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Abstract

We present CEDA, a novel multimodal framework for detecting hallucinations
in large language model outputs through a multi-agent debate approach. While
existing methods for black-box LLMs often rely on response sampling and self-
consistency checking, our framework leverages a three-fold approach: a multi-agent
debate setting to critically examine and debate the authenticity of generated content,
a lightweight classifier head on top of LLM-as-a-judge for more calibrated detec-
tion, and a confidence estimation to quantify uncertainty in hallucination detection.
This debate-based architecture enables a more nuanced and contextual evaluation of
potential hallucinations across multiple modalities. Through extensive experiments
on five different benchmarks – TruthfulQA, Natural Questions, FEVER, Hallusion-
Bench and HaluEval Summarisation, we demonstrate that our approach achieves
significant improvements over baseline methods. Our framework also provides
interpretable debate traces that help explain the reasoning behind hallucination
determinations. These results suggest that structured multi-agent debate systems
offer a promising direction for improving the reliability and trustworthiness of
language model outputs.

Keywords LLM-as-a-Judge, Retrieval Augmented Generation, Multi-Agent De-
bate, Hallucination Detection, Uncertainty Quantification, Multimodal Reasoning

1 Introduction

Multimodal Large Language Models (MLLMs) have become the backbone of modern AI sys-
tems, powering applications from open-domain question answering to image captioning and visual
question-answering. Despite their impressive fluency and versatility, a critical vulnerability persists:
hallucinations - generated content that is syntactically plausible but factually incorrect or ungrounded
in the input modalities [25]. This issue is especially severe in high-stakes or multi-modal settings,
where misleading outputs can propagate falsehoods, undermine user trust, and cause real-world harm.

Despite its critical importance, hallucination detection remains an open and under-defined challenge.
Hallucinations can arise from multiple sources: model overconfidence, training data bias, retrieval
mismatches, or modality misalignment [27]. As these models are increasingly deployed in real-
world systems without guaranteed access to external knowledge sources, detecting hallucinations
becomes a central challenge. One key difficulty lies in the lack of ground truth references, particularly
in open-ended generation tasks where multiple plausible outputs exist, complicating supervised
training, especially in zero-resource settings. In multimodal large language models (MLLMs),
hallucinations can arise from complex interactions such as visual misinterpretation or misalignment
between visual and textual modalities [26], rendering simple text-only consistency checks inadequate.
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Moreover, language models often exhibit overconfidence, generating outputs with high certainty
even when incorrect [23]. Techniques based on self-consistency or repeated sampling are not
only computationally expensive but also frequently ineffective. Adding to these issues, many
real-world applications impose black-box constraints where only final model output is accessible,
excluding internal activations, training data, or retrieval logs, making many existing detection
strategies impractical in deployment scenarios.

2 Related Works

Detecting hallucinations in large language models (LLMs) is an increasingly pressing challenge,
especially as these systems are deployed in open-ended, knowledge-intensive applications. Traditional
methods for hallucination detection often involve repeated sampling, response self-consistency, and
external fact-checking modules. However, these approaches suffer from high computational costs and
limited effectiveness in scenarios with subtle factual distortions, as well as lack of access to model
architecture and internal logits in black-box settings. Often, these methods are difficult to be adapted
to multimodal settings.

Self consistency and sampling approaches include SelfCheckGPT [3], which detects hallucinations
in black-box LLMs by sampling multiple generations and checking semantic agreement. While
effective in zero-resource settings, it is computationally expensive and limited to textual outputs.
Entailment and fact-verification approaches like FactScore [20] evaluate hallucination at the atomic
fact level by decomposing model outputs into claims and verifying them against references. Similarly,
FEVER [12] established large-scale fact-checking benchmarks, which inspired methods that ground
detection in textual entailment. Retrieval augmented and tool based approaches like FacTool [21]
integrates retrieval with verification steps, while REFCHECKER [22] introduces reference-based
fine-grained hallucination detection. These approaches are designed for knowledge-intensive tasks
where external context is available. There are structured detection techniques like G2LDetect [17],
which introduces a global-to-local framework that aggregates evidence across the input to better
capture subtle hallucinations. HalluciNot [19] incorporates common-knowledge verification for
robust factuality detection. UQLM [16] ensembles multiple scorers (black-box, white-box, LLM-
judge) with uncertainty quantification. Recent work has explored debate among multiple LLMs
to improve factuality and robustness [4]. While debate has been shown to improve reasoning in
both textual and multimodal settings, prior works typically use only single turn debate using two
well-defined agents. This makes this method very grounded to a particular modality or task.

Our Contribution We propose a three-fold contribution to the hallucination detection literature
in multi-modal large language models (MLLMs). First, we introduce a novel multi-agent debate
framework that leverages dynamic prompting, information cross-referencing, and state updates
through agents, enabling context-aware reasoning over both visual and textual modalities. This
architecture allows agents to iteratively extract, validate, and argue over fine-grained multimodal
evidence. Second, we integrate a lightweight classifier head over the LLM-generated judgment to
calibrate hallucination predictions more robustly. Third, we use the classifier confidence as a metric
to quantify uncertainty in the predictions. This dual-layer verdict system—combining human-like
debate with structured classification—offers improved generalizability, interpretability, and reliability.
Together, our method presents a scalable, modular pipeline for hallucination detection that can operate
effectively in real-world multimodal settings.

