-
tively.

First, for each of the d time steps, the algorithm com-
putes the optimal single-token transition costs Vi(qs, qt)
between all source states qs ∈ Q and target states qt ∈ Q.

This is achieved by iterating through each source state qs,
each token t ∈ V , and then for each state qt reached
from qs via t (i.e., qt ∈ δ(qs, t)), updating the cost
Vi(qs, qt) with vvvi[t] if it is better. The complexity for this
part is O(d · (|Q|2 +

∑
qs∈Q

∑
t∈V |δ(qs, t)|)). The sum∑

qs

∑
t |δ(qs, t)| represents the total number of transitions,

Ntrans = O(|Q|·|V |+|Q|·N⊥), where N⊥ is the maximum
number of states reachable via the ⊥ token. Thus, this part
takes O(d · (|Q|2 + |Q| · |V |)).

Second, the core dynamic programming update calculates
W [i, q] for each diffusion step i and state q. This involves
iterating over d diffusion steps, |Q| current states q, and for
each q, considering all |Q| possible previous states q′. This
leads to a complexity of O(d · |Q|2).

Combining these dominant parts, the total complexity is
O(d · (|Q|2 + |Q| · |V |) + d · |Q|2), which simplifies to
O(d · (|Q|2 + |Q| · |V |)). This can be expressed as O(d ·
|Q| · (|Q|+ |V |)).

5. Experiments
In this section, we evaluate DINGO on a math reasoning
task (GSM-Symbolic (Mirzadeh et al., 2024)) and a schema-
based text-to-JSON task (JSONModeEval (NousResearch,
2024)) and demonstrate significant improvement over base-
lines. In both tasks, we use the LLaDA-8B-Base (LLaDA-
8B-B) (Nie et al., 2025), LLaDA-8B-Instruct (LLaDA-8B-
I) (Nie et al., 2025), Dream-v0-Base-7B (Dream-B-7B) (Ye
et al., 2025), and Dream-v0-Instruct-7B (Dream-I-7B) (Ye
et al., 2025) models.

Experimental Setup. We run experiments on a 48-core
Intel Xeon Silver 4214R CPU with 2 Nvidia RTX A5000
GPUs. DINGO is implemented using PyTorch (Paszke
et al., 2019) and the HuggingFace transformers library (Wolf
et al., 2020). The token-level DFA is implemented in Rust
using a highly efficient regex-DFA library to minimize over-
head during DFA construction and LLM inference. We
report the mean number of DFA states and transitions as
well as the offline pre-computation time in Appendix E.

Baselines. We compare DINGO against unconstrained dif-
fusion LLM generation. Furthermore, to highlight the bene-
fit of optimal constrained decoding with DINGO, we imple-
ment a constrained decoding strategy Greedy Constrained
that mirrors existing autoregressive constrained generation
methods (Willard & Louf, 2023; Ugare et al., 2024b).
Greedy Constrained iterates over the diffusion block and
at each position i computes a binary mask m ∈ {0, 1}|V |

based on the DFA, specifying valid tokens (m = 1) and
excluded tokens (m = 0). Decoding is then performed
on the masked probability distribution m ⊙ vivivi, where ⊙
denotes element-wise multiplication. Since in some cases,
Unconstrained outperforms Greedy Constrained, we also

5

275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329

report Best of Greedy + Unconstrained , which takes the
better result of the two approaches for each problem in the
dataset.

Math Reasoning: We evaluate DINGO on GSM-
Symbolic (Mirzadeh et al., 2024) dataset, which consists
of reasoning-based math world problems where numerical
values and names are replaced by symbolic variables. Dif-
fusion LLMs are tasked with generating correct symbolic
expression solutions to those word problems. We evaluate
correctness by using the Z3 solver (De Moura & Bjørner,
2008) to check if the final expressions from the LLM gener-
ations are functionally equivalent to the ground truth expres-
sions. We set the generation length to 128, number of blocks
to 8, and total diffusion steps to 64 and prompt the LLMs
with 4-shot examples from GSM-Symbolic (Mirzadeh et al.,
2024) (the prompts can be found in Appendix F.1). We
initialize DINGO and Greedy Constrained with a regex
(shown in Appendix F.2) that permits math expressions
wrapped in « and » and natural language text outside these
expressions for reasoning as done in CRANE (Banerjee
et al., 2025).

Table 1 compares the performance of DINGO with the
baseline methods. The Accuracy (%) column reports the
percentage of functionally correct LLM-generated expres-
sions, Parse (%) indicates the percentage of syntactically
valid responses (i.e., expressions without invalid operations),
and Time provides the average time in seconds taken to gen-
erate a completion.

As displayed in the table, DINGO significantly improves
functional correctness over the baselines. For instance, for
LLaDA-8B-I, DINGO outperforms unconstrained genera-
tion by 13 percentage points and Greedy Constrained genera-
tion by 5 percentage points. Furthermore, DINGO achieves
100% syntactic accuracy across all models evaluated. On the
other hand, unconstrained and Greedy Constrained genera-
tion make many syntactic errors, especially for non-instruct
tuned models. For these cases, generation with Greedy Con-
strained results in responses that are syntactically valid pre-
fixes but not syntactically valid by themselves. We present
case studies in Appendix F.3. Importantly, DINGO is ex-
tremely efficient, introducing marginal overhead compared
to unconstrained generation.

JSON Generation: We further evaluate DINGO on a
text-to-JSON generation task JSON-Mode-Eval, which con-
ists of zero-shot problems specifying a JSON schema and
a request to generate a JSON object that contains speci-
fied contents. Generating JSON that adheres to a specified
schema is extremely important for applications like tool use
and function calling (Ugare et al., 2024b; Willard & Louf,
2023). We evaluate the correctness of JSON generated by
an LLM by first evaluating whether the JSON string can
be parsed and converted to a valid JSON object. We fur-

ther evaluate whether the generated JSON is valid against
the schema specified in the prompt. We set the generation
length to 128, number of blocks to 1, and the total diffusion
steps to 64. For the constrained generation methods, we
convert each problem’s JSON schema into its corresponding
regular expression and guide the diffusion LLM to generate
output conforming to that regex.

Table 2 presents the results of our experiment. The Parse
(%) column reports the percentage of syntactically valid
LLM generations while the Accuracy (%) column reports
the percentage of generations that are both syntactically
valid and valid against their respective schemas. Notably,
DINGO achieves 100% schema validation and syntactic
accuracy, while baseline methods struggle in many cases
to generate valid JSON. We attribute this to the fact that
Greedy Constrained may distort the distribution through its
greedy approximation and can only generate a valid prefix,
not a fulll parsable generation (Park et al., 2024a).

Ablation Study on The Number of Diffusion Blocks: We
analyze the performance of DINGO on GSM-Symbolic
using different numbers of diffusion blocks. We run genera-
tion with a response length of 128, using 64 total diffusion
steps, and each of 1, 2, and 8 blocks. As shown in Figure 1,
DINGO performs well across all block settings, outperform-
ing baselines in both functional and syntactic correctness.
Further ablations on the number of diffusion blocks are
presented in Appendix I.

