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Figure 1: We propose StyleGenes: a biologically inspired discrete latent distribution for GANs. We train
for and perform unconditional image synthesis (b) by randomly sampling a variant for each gene (a). Our
approach allows for conditional generation by finding the genes that are associated with specific attributes (c).
Although our latent distribution is discrete, the learned style space offers emergent continuous properties,

ensuring smooth interpolation between samples (d).

ABSTRACT

We propose a discrete latent distribution for Generative Adversarial Networks (GANS).
Instead of drawing latent vectors from a continuous prior, we sample from a finite set
of learnable latents. However, a direct parametrization of such a distribution leads to an
intractable linear increase in memory in order to ensure sufficient sample diversity. We
address this key issue by taking inspiration from the encoding of information in biological
organisms. Instead of learning a separate latent vector for each sample, we split the latent
space into a set of genes. For each gene, we train a small bank of gene variants. Thus, by
independently sampling a variant for each gene and combining them into the final latent
vector, our approach can represent a vast number of unique latent samples from a compact
set of learnable parameters. Interestingly, our gene-inspired latent encoding allows for new
and intuitive approaches to latent-space exploration, enabling classifier-based conditional
sampling. Our approach preserves state-of-the-art photo-realism while achieving better
disentanglement than the widely-used StyleMapping network.
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1 INTRODUCTION

Generative adversarial networks (GANs) have seen tremendous progress since their first appearance in the
seminal work by Goodfellow et. al (10). GANs have been successfully applied to a plethora of tasks, including
conditional generation from semantic categories (3;40;139), images (7; 43), text (34;48;131), and semantic
layouts (29;154; 1277 138). Compared to their early predecessors, recent GANs (18} 137; 28} 4) are significantly
more capable of realistic and diverse generation of images, with a vast number of works aimed at designing
better architectures, training objectives and training strategies (165 19517 245 [11)).

The core formulation of GANs, however, has remained largely the same: a generator transforms a latent
code sampled from a continuous distribution to a realistic-looking image. Initially, the latent code was
sampled by a uniform distribution (10). Quickly, however, the community converged to using a Gaussian
prior (44;12). An important change came subsequently when Karras et al (19) altered the standard design of
the generator network. The sampled noise is no longer given to the network as the initial input, but akin to a
conditional (29)) or a style transfer (14) generator, it was used to manipulate the intermediate feature maps
after the convolutions. Nevertheless, the Gaussian input is mapped to an intermediate Style Space through a
multi-layer perceptron. The motivation was that this learned space does not have to adhere to a sampling
density of a fixed distribution and can be disentangled.

In this work, we take a different approach and modulate the generator with latent codes sampled from a
discrete prior distribution. We set the different outcomes of this distribution to be learnable embeddings,
which induces the benefit of direct optimization of the samples. A standard approach to designing such a
discrete distribution of embeddings would require a memory bank of all the latent vectors. However, the
advantage of an image synthesis network, is that it can generate countless novel samples. This is not feasible
with such a formulation.

To tackle this key issue, we introduce a compact representation of a discrete distribution capable of generating
an exponentially large number of distinct samples. We draw inspiration from how the blueprint of a complex
living organism, the DNA, can represent the great amount of diversity found in nature. Only four letters,
the nucleotides, form the words, the genes, that tell the story of our biology. A virtually endless degree of
variation can be obtained by combining different variants of these genes. Accordingly, we design our latent
genome. We break the latent code into smaller parts, the genes. Each gene is sampled from a smaller set of
gene variants. These combine into the final latent vector, analogous to the chromosome in organisms.

Our contributions are summarized as follows. A: We introduce a compact parameterization of a discrete latent
distribution for GANSs, inspired by the encoding of information in biological organisms. B: We exploit the
discrete nature of the latent space to analyze the association of genes to semantic image attributes and develop
methods for conditional generatio based on our gene analysis. C: We show that our learned discrete latent
space is more disentangled that the widely-used Style mapping outputs. D: We demonstrate that despite the
discrete latent distribution, the resulting style space obtains continuous properties, important for e.g. realistic
interpolation. E: We propose a method to project real images in our codebook.

We perform experiments on a variety of widely-used image generation datasets and two established GAN
baselines. Our approach obtains visual results on par with the baseline continuous case, while benefiting
from the intuitive gene-based approach to conditional generation manipulation offered by our StyleGenes
representation. Furthermore, our approach eliminates the need of a Style Mapping network, as it can be
trained using less parameters while yielding a more disentangled latent space.

2 RELATED WORK

Latent Code Quantization: VQ-VAE (41)) is one of the first studies to exploit discrete representations for
image generation. VQ-VAE is designed to prevent the posterior collapse in VAE framework when the latent
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representations are paired with a powerful decoder (41). Instead of a continuous latent space, VQ-VAE
represents the latent space as a spatial grid of quantized local latent codes, which are sampled from a discrete
set of learned vectors in an auto-regressive manner. VQ-VAE2 (33) is an improved version of VQ-VAE,
which is capable of generating images of higher diversity and resolution by using a hierarchical multi-scale
latent maps. The idea of VQ-VAE later on was extended to a GAN framework by changing the reconstruction
loss and adding an adversarial one (9). Moreover, a transformer is used to learn the auto-regressive priors
for sampling the discrete local latent vector. Building on the previous approaches, RQ-VAE (23)) proposes
a residual feature quantization framework, which enables their model to work with smaller number of
representation vectors. Feature quantization has also been used in the discriminator of GANSs to increase the
stability of the adversarial training (53)). This study bears similarities to the above works in formulating the
latent space as a composition of discrete feature vectors. However, different to prior studies, we investigate
discrete sampling of the latent code in the unsupervised GAN framework (20), without employing any encoder
or self-supervised objective. These approaches deploy an auto-encoder based approach, that produce local
discrete codes and need auto-regressive sampling to draw new samples. Our codebook is not trained through
vector quantization, but rather through the adversarial game; it provides a global description of the image to
be generated and thus does not require auto-regressive sampling.