3 Methodology

In contrast to prior work, our approach integrates multi-agent debate with a central LLM judge, along
with a sentence classifier, enabling structured evaluation of factual consistency across modalities
and argument viewpoints. Unlike semantic entropy or zero-resource methods, we do not require
token-level entropy modeling or hand-crafted perturbations. Compared to previous multi-agent
frameworks, our design includes a more complex agentic interaction and a formal judging mechanism
that learns to score arguments and a classifier for final calibrated evaluation. Our method involves
cross referencing information from images, texts, documents and all other modalities, resulting in a
context-enhanced prompting. This yields superior generalization, reasoning, and factual sensitivity
across both vision-language as well as purely textual tasks.
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Figure 1: Agentic workflow in CEDA for hallucination detection in multimodal setting

3.1 Agents

Our CEDA framework implements a multi-agent architecture orchestrated through specialized agents
with distinct functionalities. As illustrated in Figure 1, the framework employs five key agents
operating in a sequential pipeline. Initially, Agent A performs Retrieval Augmented Generation
(RAG) [7] to extract relevant context from input documents. The entire document is divided into
m chunks, where each chunk typically corresponds to a meaningful unit of text, such as a sentence.
Each chunk is encoded into a vector embedding space. The text prompt is also processed as a single
chunk. This is done using a text embedding model. Using cosine similarity as the distance metric,
we choose top n chunks, closest to the vector embedding of the prompt in the embedding space,
to form the context. This is followed by Agent B, which utilizes a multimodal LLM to process
and integrate visual information from input images. We generate prompt dynamically, based on the
system instructions, to extract more meaningful and aligned information from the images. Agent
C then synthesizes the accumulated context with the user query to generate an enriched contextual
representation.

The core debate mechanism is implemented through agents D and E, which engage in structured
argumentation based on the enriched context. The debate progression is governed by a conditional
termination criterion that evaluates inter-agent consensus. Specifically, the framework monitors a
two-turn conversation window for complete agreement between agents. Debate termination occurs
either upon reaching consensus or exceeding a predefined maximum number of turns.

The final stage involves a judge agent that analyzes the complete debate history to generate a verdict,
accompanied by an explanatory summary that ensures interpretability. This output feeds into a binary
classifier that determines the hallucination prediction (0: hallucinated, 1: non-hallucinated) with an
associated confidence score. This hierarchical architecture enables both robust hallucination detection
and transparent decision-making through explicit debate traces.

3.2 Workflow

Our framework implements a dynamic state-based architecture for multimodal hallucination detection.
The system operates through three primary state transitions: initial, intermediate, and output, as
shown in Figure 2. The initial state incorporates multimodal inputs including images, documents,
contextual passages, and system instructions. This information is processed by specialized agents: an
image agent for visual analysis and a Retrieval-Augmented Generation (RAG) agent for textual and
document processing. These agents update the intermediate (mutable) state, which consists of an
evolving system prompt, extracted information, and an ongoing debate history. The intermediate state
serves as input to a multi-agent debate framework, where the debating agents engage in structured
argumentation, continuously enriching the context and updating the debate history. Finally, a judge
agent evaluates the intermediate state to produce the output state, comprising a binary hallucination
label (0/1), a confidence score (0-1), and an explanatory rationale. This cascading architecture enables
comprehensive cross-modal analysis and facilitates transparent, interpretable hallucination detection.
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Figure 2: State update workflow in CEDA

3.3 Context Enhanced Dynamic Prompting

A central innovation in CEDA lies in the design of a context-enhanced dynamic prompting mecha-
nism that couples retrieval, multimodal evidence extraction, and debate orchestration. Unlike static
prompting strategies, like in case of repeated sampling techniques [3], that provide the same fixed
context to all agents, CEDA adapts the prompt dynamically based on intermediate signals from
upstream agents. Specifically, the RAG module and image agent first extract heterogeneous evidence,
which is synthesized by the context agent into structured claims and supporting facts. These syn-
thesized contexts are then injected into the debate prompts in a selective and role-specific manner:
debaters receive potentially conflicting subsets of the evidence to maximize critical examination,
while the judge receives an aggregated, conflict-aware prompt that highlights areas of disagreement.
This dynamic conditioning encourages agents to argue from complementary perspectives, reduces
redundancy, and surfaces subtle inconsistencies that static prompts often miss. As a result, CEDA
transforms raw multimodal information into a debate-ready context that is both richer and more
adversarially informative. This novel prompting strategy enables the debate to focus on contentious
factual claims rather than focusing on redundant context, thereby increasing both the accuracy of
hallucination detection and the interpretability of the resulting debate traces.

3.4 Classifier

Following the multi-agent debate process, the final structured response—along with the supporting
dialogue and extracted information—is processed by the judge agent, which generates a concise
verdict indicating whether the original claim is hallucinated or supported. This verdict is then passed
to a downstream classification module to generate a final hallucination label and associated confidence
score. In our framework, we employ the SetFit [6] classifier, a parameter-efficient few-shot learning
method built upon sentence transformers. In our case we use paraphrase-mpnet model 2 for the
sentence transformer. SetFit finetunes sentence embeddings using contrastive learning without full
backpropagation through the transformer. Let fθ(·) denote the sentence encoder with parameters
θ. Given a pair of semantically similar sentences (xi, x

+
j ) and a dissimilar negative sample x−

k , the
sentence transformer is finetuned using contrastive learning.