6. Related Works
To the best of our knowledge, our work is the first to provide
provable guarantees on constrained adherence for inference
in diffusion language models. We next discuss the broader
set of related works on diffusion language models and con-
strained language model decoding.

Diffusion Language Models: Diffusion Language Mod-
els (Austin et al., 2021) have emerged as a promising alter-
native to traditional autoregressive architectures (Radford
et al., 2019), offering advantages in parallel processing and
controllability while addressing limitations in sequential
generation. Recent advances in semi-autoregressive diffu-
sion models (Han et al., 2023; Nie et al., 2025; Ye et al.,
2025; Arriola et al., 2025) have significantly narrowed the
performance gap with autoregressive counterparts. SSD-
LM (Han et al., 2023) introduced a semi-autoregressive
approach that performs diffusion over the natural vocabu-
lary space, enabling flexible output length and improved
controllability by iteratively generating blocks of text while
facilitating local bidirectional context updates. More re-
cently, several breakthrough models have advanced the field:
LLaDA (Large Language Diffusion with mAsking) achieved
competitive performance with SOTA open-source autore-

6

330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384

Table 1. Comparison of constrained and unconstrained generation methods on GSM-Symbolic.

Model Method Acc. (%) Parse (%) Time (s)

Unconstrained 25 54 9.06
Greedy Constrained 30 75 9.31

LLaDA-8B-B Best of Greedy + Unconstrained 30 75 9.08
DINGO 31 100 9.22

Unconstrained 19 35 23.78
Greedy Constrained 27 98 23.97

LLaDA-8B-I Best of Greedy + Unconstrained 27 98 23.8
DINGO 32 100 23.92

Unconstrained 17 33 16.02
Greedy Constrained 21 41 16.13

Dream-B-7B Best of Greedy + Unconstrained 21 41 16.04
DINGO 23 100 16.19

Unconstrained 32 61 23.89
Greedy Constrained 34 93 24.01

Dream-I-7B Best of Greedy + Unconstrained 34 93 23.9
DINGO 36 100 23.91

gressive models of a similar size like LLaMA3-8B through
a forward data masking process and a reverse process, pa-
rameterized by a vanilla Transformer to predict masked

(a) LLaDA-8B-I

(b) Dream-I-7B

Figure 1. Ablation Study on The Number of Diffusion Blocks For
GSM-Symbolic

tokens (Nie et al., 2025). BD3-LMs (Block Discrete De-
noising Diffusion Language Models)(Arriola et al., 2025)
introduced a novel approach that interpolates between dis-
crete denoising diffusion and autoregressive models while
supporting flexible-length generation and improving infer-
ence efficiency with KV caching. Most recently, Dream-
7B(Ye et al., 2025) emerged as a strong open diffusion large
language model that matches state-of-the-art autoregressive
(AR) language models of similar size.

Constrained Decoding with Autoregressive LLMs: Con-
strained decoding has shown promising results in augment-
ing autoregressive language models. Researchers have de-
veloped efficient techniques for ensuring syntactic correct-
ness in regular (Deutsch et al., 2019; Willard & Louf, 2023;
Kuchnik et al., 2023) or context-free (Koo et al., 2024;
Ugare et al., 2024a; Dong et al., 2024; Banerjee et al., 2025)
languages. Other works have focused on semantically con-
strained decoding through Monte Carlo sampling (Lew et al.,
2023; Loula et al., 2025) or backtracking (Poesia et al., 2022;
Ugare et al., 2025). (Lew et al., 2023; Park et al., 2024a)
demonstrated that all these approaches that perform greedy
constrained approximation for inference can distort the sam-
pling distribution. DINGO addresses this challenge by per-
forming optimal constrained sampling on blocks of tokens
in a diffusion language model, which partially mitigates
distribution distortion issues.

Concurrent to our work, (Cardei et al., 2025) performs con-
strained sampling from diffusion language models by mini-
mizing a loss function defined using a surrogate model used
for scoring constraints. However, their proposed method

7

385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439

Table 2. Comparison of constrained and unconstrained generation methods for JSON Schema.

Model Method Acc. (%) Parse (%) Time (s)

Unconstrained 57 59 6.37
Greedy Constrained 80 80 6.47

LLaDA-8B-B Best of Greedy + Unconstrained 88 90 6.41
DINGO 100 100 6.43

Unconstrained 87 91 6.7
Greedy Constrained 78 79 6.81

LLaDA-8B-I Best of Greedy + Unconstrained 99 99 6.73
DINGO 100 100 6.78

Unconstrained 15 18 5.31
Greedy Constrained 23 23 5.41

Dream-B-7B Best of Greedy + Unconstrained 32 35 5.34
DINGO 100 100 5.45

Unconstrained 85 87 6.4
Greedy Constrained 30 30 6.51

Dream-I-7B Best of Greedy + Unconstrained 91 93 6.43
DINGO 100 100 6.55

does not guarantee convergence to the constraint and ne-
cessitates a differentiable surrogate model. In contrast, our
work focuses on providing provable guarantees for con-
straint satisfaction during inference without the need of an
additional surrogate model.

Limitations DINGO is optimal for per-block generation,
making it ideal for pure diffusion settings. However, this op-
timality may not hold in semi-autoregressive setups involv-
ing multiple blocks. Currently, our approach is limited to
regular language constraints, while programming languages
often belong to context-free or context-sensitive classes. As
a result, our method cannot directly enforce these more ex-
pressive constraints, which have been addressed in prior
work on autoregressive constrained generation. Nonethe-
less, we believe the core dynamic programming framework
behind DINGO can be extended to support richer language
classes in future work. Moreover, important constraints
like toxicity mitigation fall outside formal language classes,
highlighting directions for further research.

7. Conclusion
We presented DINGO, a novel dynamic programming ap-
proach that enables diffusion LLMs to generate outputs that
strictly adhere to regular language constraints while pre-
serving the model’s underlying distribution. Our method
overcomes the limitations of traditional constrained decod-
ing algorithms that fail with parallel token prediction. Our
experimental results on symbolic math and JSON genera-
tion tasks demonstrate significant improvements over uncon-
strained inference, demonstrates that DINGO is an effective

solution for structured output generation with diffusion mod-
els. Our work bridges an important gap in making diffusion
LLMs reliable for applications requiring formal guarantees.

8

440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494

Impact Statement
This paper introduces research aimed at advancing the field
of Machine Learning. We do not identify any specific so-
cietal consequences of our work that need to be explicitly
emphasized here.

References
Arriola, M., Sahoo, S. S., Gokaslan, A., Yang, Z., Qi, Z.,

Han, J., Chiu, J. T., and Kuleshov, V. Block diffusion:
Interpolating between autoregressive and diffusion lan-
guage models. In The Thirteenth International Confer-
ence on Learning Representations, 2025. URL https:
//openreview.net/forum?id=tyEyYT267x.

Austin, J., Johnson, D. D., Ho, J., Tarlow, D., and van den
Berg, R. Structured denoising diffusion models in dis-
crete state-spaces. In Beygelzimer, A., Dauphin, Y.,
Liang, P., and Vaughan, J. W. (eds.), Advances in Neural
Information Processing Systems, 2021. URL https:
//openreview.net/forum?id=h7-XixPCAL.