Latent code as a composition of smaller parts: InfoGAN (6) aimed at bringing more interpretability and
disentanglement to the latent codes of GANSs by maximizing the mutual information between parts of the latent
code and the corresponding generated images. Inspired by the formation of DNA from genes, DNA-GAN (46))
and ELEGANT (47) also proposed dividing the latent code into smaller attribute-relevant and attribute-
irrelevant parts, which are then supervised using attribute annotations to create attribute disentanglement
in GANs. Similar to these studies, or method divides the style vectors into smaller codes. Additionally,
the style codes in our method consist of smaller codes. However, different to InfoGAN, our method only
uses a discrete set of codes to form the latent style codes. Note, we do not explicitly train our method for
disentanglement and feature transfer but only for unconditional image synthesis.

Analyzing the style space: Steering the latent space of GANs is of high interest for many applications
of image editing and conditional generation (15; 49} 42). Previous studies’ focus has primarily been on
analyzing the style space, as it is more well-behaved and disentangled compared to the traditional latent
space in prior GAN models. One goal of this style space analysis is to discover meaningful directions in
the style space for semantic editing of images (455 [15). Moreover, (22) uses style space to explaining and
interpret the decisions made by attribute classifiers. The style space has also provided the opportunity for
paired data generation using only a few annotations (52). Recent methods utilize unconditionally pretrained
models for conditional generation (2} |26). These approaches, train a conditional normalizing flow (2)) or a
classifier (20) in the latent space to enable conditional sampling.In this study, we do not need to train one
vector per transformation (15, compute any gradients(45)) or apply clustering to hidden layers (8)). In contrast,
we treat the network as a black box and, without extra training, only harness the benefits of its discrete input
to enable conditional generation.

3 METHOD

In the present widely-established (205 [16) image generation paradigm, a latent vector sampled from a
continuous multi-variate prior distribution (10) is transformed through a generator network in order to achieve
the final image. In this work, we aim to offer a different approach, by starting from a discrete distribution. We
propose to sample a set of smaller latent codes from a codebook, consisting of a collection of embeddings
that are trained through the adversarial learning.

However, composing the codebook using as the collection of final latent vectors leads to an intractable memory
cost, as we require the generation of at least millions of unique examples. We therefore take inspiration of
how biological organisms encode information as a sequence of discrete entities, called genes. Analogous
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to genes, we partition our latent vector and codebook into a sequence of positions. At each position, we
independently sample from the set of embedding variants contained in the codebook, as illustrated in Figure
[[la. Even with a very compact codebook, our discrete latent sampling allows for countless combinations due
to the combinatorial formulation.

3.1 GENERATOR WITH CONTINUOUS PRIOR

In the classic unsupervised image synthesis literature, the generator is a function that transforms the input
noise to the image domain as,
iid.

I= G(Zc§ QG) P " Pz, 2 € R4 (D
where z. is sampled from a prior distribution p,, and € are the generator’s weights. Early works (10; 32)
sample z. from a uniform distribution. Subsequent works (44; [12) sample from a standard Gaussian
distribution. Since the introduction of StyleGAN (19) and the models based on it, an additional model element
is deployed: a Multi-Layer Perceptron. The weights of this mapping network, are learned in tandem with the
generator’s through the adversarial objective. It is used as a push-forward operator to transform the Gaussian
input distribution to an intermediate latent space W.

w = Mapping(z.,0), 2.~ N(0, 1) )

We propose an alternative method for learning a disentangled latent space W, presented next.

3.2 A SCALABLE CODEBOOK OF LEARNED LATENT CODES

We aim to learn a discrete latent distribution. To this end, we first introduce a codebook of n learnable
embeddings. Before training, the embeddings are initialized using a standard Gaussian distribution. Through
adversarial learning the embeddings are optimized, and therefore capable of representing flexible and complex
style distributions. While such a formulation permits learning a set of latent codes that can generate realistic
outputs, it has a fundamental flaw. The number of distinct samples we can generate scales linearly with
the number of embeddings. For a latent code of length d = 512, we would need to learn over 35 million
parameters only to be able to generate 70, 000 distinct images (the size of the FFHQ dataset (19)).