After embedding alignment, classification head (in this case, logistic regression) is trained on the
labeled hallucination dataset. Let zi = fθ(xi) be the embedding of the i-th verdict and yi ∈ {0, 1}
be its hallucination label. The classifier is trained using binary cross-entropy loss:

Lclassification = − 1

N

N∑
i=1

[yi log(σ(Ai)) + (1− yi) log(1− σ(Ai))] (1)

where Ai = w⊤zi + b, σ(·) is the sigmoid function, and (w, b) are the classifier weights and bias.
2huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2
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This two-stage architecture enables highly data-efficient training and provides a calibrated confidence
score via the sigmoid output. This makes it especially suitable for hallucination detection in set-
tings where supervised data is limited. The classifier thus transforms abstract debate verdicts into
interpretable hallucination predictions, supporting robust downstream applications.

3.5 Confidence

The uncertainty in CEDA’s hallucination predictions can be quantified by a confidence scoring
mechanism. This score is derived from the posterior probabilities obtained from the SetFit classifier’s
output layer. When there is strong evidence of hallucination through clear agent consensus, the logits
probability is close to 1 for the hallucinated class. Conversely, for clearly non-hallucinated content,
the probability distribution peaks near 1 for the non-hallucinated class. In cases of agent disagreement
or ambiguous evidence leading to uncertain judge verdicts, the probability distribution approaches
uniformity (≈ 0.5), indicating low confidence in the classification. More specifically, if p and 1− p
are the class probabilities of hallucinated and non-hallucinated class respectively, the confidence
score can be defined as max(p, 1− p). This probabilistic formulation provides a natural measure of
prediction uncertainty that aligns with the framework’s ability to detect hallucinations, effectively
capturing the degree of confidence in the model’s decisions.

4 Experiments

4.1 Agent Model Selection

In our multi-agent framework, we use different models for different agents. For parsing the documents
using RAG, we use the base model of Amazon Titan Embed Text V1 for text embeddings. For
extracting information from images, we use Claude 3.5 Sonnet. For the debating agents, we use
Mistral 7B [28] and Claude 3.5 Haiku. Two different LLMs are used for the agents to reduce any
information or inductive bias present in a single LLM. For the debate summarization and judgment
by the judge agent, we use Claude 3.5 Sonnet.

4.2 Training

For the classification component, we employ the SetFit classifier, that has demonstrated robust
generalization capabilities across diverse domains. The classifier is trained on debate summaries
generated by our framework using a training set of 1000 samples from the FEVER [12] dataset. These
samples are processed through our multi-agent debate pipeline to generate structured verdicts, which
serve as training instances for the SetFit classifier (0: hallucinated, 1: non-hallucinated). Notably,
this single classifier, trained on a small, domain-specific sample, generalizes effectively across all
benchmark datasets without fine-tuning, demonstrating the framework’s domain-agnostic capabilities
and efficient few-shot learning performance.

4.3 Datasets and Experimental Setup

We evaluate our hallucination detection framework across five diverse datasets: TruthfulQA, Natural
Questions (NQ), FEVER, HallusionBench, and HaluEval-Summarisation. For each, we benchmark
binary classification performance using F1 score and accuracy. We also report the average time per
evaluation sample.

The TruthfulQA [8] dataset focuses on detecting false beliefs and misinformation across domains
like health, law, and common misconceptions. Using 1,000 validation samples, we create positive
(truthful) and negative (hallucinated) question-answer pairs. Each pair is verified using our framework,
and binary F1 score is computed against the labeled ground truth. The Natural Questions [11] dataset
consists of real search queries and associated short answers. We evaluate 1,000 samples from the
validation set, where ground truth only contains non-hallucinated answers. Our model classifies
hallucination presence, and we report the percentage of correct non-hallucinated predictions in terms
of the F1 score. The HaluEval-Summarisation [14] dataset includes document-summary pairs labeled
as factual or hallucinated based on human assessments. It evaluates a model’s ability to detect both
subtle and overt factual inconsistencies in generated summaries, providing a robust benchmark for
hallucination detection. The FEVER [12] dataset is a fact verification dataset containing claims
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labeled as supported or refuted. For the purpose of hallucination detection, we drop the class of non
verifiable data. We sample 1,000 test instances, treating supported as non-hallucinated and refuted
as hallucinated. The model checks factuality, and we report binary classification F1 score. The
HallusionBench [13] dataset assesses hallucinations in vision-language models using 1,129 yes/no
questions over 346 image pairs. Questions are categorized as Visual Dependent (VD) or Visual
Supplement (VS). The model classifies each as hallucinated or not, and we report accuracy.

4.4 Results

We evaluate our framework on all five benchmarks using the best performing parameters. These
parameters are (i) Maximum number of debate turns (= 5); (ii) Maximum number of output tokens
(= 100); (iii) Number of document chunks for context using RAG (n = 5)(iii) Combination of
different LLMs for different agents as mentioned in previous section. The experiments and results
are discussed later.