Banerjee, D., Suresh, T., Ugare, S., Misailovic, S., and
Singh, G. CRANE: Reasoning with constrained LLM
generation. arXiv preprint arXiv:2502.09061, 2025. URL
https://arxiv.org/pdf/2502.09061.

Cardei, M., Christopher, J. K., Hartvigsen, T., Bartoldson,
B. R., Kailkhura, B., and Fioretto, F. Constrained lan-
guage generation with discrete diffusion models, 2025.
URL https://arxiv.org/abs/2503.09790.

De Moura, L. and Bjørner, N. Z3: an efficient smt
solver. In Proceedings of the Theory and Practice of
Software, 14th International Conference on Tools and
Algorithms for the Construction and Analysis of Systems,
TACAS’08/ETAPS’08, pp. 337–340, Berlin, Heidelberg,
2008. Springer-Verlag. ISBN 3540787992.

Deutsch, D., Upadhyay, S., and Roth, D. A general-
purpose algorithm for constrained sequential inference.
In Proceedings of the Conference on Computational
Natural Language Learning, 2019. URL https://
aclanthology.org/K19-1045/.

Dong, Y., Ruan, C. F., Cai, Y., Lai, R., Xu, Z., Zhao,
Y., and Chen, T. XGrammar: Flexible and efficient
structured generation engine for large language mod-
els. arXiv preprint arXiv:2411.15100, 2024. URL
https://arxiv.org/pdf/2411.15100.

et. al., C. Evaluating large language models trained
on code, 2021. URL https://arxiv.org/abs/
2107.03374.

Fedoseev, T., Dimitrov, D. I., Gehr, T., and Vechev, M. LLM
training data synthesis for more effective problem solving

using satisfiability modulo theories. In The 4th Work-
shop on Mathematical Reasoning and AI at NeurIPS’24,
2024. URL https://openreview.net/forum?
id=hR4Hskr4GX.

Forney, G. D. The viterbi algorithm. Proc. of the IEEE, 61:
268 – 278, March 1973.

Han, X., Kumar, S., and Tsvetkov, Y. Ssd-lm: Semi-
autoregressive simplex-based diffusion language model
for text generation and modular control, 2023. URL
https://arxiv.org/abs/2210.17432.

Koo, T., Liu, F., and He, L. Automata-based constraints for
language model decoding. In Conference on Language
Modeling, 2024. URL https://openreview.net/
forum?id=BDBdblmyzY.

Kuchnik, M., Smith, V., and Amvrosiadis, G. Val-
idating large language models with RELM. Pro-
ceedings of Machine Learning and Systems, 5,
2023. URL https://proceedings.mlsys.
org/paper_files/paper/2023/file/
93c7d9da61ccb2a60ac047e92787c3ef-Paper-mlsys2023.
pdf.

Lew, A. K., Zhi-Xuan, T., Grand, G., and Mansinghka,
V. Sequential Monte Carlo steering of large language
models using probabilistic programs. In ICML 2023
Workshop: Sampling and Optimization in Discrete
Space, 2023. URL https://openreview.net/
pdf?id=Ul2K0qXxXy.

Loula, J., LeBrun, B., Du, L., Lipkin, B., Pasti, C., Grand,
G., Liu, T., Emara, Y., Freedman, M., Eisner, J., Cot-
terell, R., Mansinghka, V., Lew, A., Vieira, T., and
O’Donnell, T. Syntactic and semantic control of large
language models via sequential Monte Carlo. In The Thir-
teenth International Conference on Learning Represen-
tations, 2025. URL https://openreview.net/
pdf?id=xoXn62FzD0.

Mirzadeh, I., Alizadeh, K., Shahrokhi, H., Tuzel, O., Ben-
gio, S., and Farajtabar, M. Gsm-symbolic: Understand-
ing the limitations of mathematical reasoning in large
language models, 2024. URL https://arxiv.org/
abs/2410.05229.

Nie, S., Zhu, F., You, Z., Zhang, X., Ou, J., Hu, J., Zhou,
J., Lin, Y., Wen, J.-R., and Li, C. Large language dif-
fusion models, 2025. URL https://arxiv.org/
abs/2502.09992.

NousResearch. json-mode-eval, 2024. URL
https://huggingface.co/datasets/
NousResearch/json-mode-eval.

9

https://openreview.net/forum?id=tyEyYT267x
https://openreview.net/forum?id=tyEyYT267x
https://openreview.net/forum?id=h7-XixPCAL
https://openreview.net/forum?id=h7-XixPCAL
https://arxiv.org/pdf/2502.09061
https://arxiv.org/abs/2503.09790
https://aclanthology.org/K19-1045/
https://aclanthology.org/K19-1045/
https://arxiv.org/pdf/2411.15100
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://openreview.net/forum?id=hR4Hskr4GX
https://openreview.net/forum?id=hR4Hskr4GX
https://arxiv.org/abs/2210.17432
https://openreview.net/forum?id=BDBdblmyzY
https://openreview.net/forum?id=BDBdblmyzY
https://proceedings.mlsys.org/paper_files/paper/2023/file/93c7d9da61ccb2a60ac047e92787c3ef-Paper-mlsys2023.pdf
https://proceedings.mlsys.org/paper_files/paper/2023/file/93c7d9da61ccb2a60ac047e92787c3ef-Paper-mlsys2023.pdf
https://proceedings.mlsys.org/paper_files/paper/2023/file/93c7d9da61ccb2a60ac047e92787c3ef-Paper-mlsys2023.pdf
https://proceedings.mlsys.org/paper_files/paper/2023/file/93c7d9da61ccb2a60ac047e92787c3ef-Paper-mlsys2023.pdf
https://openreview.net/pdf?id=Ul2K0qXxXy
https://openreview.net/pdf?id=Ul2K0qXxXy
https://openreview.net/pdf?id=xoXn62FzD0
https://openreview.net/pdf?id=xoXn62FzD0
https://arxiv.org/abs/2410.05229
https://arxiv.org/abs/2410.05229
https://arxiv.org/abs/2502.09992
https://arxiv.org/abs/2502.09992
https://huggingface.co/datasets/NousResearch/json-mode-eval
https://huggingface.co/datasets/NousResearch/json-mode-eval

495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549

Pan, L., Albalak, A., Wang, X., and Wang, W. Y. Logic-
lm: Empowering large language models with symbolic
solvers for faithful logical reasoning, 2023. URL https:
//arxiv.org/abs/2305.12295.

Park, K., Wang, J., Berg-Kirkpatrick, T., Polikar-
pova, N., and D’Antoni, L. Grammar-aligned
decoding. Advances in Neural Information
Processing Systems, 37:24547–24568, 2024a.
URL https://proceedings.neurips.
cc/paper_files/paper/2024/file/
2bdc2267c3d7d01523e2e17ac0a754f3-Paper-Conference.
pdf.

Park, K., Wang, J., Berg-Kirkpatrick, T., Polikarpova,
N., and D’Antoni, L. Grammar-aligned decoding. In
The Thirty-eighth Annual Conference on Neural Infor-
mation Processing Systems, 2024b. URL https://
openreview.net/forum?id=5G7ve8E1Lu.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J.,
Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga,
L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison,
M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L.,
Bai, J., and Chintala, S. Pytorch: An imperative style,
high-performance deep learning library. In Advances in
Neural Information Processing Systems 32. 2019.