Inspired by how DNA encodes information in a discrete and compositional manner, we instead let the latent
code be composed of an ordered set of positions, analogous to genes. At each position we independently and
uniformly sample one of its embedding variants from the codebook. Then we concatenate this sequence of
sampled variants into the latent code, which is used as input to the generator,

Vi = [0 ok on], ke {12, n) 3)

Here, vj denotes the variant j of position i. The vector k of uniformly sampled indices k; selectes the
variant v ¢ for each position ¢. The dimensionality of k is the number of positions, n4, in our codebook. The
number of variants for each positionis denoted n,,. The final image is achieved by decoding our style vector
with the generator network G,

I, = G(Vi;0). 4)

We let all embedding variants have the same length, such that v € R4, where d;, = d/n, and d is the total
number of elements in the resulting latent code V.. This formulat10n permits the increase of distinct samples
Nimg WE Can generate to,

nimg = ’I’ng . (5)
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For example, using a latent dimension of d = 512 with n, = 64 genes and n,, = 256 variants, we can
generate approximately 1.34 x 10'%* different samples; more than the estimated number of atoms in the
observable universe. On the other hand, the non-compositional discrete approach using the same codebook
size can only generate 256 distinct samples. In fact, by keeping d = 512 constant, the number of trainable
parameters remains independent of the number of positions ng4, while allowing an exponential increase in the
number of distinct samples according to equation [5]

3.3 ATTRIBUTE-BASED SAMPLING AND ANALYSIS

A key feature of our discrete latent formulation, is that it provides for a simple and effective method for
analysis and guided sampling. In this section, we introduce an approach to attribute-based analysis, editing,
and conditional sampling, by aggregating statistics of how a set of image-specific attributes relate to individual
elements in the codebook.

Let {ay,...,ar} denote the of attributes that are used to describe an image, for the specific dataset on
which our generator is trained. Each attribute a; can take a finite set of values. For instance, in case
of a face dataset, an attribute can describe the existence of glasses, beard, lipstick, or the hair color. In
order to perform conditional image generation given a specified set of attributes, we need to estimate the

conditional latent distribution p(k|aq,...,ar). We assume the positions to be conditionally independent
p(klay,...,ar) =[], p(kilay,...,ar). We then obtain,
plai,... aclk)p(ks) [l plalk:)

p(kila, ... ar) 6)

Yok plax, .. aplk)p(ks) Do T1; plailk:)
The first equality is the application of Bayes’ rule. In the second equality, we use that p(k;) = % is uniform
and assume the attributes to be conditionally independent given the variant k;. The latter assumption is
motivated by the high degree of disentanglement that we observe across variants and positions. Further, note
that this conditional independence assumptions by no means imply that the generated attributes themselves
are independent. In fact, as observed in our experiments, our approach captures the strong correlations that
exist between certain attributes, such as ‘male’ and ‘beard’ (see our genome analysis and Figure [2)).

Eq.[6]shows that the conditional distribution of the latents are fully given by the marginal attribute distribution
for a given embedding variant p(a;|k;). We estimate the latter by aggregating statistics over generated image
samples as

- ZkES:ki:j p(ar|G(Vy))
ZkES:kizj 1
Here, p(a;|G(Vy)) is the attribute distribution of the generated image G(V};), which we estimate with a
pre-trained image classifier. In the first equality, we marginalize over all possible latent vectors k. However,
as this is intractable, we approximate the expectation value through Monte-Carlo sampling. Specifically,
we pre-generate a set of images {G (V) : k € S}, where the latents in .S are sampled from p(k). We can

efficiently re-use the same set of images, generated from S, when computing equation 7] for all variants k;
and attributes [.

plalki = j) = Y pla|G(Vi)p(klk; = j) o
k

To further increase the likelihood of sampling codebook entries with high probability of the conditioned
attribute class, we scale the estimated statistics with a temperature parameter p(a;|k;) T when employed in
equation[6] This serves to increase the class consistency of the conditional sampling in our experiments.

4 EXPERIMENTS

Implementation Our method, StyleGenes, is written in Pytorch (30). We incorporate our sampling approach
into two baseline models: (1) StyleGAN2 (20) as provided in the StyleGAN3 (18)) codebase and Project-
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Unsupervised Image Generation

Ablation Study on StyleGenome

FID | [ FFHQ AFHQ Met/s Church Beds FID | FFHQ AFHQ Metfaces
StyleGAN2 Genome # Genes # Genes # Genes
StyleMapping 53 5.62 20.48 8.13 51.61 #Variants | 64 8 2 64 8 2 64 8 2
StyleGenes 5.11 5.99 21 6.86 17.84 256 587 534 24721645 1243 18.64 | 2256 38776 42.60
Projected GANs(FastGAN) 512 553 5.64 1234|599 724 1377 | 21.54 2720 37.71
Cont. Prior 5.08 4.02 15.38 3.05 315 1024 571 520 62 | 611 1033 1047 | 21.99 2505 32.08
StyleGenes ‘ 4.19 3.66 15.24 3.08 2.96 2048 522 511 530 | 631 637 731 | 2139 21.00 3093

Table 1: Left: Evaluation of our discrete sampling approach, StyleGenes, by substituting the StyleGAN2’s
StyleMapping network or FastGAN’s continuous sampling for ProjectedGAN. Our method yields similar
or better FID to the continuous case. Right: Ablation on different configurations of the genome and our
baseline. Increasing the size of the Genome (# Variants) increases both its capacity and performance. We can
also lower the FID by breaking the latent code into more genes of smaller lengths. This increases the number
of unique codes we can sample from our genome without increasing its memory footprint.

edGANSs (36) using the FastGAN (24) generator. For all datasets, we train all our models and baselines
unconditionally using 4 GPUs following the default configuration as described in each project’s code reposi-
tory (L8;[36). For small datases Metfaces (17) and AFHQ (7)) we use adaptive discriminator augmentation (17).
For our StyleGAN?2 experiments, we train until the discriminator has seen 10 million images of resolution
256 x 256. For ProjectedGAN, we train for their reported number of iterations to reach state-of-the-art results,
rounded up to the next million: 8M images for FFHQ(19) and 2M images for the other datasets.