4.4.1 TruthfulQA

We report the zero-shot prompting performance of LLMs like Qwen, GPT-4o, and GPT-4o mini. The
HDM model [19] uses context and common knowledge verification for hallucination detection. The
MAD (Multi-agent debate) model [15] implements a multi-agent debate approach for hallucination
detection. Our framework performs almost at par with the best performing HDM model. However,
our framework performs better than the current multi-agent debate based approach. We report the
baseline metrics in table 1. The baseline results are reported from original papers [19][15]. The
average evaluation time is reported to be 10.39 seconds per evaluation sample.

Table 1: TruthfulQA performance comparison
Model F1 Score (%)↑
GPT-4o 53.8
GPT-4o mini 56.2
Qwen 61.6
MAD 61.9
HDM 83.7
CEDA 81.3

Table 2: NQ performance comparison
Model F1 Score (%)↑
Gemini 48.00
GPT-3.5 55.00
UQLM (Gemini) 57.00
UQLM (GPT-3.5) 65.00
CEDA 82.10

4.4.2 NQ

We report the zero-shot prompting performance of LLMs like GPT 3.5 and Gemini. The ensemble
scoring method introduced in the paper Uncertainty Quantification for Language Models [16] involves
aggregating black box, white box as well as LLM-as-a-judge methods for scoring and using a threshold
to classify a question-answer pair as hallucinated or not. The baseline results are reported from
original UQLM paper [16]. Our framework outperforms the existing baseline methods. We report the
baseline metrics in table 2. The average evaluation time is reported to be 8.74 seconds per evaluation
sample.

4.4.3 HaluEval-S

We evaluate our framework on the HaluEval-S (summarisation) dataset and compare its performance
against a range of hallucination detection baselines, as reported in the G2LDetect [17] paper. The
methods include zero-shot prompting of GPT-4 LLM as well as chain-of-thought (CoT) prompting.
Other methods include self-consistency like SelfCheckGPT [3], entailment scoring like FactScore
[20], and retrieval-augmented tools like FacTool [21] and REFCHECKER [22]. We also report
the G2LDetect model performance, which uses global to local information extraction from the text
to detect hallucination. Our method outperforms the best performing setting of G2LDetect (using
GPT-4). The baseline results are reported from original papers [17]. We report the baseline metrics in
table 3. The average evaluation time is reported to be 13.78 seconds per evaluation sample.
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Table 3: HaluEval-S Performance Comparison
Model F1 Score (%)↑
GPT-4 65.88
GPT-4 (CoT) 66.77
REFCHECKER 69.00
SelfCheckGPT 69.81
FactScore 70.33
FacTool 70.93
G2LDetect 72.98
CEDA 75.00

Table 4: FEVER Performance Comparison
Methods F1 Score (%)↑
FactScore 66.58
GPT-4 70.11
FacTool 70.21
GPT-4 (CoT) 71.13
SelfCheckGPT 72.64
REFCHECKER 72.76
G2LDetect 75.55
CEDA 85.00

4.4.4 FEVER

We evaluate our framework on the FEVER dataset and compare its performance against the halluci-
nation detection baselines mentioned in previous section, as reported in the G2LDetect [17] paper.
Our method outperforms the best performing setting of G2LDetect (using GPT-4). The baseline
results are reported from original papers [17]. We report the baseline metrics in table 4. The average
evaluation time is reported to be 8.85 seconds per evaluation sample.

4.4.5 HallusionBench

We report the accuracy score of state-of-the-art LLMs on the entire dataset, as provided in their
official GitHub 3 repository. Our model outperforms the baseline performance. We report the metrics
in table 5. The average evaluation time is reported to be 15.10 seconds per evaluation sample.

Table 5: HallusionBench Performance Comparison

Model Accuracy (%)↑
mPLUG-Owl 43.93
InstructBLIP 45.26
LLaVA-1.5 46.94
mPLUG-Owl2 47.30
Claude 3 56.86
GPT-4o 65.28
Human Eval 67.58
CEDA 72.36

Table 6: Ablation study results across five benchmarks. We report F1 scores (%) and computation
time (seconds) for different configurations of debate turns and agent combinations. N denotes
the maximum number of debate turns; debating agents A1 and A2 denote Agent 1 and Agent 2
respectively.

N A1 A2
TruthfulQA FEVER NQ Hallusion HaluEval

F1 Time F1 Time F1 Time F1 Time F1 Time

2 Mistral Haiku 75.0 8.69 80.0 7.60 87.0 6.95 63.0 14.92 72.0 10.43
4 Mistral Haiku 78.0 9.91 82.0 8.19 88.0 8.22 66.0 15.02 73.0 10.88
6 Mistral Haiku 81.0 10.47 85.0 9.43 90.0 8.47 71.0 15.13 74.0 13.88
8 Mistral Haiku 80.0 11.39 85.0 10.22 91.0 8.82 70.0 16.09 74.0 13.91
6 Mistral Mistral 71.0 12.72 82.0 10.11 88.0 9.12 66.0 17.07 57.0 12.22
6 Haiku Haiku 73.0 14.48 83.0 9.19 94.0 7.30 62.0 16.19 62.0 17.27

3github.com/tianyi-lab/HallusionBench

7



5 Ablation Studies

We conduct extensive ablation experiments to analyze the impact of different components and
configurations in CEDA. Specifically, we investigate (1) the optimal number of debate turns, (2) the
effect of agent model combinations, and (3) their impact on computational efficiency across five
diverse benchmarks. The analysis was done to assess relative performance among different settings
and not against the state-of-the-art models. The experiments were performed on a small subset of
1000 samples of each benchmark dataset and the results differ from the absolute results reported in
earlier sections. These results are presented in table 6.