Poesia, G., Polozov, A., Le, V., Tiwari, A., Soares, G.,
Meek, C., and Gulwani, S. Synchromesh: Reliable
code generation from pre-trained language models. In
International Conference on Learning Representations,
2022. URL https://openreview.net/forum?
id=KmtVD97J43e.

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D.,
and Sutskever, I. Language models are unsupervised
multitask learners. OpenAI, 2019. URL https://cdn.
openai.com/better-language-models/
language_models_are_unsupervised_
multitask_learners.pdf. Accessed: 2024-11-
15.

Ugare, S., Suresh, T., Kang, H., Misailovic, S., and Singh, G.
SynCode: Improving LLM code generation with gram-
mar augmentation. arXiv preprint arXiv:2403.01632,
2024a. URL https://arxiv.org/pdf/2403.
01632.

Ugare, S., Suresh, T., Kang, H., Misailovic, S., and Singh,
G. Syncode: Llm generation with grammar augmen-
tation, 2024b. URL https://arxiv.org/abs/
2403.01632.

Ugare, S., Gumaste, R., Suresh, T., Singh, G., and Mis-
ailovic, S. IterGen: Iterative structured LLM generation.
In The Thirteenth International Conference on Learning

Representations, 2025. URL https://openreview.
net/pdf?id=ac93gRzxxV.

Willard, B. T. and Louf, R. Efficient guided gen-
eration for large language models. arXiv preprint
arXiv:2307.09702, 2023. URL https://arxiv.
org/pdf/2307.09702.

Wolf, T., Debut, L., Sanh, V., Chaumond, J., Delangue,
C., Moi, A., Cistac, P., Rault, T., Louf, R., Funtow-
icz, M., Davison, J., Shleifer, S., von Platen, P., Ma,
C., Jernite, Y., Plu, J., Xu, C., Le Scao, T., Gugger, S.,
Drame, M., Lhoest, Q., and Rush, A. Transformers:
State-of-the-art natural language processing. In Confer-
ence on Empirical Methods in Natural Language Pro-
cessing: System Demonstrations, 2020. URL https:
//aclanthology.org/2020.emnlp-demos.6.

Yang, K., Swope, A. M., Gu, A., Chalamala, R., Song,
P., Yu, S., Godil, S., Prenger, R., and Anandkumar, A.
Leandojo: Theorem proving with retrieval-augmented
language models, 2023. URL https://arxiv.org/
abs/2306.15626.

Ye, J., Xie, Z., Zheng, L., Gao, J., Wu, Z., Jiang, X., Li,
Z., and Kong, L. Dream 7b, 2025. URL https://
hkunlp.github.io/blog/2025/dream.

10

https://arxiv.org/abs/2305.12295
https://arxiv.org/abs/2305.12295
https://proceedings.neurips.cc/paper_files/paper/2024/file/2bdc2267c3d7d01523e2e17ac0a754f3-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/2bdc2267c3d7d01523e2e17ac0a754f3-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/2bdc2267c3d7d01523e2e17ac0a754f3-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/2bdc2267c3d7d01523e2e17ac0a754f3-Paper-Conference.pdf
https://openreview.net/forum?id=5G7ve8E1Lu
https://openreview.net/forum?id=5G7ve8E1Lu
https://openreview.net/forum?id=KmtVD97J43e
https://openreview.net/forum?id=KmtVD97J43e
https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://arxiv.org/pdf/2403.01632
https://arxiv.org/pdf/2403.01632
https://arxiv.org/abs/2403.01632
https://arxiv.org/abs/2403.01632
https://openreview.net/pdf?id=ac93gRzxxV
https://openreview.net/pdf?id=ac93gRzxxV
https://arxiv.org/pdf/2307.09702
https://arxiv.org/pdf/2307.09702
https://aclanthology.org/2020.emnlp-demos.6
https://aclanthology.org/2020.emnlp-demos.6
https://arxiv.org/abs/2306.15626
https://arxiv.org/abs/2306.15626
https://hkunlp.github.io/blog/2025/dream
https://hkunlp.github.io/blog/2025/dream

550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604

A. Transformer and Remasking Step

Algorithm 2 Diffusion Step

Require: Transformer Nn, full output length n, prompt ppp, input prompt length m, block length d, current diffusion step i,
total diffusion steps T , vocabulary V .

1: xxx← ppp · ⊥d ▷ Pad the input prompt where n = m+ d

2: v1v1v1 . . . vnvnvn ← Nn(xxx) ▷ vivivi ∈ R|V |
+ output distribution at position i

3: lll← RemaskPositions(vvvm+1, . . . , vvvm+d, i, T) ▷ Decides which positions to remask
4: for j ∈ lll do
5: vjvjvj ← 000
6: vjvjvj [⊥]← 1 ▷ Set probability of all tokens except ⊥ to 0.
7: rrr ← Dm,n(v1v1v1 . . . vnvnvn) ▷ Decoding that outputs response with first m tokens are input prompt ppp
8: return rrr

We describe the two key components of a single diffusion step: a) Transformer step: Computes the output distribution
over all tokens in the vocabulary (line 2 Algo. 2). b) Remasking step: Based on the output from the transformer step, it
greedily decides which token positions to mask. The remasking step can be viewed as updating the output distribution
such that, at the masked positions, the mask token ⊥ is assigned probability 1, while all other tokens receive probability 0
(lines 3 – 6 Algo. 2). Popular greedy remasking strategies include (line 3 Algo. 2): (i) Random: Masks tokens at randomly
selected positions (Nie et al., 2025). (ii) Top token probability: Masks positions where the top-predicted token has the lowest
probability (Nie et al., 2025). (iii) Entropy-based: Computes the entropy of the output distribution at each position and
masks the positions with the highest entropy (Ye et al., 2025).

The number of token positions to remask at the i-th step typically depends on the total number of diffusion steps T and the
block length d. At step 0, all d positions are masked, and the number of masked tokens decreases linearly to 0 over T steps.
Thus, at the i-th step, the number of masked tokens is given by

⌊
d×(T−i)

T

⌋
.

B. Proofs
Proposition 4.1. [Correctness] Given any regular expressionR, input prompt ppp ∈ V m, block length d, output distribution
Dm+d = vvv1 . . . vvvm+d, if LP (R) ∩ (V \ ⊥)d ̸= {} and rrr ∼ vvvm+1 . . . vvvm+d be the decoded string, then ∃xxx ∈ V ∗.(xxx ∈
S(rrr)) ∧ (xxx ∈ LP (R)) holds.

Proof. We assume that ∃xxx ∈ LP (R) ∩ (V \ ⊥)d ∧ (P (xxx|vvvm+1 . . . vvvm+d) ≥ 0) then the decoded string rrr satisfy the
soundness property (see Definition 3.2). In other words, if there is at least one fully unmasked valid prefix with non-zero
probability then DINGO retrieves a valid string.