Datasets We investigate the performance of our network using the Fréchet Inception Distance (FID) (13)), on
widely used datasets for unsupervised image generation:

FFHQ (19), standing for Flickr Faces - High Quality is a collection of 70,000 face images scraped from
flickr.com. The images were centered around the eyes and the mouth of the individual, offering strong position
priors. The people depicted in the images come from a diverse background, age and poses.

MetFaces (17) is a dataset of image crops from art pieces of the Metropolitan Museum of Art Collection.
Similarly to FFHQ the crops are centered around human faces. The dataset contain 1336 images in total. The
images are under CCO license by the Metropolitan Museum of Art. Both FFHQ and Metfaces are licensed
under CC BY-NC 2.0 license by NVIDIA Corp.

AFHQ (7) is a collection of 15.000 images of animal faces divided equally into three categories: cat, dog and
wildlife. However, in this work we do not use the labels for conditional generation. The dataset is available
under CC BY-NC 4.0 license by NAVER Corp.

LSUN Church & Bedroom (50). We are using two subsets of the LSUN dataset Church and Bedroom,
where they contain diverse outdoor and indoor scenes respectively. We use the full LSUN Church dataset of
126,227 images and a subset of the bedroom scenes comprised of 121,000 images.

4.1 UNCONDITIONAL GENERATION

In Table[THeft we can see the results obtained when introduce our discrete sampling technique to established
baselines (205 36)). We compare them to the results we get when we train our baselines (17;[36) with the
same hyperparameters and training images, Our proposed discrete method produces similar results with
StyleGAN’s StyleMapping approach, and improves Projected GAN when it replaces gaussian sampling.

In ablation study (Table[T}right), we aim to analyze the effect of the different Genome configurations to the
perceptual performance of the network. Note that by keeping the number of the variants constant, the memory
footprint of our approach is also constant. Thus, every experiment that is in the same row in Table [T}right is
using the same number of parameters that scale with the number of variants: n,, * d. Increasing this number
improves the perceptual quality in terms of FID, an effect more prominent for larger genes. We call this an
increase of parameter capacity. Alternatively, by increasing the number of genes, we also observe a decrease
in FID. Note that as we want to keep the size of the resulting latent vector constant d = 512, we decrease
each gene’s length when using more. Therefore, the number of different images the genome can represent
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Figure 2: Which genes affect which attribute? The polar plot visualizes which genes have, on average,
extreme (high or low) expected values towards one of the 40 CelebA attributes. Each color represents a
different attribute. The labels indicate the gene that exhibits the highest variability in this attribute. Most
attributes are affected only by a handful of genes. We observe that specific genes affect pertinent attributes.
For instance, genes 66 and 38 affect gender and hair color, while gene 85 the mouth-related features. We
show how randomly changing a specific gene’s variants produces different alterations to the images on the
right. Changing the variants of genes 0 and 14, which do not show extreme values for any attribute, leads to

minute changes. Most genes fall into this category.
Predicting Attribute Presence from Latent Codes

Method male young bald gray-hair h-makeup mustache no-beard w-earrings w-lipstick | mean
StyleMapping | 49.74% 63.43% 96.02%  92.49% 87.71% 9537%  79.06% 84.73% 69.30% | 79.76%
StyleGenes 86.71% 82.90% 97.01% 93.68%  92.09% 95.82% 91.53% 86.40% 85.89% | 90.23%

Table 2: We measure disentanglement by our ability to predict the presence of an attribute in a generated
image from its latent code. We find it is much easier to associate our StyleGenes’ codes to attributes, than
with the StyleGAN’s style codes.

is also increasing, per Eq. equation[5] We call this an increase of combinatorial capacity. Increasing the
combinatorial capacity does not increase the parameters of the genome. In Table [Tiright we can observe that
for all three datasets, for the smallest gene length, going from variants’ number of 2048 to 256 leads to a
minor deterioration of performance. However, the memory footprint of the genome is decreased 8-fold.

4.2 ANALYZING THE CODEBOOK

In this section we aim to analyze the properties that arise due to the discrete nature of our approach. Moreover,
we show how to use them for conditional generation in FFHQ.

Associating variants with attributes As described in Section 3] we run a Monte Carlo experiment to estimate
the probability p(a;|k; = j) of the variant j at position 4 resulting to the attribute a; in the output image. We
randomly sample 500, 000 gene sequences from our FFHQ model and generate their corresponding images.
We pass each of these images through 40 pretrained CelebA classifiers (25)). Their weights are included in the
original StyleGAN code repository, and we used the code provided by StyleSpace (43)) to extract the
logits for every image.