5.1 Impact of Number of Debate Turns

We first examine how the number of debate turns affects model performance while keeping other
parameters constant (Mistral-Haiku agents, temperatures 0.2/0.6). As shown in table 6, increasing the
number of turns from 2 to 6 consistently improves performance across all benchmarks. On FEVER,
the F1 score improves from 80% to 85%, while HallusionBench shows an improvement from 63% to
71%. However, further increasing to 8 turns shows no significant change in performance. This shows,
in most settings, the agents reach to conclusive agreement within atmost 6 iterations.

Different tasks show varying sensitivity to the number of turns. Text-based benchmarks like NQ
show more stable improvements (87% → 90% → 91%), while multimodal tasks like HallusionBench
demonstrate more pronounced gains (63% → 71%) before plateauing. This suggests that visual
reasoning benefits more from extended debates up to a certain point.

5.2 Temperature Analysis

Across all experiments, we keep temperature of one of the agents to be 0.2 and other to be 0.6. The
hypothesis is, a higher temperature provides more variation in output probabilities [24], according to
equation 2:

p(xi|x<i) =
exp(zi/T )∑N
j=1 exp(zj/T )

(2)

where zi represents the logit for token i, T is the temperature parameter. This often leads to
more creative and diverse responses. On the other hand, lower temperature often results in more
straightforward responses. As an attempt to balance these attributes, we maintain this combination of
temperatures.

5.3 Agent Model Combinations

We compare three 6-turn debate setups: (1) heterogeneous (Mistral–Haiku), (2) homogeneous
(Mistral–Mistral), and (3) homogeneous (Haiku–Haiku).

As shown in table 6, the heterogeneous configuration consistently outperforms homogeneous setups
in most benchmarks. On TruthfulQA, Mistral-Haiku achieves 81% F1 score compared to 71% and
73% for homogeneous configurations. However, we observe interesting exceptions: on NQ, Haiku-
Haiku achieves the best performance (94% F1), suggesting that model selection should consider
task-specific characteristics. This can be attributed, as mentioned earlier, to the inherent biases in
individual LLMs, which get mitigated when using the ideal combination of LLMs as debating agents
against each other.

5.4 Computational Efficiency Analysis

Our experiments reveal important efficiency trade-offs. While increasing debate turns generally
improves performance, it comes with linear increase in computation time. For instance, on FEVER,
time increases from 7.6s to 10.22s when increasing turns from 2 to 8. The efficiency impact
varies by task complexity - HallusionBench shows consistently higher computation times (∼20s)
due to its multimodal nature. Notably, agent combination choices significantly affect efficiency.
The Mistral-Haiku configuration generally offers the best performance-efficiency trade-off, while
homogeneous configurations sometimes require longer processing times without corresponding
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performance benefits. These findings validate our design choices while highlighting important
considerations for deploying CEDA in different scenarios.

5.5 Agents Ablation

Individual Agent Contribution A typical ablation study cannot be performed by removing some
agents and analysing the model performance. This is because each agent performs a strong role in the
unified multimodal framework, attending to different modalities of data. However, number of debate
turns, which we discussed in previous section, controls the number of times an agent is invoked
in the overall framework. We clearly see that as debate turns increase, effective number of agents
involved in the framework increases, resulting in improvement in performance. The invocation of
agents is completely dynamic based on conditional statements, meaning, in a simpler condition with
easy convergence of debate, the number of turns is lesser than a difficult condition to asses, where
agents require multiple rounds of debate to converge to a conclusion. Hence, for simpler use cases,
the number of debate turns can be one, working as a simple LLM-as-a-judge.

Multi-Agent Debate vs LLM-as-a-Judge From the performance on benchmarks, discussed in
the experiments section, we see that our multi-agent debate framework outperforms a single LLM-
as-a-judge based on commercial LLMs like GPT 4o, Claude, Gemini, as well as white-box open
source LLMs like Mistral, Qwen, LLaVa. This can be attributed to the corollary A.0.1, which
states that increasing the number of agents improves the performance of the predictive model. This
empirical and theoretical argument explains why our unified multimodal framework outperforms
single multimodal LLM-as-a-judge. Moreover, in our framework, each agent, specialized in a
particular task/modality, presents its views in a structured debate, which is aggregated by the judge to
reach the final conclusion. This is different from multimodal LLMs, where multimodal heads use a
shared backbone for prediction, limiting diversity and causing redundancy in bias. Thus, multiple
agents are more than just modality processing units; they help in removing biases which are one of
the major reasons for hallucination in LLMs.