We show this by induction on the position of tokens. Before moving to the proof, we first define extended transition function
δ∗ when δ : Q× V → 2Q outputs a set of states instead of single state due to mask token ⊥. In this case, for any string
www ∈ V ∗, δ∗(www, q0) represents the state of reachable states starting from q0. This can be defined as δ∗({}, q0) = {q0} and
δ∗(t1 · · · tm+1, q0) = ∪q∈δ∗(t1···tm,q0)δ(q, tm+1).

1. Let 0 ≤ i ≤ d, and let t1 . . . ti ∈ V i denote any token sequence with positive probability mass
∏i

j=1 vvvm+j [tj] > 0.
Let q ∈ δ∗(t1 · · · ti, q0). Then, W [i, q] > 0. We prove this using induction on i.

(a) Base case i = 0: For empty strings only start state q0 is reachable. DINGO initializes W [0, q0] = 1 > 0 and for
all q ̸= q0, W [0, q] = 0. (lines 1 – 3 in Algo. 1).

(b) Inductive Step: At position i + 1, let t1 . . . ti+1 ∈ V i+1 s.t.
∏i+1

j=1 vvvm+j [tj] > 0. Let q′ ∈ δ∗(t1 · · · ti, q0) and
q ∈ δ(q′, ti+1). By the inductive hypothesis, for all such q′ W [i, q′] > 0. Recall,

Vi+1(q, q
′) =

{
max
t∈V

vvvi+1(t) s.t. q ∈ δ(q′, t)

0 if q, q′ are not connected

11

605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659

W [i+ 1, q] = max
q′∈Q

W [i, q′]× Vi+1(q, q
′)

Thus, Vi+1(q, q
′) ≥ vvvm+i+1(ti+1) > 0 which implies W [i, q′] × Vi+1(q, q

′) > 0. Therefore, W [i + 1, q] =
maxq′∈Q W [i, q′]× Vi+1(q, q

′) > 0.

2. Since LP (R) ∩ (V \ ⊥)d ̸= {} by assumption, there exists some yyy ∈ LP (R) ∩ (V \ ⊥)d. By the Definition 2.6,
ql = δ∗t (yyy, q0) ∈ Ql. From the induction above, W [d, ql] > 0. From line 16 in Algo. 1, qmax = argmaxq∈Ql

W [d, q].
Thus, by the definition of argmax, W [d, qmax] ≥W [d, ql] > 0.

3. In lines 20-22 in Algo. 1), DINGO reconstructs a d-length sequence r = t1 . . . td ∈ V d such that qmax ∈ δ∗(r, q0).
For any tj ∈ r, if tj = ⊥, choose any token τj ∈ (V \ ⊥) satisfying δt(qj−1, τj) = qj where qj = δ∗t (t1 . . . tj , q0).
By definition of δ⊥, τj exists. Substituting every ⊥ in this manner yields, by Definition 3.1, xxx = x1x1x1 . . .xdxdxd ∈ (V \⊥)d.
xxx ∈ S(rrr). δ∗t (xxx, q0) = qmax. From above, W [d, qmax] > 0.

4. Since qmax ∈ Ql, by Definition 2.6, ∃w ∈ Σ∗ s.t. δ∗(www, qmax) ∈ F . Equivalently, xxx · w ∈ L(R), hence xxx ∈ LP (R).

Proposition 4.2. [Optimality] Given any regular expressionR, input prompt ppp ∈ V m, block length d, output distribution
Dm+d = vvv1 . . . vvvm+d, if LP (R)∩ (V \⊥)d ̸= {} and rrr∗ ∼ vvvm+1 . . . vvvm+d be the decoded string, then for any valid string
rrr′ satisfying ∃xxx ∈ V ∗.(xxx ∈ S(r′r′r′)) ∧ (xxx ∈ LP (R)), P (r′r′r′ | vvvm+1 . . . vvvn) ≤ P (rrr∗ | vvvm+1 . . . vvvn).

Proof. 1. First, we show that P (rrr∗ | vvvm+1 . . . vvvn) = W [d, qmax], or equivalently
∏d

j=1 vvvm+j [rjrjrj
∗] = W [d, qmax]. Let

rrr∗ = r1r1r1
∗ . . . rdrdrd

∗ and 0 ≤ i ≤ d. We prove by induction on i that if DINGO’s backtracking (lines 19 – 23 in Algo 1)
has brought us to state q ∈ Q at position i, then W [i, q] =

∏i
j=1 vvvm+j [rjrjrj

∗].

(a) Base case i = 0: W [0, q0] = 1 =
∏0

j=1 vvvm+j [rjrjrj
∗].

(b) Inductive Step: At position i, let q′, ririri∗ = Pr[i, q] (line 21 in Algo 1). From lines 14 – 15 in Algo 1,
W [i, q] = W [i − 1, q′] × vvvm+i(ririri

∗). By the inductive hypothesis, W [i − 1, q′] =
∏i−1

j=1 vvvm+j [rjrjrj
∗]. Thus,

W [i, q] =
∏i−1

j=1 vvvm+j [rjrjrj
∗]× vvvm+i(ririri

∗) =
∏i

j=1 vvvm+j [rjrjrj
∗].

Let qd ∈ δ∗(r1r1r1
∗ . . . rdrdrd

∗, q0). Since qd = qmax (line 19 in Algo 1), W [d, qmax] =
∏d

j=1 vvvm+j [rjrjrj
∗] =

P (rrr∗ | vvvm+1 . . . vvvn).

2. We show that for every valid string rrr′ = r1r1r1
′ . . . rdrdrd

′ satisfying ∃xxx ∈ V ∗.(xxx ∈ S(r′r′r′))∧(xxx ∈ LP (R)),
∏d

j=1 vvvm+j [rjrjrj
′] ≤

W [d, qmax]. Let 0 ≤ i ≤ d and q ∈ δ∗(r1r1r1
′ . . . ririri

′, q0). We show that
∏i

j=1 vvvm+j [rjrjrj
′] ≤W [d, q] using induction on i.

(a) Base case i = 0: W [0, q0] = 1 =
∏0

j=1 vvvm+j [rjrjrj
′].

(b) Inductive Step: At position i + 1, let q′ ∈ δ∗(r1r1r1
′ · · ·ririri′, q0) and q ∈ δ(q′, ri+1ri+1ri+1

′). By the inductive hypothesis,∏i
j=1 vvvm+j [rjrjrj

′] ≤W [i, q′]. Recall,

Vi+1(q, q
′) =

{
max
t∈V

vvvi+1(t) s.t. q ∈ δ(q′, t)

0 if q, q′ are not connected

W [i+ 1, q] = max
q′∈Q

W [i, q′]× Vi+1(q, q
′)

Thus, vvvm+i+1(ri+1ri+1ri+1
′) ≤ Vi+1(q, q

′). Hence,
∏i+1

j=1 vvvm+j [rjrjrj
′] =

∏i
j=1 vvvm+j [rjrjrj

′]×vvvm+i+1(ri+1ri+1ri+1
′) ≤W [i, q′]×

Vi+1(q, q
′) ≤W [i+ 1, q].