Conditional Generation In the previous step we acquired the marginal attribute distribution for a given
genome variant. We use this information to conditionally generate an image with a desired attribute a;. To
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male eye-bags h-cheek/s smiling big-nose open-mouth young w-lipstick attractive eyeglasses
Method | Sampli Avg. | yes | no yes | no yes | no yes | no yes | no yes | no yes | no yes | no yes | no yes | no
Classification accuracy (%) T

baseline | random | 74.54 | 93.32 | 54.24 | 70.62 | 87.66 | 32.78 | 96.46 | 35.20 | 97.76 | 59.02 | 85.74 | 83.24 | 93.16 | 91.44 | 51.34 | 44.50 | 88.52 | 29.46 | 98.82 | 9792 | 99.54
bascline | freq | 91.24 | 94.24 | 92.18 | 86.86 | 87.74 | 91.06 | 89.04 | 93.50 | 91.66 | 86.42 | 87.50 | 95.90 | 94.30 | 91.80 | 82.26 | 87.98 | 95.50 | 85.74 | 93.50 | 97.72 | 99.82
Ours | temp-1.0 | 71.01 | 74.26 | 74.22 | 66.28 | 85.14 | 69.82 | 75.28 | 75.70 | 74.72 | 71.96 | 69.40 | 76.58 | 71.98 | 0.38 | 65.24 | 63.88 | 81.16 | 71.50 | 96.72 | 68.76 | 87.34
Ours | temp-0.8 | 77.48 | 79.84 | 80.92 | 69.80 | 71.98 | 74.36 | 78.40 | 79.96 | 78.98 | 76.26 | 74.12 | 81.54 | 77.90 | 80.20 | 70.42 | 70.02 | 84.42 | 67.78 | 84.18 | 79.06 | 89.36
Ours | temp-0.5 | 88.02 | 90.58 | 88.36 | 80.76 | 83.28 | 86.26 | 88.00 | 90.46 | 90.84 | 86.66 | 85.20 | 91.38 | 88.36 | 87.12 | 85.40 | 85.84 | 89.58 | 84.00 | 89.54 | 96.10 | 92.70
Ours | temp-0.3 | 95.77 | 98.30 | 96.48 | 91.00 | 93.10 | 96.26 | 96.80 | 97.82 | 97.90 | 96.00 | 95.36 | 98.14 | 93.64 | 89.62 | 97.48 | 9540 | 96.14 | 94.56 | 95.42 | 99.38 | 96.52
FID |
baseline | random | 3333 | 30.05 | 41.48 | 29.39 | 36.21 | 40.18 | 30.44 | 35.21 | 28.12 | 33.76 | 32.95 | 36.61 | 29.17 | 28.69 | 40.07 | 46.13 | 34.04 | 33.90 | 30.76 | 19.43 | 30.00
baseline | freq 1096 | 10.11 | 10.24 | 10.48 | 11.04 | 10.72 | 11.65 | 1091 | 11.66 | 10.08 | 10.45 | 10.95 | 11.45 | 11.26 | 1029 | 10.70 | 10.32 | 15.40 | 10.43 | 10.00 | 11.08
Ours | temp-1.0 | 11.08 | 1111 | 11.24 | 9.98 | 11.81 | 9.63 | 9.78 | 9.96 | 9.69 | 10.88 | 9.60 | 9.94 | 930 | 1686 | 9.42 | 11.99 | 9.59 | 11.20 | 17.86 | 12.16 | 9.53
Ours | temp-0.8 | 10.11 | 11.04 | 10.85 | 9.88 | 10.04 | 9.60 | 975 | 9.67 | 9.81 | 10.72 | 9.49 | 9.89 | 950 | 1017 | 9.77 | 1143 | 973 | 10.39 | 9.70 | 11.15 | 9.66
Ours | temp-0.5 | 1236 | 14.41 | 13.17 | 11.86 | 1137 | 10.24 | 10.67 | 10.46 | 11.64 | 13.59 | 13.06 | 1028 | 10.52 | 11.83 | 1473 | 1631 | 11.18 | 1591 | 10.73 | 1534 | 9.92
Ours | temp-0.3 | 28.42 | 30.92 | 28.53 | 19.43 | 17.50 | 14.97 | 1435 | 14.24 | 79.46 | 23.46 | 28.90 | 12.99 | 14.40 | 86.22 | 32.29 | 38.63 | 18.33 | 36.92 | 1527 | 29.86 | 11.86

Table 3: Conditional Generation We train our method unconditionally, by sampling uniformly the variants
for each gene position. With our analysis we can conditionally sample the variants to generate a desired
attribute. We can control a FID-accuracy trade-off using the temperature. Lower values decrease variability
but increase accuracy. For our baseline, a conditional StyleGAN, we need to provide values for every attribute.
We either sample them randomly or use the real dataset’s conditional frequencies.

generate unconditionally we sample the variant for each gene position uniformly. However, as described in
Section we can now infer the conditional latent distribution p(k|a;) and use it to sample the variants instead.
In Figure [3|we can see the results of our conditional sampling. Decreasing the temperature ¢ increases the
likelihood of the presence of the desired attribute, however, can also limit the variability of the conditional
outputs. This effect is outline in increased FID scores in Table 3]

To gauge the ability of our method to generate conditionally, we train a conditional StyleGAN2 model with
pseudo-labels from the CelebA classifiers. In Table[3] we find we compare similarly to our baseline. However,
we do not require a predefined number of classes and our method can be extended to more classes without
training. Moreover, we can use the temperature value to control the trade-off between variability and accuracy.
Lastly, training conditionally with a small dataset can lead to poor performance and mode collapse (39).