Classifier Head on top of LLM-as-a-Judge In our unified framework, we have a classifier head
on top of LLM-as-a-Judge for better calibrated response. This is to bring a degree of determinism in
the outputs of the LLM-as-a-Judge, which is a black-box model. To reduce the computational cost,
we cap the number of debate turns to an upper limit, this may cause the end of debate before the
agents reach a conclusion. As a result, the debate summary may be ambiguous and lead to incorrect
judgments by the judge LLM. To solve this, we add a trainable classifier layer on top, which is trained
on both clear consensus as well as ambiguous situations, thus bringing more determininism and
calibrated responses. This is vital for the success of downstream tasks dependent on the response
from our framework.

6 Conclusion

This work introduces CEDA, a novel multi-agent debate framework for detecting hallucinations
in large language model outputs across multiple modalities. Through extensive experiments on
five diverse benchmarks, we demonstrate that CEDA achieves strong performance in identifying
factual inconsistencies and hallucinations, outperforming existing approaches and establishing new
state-of-the-art performance. The framework’s unique combination of structured multi-agent debate,
calibrated classification, and confidence estimation enables robust hallucination detection while
providing interpretable reasoning and explanation. The framework’s ability to generalize across
different tasks and modalities, while maintaining reasonable evaluation times, demonstrates its
practical utility for real-world applications. Key strengths of our approach include (1) domain-
agnostic architecture that effectively handles both visual and textual modalities, (2) interpretable
debate traces that explain hallucination determinations, (3) lightweight classifier head for calibrated
hallucination detection, (4) confidence scoring to quantify uncertainty in predictions.

While CEDA demonstrates promising results in hallucination detection, several important directions
remain for future exploration. These include scaling and extending the framework to handle streaming
data, incorporating active learning for continuous improvement, and developing more efficient debate
strategies. We believe CEDA represents a promising direction for improving the reliability and
trustworthiness of language model outputs through structured multi-agent evaluation.
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A Appendix

A.1 Convergence of Multi-Agent Debate

Let X be the event “statement is non-hallucinated” and let µ = Pr(X) be its true probability (for a
fixed input x). For i = 1, . . . , n let agent i output a probability estimate

pi := σ(fi(x)) ∈ [0, 1],

where σ(·) is the sigmoid and fi denotes the LLM backbone used by agent i. Define the ensemble
(average) estimator

p̂n :=
1

n

n∑
i=1

pi.

Corollary A.0.1 For any ε > 0,

Pr
(
|p̂n − µ| ≥ ε

)
≤ 2 exp

(
− 2nε2

)
.

Consequently p̂n
p−→ µ (convergence in probability) as n → ∞, and for fixed ε the Hoeffding upper

bound decays exponentially in n. In particular, for any fixed ε the ensemble average achieves
strictly tighter concentration than a single agent: the analogous single-agent Hoeffding bound is
2 exp(−2ε2), so the ensemble improves the exponent by a factor n.

We make the standard assumptions that the LLM based agents are bounded and unbiased estimators of
the task (hallucination detection, in this case). Hence, E[pi] = µ for all i (or equivalently E[p̂n] = µ).
Also, the above corollary requires independence of the variables. This may not completely hold
in our case, as the agents are involved in a structured debate, hence the response of agent 1 (R1)
depends on the response of agent 2 (R2). So, Pr(R1|R2) ̸= Pr(R1). But, depending on the degree
of correlation, n can be replaced by an effective neff number of independent variables.

A.2 Comparative Analysis

Entailment-based Detection Entailment-based detectors work by decomposing outputs into claims
and checking them against the input or retrieved evidence using pretrained entailment models.
While effective in narrow domains like FEVER, these methods often break down when claims are
paraphrased, spread across long contexts, or when the entailment model faces out-of-distribution
phrasing. They are also brittle across tasks, as the underlying entailment models are typically trained
on specific datasets. CEDA surpasses these approaches because the debate mechanism allows agents
to challenge claims with contextually relevant counterarguments, while the judge and classifier distill
disagreements into more robust binary decisions. Empirically, this leads to large gains — for instance,
CEDA beats G2LDetect by nearly 10 F1 points on FEVER — showing its capacity to generalize
beyond what static entailment classifiers can achieve.

Prompt-based Detection Prompt-based methods like SelfCheckGPT and HDM attempt to detect
hallucinations by re-querying the same model or a verifier model and then measuring consistency
across answers or having the verifier judge correctness. These methods are attractive because they
require no training, but they suffer from self-confirmation bias: if a model hallucinates consistently,
repeated queries or a same-family verifier may reinforce the error. HDM incorporates commonsense
verification and performs very well on TruthfulQA, but it remains a single-agent framework. CEDA’s
debate architecture instead introduces heterogeneity by using agents with different models and
temperatures, ensuring diverse perspectives are represented. This increases the likelihood that a
hallucination is identified and challenged. While HDM edges out CEDA on TruthfulQA, CEDA
clearly outperforms across broader, less structured tasks such as NQ, FEVER, and HallusionBench,
highlighting that debate yields stronger generalization beyond benchmark-specific tuning.