Let qd ∈ δ∗(r1r1r1
′ . . . rdrdrd

′, q0). Since xxx ∈ V ∗.(xxx ∈ S(r′r′r′)) ∧ (xxx ∈ LP (R)), qd ∈ Ql. From line 16 in Algo. 1,
qmax = argmaxq∈Ql

W [d, q]. Thus, by the definition of argmax, W [d, qd] ≤ W [d, qmax]. From the inductive
hypothesis above,

∏d
j=1 vvvm+j [rjrjrj

′] ≤W [d, qd] ≤W [d, qmax].

3. Hence, P (r′r′r′ | vvvm+1 . . . vvvn) =
∏d

j=1 vvvm+j [rjrjrj
′] ≤W [d, qmax] =

∏d
j=1 vvvm+j [rjrjrj

∗] = P (rrr∗ | vvvm+1 . . . vvvn).

12

660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714

C. Time complexity analysis of parallelized DINGO DP

Algorithm 3 DINGO DP
Require: q0, block length d, probability vectors vvv1, . . . vvvd for the current block, Ql, Q, δ.
1: W [0, q]← 0 for all (q ∈ Q) ∧ (q ̸= q0)
2: W [0, q0]← 1
3: Pr[0, q]← (None,None) for all (q ∈ Q) ▷ Initialization of the DP
4: Vi ← {} for all i ∈ {1, . . . , d} ▷ maximum token probability transtion (q′ → q) at position i
5: Ti ← {} for all i ∈ {1, . . . , d} ▷ token for the maximum probability transition (q′ → q)
6: for i ∈ {1, . . . , d} do ▷ The computation along all d can be parallelized
7: # Parallelize for each {1, . . . d}
8: for (q ∈ Q) do
9: for t ∈ V do

10: q′ ← δ(q, t)
11: Vi(q, q

′), Ti(q, q
′)←MaxTransition(vvvi, t, q, q′)

12: for i ∈ {1, . . . , d} do ▷ DP computation loop
13: for (q ∈ Q) ∧ (q′ ∈ Q) do
14: if W [i, q] < W [i− 1, q′]× Vi(q, q

′) then
15: W [i, q]←W [i− 1, q′]× Vi(q, q

′) ▷ Update maximum probability path to q
16: Pr[i, q]← (q′, Ti(q, q

′)) ▷ Update the parents accordingly
17: qmax ← argmaxq∈Ql

W [d, q]

18: if W [d, qmax] = 0 then ▷ No valid prefixes
19: return None, qmax

20: rrr∗ ← {}, qcurr ← qmax

21: for i ∈ {d, . . . , 1} do ▷ Decoding the optimal string rrr∗

22: qcurr, t← Pr[i, qcurr]
23: rrr∗ ← rrr∗ · t
24: return reverse(rrr∗), qmax

The parallelism step at line 6 in Algo. 3 can be efficiently implemented using popular frameworks like PyTorch. With
parallelism, the computational depth (i.e., the minimum number of sequential steps) reduces to O(max(|Q|2, |Q| × |V |) +
|Q|2 × d). For regular expressions, where the number of states |Q| is a small constant, the computational depth becomes
O(|V |+ d), which is linear in both the vocabulary size |V | and the block length d.

D. Semi-Autoregressive
In the semi-autoregressive setup, given an input ppp ∈ V m, the output ooo ∈ V m+d×k is generated over k blocks, where
each block is computed via a call to the single block diffusion model. The output of the i-th diffusion model call is
xxxi = Lmi,ni

(xxxi−1), with xxx0 = ppp and the final output ooo = xxxk. The input and output lengths for each block are defined as
mi = m+ (i− 1)× d and ni = m+ i× d for all 1 ≤ i ≤ k.

Algorithm 4 Semi-Autoregressive diffusion LLM Generation

Require: diffusion LLM L, prompt ppp, answer length n, block length d, diffusion steps T , vocabulary V , number of blocks
k.

1: xxx← ppp ▷ Initialize xxx with input prompt ppp
2: rrr ← {} ▷ Intialize the output string
3: for i ∈ {1, . . . , k} do
4: xxx · ririri ← Diffusion(xxx,m+ (i− 1)× d, d, T, V) ▷ ririri ∈ V d is i-th output block
5: rrr ← rrr · ririri
6: xxx← xxx · ririri ▷ Compute the input prompt for the next block
7: Return rrr

13

715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769

Algorithm 5 Semi-Autoregressive Constrained diffusion LLM Generation

Require: diffusion LLM L, prompt ppp, answer length n, block length d, diffusion steps T , vocabulary V , number of blocks
k, regular expressionR.

1: q0, Ql, δ ← PreProcess(R) ▷ Pre-compute the dfa start state, live states and δ
2: xxx← ppp ▷ Initialize xxx with input prompt ppp
3: rrr ← {} ▷ Intialize the output string
4: qcurr ← q0 ▷ Intialize the current dfa state the response is at
5: for i ∈ {1, . . . , k} do
6: xxx · ririri, qnext ← Diffusion(xxx,m+ (i− 1)× d, d, T, V ,Ql, δ, qcurr)
7: if qnext ̸∈ Ql then
8: return None ▷ No valid completion
9: rrr ← rrr · ririri

10: xxx← xxx · ririri ▷ Compute the input prompt for the next block
11: qcurr ← qnext ▷ Update current DFA state for next block
12: Return rrr

In the semi-autoregressive setting, after each block, we ensure that the output generated so far ends in a live state from
Ql; otherwise, we return the None string (line 7, Algo. 5). Additionally, we maintain a variable qcurr to track the current
DFA state at the end of each block. This state is then used as the starting state for the dynamic programming step in the
constrained generation of the next block.

14

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

E. Token Transitions Statistics

Table 3. Token Transitions Pre-Computation Statistics

GSM-Symbolic JSON-Mode
Model Family |V | Time(s) #States Time(s) #States

LLaDA-8B 126349 32.09 40 13.22 169.31
Dream-7B 151667 37.01 40 11.87 169.31

In Table 3, we report the precomputation time and the number of states in the DFA for both tasks. For JSON generation,
different regular expressions are used for different schemas; therefore, we report the mean precomputation time and mean
number of states. The maximum number of states and precomputation times across all questions are 455 and 17.7 (Dream)
21.3 (LLaDA) seconds, respectively.

F. GSM-Symbolic
F.1. GSM-Symbolic Prompt
You are an expert in solving grade school math tasks. You will be presented with a grade-school math

word problem with symbolic variables and be asked to solve it.

Before answering you should reason about the problem (using the <reasoning> field in the response
described below). Intermediate symbolic expressions generated during reasoning should be wrapped
in << >>.

Only output the symbolic expression wrapped in << >> that answers the question. The expression must
use numbers as well as the variables defined in the question. You are only allowed to use the
following operations: +, -, /, //, %, *, and **.

You will always respond in the format described below:
Let’s think step by step. <reasoning> The final answer is <<symbolic expression>>

There are {t} trees in the {g}. {g} workers will plant trees in the {g} today. After they are done,
there will be {tf} trees. How many trees did the {g} workers plant today?

Let’s think step by step. Initially, there are {t} trees. After planting, there are {tf} trees. The
number of trees planted is <<tf - t>>. The final answer is <<tf - t>>.