Which genes are responsible for each attribute? We want to test if, like its biological inspiration, our
genome has specific genes that control the expression of certain attributes, such as hair color. We quantify
this by calculating the mean absolute standard score for each gene position: the absolute distance in terms of

standard deviations that the gene variants have on average with the codebook’s mean expected value for the

. . ; aj|lki=3)— .
particular attribute: s; = X IpCarki=7) ~tpaino],
Tp(aylky)

In Figure 2] we see the score for a gene in a specific position. The genes are placed circularly around the plot.
Each color represents one of the 40 attributes. Most genes do not significantly affect any of the attributes,
instead controlling local image details. For each attribute, only a handful of genes have high standard scores.
On the right side of Figure 2] we see how changing the variants of specific genes alters the output image. We
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Original  Projection

Figure 3: Interpolation and inversion. Our latents are trained in a discrete fashion, but have real values.
Thus, it is possible to interpolate between them. Our network can generate realistic results from codes outside
of the genome’s values. Inspired by this feature, we extend PTI (33) to add real images in our genome.

sample a gene sequence and start substituting the variant of one gene at random. Manipulating the genes that
exhibit high scores in the polar plot, such as genes 66, 85, and 38, leads to visible changes in the image.

StyleGenome and Disentanglement The StyleGAN’s (19) motivation to design the StyleMapping Network
to make the sampling density determined by the mapping and not to be limited to any fixed distribution; they
aimed for the resulting space W to be more disentangled. We explore how disentangled our StyleGenes are
compared to the output space of StyleMapping. We train a Multi-Layer Perceptron to predict the presence
of an attributed in an image from its latent code. We randomly sample 50.000 codes from each of the two
representations. Then we extract the fake images’ attributes using the pretrained classifiers, and appropriately
prepared the train/val/test subsets. We find that StyleGenes outperforms the StyleMapping’s accuracy on
every attribute we tested, with a 10% average increase, as shown in Table Qbottom.

Interpolation. During training we sample the latent codes from our discrete codebook, but their values lie
on R%. We want to gauge whether the learned genome comprises samples that lie on a smooth surface. We
sample two codes and interpolate between them. In Figure [3|we can see interpolation results for all three
datasets. The transition is smooth and the subsequent samples are semantically coherent and realistic. By
optimizing on discrete samples we are able to learn a continuous distribution.

Adding real images in the codebook. We extend the Pivotal Tuning Inversion (33) approach to project real
images into our codebook in Figure[3] We start by concurrently optimizing a set of vectors in the underlying
continuous space to produce the images we want to invert. Then, we find the indices of the nearest-neighbor
variant for each gene position in the codebook. We train both the generator and the codebook to recreate
the images, based only on these indices. We substitute PTI’s locality regularization with our codebook
regularization: we push randomly sample gene-variants to keep their syntheses unchanged via an 12 and
LPIPS loss. We find this step important to retain the perceptual quality of the codebook.

5 CONCLUSION

In this work we introduce StyleGenes. Inspired by how information is encoded in the DNA by only four
basic building blocks, we design a discrete sampling approach for GANs. We define our StyleGenome, an
ordered collection of gene variants. We uniformly sample a variant for each gene to form a sequence. Its
concatenation is the style code used by the generator to synthesize an image. Our discrete sampling technique
achieves an FID score on par with its continuous counterpart, while enabling an intuitive way to analyze the
latent code. We use pretrained classifiers to aggregate attribute statistics, enabling attribute-based analysis and
conditional sampling. Lastly, we show that we can generate samples between the genome’s discrete elements,
indicating that the samples are on a smooth style surface.
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6 ETHICAL DISCUSSION

Our methodology permits exploiting the discrete latent code of an image generator trained in an unsupervised
manner, to generate conditionally and manipulate the output samples. However, it comes with some limitations.
First, while GANs aim to mimic the distribution of real images there is a gap between the real and fake
distribution (21). We apply a classifier trained on real images to infer the labels of fake images. The
classifiers are limited by the entanglements of attributes in the training dataset. This issue is also discussed in
StyleSpace (45), where they note that the classifier may fail to predict a lipstick on a male face. We hypothesize
that this effect is further intensified because, while FFHQ offers significant diversity in “age, ethnicity and
accessories”, CelebA contains celebrity faces and thus is more limited in those factors. Lastly, the biases of
the labelers of the images can be propagated to the conditional image generation and manipulation results
(See attractive in Figure[3] Therefore, one should be wary to apply this approach to a real life application.

Please not that in this work we train our model using portraits of real people, using the Flickr-Faces-HQ
dataset (19). As described in https://github.com/NVlabs/{fhq-dataset, the images were collected to adhere to
privacy rules and were filtered to only include samples intented for redistribution. Moreover, if an individual
identifies themselves in the dataset, they can request the removal of their face from the collection.
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Figure 4: We can observe how the density of the discrete latent distribution is changing through training.
The variants’ values are learned through the adversarial game to produce images, along with the synthesis
network. that match the real distribution.