Retrieval-based Detection Retrieval-augmented verifiers improve hallucination detection by
grounding claims against external corpora, comparing outputs with retrieved passages for con-
sistency. This works well when retrieval captures clean, relevant evidence, but in practice retrieval
often brings in partial, noisy, or conflicting context. Most RAG-based baselines use shallow entail-
ment checks, which fail when interpretation or multi-step reasoning is required. CEDA integrates
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retrieval more effectively by placing it within a debate: one agent specializes in evidence retrieval,
while the debaters use this evidence to argue for or against claims. This allows the system to confront
noise, weigh evidence, and refine interpretations, rather than blindly accepting retrieval results. The
empirical edge is clear on FEVER and NQ, where retrieval is central: CEDA dominates baselines that
rely on retrieval alone, confirming the added value of adversarial reasoning layered over evidence.

Multimodal Detection Multimodal baselines typically use a vision-language model (VLM) to
generate answers conditioned on both image and text, and hallucination detection is attempted either
by re-querying the same model or by checking consistency across image-text pairs. While powerful,
VLMs have characteristic blind spots: they over-rely on textual priors, misinterpret subtle visual cues,
and struggle with adversarial or ambiguous images. As a result, they often hallucinate objects or
relations absent from the visual scene. CEDA improves on this by combining a vision-specialized
agent with text-specialized debaters, ensuring that visual evidence is explicitly cross-examined during
the debate.

Uniqueness of CEDA CEDA’s core distinction is that it does not rely on a single static heuristic —
whether entailment, entropy, re-prompting, or retrieval, but instead frames hallucination detection as a
process of adversarial dialogue. By forcing heterogeneous agents to present and contest claims, CEDA
uncovers inconsistencies that would otherwise be invisible to single-agent or static baselines. The
LLM judge provides an interpretable synthesis of the debate, while the classifier ensures calibrated,
generalizable predictions. Theoretically, this combination mitigates bias, leverages diversity, and
strengthens cross-domain robustness. Empirically, this design translates into state-of-the-art results
on four out of five benchmarks, especially in tasks requiring reasoning over noisy retrievals or
multimodal inputs.

A.3 Prompts

A.3.1 System Prompt

The system prompt is generated by appending the Role and Instruction inputs obtained from the user.
The system prompt can be formatted as:

System: You are an expert debate agent. Your role is [Role].
You are assigned the following task: [Instruction]

A.3.2 Image Agent Prompt

As discussed earlier, we generate prompt dynamically based on the task and the input text (fact) to be
verified. This prompt is generated by passing a meta-prompt to the LLM. This generated prompt –
the image prompt, specifies what information is needed to answer the visual question, and guides the
image agent to extract meaningful information from the image. The meta-prompt is:

System: You are an image extractor and visual question-answering agent.
Your system prompt is [system prompt].
Based on an image provided you have to answer/verify the following:
[input text].
Your response should be:
Generate a detailed prompt to extract the necessary information from the image
to answer this question.

Now the output of the LLM using meta prompt is, say, image prompt. The final prompt passed to the
image agent is formatted as following:

System: [image prompt]
Your response should be:
1. Answered in a single paragraph
2. Do not ask leading questions
3. Try to give a conclusive response
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The extracted information from the image, as well as from the text documents, are stored in the
intermediate state, as shown in figure 2. We have discussed these in detail, with examples in later
sections.

A.3.3 Debate Agent Prompt

The debate agents argue about the correctness of the fact based on the extracted information and the
previous opinion by opposite agent. This can be accessed from the state history and we call it last
message.

System: [system prompt]. You are a debating agent, debating the question-answer
pairs. Respond very briefly in 1-2 sentence. Think analytically and
rationally.

↪→
↪→
Current statement or last point: [last message]
Original fact to be checked: [input text]
Extracted context from documents and images: [extracted_info]
Your response should be:
First state in ONE word whether you 'AGREE' or 'DENY' with the last message,
then continue with a brief justification. If needed, refer back to facts from

the context above.↪→
Respond with your very brief argument or counter-argument.
Before answering, try to evaluate your response analytically/ numerically if

possible.↪→
Don't ask leading questions at end.
Try to give a very short conclusive answer"

A.3.4 Judge Agent Prompt

After the end of debate, the entire history is appended to form a conversation. This is passed to the
judge agent to summarise and provide final verdict. The judge agent prompt is formatted as follows:

System: You are the neutral judge of a debate between two agents discussing a
factual statement.
Your task: Conclude from the debate whether the fact is correct or wrong.
Debate Transcript: [conversation]
Your response should be:
Has consensus been reached? If so, very briefly give a concluding summary based
on your judgement.
If the agents disagree, being neutral judge, you give your conclusion very
briefly.
No need to individually summarise every agent response
Give a brief summary of how the agents agree or disagree over every point
discussed.
Final verdict whether the statement is (1) correct; (0) wrong"

Example 1

We will demonstrate the prompts and LLM responses at each step, while evaluating a fact based on a
text reference provided.

We use a sample text document from Huggingface. 4 It contains trivia about cats.

The fact to be verified is:

Female cats tend to be right pawed.

Without the reference document, the LLM cannot provide confident response. However, with
reference document, better context is extracted from the document and hence, LLM provides correct
response.