If there are {c} cars in the parking lot and {nc} more cars arrive, how many cars are in the parking
lot?

Let’s think step by step. Initially, there are {c} cars. {nc} more cars arrive, so the total becomes
<<c + nc>>. The final answer is <<c + nc>>.

{p1} had {ch1} {o1} and {p2} had {ch2} {o1}. If they ate {a} {o1}, how many pieces do they have left
in total?

Let’s think step by step. Initially, {p1} had {ch1} {o1}, and {p2} had {ch2} {o1}, making a total of
<<ch1 + ch2>>. After eating {a} {o1}, the remaining total is <<ch1 + ch2 - a>>. The final answer
is <<ch1 + ch2 - a>>.

{p1} had {l1} {o1}. {p1} gave {g} {o1} to {p2}. How many {o1} does {p1} have left?

Let’s think step by step. {p1} started with {l1} {o1}. After giving {g} {o1} to {p2}, {p1} has <<l1 -
g>> {o1} left. The final answer is <<l1 - g>>.

{question}

Listing 1. Prompt template for the GSM-Symbolic task (Mirzadeh et al., 2024).

F.2. GSM-Symbolic Regex
(?:(?:(?:(?:(?:[-;=?-~\n]+))*(?:<<(?:(?:\))?(?:(?:(?:(?:(?:[a-j])|(?:[0-9]{1,3})|\((?:(?:(?:(?:[a-j

])|(?:[0-9]{1,3})|\((?:(?:(?:(?:[a-j])|(?:[0-9]{1,3})|\((?:(?:(?:(?:[a-j])|(?:[0-9]{1,3})))
(?:(?:(?:(?:\))?(?:(?:\+|\-|//|/|%|*|**))(?:(?:\))?(?:(?:(?:[a-j])|(?:[0-9]{1,3})))))*)\)))
(?:(?:(?:(?:\))?(?:(?:\+|\-|//|/|%|*|**))(?:(?:\))?(?:(?:(?:[a-j])|(?:[0-9]{1,3})
|\((?:(?:(?:(?:[a-j])|(?:[0-9]{1,3})))(?:(?:(?:(?:\))?(?:(?:\+|\-|//|/|%|*|**))(?:(?:\))
?(?:(?:(?:[a-j])|(?:[0-9]{1,3})))))*)\)))))*)\)))(?:(?:(?:(?:\))?(?:(?:\+|\-|//|/|%|*|**))
(?:(?:\))?(?:(?:(?:[a-j])|(?:[0-9]{1,3})|\((?:(?:(?:(?:[a-j])|(?:[0-9]{1,3})|\((?:(?:(?:(?:[a-j

15

825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879

])|(?:[0-9]{1,3})))(?:(?:(?:(?:\))?(?:(?:\+|\-|//|/|%|*|**))(?:(?:\))?(?:(?:(?:[a-j])
|(?:[0-9]{1,3})))))*)\)))(?:(?:(?:(?:\))?(?:(?:\+|\-|//|/|%|*|**))(?:(?:\))?(?:(?:(?:[a-j])
|(?:[0-9]{1,3})|\((?:(?:(?:(?:[a-j])|(?:[0-9]{1,3})))(?:(?:(?:(?:\))?(?:(?:\+|\-|//|/|%|*|**)
)(?:(?:\))?(?:(?:(?:[a-j])|(?:[0-9]{1,3})))))*)\)))))*)\)))))*)\)))(?:(?:(?:(?:\))
?(?:(?:\+|\-|//|/|%|*|**))(?:(?:\))?(?:(?:(?:[a-j])|(?:[0-9]{1,3})|\((?:(?:(?:(?:[a-j])
|(?:[0-9]{1,3})|\((?:(?:(?:(?:[a-j])|(?:[0-9]{1,3})|\((?:(?:(?:(?:[a-j])|(?:[0-9]{1,3})))
(?:(?:(?:(?:\))?(?:(?:\+|\-|//|/|%|*|**))(?:(?:\))?(?:(?:(?:[a-j])|(?:[0-9]{1,3})))))*)\)))
(?:(?:(?:(?:\))?(?:(?:\+|\-|//|/|%|*|**))(?:(?:\))?(?:(?:(?:[a-j])|(?:[0-9]{1,3})
|\((?:(?:(?:(?:[a-j])|(?:[0-9]{1,3})))(?:(?:(?:(?:\))?(?:(?:\+|\-|//|/|%|*|**))(?:(?:\))
?(?:(?:(?:[a-j])|(?:[0-9]{1,3})))))*)\)))))*)\)))(?:(?:(?:(?:\))?(?:(?:\+|\-|//|/|%|*|**))
(?:(?:\))?(?:(?:(?:[a-j])|(?:[0-9]{1,3})|\((?:(?:(?:(?:[a-j])|(?:[0-9]{1,3})|\((?:(?:(?:(?:[a-j
])|(?:[0-9]{1,3})))(?:(?:(?:(?:\))?(?:(?:\+|\-|//|/|%|*|**))(?:(?:\))?(?:(?:(?:[a-j])
|(?:[0-9]{1,3})))))*)\)))(?:(?:(?:(?:\))?(?:(?:\+|\-|//|/|%|*|**))(?:(?:\))?(?:(?:(?:[a-j])
|(?:[0-9]{1,3})|\((?:(?:(?:(?:[a-j])|(?:[0-9]{1,3})))(?:(?:(?:(?:\))?(?:(?:\+|\-|//|/|%|*|**)
)(?:(?:\))?(?:(?:(?:[a-j])|(?:[0-9]{1,3})))))*)\)))))*)\)))))*)\)))))*))(?:(?:\))?>>)))
+(?:(?:\.))?)

Listing 2. GSM-Symbolic Regex

F.3. GSM-Symbolic Case Studies

Case Study 1:

Figure 2. An example from the GSM-symbolic dataset (variables in blue), where unconstrained generation produces syntactically incorrect
output, and greedy constrained generation yields a syntactically valid but incorrect answer. In contrast, DINGO generates the correct
answer.

Case Study 2:

16

880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934

Figure 3. An example from the GSM-symbolic dataset (variables in blue), where unconstrained generation produces syntactically incorrect
output, and greedy constrained generation yields a syntactically valid but incorrect answer. In contrast, DINGO generates the correct
answer.

G. JSON-Mode
G.1. JSON-Mode Example Prompt
You are a helpful assistant that answers in JSON. Here’s the json schema you must adhere to:
<schema>
{’title’: ’PromotionalCampaign’, ’type’: ’object’, ’properties’: {’campaignID’: {’title’: ’Campaign ID

’, ’type’: ’string’}, ’productID’: {’title’: ’Product ID’, ’type’: ’string’}, ’startDate’: {’
title’: ’Start Date’, ’type’: ’string’, ’format’: ’date’}, ’endDate’: {’title’: ’End Date’, ’type
’: ’string’, ’format’: ’date’}, ’discountDetails’: {’title’: ’Discount Details’, ’type’: ’string
’}}, ’required’: [’campaignID’, ’productID’, ’startDate’, ’endDate’]}

</schema>

I’m organizing a promotional campaign for our new eco-friendly laundry detergent, which is part of our
household products line. The campaign will start on June 1, 2023, and end on June 30, 2023. We’
re planning to offer a 15% discount on all purchases during this period. The campaign ID is
CAMP123456, the product ID is PROD7891011, and the discount details are 15% off on all purchases.