A SUPPLEMENTARY MATERIAL

A.1 EVOLUTION OF STYLEGENOME DURING TRAINING

As we discussed in Section 4., the StyleGAN’s (19) motivation to design the StyleMapping Network to make
the sampling density determined by the mapping and not to be limited to any fixed distribution; they aimed
for the resulting space W to be more disentangled. In Table [2}top we can see how the adversarial game
is altering the density of our discrete distribution throughout the training. Our learnable embeddings are
aligning, together with the Synthesis network, to better match the real images distribution.

A.2 PROJECTING A REAL IMAGE VIA LATENT OPTIMIZATION

In the main paper we discussed how the discrete nature of our proposed StyleGenome enables us to condition-
ally generate and manipulate images. Even if the genome has a finite number of images it can generate, this
number is large enough to produce countless different samples. However, it is interesting to approach the
inverse problem. We have a specific image, how can we project it to the latent space?

In the main paper we have shown that we can generate realistic samples using real vectors in between two of
our gene sequences. Similarly, we tackle the task of projection to the latent space as a continuous optimization
problem. In contrast to StyleGAN’s(19) projection (1), where a set of samples from a gaussian distribution is
passed through the mapping network and then averaged, we average the real values of randomly selected gene
sequences. In the first two columns of Figure[5] we can see the real images and our method’s projections.
We optimize the style vectors modulating each layer of the synthesis network (W ¥ space) (1). The vector is
optimized in order to minimize mean squared error and the perceptual distance (51) between the synthesized
image and the original image we want to project.

Training with our discrete set of genes we are able to learn a dense continuous space that enables projection
of images to the level shown in Figure[5] As we can see in the rest of the columns of the figure, however,
the closest variants to the real sub-vectors producing the projected image, can not recreate the original well.
In Figure [5] we show three different approaches for computing the distance of the projected latent code’s
sub-vectors to the genome’s variants: Manhattan distance, euclidean, and cosine similarity.

In practise we use this approach to initiate our Codebook inversion, as described in Section 4]
A.3  IMAGE MANIPULATION
Using the computed expected values, we can create an ordering of variants for each attribute. We aim to

manipulate generated samples towards an attribute. For example, we would like to change the color of a
generated person’s hair. We start from a sampled gene sequence and substitute the variants of the most critical
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Figure 5: Image Inversion with latent code optimization. While projecting specific faces to our discrete
latent space cannot guarantee good results. Optimizing in our underlying continuous space is able to produce
projection samples of high quality and fidelity. In the three last rows we find the closest variants of each gene
to the real projected vector, using different distance functions. We use this us an intermediate step for our
codebook inversion, explained in Section ﬂ

genes with ones that exhibit higher/lower attribute expectations. In Figure[6] we showcase such an application.
Moreover, while our discrete representation is by design unordered (shuffling the variants will not affect our
method), we can create an ordering based on an attribute’s expected value. After locating the position of the
original variant, we can control the degree to which the attribute will be expressed by traversing the ordered
collection.

14



Under review as a conference paper at ICLR 2023

blackhair

eyeglasses

paleskin

Figure 6: Image Manipulation First we acquire the most significant genes for each CelebA attribute. We can
edit an images by substituting the variants of the significant genes with ones having a low (left side) or high
(right side) expectation of a certain attribute.

Variant Pruning - FID|
0 8 16 32 64 128 256 512
5873+ | 5.814+ | 5787+ | 5784+ | 5,760+ | 5909+ | 6.114+ | 6.270 &+
0.060 0.061 0.024 0.037 0.047 0.052 0.044 0.045

Table 4: Using our discriminator as a heuristic, we compute the expected value of realness for each variant.
We use these values to substitute the most fake variants with duplicates of the most real ones. The number on
the top of each columns shows how many variants are pruned. Our pruning approach can decrease the FID.
Pruning too much, however, decreases the size of the genome and can increase the score. We report the FID
computed with 50k images, averaged over five runs.

A.4 PRUNING THE GENOME

There is another common technique applied to continuous latent spaces of GANSs that we have not addressed:
the truncation trick(3). As we have an unordered set of variants, applying the trick is not straight-forward.
However we develop a technique to limit the erroneous samples that our model can synthesize. Using the
discriminator as a heuristic, we replicate the process we follow in the main paper to produce the expected
value of an attribute. Similarly, we derive the expected value of realness of a particular variant as the average
discriminator output over a set of samples that contain this variant.

As with the truncation trick, we limit the number of samples the network can generate by removing certain
variants off the gene pool. In Table ] we compute the FID score for different genome scenarios. We remove x
number of variants that exhibit the lowest realness in expected values and substituted them with the ones
that exhibit the highest. The number on the top of each column denotes this number for each scenario. The
configuration we used for this experiment has 1024 variants per gene, making the scenario of the rightmost
column have half the size of the genome of the leftmost one.

We find out that our pruning approach can increase the perceptual quality of the method in terms of FID.
However, we hypothesize that limiting the number of variants to a larger degree can decrease the variability
of the generated samples and hurt the score. Note, that we use the discriminator’s score as an easy heuristic.
However, samples produced using variants with extreme fake expected values are not necessarily erroneous,
nor the ones with the realest values are guaranteed to be perceptually good. However, on average they produce
a better FID score as shows in Table 4l
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Figure 7: Image Generation on FFHQ 1024 x 1024 (19) using StyleGenes along with a StyleGan2 synthesis
network. All images were produced by gene sequences selected at random and without cherry-picking.