For this we pass the following system prompts – Role:

Fact Verifier

4huggingface.co/ngxson/demo_simple_rag_py/blob/main/cat-facts.txt
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Instruction:

Verify from the document if the fact is correct or hallucinated

The extracted information from the image is:

Info extracted from documents: Female cats tend to be right pawed, while male
cats are more often left pawed. Interestingly, while 90% of humans are
right handed, the remaining 10% of lefties also tend to be male. Cats have
five toes on each front paw, but only four toes on each back paw. A female
cat is called a queen or a molly. All cats have claws, and all except the
cheetah sheath them when at rest. The claws on the cat’s back paws aren’t as
sharp as the claws on the front paws because the claws in the back don’t
retract and, consequently, become worn.

The following is the debate structure:

Agent 1- agree: the document provides evidence that female cats have a
preference for using their right paw more often than their left paw. the
statement is supported by the information presented.

Agent 2- agree: the extracted context directly supports the statement,
explicitly stating that "female cats tend to be right pawed, while male
cats are more often left pawed." the information is clear and provides a
direct confirmation of the original claim about female cats' paw
preference.

The verdict provided by the judge after debate:

Hallucinated: False
Judgement Summary: Based on the debate transcript, both agents AGREE that the
statement "Female cats tend to be right pawed" is correct. They both cite
supporting evidence from the document that directly confirms the claim.
Verdict: CORRECT The fact is verified and supported by the context provided in
the debate.
Confidence: 0.9601831532567048

Example 2

In this example, we will demonstrate visual hallucination detection using CEDA. Figure 3 contains
a chart and involves answering question referring to the same. Figure 2 contains an illusion, often
leading to hallucination by LLMs. These images are taken from HallusionBench dataset.

Chart-based Image

This fact is referenced to the figure 3. The fact to be verified is:

Is China, Hongkong SAR, the leading importing country of gold, silverware, and
jewelry with the highest import value in 2018?

For this we pass the following system prompts –

Role:

Fact Verifier

Instruction:

Verify from the image if the fact is correct or hallucinated

The extracted information from the image is:

Info extracted from image: image_0: Based on the image provided, we can verify
the gold, silverware, and jewelry import statistics for
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Figure 3: Chart-based Image

Figure 4: Illusion-based Image

China (Hong Kong SAR) in 2018.
The chart clearly shows that China, Hong Kong SAR was one of
the leading importing countries for these products worldwide in 2018.
The import value for China (Hong Kong SAR) is represented by a blue bar that
extends to approximately 11,000 million U.S. dollars, making it the
second-highest importer among the countries listed. This places China
(Hong Kong SAR) behind Switzerland, which shows the highest import value, and
ahead of other major economies such as the United States, France, and
Germany. The data is presented in a clear, comparative format, allowing for
easy verification of China\'s position relative to other importing
countries in the specified year.

The following is the debate structure:

Agent 1- agree: the image and document provide clear evidence that china
(hong kong sar) was the second-highest importer of gold, silverware, and jewelry
in 2018, with an import value of approximately 11,000 million u.s. dollars.

Agent 2: deny: the statement is incorrect. while china (hong kong sar) is the
second-highest importer, this does not match the original claim of being
the leading importing country. the data clearly shows switzerland as the
top importer, making the original statement false.

The verdict provided by the judge after debate:

Hallucinated: True
Judgement Summary: Based on the debate transcript, the fact is partially
incorrect. While China (Hong Kong SAR) is a significant importer of gold,
silverware, and jewelry in 2018, it is not the leading importing country -
Switzerland holds that position. The statement is therefore false.
Verdict: INCORRECT
Confidence: 0.8950844460263088

Illusion-based Image

This fact is referenced to the figure 4.

The fact to be verified is:

Is the top line shorter than the bottom line?

For this we pass the following system prompts – Role:

Fact Verifier

Instruction:
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Verify from the image if the fact is correct or hallucinated

The extracted information from the image is:

Info extracted from image: image_0: After careful analysis and multiple
measurement passes, I can conclusively state that the two horizontal lines
in the image are exactly the same length. This is a classic example of the
Müller-Lyer illusion, where the arrowheads at the ends of the lines create a
false perception of different lengths. The top line with outward-facing
arrowheads appears longer, while the bottom line with inward-facing
arrowheads seems shorter. However, precise pixel measurements confirm that
the central horizontal segments of both lines are identical in length. This
optical illusion demonstrates how visual context and geometric elements can
significantly influence our perception, even when the objective
measurements show no difference.

The following is the debate structure:

Agent 1- agree: the statement in the question is "is the top line shorter than
the bottom line?" the information extracted from the image and document
confirms that the central horizontal segments of both lines are identical
in length, contradicting the perception of the müller-lyer illusion.
therefore, the top line is not shorter than the bottom line.

Agent 2- agree. the extracted image context clearly confirms that the
horizontal lines are identical in length, despite the visual illusion
created by the arrowhead orientation. precise pixel measurements validate
that the lines are objectively the same length.

The verdict provided by the judge after debate:

Hallucinated: True
Judgement Summary: Consensus has been reached. Both agents agree that the top
line is NOT shorter than the bottom line. The Müller-Lyer illusion creates a
visual perception of different line lengths, but precise measurements
confirm the lines are exactly the same length.
Verdict: The statement is FALSE. The lines are objectively equal in length.
Confidence: 0.6982270534792074
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