Only output the JSON object, no other text or comments.

Listing 3. Example JSON Prompt from the JSON-Mode-Eval task (NousResearch, 2024). The prompt includes a system
message that specifies a schema and a user message that explicitly instructs the model to output a JSON object
following that schema with certain parameters.

G.2. JSON-Mode Example Regex
\\{[]?"campaignID"[]?:[]?"([^"\\\\\\x00-\\x1F\\x7F-\\x9F]|\\\\["\\\\])*"[]?,[]?"productID"[]?:[

]?"([^"\\\\\\x00-\\x1F\\x7F-\\x9F]|\\\\["\\\\])*"[]?,[]?"startDate"[]?:[]?"(?:\\d{4})
-(?:0[1-9]|1[0-2])-(?:0[1-9]|[1-2][0-9]|3[0-1])"[]?,[]?"endDate"[]?:[]?"(?:\\d{4})
-(?:0[1-9]|1[0-2])-(?:0[1-9]|[1-2][0-9]|3[0-1])"([]?,[]?"discountDetails"[]?:[]?"([^"\\\\\\
x00-\\x1F\\x7F-\\x9F]|\\\\["\\\\])*")?[]?\\}

Listing 4. Regex for the JSON Schema in Appendix G.2

17

935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989

G.3. JSON-Mode Case Studies

Figure 4. An example from JSON generation, where unconstrained generation produces a syntactically incorrect output, and greedy
constrained generation yields a valid but incomplete prefix. In contrast, DINGO generates a syntactically correct answer.

Figure 5. An example from JSON generation, where unconstrained generation produces a syntactically incorrect output, and greedy
constrained generation yields a valid but incomplete prefix. In contrast, DINGO generates a syntactically correct answer.

18

990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044

H. Ablation Study on Number of Blocks for Diffusion LLM Generation (GSM-Symbolic)
We run generation with a response length of 128, using 64 total diffusion steps, and each of 1, 2, and 8 blocks. Table 4
presents the result.

Table 4. Ablation Study on The Number of Diffusion Blocks for GSM-Symbolic
Model #Blocks Method Acc. (%) Parse (%) Time (s)

Unconstrained 20 54 23.66
Greedy Constrained 26 94 23.7

1 Best of Greedy + Unconstrained 26 94 23.66
DINGO 29 100 23.73
Unconstrained 22 54 23.63
Greedy Constrained 30 96 23.81

LLaDA-8B-I 2 Best of Greedy + Unconstrained 30 96 23.65
DINGO 32 100 23.93
Unconstrained 19 35 23.78
Greedy Constrained 27 98 23.97

8 Best of Greedy + Unconstrained 27 98 23.8
DINGO 32 100 23.92

Unconstrained 28 69 23.56
Greedy Constrained 32 90 23.64

1 Best of Greedy + Unconstrained 32 90 23.65
DINGO 34 100 23.67
Unconstrained 30 55 23.62
Greedy Constrained 33 87 23.71

Dream-I-7B 2 Best of Greedy + Unconstrained 33 87 23.62
DINGO 34 100 23.65
Unconstrained 32 61 23.89
Greedy Constrained 34 93 24.01

8 Best of Greedy + Unconstrained 34 93 23.89
DINGO 36 100 23.91

19

1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099

I. Ablation Study on Number of Blocks for Diffusion LLM Generation (JSON-Mode)
We run generation with a response length of 128, using 64 total diffusion steps, and each of 1, 2, and 8 blocks. Table 5
presents the result.

Table 5. Ablation Study on The Number of Diffusion Blocks for JSON-Mode.
Model #Blocks Method Acc. (%) Parse (%) Time (s)

Unconstrained 87 91 6.7
Greedy Constrained 78 79 6.81

1 Best of Greedy + Unconstrained 99 99 6.73
DINGO 100 100 6.78
Unconstrained 84 92 6.72
Greedy Constrained 92 94 6.83

LLaDA-8B-I 2 Best of Greedy + Unconstrained 99 99 6.73
DINGO 100 100 6.86
Unconstrained 84 89 6.73
Greedy Constrained 98 98 6.87

8 Best of Greedy + Unconstrained 100 100 6.75
DINGO 100 100 6.85

Unconstrained 85 87 6.4
Greedy Constrained 30 30 6.51

1 Best of Greedy + Unconstrained 91 93 6.43
DINGO 100 100 6.55
Unconstrained 79 82 6.47
Greedy Constrained 37 39 6.68

Dream-I-7B 2 Best of Greedy + Unconstrained 86 88 6.5
DINGO 100 100 6.63
Unconstrained 70 74 6.44
Greedy Constrained 52 52 6.65

8 Best of Greedy + Unconstrained 86 89 6.46
DINGO 100 100 6.67

20

1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154

J. Ablation Study on Number of Steps for Diffusion LLM Generation (GSM-Symbolic)
We run generation with a response length of 128, 1 block, and each of 16, 32, 64, and 128 total diffusion steps. Table 6
presents the result.

Table 6. Ablation Study on The Number of Diffusion Steps for GSM-Symbolic with Dream-I-7B
#Steps Method Acc. (%) Parse (%) Time (s)

Unconstrained 6 20 5.99
Greedy Constrained 13 78 6.18

16 Best of Greedy + Unconstrained 13 78 5.99
DINGO 18 100 6.09

Unconstrained 18 48 11.96
Greedy Constrained 25 87 12.06

32 Best of Greedy + Unconstrained 25 87 11.96
DINGO 28 100 12.03

Unconstrained 28 69 23.56
Greedy Constrained 32 90 23.64

64 Best of Greedy + Unconstrained 32 90 23.65
DINGO 34 100 23.67

Unconstrained 31 74 47.83
Greedy Constrained 30 89 47.88

128 Best of Greedy + Unconstrained 31 90 47.83
DINGO 33 100 47.86

21

1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209

K. Ablation Study on Number of Steps for Diffusion LLM Generation (JSON-Mode)
We run generation with a response length of 128, 1 block, and each of 16, 32, 64, and 128 total diffusion steps. Table 7
presents the result.

Table 7. Ablation Study on The Number of Diffusion Steps for JSON-Mode with Dream-I-7B
#Steps Method Acc. (%) Parse (%) Time (s)

Unconstrained 54 59 1.51
Greedy Constrained 32 32 1.62

16 Best of Greedy + Unconstrained 68 71 1.52
DINGO 100 100 1.6

Unconstrained 67 71 3.23
Greedy Constrained 35 35 3.35

32 Best of Greedy + Unconstrained 78 82 3.24
DINGO 100 100 3.31

Unconstrained 85 87 6.4
Greedy Constrained 30 30 6.51

64 Best of Greedy + Unconstrained 91 93 6.43
DINGO 100 100 6.55

Unconstrained 85 87 13.42
Greedy Constrained 46 46 13.53

128 Best of Greedy + Unconstrained 95 97 13.43
DINGO 100 100 13.51

22