A.5 DIFFERENT CONFIGURATIONS

In the main paper we show results for three different datasets for images generated at 256 x 256 resolution
using the StyleGAN2(20; [17) synthesis network.

We also train our StyleGenes approach for FFHQ images of resolution 1024 x 1024 for 2 million images seen
by the discriminator. Similarly with our main paper experiments, our results, with an FID score of 7.60 are on
par with the mapping network’s FID of 7.61. In Figure[7]we can observe results generated by our approach.

For a second experiment, we substitute the StyleGAN2 backbone with StyleGAN3-T (18)) and train for the
Metfaces dataset. Again, we observe similar FID scores for our method (27.17) and the standard approach
(27.44)). We trained both networks for 6 million images per discriminator. We can see the samples synthesized
by StyleGenes in Figure 8]

Lastly, we also train for 3d-aware image synthesis using EG3D (5)) for the cats sub-dataset of AFHQ. We
train the method we both its original StyleMapping approach and our StyleGenes, using the same setting. We
get an fid score of 4.17 for the baseline and 4.15 for our approach.

A.6 THE BENEFITS OF THE MAPPING NETWORK

In the nominal work of the first StyleGAN (19), the authors motivate the design of the mapping network
as a mean to unwarp the gaussian prior in a way that permits only sampling from valid combinations of
attributes. Moreover, they argue that a benefit of the newly acquired latent space is that it does not follow a
predetermined distribution and it can learn its own sampling density.

Our approach also shares these benefits. Having a set of learnable discrete samples means that these move
during training, and can alter their density. While we uniformly sample the variant of each gene, training
pushes these variants to be closer or further apart. Moreover, using pretrained CelebA(25)) classifiers we can
quantify the correlation of certain attributes. In Figure [I0] we see the Pearson correlation computed over the
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Figure 8: Generation on Metfaces (A7) using SryleGenes along with a StyleGan3 synthesis network. All
images were produced by gene sequences selected at random and without cherry picking.

Figure 9: Generation on Cats (17) using StyleGenes along with a EG3D (3) synthesis network. All images
were produced by gene sequences selected at random and without cherry-picking.

vector of classifiers” outputs for 50 thousand images. We show results for real images of the FFHQ dataset, as
well as generated images from a StylegGAN using the mapping network and our approach. We can observe
that the correlation values are similar between our proposed method and the mapping network.

A.7 MORE VISUAL RESULTS.
In the following figures we provide additional results:

* In Figure[I2] we present more unconditional samples for FFHQ (19).

* In Figure[I3|we present more unconditional samples for AFHQv2 (7).

* In Figure[T4 we present more unconditional samples for Metfaces (17).

* In Figure T3] we present more conditionally generated samples for FFHQ (19).
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Figure 10: Attribute Correlation. One motivation behind the design of the mapping network is to forbid the
sampling of invalid combinations, that are not present in the original dataset. By using pretrained classifiers,
we show that the correlation between the certain attributes is similar between real FFHQ images and those

produced by both the mapping network and our discrete sampling method.
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Figure 11: Attributes’ absolute standard scores. We are presenting a clearer version of Figure 2 of the
main paper. One can easily see that for most attributes only specific genes produce high variability. These are
the genes we use to conditionally generate and manipulate samples. Most genes are only utilized for small
changes in the images on their own, but combining them can create diverse outputs. Please zoom for a more

detailed view.
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Figure 12: Unconditional generation on FFHQ. All images were produced by gene sequences selected at
random and without cherry-picking.

Figure 13: Unconditional generation on AFHQv2. All images were produced by gene sequences selected
at random and without cherry-picking.
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Figure 14: Unconditional generation on Metfaces. All images were produced by gene sequences selected at
random and without cherry-picking.
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Figure 15: Conditional generation on FFHQ. Results for more attributes on conditional generation using
our analysis with pretrained CelebA classifiers
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B GENOME CODEBASE

In this chapter we share the sampling code of StyleGenes. Using the StyleGAN3 (18) codebase: https:
//github.com/NVlabs/stylegan3, adding this function will enable training with our approach.

# Modified from:

# github.com/NVlabs/stylegan3/

class Genome(torch.nn.Module):
def __init__ (self,

dim, # style latent dimensionality .
num_ws, # number of W copies used to modulate the synthesis network
num_variants = 2048,

gene_length = 8,

super (). __init__ ()
self.dim = dim
self .num_ws = num_ws

#Discrete genome
self.gene_length = gene_length
assert (self.dim % self.gene_length) ==

self .num_genes = self.dim // self.gene_length
self . num_variants = num_variants
genes = torch.randn ((self.num_genes, \

self .num_variants , \

self.gene_length), \

requires_grad=True)
self.genes = torch.nn.Parameter(genes)

# We use the same arguments as the Mapping network
# in order to seamlessly substitute the function call
def forward(self, z, \
c, \
truncation_psi=1, \
truncation_cutoff=None, \
update_emas=False ):

# We randomly select one variant per gene
# to create the gene sequence
ws = torch.stack ([ \
self.genes|
range (self .num_genes), \
list ( \
torch.randint( \
size=(self.num_genes,), \
high=self.num_variants) \
)\
].view(-1) for _ in range(z.shape[0]) \
1, dim=0) # z.shape[0] = batch size

ws = ws.unsqueeze (1).repeat([1, self.num_ws, 1])
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return ws
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